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Abstract

We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rota-
tions are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) prob-
lem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by
Beasley; the second algorithm – for staged patterns – also uses a recurrence formula. We show that if the items are not so
small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we
solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was
known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm
for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle
the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the
Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses
the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three-
and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this
paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed
description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms.
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1. Introduction

Many industries face the challenge of finding solutions that are the most economical for the problem of
cutting large objects to produce specified smaller objects. Very often, the large objects (bins) and the small
objects (items) are two-dimensional and have rectangular shape. Besides that, a usual restriction for cutting
problems is that in each object we may use only guillotine cuts, that is, cuts that are parallel to one of the sides
of the object and go from one side to the opposite one; problems of this type are called two-dimensional guil-
lotine cutting problems. Another usual restriction for these problems are the staged cuts. A k-staged cutting is
a sequence of at most k stages of cuts, each stage of which is a set of parallel guillotine cuts performed on the
objects obtained in the previous stage. Clearly, the cuts in each stage must be orthogonal to the cuts in the
previous stage. We assume, without loss of generality, that the cuts are infinitely thin. In what follows, we
define the problems we investigate in this paper. In all of them, even if it is not explicitly mentioned, only guil-
lotine cuts are allowed.

In the Rectangular Knapsack (RK) problem we are given a rectangle B = (W, H) of width W and height H,
and a list of m items (types of rectangles), each item i of width wi, height hi, and value vi (i = 1, . . . ,m). We wish
to determine how to cut the rectangle B, so as to maximize the sum of the values of the items that are pro-
duced. We assume that many copies of the same item can be produced. We denote such an instance by
I = (W, H, w, h, v). Here, as well in the next problems, we assume that w = (w1, . . . ,wm), h = (h1, . . . ,hm),
and d = (d1, . . . ,dm) are lists. According to the typology of Wäscher et al. [48], this problem corresponds to
the Two-dimensional Rectangular Single Large Object Packing Problem.

The Two-dimensional Cutting Stock (2CS) problem is defined as follows. Given an unlimited quantity of
two-dimensional bins B = (W, H) of width W and height H, and a list of m items (small rectangles) each item
i with dimensions (wi, hi) and demand di (i = 1, . . . ,m), determine how to cut the smallest number of bins B so
as to produce di units of each item i. Such an instance for the 2CS problem is denoted by I = (W, H, w, h, d).
Following the typology of Wäscher et al. [48], this is the Two-dimensional Rectangular Single

Stock Size Cutting Stock Problem.
We also consider the 2CS problem with variable bin sizes, denoted here as 2CSV. Wäscher et al. [48] refer to

this problem as the Two-dimensional Rectangular Multiple Stock Size Cutting Stock Prob-
lem. The 2CSV problem is similar to the previous one: the difference is that we are now given a list of two-
dimensional bin types B1, . . . ,Bb, each bin type Bj with dimensions (Wj, Hj) and value Vj (there is an unlimited
quantity of them). We want to determine how to produce di units of each item i, 1 6 i 6 m, so as to minimize
the sum of the values of the bins that are used. Such an instance for this problem is denoted by
I = (W, H, V, w, h, d), where W = (W1, . . ., Wb), H = (H1, . . . ,Hb) and V = (V1, . . . ,Vb).

The Two-dimensional Strip Packing (SP) problem is the following: given a two-dimensional strip of width W

and infinite height, and a list of m items (rectangles), each item i with dimensions (wi, hi) and demand di,
1 6 i 6 m, determine how to produce di units of each item i from the strip, so as to minimize the height of
the part of the strip that is used. We also require that the cuts be k-staged, and that in the first stage (in which
horizontal cuts are performed) the distance between any two subsequent cuts be at most H (a restriction very
common in practice, imposed by the cutting machines). An instance as above will be denoted by
I = (W, H, w, h, d). According to Wäscher et al. [48], this problem corresponds to the Two-dimensional
Rectangular Open Dimension Problem.

For all these problems we consider variants with and without k-staged cuts and orthogonal rotations. Unless
otherwise stated, we assume that the items are oriented (that is, rotations of the items are not allowed). The vari-
ants of these problems in which the items may be rotated orthogonally are denoted by RKr, 2CSr, 2CSVr and
SPr. We also assume that, in all instances the items have feasible dimensions, that is, each of them fit into the
given bin (or some bin type) or strip. We represent an empty list by ( ) and use the operator k to concatenate lists.

This paper focuses on algorithms for the problems above mentioned. They are classical hard optimization
problems, interesting both from theoretical as well as practical point-of-view. Most of them have been largely
investigated. In the following sections we discuss these problems and mention some of the results that have
appeared in the literature.

We call each possible way of cutting a bin a cutting pattern (or simply pattern). To represent the patterns (and
the cuts to be performed) we adopt the convention that is generally used in this context. We consider the Euclid-
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Fig. 1. (a) Non-guillotine pattern and (b) Guillotine pattern.
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ean plane R2, with the xy coordinate system, and assume that the width of a rectangle is represented in the x-
axis, and the height is represented in the y-axis. We also assume that the position (0,0) of this coordinate system
represents the bottom left corner of the bin. Thus a bin of width W and height H corresponds to the region
defined by the rectangle whose bottom left corner is at the position (0,0) and the top right corner is at the posi-
tion (W,H). To specify the position of an item i in the bin, we specify the coordinates of its bottom left corner.

A guillotine pattern is a pattern that can be obtained by a sequence of guillotine cuts applied to the original
bin and to the subsequent small rectangles that are obtained after each cut (see Fig. 1). Many practical appli-
cations have restrictions on the number of cutting stages to obtain the final items, especially when the cost of
the material to be cut is low compared to the industrial cost involved in the cutting process. We say that a
pattern is k-staged if it is obtained after performing k stages of cutting (an eventual additional stage is allowed
in order to separate an item from a wasted area). In Fig. 1b we have a 3-staged guillotine pattern (the gray area
is a wasted area). Following other articles in the literature (see [12,13,46]) on problems on staged patterns, we
assume that the first cutting stage is performed in the horizontal direction.

This paper is organized as follows. In Section 2, we focus on the Rectangular Knapsack (RK) problem, and
also on two other variants of it: in the first, the items are allowed to be rotated orthogonally, and in the other,
the patterns must be k-staged. We present dynamic programming based algorithms to obtain exact solutions for
these problems. Section 3 is devoted to the Two-dimensional Cutting Stock (2CS) problem. We describe two
algorithms for it, both based on the column generation approach. One of them uses a perturbation strategy
we propose to deal with the residual instances. We also consider the variant of the 2CS problem in which
orthogonal rotations are allowed. In Section 4 we study the 2CSV problem, a variant of the 2CS problem where
bins may have different sizes and values. In Section 5 we study the Strip Packing (SP) problem. All algorithms
based on the column generation approach we present here make use of the exact algorithms of Section 2.

For each one of these sections we report on the computational results we have obtained with the proposed
algorithms. The tests indicate that for medium size instances the algorithms we describe here find in a short
amount of time solutions that are very close to the optimum. All algorithms were implemented in C language.
The computational tests were run on a computer with processor Intel Pentium IV, clock of 1.8 GHz, memory
of 512 Mb and operating system Linux using the solver CLP (COIN-OR LP Solver) [22] as a linear system
solver. For all problems we have performed tests considering guillotine patterns with and without orthogonal
rotations and also with and without staged cuts. Finally, in Section 6 we make some final remarks concerning
the performance of the algorithms and summarize our conclusions.

A preliminary version of part of this work appeared as an extended abstract in the proceedings of WEA
2004 [20]. We give here a more detailed description of the algorithms that appeared in [20] and also present
algorithms for the 2CSV and SP problems, with and without staged patterns.

2. The Rectangular Knapsack problem

The Rectangular Knapsack (RK) problem has been largely investigated since the sixties. Gilmore and Gom-
ory [27,28] studied this problem (on guillotine cuts) and also introduced in 1965 the variant on k-staged cuts [29].
In 1972, Herz [31] presented a recursive algorithm to obtain patterns, called canonical, making use of the so-
called discretization points. Christofides and Whitlock [15] showed a dynamic programming approach to com-
pute the discretization points. Some papers also consider exact tree search procedures [6,39] for this problem.
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Beasley [5] proposed a dynamic programming approach using the discretization points of Herz for both the
non-staged and the staged versions of the problem. Recently, Belov and Scheithauer [8] presented a branch-
and-cut algorithm for a variant restricted to two-staged (oriented) patterns. Lodi and Monaci [36] also inves-
tigated the two-staged version. For the variant in which all items must be packed at most once, Jansen [33]
obtained a (2 + �)-approximation algorithm.

Before we describe the algorithms we implemented for the RK problem, we present first some concepts and
results. We basically implemented the recurrence formulas proposed by Beasley combined with the concept of
discretization points of Herz [31].

