## Research interests

Stability theory for nonlinear differential equations.Operator theory, spectral theory. Theory of extensions of symmetric operators, boundary triplets approach. Lattes ResearchGate### Seminar "Differential Equations"

### Seminar "Operator Theory and Its Applications"

## Articles and Preprints

- L.Cely, N. Goloshchapova,
**Variational and stability properties of a nonlinear Schrödinger system on a star graph.**accepted in Nonlinear Analysis. - N. Goloshchapova,
**Dynamical and variational properties of NLS-δ´ equation on the star graph.**Journal of Differential Equations**310**(2022), pp. 1-44 PDF - A.H. Ardila, L. Cely, N. Goloshchapova,
**Instability of ground states for the NLS equation with potential on the star graph.**Journal Evolution Equations**21**(2021), pp. 3703–3732 PDF - N. Goloshchapova,
**A nonlinear Klein-Gordon equation on star graphs.**Mathematische Nachrichten.**294**(2021), pp. 1742-1764 PDF - N. Goloshchapova, M. Ohta,
**Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph.**Nonlinear Analysis**196**(2020), 111753. PDF - J. Angulo Pava, N. Goloshchapova,
**Stability of bump-like standing waves for NLS equation with the δ´-interaction.**Physica D: Nonlinear Phenomena**403**(2020), 132332. - N. Goloshchapova,
**On the standing waves of the NLS-log equation with point interaction on a star graph.**Journal of Mathematical Analysis and Applications**473**(2019), no. 1, pp. 53-70 PDF - J. Angulo Pava, N. Goloshchapova,
**On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph.**Discrete and Continuous Dynamical Systems**38**(2018), no.10, pp. 5039-5066 PDF - J. Angulo Pava, N. Goloshchapova,
**Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph.**Advances in Differential Equations**23**(2018), no. 11-12, pp. 793-846 PDF - J. Angulo Pava, N. Goloshchapova,
**Stability of standing waves for NLS-log equation with δ-interaction.**Nonlinear Differential Equations and Applications**24**(2017), no. 3. PDF - A. Ananieva, N. Goloshchapova,
**On the extremal extensions of a positive defnite Jacobi operator.**Methods of Functional Analysis and Topology**19**(2013), no.4, pp. 310-318.PDF - N. Goloshchapova, M. Malamud, and V. Zastavnyi,
**Radial positive definite functions and spectral theory of the Schrödinger Operators with Point Interactions.**Mathematische Nachrichten**285**(2012), no. 14-15, pp. 1839-1859. PDF. - N. Goloshchapova, M. Malamud, and V. Zastavnyi,
**On the spectrum of Multi-Dimensional Schrödinger Operators with Point Interactions.**Mathematical Notes**90**(2011), no. 1, pp. 152-157. English version Russian version(PDF). - N. Goloshchapova,
**On the Multi-Dimensional Schrödinger Operators with Point Interactions.**Methods of Functional Analysis and Topology**17**(2011), no.2, pp. 126-143. PDF - N. Goloshchapova, L. Oridoroga,
**On the Negative Spectrum of One-Dimensional Schrödinger Operators with Point Interactions.**Integral Equations and Operator Theory**6**(2010), no. 1, pp. 1-14. PDF - N. Goloshchapova, L. Oridoroga,
**Schrödinger Operators with δ- and δ'-interactions.**Mathematical Notes**84**(2008), no. 1-2, pp. 125-129. English version Russian version - N. Goloshchapova, L. Oridoroga,
**Differential operators of order four with local point interactions.**Ukrainian Mathematical Bulletin**3**(2007), no. 3, pp. 351-364. Russian version(PDF)