Let I = (W, H, w, h, v) be an instance of the RK problem. We consider that W, H, and the entries of w and
h are all integer numbers. If this is not the case, an equivalent integral instance can be obtained by an appro-
priate scaling.

A discretization point of the width (respectively, of the height) is a value i 6W (respectively, j 6 H) that can
be obtained by an integer conic combination of w1, . . . ,wm (respectively, h1, . . . ,hm). We denote by P (respec-
tively, Q) the set of all discretization points of the width (respectively, height). Following Herz, we say that a
canonical pattern is a pattern for which all cuts are made at discretization points.

We note that it suffices to consider only canonical patterns (for every pattern that is not canonical there is
an equivalent one that is canonical). To refer to them, the following functions will be useful. For a rational
x 6W, let p(x) :¼ max(iji 2 P, i 6 x) and for a rational y 6 H, let q(y) :¼ max(jjj 2 Q, j 6 y). Using these
functions, it is not difficult to verify that the recurrence formula below, proposed by Beasley [5], can be used
to calculate the value V(w, h) of an optimal canonical guillotine pattern of a rectangle of dimensions (w, h). In
this formula, v(w, h) denotes the value of the most valuable item that can be cut in a rectangle of dimensions
(w, h); it is 0 if no item can be cut in such a rectangle. Thus, V(W, H) is the value of an optimal solution for an
instance I = (W, H, w, h, v).
V ðw; hÞ ¼ max

vðw; hÞ
maxfV ðw0; hÞ þ V ðpðw� w0Þ; hÞjw0 2 P and 0 < w0 6 w=2g
maxfV ðw; h0Þ þ V ðw; qðh� h0ÞÞjh0 2 Q and 0 < h0 6 h=2g

8><
>:

9>=
>;
: ð1Þ
2.1. Discretization points

We present two algorithms to find the discretization points: the algorithms DEE (discretization by explicit
enumeration) and DDP (discretization using dynamic programming). Both are described in the sequel.

In the algorithm DEE, D represents the width (or height) of the bin and d1, . . . ,dm represent the widths (or
heights) of the items. The algorithm DEE can be implemented to run in O(md) time, where d represents the
number of integer conic combinations of d1, . . . ,dm with value at most D. This means that scaling does not
affect the time required by DEE.

It is not difficult to construct instances for which an explicit enumeration may take exponential time. But if
we can guarantee that di >

D
k (i = 1, . . . ,m), then the sum of the m coefficients of any integer conic combination

of d1, . . . , dm with value at most D is not greater than k. Thus, for a fixed k, the algorithm DEE is polynomial
in m.

Algorithm 2.1 DEE
Input: D (width or height), d1, . . . ,dm.
Output: a set P of discretization points (of the width or height).

P ¼ ;; k ¼ 0.
While k P 0 do

For i = k + 1 to m do zi ¼ bðD�
Pi�1

j¼1djzjÞ=dic.
P ¼ P [ f

Pm
j¼1zjdjg.

k = max({ijzi > 0,1 6 i 6 m} [ { � 1}).
If k > 0 then zk = zk � 1 and P ¼ P [ f

Pk
j¼1zjdjg.

Return P.
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In what follows we describe the algorithm DDP. The basic idea of this algorithm is to solve a knapsack
problem in which every item i has weight and value di (i = 1, . . . ,m), and the knapsack has capacity D. The
well-known dynamic programming technique for the knapsack problem (see [23]) finds optimal values of
knapsacks with (integer) capacities taking values from 1 to D. It is easy to see that j is a discretization point
if and only if the knapsack with capacity j has optimal value j.

Algorithm 2.2 DPP
Input: D,d1, . . . ,dm.
Output: a set P of discretization points.

P ¼ f0g.
For j = 0 to D do cj = 0.
For i = 1 to m do

For j = di to D

If cj < cj�di þ di then cj ¼ cj�di þ di.
For j = 1 to D

If cj = j then P ¼ P [ fjg.
Return P.
We note that the algorithm DDP requires time O(m D). Thus, the scaling (if needed) to obtain an integral
instance may render the use of DDP unsuitable in practice. On the other hand, the algorithm DDP is suited for
instances in which D is small. If D is large but the dimensions of the items are not so small compared to the
dimensions of the bin, the algorithm DEE has a satisfactory performance. All the computational tests pre-
sented in Section 2.4 were performed with the algorithm DDP.
2.2. A dynamic programming algorithm for the RK problem

We describe now the algorithm DP (Algorithm 2.3) that solves the recurrence formula (1). Although there
seems to be a straightforward way to solve the recurrence formula, we believe that the implementation we
describe in what follows has shown to be very effective in practice.

Let wmin (respectively, hmin) be the minimum width (respectively, height) of the items in the instance. Let P0

be the set of values i 2 P such that i 6W � wmin, and let Q0 be the set of values j 2 Q such that j 6 H � hmin.
Let P1 = P0 [ {W} and Q1 = Q0 [ {H}. We can use the sets P1 and Q1 instead of the sets P and Q in the above
recurrence and possibly obtain an improvement in the time to solve it, since no item can be to the right (respec-
tively, to the top) of a vertical (respectively, horizontal) cut done in a position greater than W � wmin (respec-
tively, H � hmin).

We have designed this algorithm in such a way that a pattern corresponding to an optimal solution can be
easily obtained. For that, the algorithm stores in a matrix, for every rectangle of width pi 2 P1 and height
qj 2 Q1, which is the direction (horizontal or vertical) and the position of the first guillotine cut that has to
be made in this rectangle. In case no cut should be made in the rectangle, the algorithm stores the item that
corresponds to this rectangle.

The algorithm constructively solves the recurrence formula (1). The first step of the algorithm is to store for
each rectangle of width pi 2 P1 and height qj 2 Q1, the item with largest value that can be packed on it (lines 1–
5). At lines 6–17, the algorithm consider a rectangle of dimensions (pi, qj) and finds an optimal solution for this
rectangle in the following manner: for each possible point px where a vertical cut can be done, the algorithm
tests if the best known solution is worse than the one for which a vertical cut is done in the vertical direction at
point px (lines 9–12). At lines 14–17 the algorithm tests a horizontal cut. The algorithm starts finding a solu-
tion with the smallest possible rectangle and then iteratively increases the size of the rectangle (lines 6–7), using
the best known solutions of smaller rectangles to determine the best solution for the rectangle considered in
the iteration.



Algorithm 2.3 DP

Input: An instance I = (W, H, w, h, v) of the RK problem.
Output: An optimal solution for I.
Let p1 < � � � < pr be the points in the set P1.
Let q1 < � � � < qs be the points in the set Q1.
1 For i = 1 to r

2 For j = 1 to s

3 V(i, j) = max({vkj1 6 k 6 m, wk 6 pi and hk 6 qj} [ {0}).
4 item(i, j) = max({kj1 6 k 6 m, wk 6 pi, hk 6 qj and vk = V(i, j)} [ {0}).
5 guillotine(i, j) = nil.
6 For i = 2 to r

7 For j = 2 to s

8 n = max(kj1 6 k 6 i and pk 6 b
pi
2
cÞ.

9 For x = 1 to n

10 t = max(kj1 6 k 6 r and pk 6 pi � px).
11 If V(i, j) < V(x, j) + V(t, j) then

12 V(i, j) = V(x, j) + V(t, j), position(i, j) = px and guillotine(i, j) = ‘V’.
13 n = max(kj1 6 k 6 j and qk 6 b

qj

2
cÞ.

14 For y = 1 to n

15 t = max(kj1 6 k 6 s and qk 6 qj � qy).
16 If V(i, j) < V(i, y) + V(i, t) then

17 V(i, j) = V(i, y) + V(i, t), position(i, j) = qy and guillotine(i, j) = ‘H’.
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When the algorithm DP halts, for each rectangle with dimensions (pi, qj), we have that V(i, j) contains the
optimal value that can be obtained for this rectangle; guillotine(i, j) indicates the direction of the first guillotine
cut, and position(i, j) is the position (in the x-axis or in the y-axis) where the first guillotine cut has to be made.
If guillotine(i, j) = nil, then no cut has to be made in this rectangle. In this case, item(i, j) (if non-zero) indicates
which item corresponds to this rectangle. The value of the optimal solution will be in V(r, s).

Note that the assignments to variable t can be done in O(log r + log s) time by performing a binary search
in the set of the discretization points. If we use the algorithm DEE to calculate the discretization points, the
algorithm DP can be implemented to have time complexity O(md1 + md2 + r2slog r + rs2log s), where d1 and d2

represent the number of integer conic combinations that produce the discretization points of the width and of
the height, respectively.

For instances with wi >
W
k and hi >

H
k (k fixed and i = 1, . . . ,m), we have that d1, d2, r and s are polynomial

in m. Thus, for such instances the algorithm DP is polynomial in m.
We can use a vector X (resp. Y), of size W (resp. H), and let Xi (resp. Yj) contain p(i) (resp. q(j)). Once the

discretization points are calculated, it requires time O(W + H) to determine the values in the vectors X and Y.
Using these vectors, each assignment to variable t can be done in constant time, and this leads to an imple-
mentation of the algorithm DP, using DEE (resp. DDP) as a subroutine, of time complexity O(md1 +
md2 + W + H + r2s + rs2) (resp. O(mW + mH + r2s + r s2)). In any case, the amount of memory required
by the algorithm DP is O(rs + W + H). We use this strategy in our implementation.

We can use the algorithm DP to solve the variant of the RK problem, denoted by RKr, in which the items
may be rotated orthogonally. For that, given an instance I of RKr, we construct another instance (for RK) as
follows. For each item i in I, of width wi, height hi and value vi, we add another item of width hi, height wi and
value vi, whenever wi 5 hi, wi 6 H and hi 6W.

2.3. The k-staged RK problem

In this section we consider the RK and RKr problems with k-staged cutting patterns. We present an exact
algorithm for both problems.

Let I = (W, H, w, h, v), with w = (w1, . . . ,wm), h = (h1, . . . , hm) and v = (v1, . . . ,vm), be an instance of the
problem RK. We denote by V ðW ;H ; k;VÞ, respectively, V ðW ;H ; k;HÞ, the value of an optimal canonical
guillotine k-staged pattern for a rectangle of dimensions (W, H). We use the following recurrence formulas
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to calculate these values. The parameters H and V indicate the direction of the first cutting stage: either hor-
izontal or vertical:
V ðw; h; 0;V or HÞ ¼ vðw; hÞ;
V ðw; h; k;VÞ ¼ maxfV ðw; h; k � 1;HÞ; ðV ðw0; h; k � 1;HÞ þ V ðpðw� w0Þ; h; k;VÞjw0 2 P ;w0 6 w=2g;
V ðw; h; k;HÞ ¼ maxfV ðw; h; k � 1;VÞ; ðV ðw; h0; k � 1;VÞ þ V ðw; qðh� h0Þ; k;HÞjh0 2 Q; h0 6 h=2Þg:
As in Section 2, we use discretization points, and denote by P and Q the set of all discretization points of the
width and height, respectively. We denote by v(w, h) the value of the most valuable item that can be cut (or be
obtained without any cut) from a rectangle of dimensions (w, h), or 0 if no item can be cut (or be obtained).

The algorithm SDP (Algorithm 2.4) that solves these recurrence formulas is described next. We also use in
the algorithm, the sets P1 and Q1 defined in the last section.

The algorithm calculates the best solutions for the 1-staged problem and then uses this information to cal-
culate the best solutions for the 2-staged problem and so forth (see the loop starting at line 7). For each one of
these stages the algorithm works like the algorithm DP presented in the last subsection. The basic difference is
that, for each stage, the algorithm only calculates solutions for cuts done in one direction; and two consecutive
stages must have cuts in different directions. Since the first stage of cuts is done in the horizontal direction,
when the number of stages is even (resp. odd), then the 1-staged subproblem must be solved with cuts in
the vertical (resp. horizontal) direction (see line 6 of the algorithm). There may be a stage in which no cut
has to be made: that happens when the best solution of a given stage, say l, is the best solution of the previous
stage l � 1. In this case, the value P is stored in the corresponding entry of guillotine, indicating that the solu-
tion is given by the previous stage (line 11).

Algorithm 2.4 SDP
Input: An instance I = (W, H, w, h, v, k) of the k-staged RK problem.
Output: An optimal k-staged solution for I.
Let p1 < � � � < pr, be the points in P1.
Let q1 < � � � < qs, be the points in Q1.
1 For i = 1 to r

2 For j = 1 to s

3 V(0, i, j) = max({vfj1 6 f 6 m, wf 6 pi and hf 6 qj} [ {0}).
4 item(0, i, j) = max({fj1 6 f 6 m, wf 6 pi, hf 6 qj and vf = V(0, i, j)} [ {0}).
5 guillotine(0,i,j) = nil.
6 If k is even then A = ‘H’ else A = ‘V’
7 For l = 1 to k

8 For i = 2 to r

9 For j = 2 to s

10 V(l, i, j) = V(l � 1, i, j)
11 guillotine(l, i, j) = ‘P’
12 If A = ‘V’ then

13 n = max(fj1 6 f 6 s and qf 6 b
qj

2
cÞ.

14 For y = 1 to n

15 t = max(fj1 6 f 6 s and qf 6 qj � qy).
16 If V(l, i, j) < V(l � 1, i, y) + V(l, i, t) then

17 V(l, i, j) = V(l � 1, i, y) + V(l, i, t), position(l, i, j) = qy and guillotine(l, i, j) = ‘H’.
18 Else

19 n = max(fj1 6 f 6 r and pf 6 bpi
2
cÞ.

20 For x = 1 to n

21 t = max(fj1 6 f 6 r and pf 6 pi � px).
22 If V(l, i, j) < V(l � 1, x, j) + V(l, t, j) then

23 V(l, i, j) = V(l � 1, x, j) + V(l, t, j), position(l, i, j) = px and guillotine(l, i, j) = ‘V’.
24 If A = ‘V’ then A = ‘H’ else A = ‘V’.
When the algorithm SDP halts, we have that V(k, i, j) contains the optimal value that can be obtained in k

stages for a rectangle with dimensions (pi, qj). Furthermore, guillotine(k, i, j) indicates the direction of the first
guillotine cut, and position(k, i, j), stores the corresponding position of the first guillotine cut. In case no cut
should be made in the rectangle, the algorithm stores the corresponding item in item(k, i, j).
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Fig. 2. The optimal solution for gcut13 found by the algorithm DP. The small squares have dimensions (378, 200) and the other squares
have dimensions (555, 496) and (555, 755).
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It is not hard to see that the time complexity of this algorithm is the time complexity of the algorithm DP
multiplied by k, the number of cutting stages. If we consider that k is limited by some constant then the overall
time complexity remains the same.

We can also use the algorithm SDP to solve the k-staged RKr problem. For that, we use the same technique
of Section 2.2 where for each item i in I, of width wi, height hi and value vi, we add another item of width hi,
height wi and value vi, whenever wi 5 hi, wi 6 H and hi 6 W. We denote the corresponding algorithm for this
case by SDPr.
2.4. Computational results for the RK problem

The performance of the algorithm DP was tested with the instances of RK available in the OR-LIBRARY1

(see [7] for a brief description of this library). We considered the 13 instances of RK, called gcut1, . . . ,gcut13

available in this library. For all these instances, with exception of instance gcut13, optimal solutions had
already been found [5]. Using the algorithm DP we found an optimal solution for the instance gcut13 in 22
seconds, shown in Fig. 2. In all these instances the value of each item is precisely its area. We note that Capr-
ara and Monaci [14] and Fekete and Schepers [26] could not find an optimal solution for this instance in 1800
seconds in recent machines (a Pentium III 800 MHz and Pentium IV 2.8 GHz with 1 GB of memory, respec-
tively). We recall that their approaches are for the more general setting in which the cuts need not be guillotine
(in this general case, our approach can be used to obtain a lower bound).

Since the algorithm solved all these instances in a few seconds, we constructed other four instances (gcut14–
gcut17) combining the instances available in the OR-LIBRARY. These new instances were obtained by putt-
ing together the items of the instance gcut13 with the items of each of the instances gcut9, gcut10, gcut11 and
gcu12. For these new instances we considered that B = (3500, 3500).
1 http://mscmga.ms.ic.ac.uk/info.html

http://mscmga.ms.ic.ac.uk/info.html


Table 1
Performance of the algorithm DP

Instance Quantity of items Dimensions of the bin r s Optimal Solution Waste (%) Time (sec)

gcut1 10 (250, 250) 28 9 56,460 9.664 0
gcut2 20 (250, 250) 39 52 60,536 3.142 0
gcut3 30 (250, 250) 81 42 61,036 2.342 0
gcut4 50 (250, 250) 85 84 61,698 1.283 0
gcut5 10 (500, 500) 19 27 246,000 1.600 0
gcut6 20 (500, 500) 34 42 238,998 4.401 0
gcut7 30 (500, 500) 66 33 242,567 2.973 0
gcut8 50 (500, 500) 97 136 246,633 1.347 0
gcut9 10 (1000, 1000) 31 11 971,100 2.890 0
gcut10 20 (1000, 1000) 29 55 982,025 1.798 0
gcut11 30 (1000, 1000) 69 109 980,096 1.990 0
gcut12 50 (1000, 1000) 155 124 979,986 2.001 0
gcut13 32 (3000, 3000) 1457 2310 8,997,780 0.025 22.03
gcut14 42 (3500, 3500) 2390 2861 12,245,410 0.037 118.45
gcut15 52 (3500, 3500) 2422 2933 12,246,032 0.032 120.86
gcut16 62 (3500, 3500) 2559 2943 12,248,836 0.010 161.47
gcut17 82 (3500, 3500) 2676 2953 12,248,892 0.009 212.66
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In Table 1 we show the instances solved and the computational results.
The column ‘‘Waste’’ shows – for each solution found – the percentage of the area of the bin that does not

correspond to any item. The column ‘‘Time’’ indicates the time required to solve the instance; the entry 0 indi-
cates that the time required is less than 0.000,001 seconds. Note that the new instances gcut14 , . . . ,gcut17

turned out much harder to be solved: a few minutes were needed to find an optimal solution.
We also solved these instances with the algorithm SDP, for 2-, 3- and 4-staged cases. In 1985, Beasley [5]

had already solved instances gcut1 , . . . ,gcut12 for 2- and 3-staged patterns (but not the instance gcut13). In
Table 2 we show the computational results only for 2- and 4-stages. We do not show the values of r and s,
as they correspond to those shown in Table 1.
Table 2
Performance of the algorithm SDP for 2- and 4-staged patterns

Instance Quantity of
items

Dimensions of the
bin

2-Staged 4-Staged

Optimal
Solution

Waste
(%)

(second) Optimal
Solution

Waste
(%)

Time
(sec)

gcut1 10 (250, 250) 56,460 9.66 0 56,460 9.66 0
gcut2 20 (250, 250) 60,076 3.878 0 60,536 3.142 0
gcut3 30 (250, 250) 60,133 3.787 0 61,036 2.342 0
gcut4 50 (250, 250) 61,698 1.283 0 61,698 1.283 0
gcut5 10 (500, 500) 246,000 1.600 0 246,000 1.600 0
gcut6 20 (500, 500) 235,058 5.977 0 238,998 4.401 0
gcut7 30 (500, 500) 242,567 2.973 0 242,567 2.973 0.017
gcut8 50 (500, 500) 245,758 1.697 0 246,633 1.347 0.071
gcut9 10 (1000, 1000) 971,100 2.890 0 971,100 2.890 0
gcut10 20 (1000, 1000) 982,025 1.798 0 982,025 1.798 0
gcut11 30 (1000, 1000) 974,638 2.536 0 980,096 1.990 0
gcut12 50 (1000, 1000) 977,768 2.223 0.01 979,986 2.001 0.01
gcut13 32 (3000, 3000) 8,906,216 1.042 21.82 8,997,780 0.025 43.72
gcut14 42 (3500, 3500) 12,216,788 0.271 124.55 12,242,100 0.064 264.41
gcut15 52 (3500, 3500) 12,215,614 0.281 137.21 12,242,100 0.064 289.98
gcut16 62 (3500, 3500) 12,210,837 0.320 177.21 12,244,511 0.045 371.60
gcut17 82 (3500, 3500) 12,232,948 0.139 223.13 12,246,694 0.027 456.00



Table 3
Performance of the algorithm DP with rotations

Instance Quantity of items Dimensions of the bin r s Optimal Solution Waste (%) Time (sec)

gcut1r 10 (250, 250) 38 38 58,136 6.982 0
gcut2r 20 (250, 250) 77 77 60,611 3.022 0
gcut3r 30 (250, 250) 90 90 61,626 1.398 0
gcut4r 50 (250, 250) 105 105 62,265 0.376 0.01
gcut5r 10 (500, 500) 59 59 246,000 1.600 0
gcut6r 20 (500, 500) 79 79 240,951 3.620 0
gcut7r 30 (500, 500) 104 104 245,866 1.654 0
gcut8r 50 (500, 500) 166 166 247,787 0.885 0.02
gcut9r 10 (1000, 1000) 47 47 971,100 2.890 0
gcut10r 10 (1000, 1000) 94 94 982,025 1.798 0
gcut11r 30 (1000, 1000) 200 200 980,096 1.990 0.02
gcut12r 50 (1000, 1000) 258 258 988,694 1.131 0.03
gcut13r 32 (3000, 3000) 2354 2354 9,000,000 0.000 110.20
gcut14r 42 (3500, 3500) 2933 2933 12,250,000 0.000 306.35
gcut15r 52 (3500, 3500) 2953 2953 12,250,000 0.000 345.01
gcut16r 62 (3500, 3500) 2986 2986 12,250,000 0.000 354.91
gcut17r 82 (3500, 3500) 3007 3007 12,250,000 0.000 399.39

Table 4
Performance of the algorithm SDP for 2- and 4-staged patterns with rotations

Instances Quantity of
items

Dimensions of the
bin

2-staged 4-staged

Optimal
Solution

%
Waste

Time
(second)

Optimal
Solution

%
Waste

Time
(sec)

gcut1r 10 (250, 250) 58,136 6.982 0 58,136 6.982 0
gcut2r 20 (250, 250) 60,611 3.022 0 60,611 3.022 0
gcut3r 30 (250, 250) 60,485 3.224 0 61,626 1.398 0
gcut4r 50 (250, 250) 62,265 0.376 0.01 62,265 0.376 0.01
gcut5r 10 (500, 500) 246,000 1.600 0 246,000 1.600 0
gcut6r 20 (500, 500) 240,951 3.620 0 240,951 3.620 0
gcut7r 30 (500, 500) 245,866 1.654 0.01 245,866 1.654 0
gcut8r 50 (500, 500) 247,260 1.096 0.01 247,787 0.885 0.02
gcut9r 10 (1000, 1000) 971,100 2.890 0 971,100 2.890 0
gcut10r 20 (1000, 1000) 982,025 1.798 0 982,025 1.798 0
gcut11r 30 (1000, 1000) 980,096 1.990 0.02 980,096 1.990 0.04
gcut12r 50 (1000, 1000) 988,694 1.131 0.03 988,694 1.131 0.06
gcut13r 32 (3000, 3000) 8,997,780 0.025 106.3 9,000,000 0.0 226.75
gcut14r 42 (3500, 3500) 12,240,515 0.077 322.77 12,247,796 0.018 702.19
gcut15r 52 (3500, 3500) 12,242,904 0.058 337.27 12,250,000 0.000 725.21
gcut16r 62 (3500, 3500) 12,243,100 0.056 368.20 12,250,000 0.000 800.55
gcut17r 82 (3500, 3500) 12,242,998 0.057 393.52 12,250,000 0.000 829.92
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As one could expect, when we restrict to 2-staged patterns we have a slightly larger waste (compared to the
results in Table 1). On the average, the waste for 2-staged patterns was less than 1% larger than the waste for
non-staged patterns. Note that for the instances gcut8, gcut13 . . .gcut17 the wastes are very different. More-
over, for the instances gcut1 . . .gcut13 the solutions for 4-stages coincide with the optimal solutions for the
unrestricted case.

We also run tests for the case in which rotations are allowed. For that, we considered the instances
gcut1 . . .gcut17, and named them as gcut1r, . . . ,gcut17r (meaning that rotations are allowed). The performance
of algorithms DP and SDP for these instances are presented in Tables 3 and 4. Comparing with the case
without rotations, for some instances the time increased and the waste decreased (on the average less than
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1%). For all these instances, except for the instance gcut14r, the solutions for the 4-staged case coincide with
the optimal solutions for the unrestricted case.
3. The 2CS problem

We focus now on the Two-dimensional Cutting Stock (2CS) problem. Gilmore and Gomory [27–29] in the
early sixties were the first to propose the use of the column generation approach for this problem. They pro-
posed the k-staged pattern version and also considered the 2CSV problem, the variant of 2CS with bins of
different sizes.

Alvarez-Valdes et al. [2] also presented a column generation approach for the 2CS problem. They used the
dynamic programming algorithm presented by Beasley and also some meta-heuristic procedures. Puchinger
and Raidl [42] investigated the 3-staged version: they applied the column generation approach using either
a greedy heuristic or an evolutionary algorithm to generate columns.

Riehme et al. [44] designed an algorithm for the 2CS problem with extremely varying order demands.
Their algorithm is also based on the column generation approach and is restricted to a 2-staged problem.
Vanderbeck [46] also proposed a column generation approach for a cutting stock problem with several
different restrictions: cuts must be 3-staged and unused parts of some stock can be used later as a new
stock.

For the special case in which the demands are all equal to 1 (also known as bin packing problem), Chung
et al. [16] presented the first approximation algorithm for this problem, called HFF (Hybrid First Fit), shown
to have asymptotic performance bound at most 2.125. Later, Caprara [11] proved that HFF has asymptotic
performance bound at most 2.077; and he also presented an 1.691-approximation algorithm (this is the best
known result for this problem). These results are for the oriented case. When orthogonal rotations are
allowed, Miyazawa and Wakabayashi [38] presented a 2.64-approximation algorithm. For the particular case
in which all bins are squares and rotations are allowed, Epstein [25] presented a 2.45-approximation algo-
rithm. In [19], we have shown that some of the approximation algorithms for the bin packing problem can
be modified for the cutting stock problem. In this case the algorithms are of polynomial time and preserve
the same approximation factor of the original algorithms. Recently, Puchinger and Raidl [43] presented a
branch-and-price algorithm for the 3-staged two-dimensional bin packing problem. They also presented poly-
nomial size formulations for this problem.

To discuss the column generation approach, let us first formulate the 2CS problem as an ILP (Integer
Linear Program). Let I = (W, H, w, h, d) be an instance for the 2CS problem. Represent each pattern j for
the instance I as a vector pj, whose ith entry indicates the number of times item i occurs in this pattern.
The 2CS problem consists then in deciding how many times each pattern has to be used to meet the demands
and minimize the total number of bins that are used.

Let n be the number of all possible patterns for I, and let P denote an m · n matrix whose columns are the
patterns p1, . . . ,pn. If we denote by d the vector of the demands, then we have the following ILP formulation:
minimize

Pn
j¼1xj subject to Px = d and xj P 0 and xj integer for j = 1, . . . ,n. (The variable xj indicates how

many times the pattern j is selected.)
The well-known column generation method proposed by Gilmore and Gomory [27] consists in solving the

relaxation of the above ILP, shown below. The idea is to start with a small set of columns of P and then gen-
erate new ones only when they are needed.
minimize x1 þ � � � þ xn

subject to Px ¼ d

xj P 0 j ¼ 1; . . . ; n:

ð2Þ
We can use an algorithm R (for the RK problem) to generate new columns (guillotine patterns). Note that,
if each item i has value yi and occurs zi times in a pattern produced by R, then

Pm
i¼1yizi is maximum. This is

exactly what we need to generate new columns. We describe in the sequel the algorithm SimplexCG2 that
solves (2) (Algorithm 3.1).
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Algorithm 3.1 SimplexCG2
Input: An instance I = (W, H, w, h, d) of the 2CS problem.
Output: An optimal solution for (2), where the columns of P are patterns for I.
Subroutine: An algorithm R for the RK problem.

1 Let x = d and B be the identity matrix of order m.
2 Solve yTB ¼ 1T.
3 Generate a new column z executing the algorithm R with parameters W, H, w, h, y.
4 If yTz 6 1 then return B and x and halt (x corresponds to the columns of B).
5 Else solve Bw = z.
6 Let t ¼ min

xj

wj
j1 6 j 6 m;wj > 0

� �
.

7 Let s ¼ min jj1 6 j 6 m; xj

wj
¼ t

� �
.

8 For i = 1 to m do

8.1 Bi,s = zi.
8.2 If i = s then xi = t else xi = xi � wit.

9 Go to step 2.
We implemented this algorithm and for the subroutine R we used either the algorithm DP or the algorithm
SDP (described in Section 2). We remark that in steps 2 and 5 we use the COIN-CLP [22] solver as the linear
system solver. The computational tests indicated that on the average the number of columns generated by
SimplexCG2 was O(m2). This is in accordance with the theoretical results that are known with respect to
the average behavior of the Simplex method [1,9]. Now using the (possibly fractional) solution obtained by
SimplexCG2, we can find an integer solution. For that, we developed the algorithm CG (see Algorithm 3.1)
described in what follows.

Algorithm 3.2 CG
Input: An instance I = (W, H, w, h, d) of the 2CS problem.
Output: A solution for I.

1 Execute the algorithm SimplexCG2 with parameters W, H, w, h, d obtaining B and x.
2 For i = 1 to m do x�i ¼ bxic.
3 If x�i > 0 for some i, 1 6 i 6 m, then

3.1 Return B and x�1; . . . ; x�m (but do not halt).
3.2 For i = 1 to m do

3.2.1 For j = 1 to m do di ¼ di � Bi;jx�j .
3.3 Let m 0 = 0, w0 = (), h 0 = () and d 0 = ().
3.4 For i = 1 to m do

3.4.1 If di > 0 then m 0 = m 0 + 1, w 0 = w 0k(wi), h 0 = h 0k(hi) and d 0 = d 0k(di).
3.5 If m 0 = 0 then halt.
3.6 Let m = m 0, w = w 0, h = h 0, d = d 0 and go to step 1.

4 Return the solution of algorithm M-HFF executed with parameters W, H, w, h, d.
The algorithm is iterative. Each iteration starts with an instance I of the 2CS problem and consists basically

in solving (2) with SimplexCG2 obtaining B and x (step 1). In step 2 the algorithm calculates x� ¼ ðx�1; . . . ; x�mÞ,
where x�i ¼ bxic (i = 1, . . . ,m). The algorithm returns B and x* (step 3.1) as the current solution (possibly infea-
sible). The columns of B represent patterns, and x* indicates how many times each one of these patterns is used
in this solution. The demand of each item i that is not fulfilled is d�i ¼ di �

Pm
j¼1Bi;jx�j . Thus, if we take

d� ¼ ðd�1; . . . ; d�mÞ, we have a residual instance I* = (W, H, w, h, d*) (we may eliminate from I* the items with
no demand). The residual instance is calculated in steps 3.3 and 3.4. If all demands are fulfilled by the solution
x*, then the algorithm halts (step 3.5). Otherwise the algorithm solves again the linear program corresponding
to the residual instance (step 3.6).

Notice that, in some iteration it might happen that the solution found by the algorithm SimplexCG2 has all
xi values smaller than 1. In this case, x�i ¼ 0 for all i 2 {1, . . . ,m}, and thus (see step 3), we solve the instance I
with the algorithm M-HFF (Modified HFF) that corresponds to the algorithm HFF modified to consider
demands for the items, see [19]. We observe that the algorithm M-HFF can be implemented to run in poly-
nomial time. As its asymptotic performance bound is at most 2.077 (see [11]), we may expect that using M-
HFF we produce solutions of good quality.
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Since in each iteration either part of the demand is fulfilled or we go to step 4, it follows that after a finite
number of iterations the demands will be satisfied. In fact, it is easy to prove that step 3.6 of the algorithm CG
is executed at most m times.

We note that the algorithm CG can be used to solve the variant of 2CS, called 2CSr, in which orthogonal
rotations of the items are allowed. For that, before we call the algorithm R, in step 3 of SimplexCG2, it suffices
to make the transformation explained at the end of Section 2.2. We will call SimplexCGr

2 the variant of Sim-
plexCG2 with this transformation. It should be noted however that the algorithm M-HFF, called in step 6 of
CG, does not use the fact that the items can be rotated.

We designed a simple algorithm for the variant of 2CSr in which all items have demand 1. This algorithm,
called First Fit Decreasing Height using Rotations (FFDHR), has asymptotic approximation bound at most 4,
as we have shown in [18]. Substituting the call to M-HFF with a call to FFDHR, we obtain the algorithm
CGR, that is a specialized version of CG for the 2CSr problem.

We also tested another modification of the algorithm CG (and of CGR). This is the following: when we
solve an instance, and the solution returned by SimplexCG2 rounded down is equal to zero, instead of simply
submitting this instance to M-HFF (or FFDHR), we use M-HFF (or FFDHR) to obtain a good pattern, and
update the demands; if there is some item for which the demand is not fulfilled, we go to step 1.

Note that, the basic idea is to perturb the residual instances whose relaxed LP solution, rounded down, is
equal to zero. With this procedure, it is expected that the solution obtained by SimplexCG2 for the residual
instance has more variables with value greater than 1. The algorithm CGp, described in what follows (Algo-
rithm 3.3), incorporates this modification.

Algorithm 3.3 CGp

Input: An instance I = (W, H, w, h, d) of 2CSr.
Output: A solution for I.

1 Execute the algorithm SimplexCG2 with parameters W, H, w, h, d obtaining B and x.
2 For i = 1 to m do x�i ¼ bxic.
3 If x�i > 0 for some i, 1 6 i 6 m, then

3.1 Return B and x�1 . . . ; x�m (but do not halt).
3.2 For i = 1 to m do

3.2.1 For j = 1 to m do di ¼ di � Bi;jx�j .
3.3 Let m 0 = 0, w 0 = (), h 0 = () and d 0 = ().
3.4 For i = 1 to m do

3.4.1 If di > 0 then m 0 = m 0 + 1, w 0 = w 0k(wi), h 0 = h 0k(hi) and d 0 = d 0k(di).
3.5 If m 0 = 0 then halt.
3.6 Let m = m 0, w = w 0, h = h 0, d = d 0 and go to step 1.

4 Return a pattern generated by the algorithm M-HFF, executed with parameters W, H, w, h, d, that has the smallest wasted area,
and update the demands.
5 If there are demands to be fulfilled, go to step 1.

It should be noted that with this modification we cannot guarantee anymore that we have to make at most
m + 1 calls to SimplexCG2. It is however, easy to see that the algorithm CGp in fact halts, as each time step 1 is
executed the demand decreases strictly. After a finite number of iterations the demand will be fulfilled and the
algorithm halts.

3.1. Computational results for the 2CS problem

We did not find instances for the 2CS problem in the OR-LIBRARY. We tested the algorithms CG and
CGp with the instances gcut1, . . . ,gcut12, associating with each item i a randomly generated demand di

between 1 and 100 (varying demands). We called these instances gcut1d , . . . ,gcut12d.
We show in Table 5 the computational results obtained with the algorithm CG executed with subroutine

DP. In this table, LB denotes the lower bound (given by the rounded up solution of (2)) for the value of
an optimal integer solution.



Table 5
Performance of the algorithm CG

Instance Solution of CG LB Difference
from LB (%)

Time (sec) Columns Generated Solution of
M-HFF

Improvement over
M-HFF (%)

gcut1d 294 294.0 0.000 0.03 24 322 8.70
gcut2d 345 345.0 0.000 0.28 91 360 4.17
gcut3d 333 332.0 0.301 0.77 314 374 10.96
gcut4d 837 836.0 0.120 5.09 1031 878 4.67
gcut5d 198 197.0 0.508 0.03 29 224 11.61
gcut6d 344 343.0 0.292 0.21 115 395 12.91
gcut7d 592 591.0 0.169 0.33 158 642 7.79
gcut8d 692 690.0 0.290 3.60 670 765 9.54
gcut9d 132 131.0 0.763 0.06 44 141 6.38
gcut10d 293 293.0 0.000 0.09 47 328 10.67
gcut11d 331 330.0 0.303 1.07 358 375 11.73
gcut12d 672 672.0 0.000 3.35 674 722 6.93
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The algorithm CG found optimal or quasi-optimal solutions for all these instances. On the average, the
difference between the solution found by CG and the lower bound (LB) was only 0.228%. We note also that
the time spent to solve these instances was satisfactory. Moreover, the gain of the solution found by CG com-
pared to the solution found by M-HFF was 8.83%, on the average, a very significant improvement.

We have also used the algorithm CGp to solve the instances gcut1d, . . . ,gcut12d. The table with these results
will be omitted, as the quality of the solutions that we obtained was exactly the same (we noted only a slight
increase of time for some instances). But for the case with rotations, the algorithm CGp gave better results.

The tests on instances where rotations are allowed (called gcut1dr . . . ,gcut12dr) are presented in Table 6, for
algorithm CGR; and in Table 7, for its version where a perturbation strategy is used (algorithm CGRp).

The algorithm CGR found optimal or quasi-optimal solutions for all instances. The difference between the
value found by CGR and the lower bound (LB) was only 0.31%, on the average. Comparing the value of the
solutions obtained by CGR with the solutions obtained by FFDHR, we note that there was an improvement
of 10.40%, on the average. This improvement would be of 15.11% if compared with the solution obtained by
M-HFF.

Comparing CGR with CGRp, we see that the algorithm CGRp obtained an optimal solution for the
instance gcut12dr and that the time it spent is very close to the time spent by CGR. The algorithm CGRp also
obtained better solutions for the instances gcut3dr and gcut7dr.

For the k-staged version, we show in Tables 8 and 9 the results obtained by the algorithm CGp with subrou-
tine SDP and k = 2,4 (we omitted the solutions for k = 3, as they were very similar to those for k = 4). As one
can see, the algorithm CGp found solutions in a very short amount of time. We omit here the results obtained by
Table 6
Performance of the algorithm CGR

Instance Solution of CG LB Difference
from LB (%)

Time (sec) Columns
generated

Solution of
FFDHR

Improvement over
FFDHR (%)

gcut1dr 291 291.0 0.000 0.04 25 291 0.00
gcut2dr 283 282.0 0.355 1.41 174 314 9.87
gcut3dr 315 313.0 0.639 1.89 450 347 9.22
gcut4dr 836 836.0 0.000 4.40 662 846 1.18
gcut5dr 175 174.0 0.575 0.06 34 198 11.62
gcut6dr 302 301.0 0.332 0.25 94 371 18.60
gcut7dr 544 542.0 0.369 0.99 257 623 12.68
gcut8dr 651 650.0 0.154 6.47 625 734 11.31
gcut9dr 123 122.0 0.820 0.07 39 143 13.99
gcut10dr 270 270.0 0.000 0.21 68 301 10.30
gcut11dr 299 298.0 0.336 6.00 512 342 12.57
gcut12dr 602 601.0 0.166 19.24 803 696 13.51



Table 7
Performance of the algorithm CGRp

Instance Solution of
CGRp

LB Difference
from LB (%)

Time (sec) Columns
generated

Solution of
FFDHR

Improvement over
FFDHR (%)

gcut1dr 291 291.0 0.000 0.06 30 291 0.00
gcut2dr 283 282.0 0.355 1.57 214 314 9.87
gcut3dr 314 313.0 0.319 3.38 918 347 9.51
gcut4dr 836 836.0 0.000 6.82 1172 846 1.18
gcut5dr 175 174.0 0.575 0.10 61 198 11.62
gcut6dr 302 301.0 0.332 0.28 117 371 18.60
gcut7dr 543 542.0 0.185 1.18 357 623 12.84
gcut8dr 651 650.0 0.154 7.10 811 734 11.31
gcut9dr 123 122.0 0.820 0.10 53 143 13.99
gcut10dr 270 270.0 0.000 0.26 93 301 10.30
gcut11dr 299 298.0 0.336 6.47 674 342 12.57
gcut12dr 601 601.0 0.000 19.57 965 696 13.65

Table 8
Performance of the algorithm CGp with 2-staged patterns

Instance Solution of CGp LB Difference
from LB (%)

Time (sec) Columns
generated

Solution of
M-HFF

Improvement over
M-HFF (%)

gcut1d 295 295.0 0.000 0.03 21 322 8.39
gcut2d 345 345.0 0.000 0.45 173 360 4.17
gcut3d 343 342.0 0.292 1.31 534 374 8.29
gcut4d 845 845.0 0.000 5.99 1506 878 3.76
gcut5d 207 207.0 0.000 0.03 21 224 7.59
gcut6d 375 375.0 0.000 0.16 86 395 5.06
gcut7d 600 600.0 0.000 0.71 357 642 6.54
gcut8d 720 720.0 0.000 3.50 693 765 5.88
gcut9d 135 135.0 0.000 0.08 57 141 4.26
gcut10d 315 315.0 0.000 0.21 122 328 3.96
gcut11d 349 349.0 0.000 0.79 289 375 6.93
gcut12d 676 675.0 0.148 5.28 1167 722 6.37
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the algorithm CG with subroutine SDP, since the algorithm CGp found better results in most of the instances.
We also present only the results of the algorithms with the perturbed method since they had better
performance.
Table 9
Performance of the algorithm CGp with 4-staged patterns

Instance Solution of CGp LB Difference
from LB (%)

Time (sec) Columns
Generated

Solution of
M-HFF

Improvement over
M-HFF (%)

gcut1d 294 294.0 0.000 0.04 25 322 8.70
gcut2d 345 345.0 0.000 0.49 157 360 4.17
gcut3d 333 332.0 0.301 1.76 621 374 10.96
gcut4d 837 836.0 0.120 7.27 1606 878 4.67
gcut5d 198 197.0 0.508 0.06 40 224 11.61
gcut6d 344 343.0 0.292 0.26 136 395 12.91
gcut7d 592 591.0 0.169 0.61 295 642 7.79
gcut8d 691 690.0 0.145 10.33 1539 765 9.67
gcut9d 131 131.0 0.000 0.08 55 141 7.09
gcut10d 294 293.0 0.341 0.17 93 328 10.37
gcut11d 330 330.0 0.000 1.88 535 375 12.00
gcut12d 673 672.0 0.149 5.70 927 722 6.79



Table 10
Performance of the algorithm CGRp with 2-staged patterns

Instance Solution of CGRp LB Difference
from LB (%)

Time (sec) Columns
generated

Solution of
FFDHR

Improvement over
FFDHR (%)

gcut1dr 291 291.0 0.000 0.05 26 291 0.00
gcut2dr 283 282.0 0.355 3.69 359 314 9.87
gcut3dr 317 316.0 0.316 4.35 1023 347 8.65
gcut4dr 837 836.0 0.120 9.47 1523 846 1.06
gcut5dr 175 175.0 0.000 0.09 45 198 11.62
gcut6dr 302 302.0 0.000 0.45 166 371 18.60
gcut7dr 543 542.0 0.185 0.72 193 623 12.84
gcut8dr 650 650.0 0.000 6.85 630 734 11.44
gcut9dr 126 125.0 0.800 0.10 61 143 11.89
gcut10dr 271 270.0 0.370 0.45 177 301 9.97
gcut11dr 300 299.0 0.334 8.32 677 342 12.28
gcut12dr 602 601.0 0.166 24.55 1207 696 13.51

Table 11
Performance of the algorithm CGRp with 4-staged patterns

Instance Solution of CGRp LB Difference
from LB (%)

Time (sec) Columns
Generated

Solution of
FFDHR

Improvement over
FFDHR (%)

gcut1dr 291 291.0 0.000 0.05 26 291 0.00
gcut2dr 283 282.0 0.355 2.22 274 314 9.87
gcut3dr 314 313.0 0.319 6.85 1103 347 9.51
gcut4dr 836 836.0 0.000 12.81 1446 846 1.18
gcut5dr 175 174.0 0.575 0.14 65 198 11.62
gcut6dr 302 301.0 0.332 0.74 230 371 18.60
gcut7dr 542 542.0 0.000 2.46 568 623 13.00
gcut8dr 651 650.0 0.154 18.35 1159 734 11.31
gcut9dr 123 122.0 0.820 0.11 58 143 13.99
gcut10dr 270 270.0 0.000 0.44 109 301 10.30
gcut11dr 299 298.0 0.336 20.08 996 342 12.57
gcut12dr 602 601.0 0.166 47.96 1535 696 13.51
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For the 2-staged cutting, the algorithm obtained optimum solutions for all instances, except for two of them
(on the average, the difference from LB was 0.036%). When compared to the solution of M-HFF, the improve-
ment was 5.93% on the average. This is a great improvement, since M-HFF is also restricted to 2-staged pat-
terns. The improvement of the 4-staged case over M-HFF was, on the average, 8.89%.

We also tested the algorithm CGRp with stages on the instances gcut1dr, . . . ,gcut12dr. See Tables 10 and 11.
In the 2-staged case, the difference between the solution found and the lower bound was 0.22%, on the average;
and the improvement over the FFDHR algorithm was around 10%. These numbers are very close to the ones
we obtained for the 4-staged version.
4. The 2CS problem with bins of different sizes

In this section we adapt the algorithm CG for the 2CSV problem. Let I = (W, H, V, w, h, d) be an instance
of the 2CSV, where W = (W1, . . . ,Wb), H = (H1, . . . ,Hb) and V = (V1, . . . ,Vb) are lists of size b indicating the
height, width, and value of each bin type i, 1 6 i 6 b. We can also represent each pattern j of the instance I as a
vector pj, whose ith entry indicates the number of times item i occurs in this pattern. The 2CSV problem con-
sists then in deciding how many times each pattern has to be used to meet the demands and minimize the total
value of the bins that are used. Let n be the number of all possible patterns for I, and let P denote an m · n

matrix whose columns are the patterns p1, . . . ,pn. If we denote by d the vector of the demands, then the fol-
lowing is an ILP formulation for the 2CSV problem: minimize

Pn
j¼1Cjxj subject to Px = d and xj P 0 and xj
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integer for j = 1, . . . ,n. The variable xj indicates how many times pattern j is selected and Cj is the value of the
bin type used in pattern j (note that each Cj will correspond to some Vi). The corresponding relaxed LP is the
following:
minimize C1x1 þ � � � þ Cnxn

subject to Px ¼ d

xj P 0 j ¼ 1; . . . ; n:

ð3Þ
In this case, we can also use algorithms DP and SDP to produce guillotine patterns. Moreover, if each item
i has value yi and occurs zi times in a pattern j, produced by DP or SDP, then

Pm
i¼1yizi is maximum (under the

pattern restrictions). This is exactly what we need to generate new columns, but in this case a column j enters
the basis if

Pm
i¼1yizi > Cj.

We describe in the sequel the algorithm SimplexCG3 that solves (3) (Algorithm 4.1). In this algorithm, we
have a vector f of size m that indicates the bin associated with each column of the matrix B. This way, we can
reconstruct a solution considering the vector f, and the entries of B, guillotine and position. We implemented
the algorithm SimplexCG3 with subroutines DP and SDP to solve the RK problem.

Algorithm 4.1 SimplexCG3
Input: An instance I = (W, H, V, w, h, d) of the 2CSV problem.
Output: An optimal solution for (3), where the columns of P are the patterns for I.
Subroutine: An algorithm R for the RK problem.
1 Let f be a vector of size m, where fi is the smallest index j such that wi 6Wj and hi 6Hj.
2 Let x = d and B be the identity matrix of order m.
3 Solve yTB ¼ CT

B . (CB is the vector C = (C1, . . . ,Cn) restricted to the columns of B.)
4 For i = 1 to b do

4.1 Generate a new column z executing the algorithm R with parameters Wi, Hi, w, h, y.
4.2 If yTz > Ci, go to step 6.

5 Return B, f and x and halt (x corresponds to the columns of B).
6 Solve Bw = z.
7 Let t ¼ min

xj

wj
j1 6 j 6 m;wj > 0

� �
.

8 Let s ¼ min jj1 6 j 6 m; xj

wj
¼ t

� �
.

9 Let fj = i

10 For i = 1 to m do

10.1 Bi,s = zi.
10.2 If i = s then xi = t else xi = xi � wit.

11 Go to step 3.
We describe now the algorithm CGV (Algorithm 4.2) that solves the 2CSV problem using the algorithm
SimplexCG3. This algorithm is very similar to the algorithm CG of Section 3, and therefore we omit the
details.

Algorithm 4.2 CGV
Input: An instance I = (W, H, V, w, h, d) of 2CSV.
Output: A solution for I.

1 Execute the algorithm SimplexCG3 with parameters B, w, h, d obtaining B, b and x.
2 For i = 1 to m do x�i ¼ bxic.
3 If x�i > 0 for some i, 1 6 i 6 m, then

3.1 Return B, b and x�1; . . . ; x�m (but do not halt).
3.2 For i = 1 to m do

3.2.1 For j = 1 to m do di ¼ di � Bi;jx�j .
3.3 Let m 0 = 0, h 0 = (), w0 = () and d 0 = ().
3.4 For i = 1 to m do

3.4.1 If di > 0 then m 0 = m 0 + 1, w 0 = w 0k(wi), h 0 = h 0k(hi) and d 0 = d 0k(di).
3.5 If m 0 = 0 then halt.
3.6 Let m = m 0, w = w 0, h = h 0, d = d 0 and go to step 1.

4 Let V � ¼ min V i
HiW i
ji ¼ 1; . . . ; b

� �
and j ¼ min ij V i

HiW i
¼ V �

� �
.

5 Return the solution of algorithm M-HFF executed with parameters Wj, Hj, w, h, d.



We also implemented variants of the algorithm CGV, when we may have orthogonal rotations (CGVR),
p p
staged patterns, and when the residual instance is solved with a perturbation method (CGV and CGVR ).

In the latter case, to generate a pattern we use a bin for which the fraction V i
HiW i

(for i = 1, . . . ,b) attains the
minimum value.

4.1. Computational results for the 2CSV problem

We have tested the algorithms CGV and CGVp with the instances gcut1d, . . . ,gcut12d, defining three differ-
ent bins. For each bin in the original instances, we define two others. Given an instance, let (W, H) be the bin
dimensions of this instance. In our modified instances, one bin has dimensions (1.2W, 0.8H) and the other has
dimensions (1.1W, 0.9H). The value of each bin corresponds to its area.

The algorithm CGVp found solutions that are better than those obtained by the algorithm CGV, but on the
average the time it spent was 58% greater.

Owing to space limitations, we show only the tests with the algorithm CGVp, see Table 12.
For the k-staged version of he 2CSV problem, we present tests for the algorithm CGVp with k = 2,4 (see

Tables 13 and 14). For k = 2 (resp. 4), on the average, the difference between the solution obtained by the algo-
rithm and the lower bound was 0.50% (resp. 0.44%).

When orthogonal rotations are allowed in the 2CSV problem, we note that it becomes harder to solve the
instances. The time spent by the algorithm CGVR (CGVRp) was 81.81 (136.40) seconds on the average, while
the time spent for the oriented version algorithms CGV (CGVp) was 13.85 (21.83) seconds. Table 15 shows the
results obtained by the algorithm CGVp.
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Table 12
Performance of the algorithm CGVp

Instance Solution of CGVp LB Difference from LB (%) Time (sec) Columns generated

gcut1d 14,880,000 14822812.5 0.386 0.40 309
gcut2d 15,733,125 15673933.2 0.378 5.31 2771
gcut3d 19,930,000 19769831.3 0.810 33.16 15,148
gcut4d 46,346,250 46257603.4 0.192 97.02 25,871
gcut5d 41,737,500 41517500.0 0.530 0.63 499
gcut6d 74,187,500 73967812.5 0.297 2.73 1505
gcut7d 122,735,000 122295271.7 0.360 6.50 3273
gcut8d 155,602,500 155221710.8 0.245 54.85 11,933
gcut9d 129,360,000 128389230.8 0.756 1.30 1038
gcut10d 254,130,000 252565036.2 0.620 2.49 1641
gcut11d 295,250,000 292879166.7 0.809 19.59 7147
gcut12d 602,240,000 599851250.0 0.398 38.02 7392

Table 13
Performance of the algorithm CGVp with 2-staged patterns

Instance Solution of CGVp LB Difference from LB (%) Time (sec) Columns generated

gcut1d 14,880,000 14822812.5 0.386 0.58 397
gcut2d 16,820,625 16740781.3 0.477 1.31 492
gcut3d 20,267,500 20149803.6 0.584 21.83 7877
gcut4d 46,591,875 46523511.2 0.147 60.56 11,569
gcut5d 42,022,500 41667500.0 0.852 0.17 110
gcut6d 78,167,500 77621562.5 0.703 0.96 539
gcut7d 124,257,500 123946562.5 0.251 2.90 1316
gcut8d 161,575,000 161074884.1 0.310 23.67 3958
gcut9d 131,830,000 130802500.0 0.786 0.12 86
gcut10d 262,470,000 260444166.7 0.778 0.81 434
gcut11d 304,440,000 303137516.6 0.430 18.58 6926
gcut12d 611,230,000 609519416.7 0.281 36.65 5452



Table 14
Performance of the algorithm CGVp with 4-staged patterns

Instance Solution of CGVp LB Difference from LB (%) Time (sec) Columns generated

gcut1d 14,880,000 14822812.5 0.386 0.44 307
gcut2d 15,730,625 15673933.2 0.362 8.03 3163
gcut3d 19,864,375 19769831.3 0.478 40.23 12,327
gcut4d 46,343,750 46257603.4 0.186 125.23 18,410
gcut5d 41,737,500 41517500.0 0.530 0.68 489
gcut6d 74,187,500 73967812.5 0.297 2.27 1005
gcut7d 122,745,000 122295271.7 0.368 9.09 3715
gcut8d 155,832,500 155221710.8 0.393 117.61 17,864
gcut9d 129,360,000 128389230.8 0.756 1.01 727
gcut10d 254,130,000 252565036.2 0.620 2.76 1649
gcut11d 294,200,000 292879166.7 0.451 33.78 8413
gcut12d 602,360,000 599851250.0 0.418 68.63 7886

Table 15
Performance of the algorithm CGVRp

Instance Solution of CGVRp LB Difference from LB (%) Time (sec) Columns generated

gcut1dr 13,823,750 13790625.0 0.240 0.62 402
gcut2dr 15,160,625 15083409.1 0.512 22.91 2714
gcut3dr 19,241,875 19118423.5 0.646 41.02 11,627
gcut4dr 44,663,125 44575105.3 0.197 147.12 26,535
gcut5dr 38,890,000 38454765.6 1.132 4.28 2175
gcut6dr 70,192,500 69599732.1 0.852 7.15 2646
gcut7dr 114,867,500 114503487.9 0.318 44.15 12,951
gcut8dr 152,262,500 151462312.9 0.528 529.98 47,421
gcut9dr 119,730,000 118806666.7 0.777 1.97 1093
gcut10dr 248,620,000 246552500.0 0.839 6.49 3379
gcut11dr 283,780,000 281713516.6 0.734 209.55 19,249
gcut12dr 561,680,000 559820015.8 0.332 621.60 32,690

Table 16
Performance of the algorithm CGVRp with 2-staged patterns

Instance Solution of CGVRp LB Difference from LB (%) Time (sec) Columns generated

gcut1dr 13,908,750 13828125.0 0.583 0.67 416
gcut2dr 15,474,375 15432371.3 0.272 37.05 4616
gcut3dr 19,436,875 19310805.3 0.653 45.33 12,159
gcut4dr 44,905,000 44767392.4 0.307 166.68 21,902
gcut5dr 40,382,500 40087187.5 0.737 0.74 341
gcut6dr 71,162,500 70839625.0 0.456 5.49 2411
gcut7dr 115,312,500 114817716.3 0.431 56.78 13,326
gcut8dr 153,410,000 152634892.3 0.508 394.05 28,128
gcut9dr 121,040,000 119568000.0 1.231 1.14 756
gcut10dr 249,260,000 247872857.1 0.560 5.68 1545
gcut11dr 289,430,000 286973906.4 0.856 290.64 23,447
gcut12dr 564,650,000 562898801.3 0.311 690.59 28,565
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For the staged version, the tests for the instances gcut1dr, . . . ,gcut12dr show that they are harder to be
solved. We note that the large instances require several minutes to be solved; see Tables 16 and 17.



Table 17
Performance of the algorithm CGVRp with 4-staged patterns

Instance Solution of CGVRp LB Difference from LB (%) Time (sec) Columns generated

gcut1dr 13,823,750 13790625.0 0.240 0.83 415
gcut2dr 15,161,875 15083409.1 0.520 46.73 3010
gcut3dr 19,181,875 19118423.5 0.332 96.76 16,255
gcut4dr 44,723,750 44575105.3 0.333 253.43 27,104
gcut5dr 38,890,000 38454765.6 1.132 4.72 1662
gcut6dr 70,192,500 69599732.1 0.852 10.45 2639
gcut7dr 114,867,500 114503487.9 0.318 70.18 12,339
gcut8dr 151,745,000 151462312.9 0.187 605.13 30,285
gcut9dr 119,730,000 118806666.7 0.777 2.73 1198
gcut10dr 248,620,000 246552500.0 0.839 9.25 3409
gcut11dr 283,560,000 281851974.2 0.606 628.87 27,379
gcut12dr 561,640,000 559820015.8 0.325 1328.03 32,554
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5. The SP problem and the column generation method

The Strip Packing (SP) problem is mostly considered in the literature for the special case in which the
demands are all equal to 1. Many approximation algorithms have been proposed for this problem. Coffman,
et al. [21] presented the algorithms NFDH and FFDH for the oriented case with asymptotic performance
bounds 2 and 1.7, respectively. Algorithms with better performance bounds were obtained by Baker et al.
[4] and also by Kenyon and Rémila [34]: 5/4 and (1 + �). Recently, a PTAS for the SP problem with rotations
was obtained by Jansen and van Stee [32].

In 2005, Seiden and Woeginger [45] presented an analysis of the quality of a k-stage guillotine strip packing
versus a globally optimum packing. They showed that for k = 2 no algorithm can guarantee any bounded
asymptotic performance ratio. When k = 3 (resp. k = 4) an asymptotic performance ratio arbitrarily close
to 1.69103 (resp. 1) can be obtained.

Although some of the approximation algorithms above have bounds very close to 1, most of these results
are more of theoretical relevance. Other approaches include genetic algorithms [40,10], branch-and-bound and
integer linear programming models [35,37,30].

Although the column generation approach can be easily applied to the SP problem, it has been less inves-
tigated under this approach. One of the main advantages of this approach is the possibility of considering lar-
ger values of demands, as this case has many industrial applications.

Let I = (W, H, w, h, d) be an instance of the SP problem. We consider that the first cut stage is done in the
horizontal direction of the strip; furthermore, two subsequent cuts must be at a distance at most H. We call H-
pattern a pattern corresponding to a packing between two subsequent horizontal cuts (that has to be at a max-
imum distance H).

Let p1, p2, . . . ,pn be the set of all possible H-patterns. Denote by Hi the height of the H-pattern pi and let P

be the matrix whose columns are the patterns p1, p2, . . . , pn. In this case, the following is an ILP formulation
for the SP problem: minimize

Pn
j¼1Hjxj subject to Px = d and xj P 0 and xj integer for j = 1, . . . ,n. To solve

this ILP we can use the same approach we used for the problem 2CSV. In fact, we can reduce the SP problem
to the 2CSV problem. For that, note that to each H-pattern of height Hi corresponds a bin with dimensions
(W, Hi) and value precisely Hi.

Let Q = {q1, . . . ,qs} be the set of all discretization points of the height H (this will be the maximum height
of the bins). For 2-staged cutting patterns, we can consider H as the maximum height of an item, that is,
H = max(h1, . . . ,hm). In this case, Q is the set of the heights of the items. If there are s different heights, we
have H-patterns (bins) of width Wi = W and height Hi, for 1 6 i 6 s.

The algorithm we propose to solve the SP problem, called CGS, uses basically the algorithm CGV with two
modifications. First, the residual instance is solved with the algorithm FFDH. Second, every call to the algo-
rithm SimplexCG3 solves only one instance of the RK problem, consisting of a knapsack of size (W, H).

We note that, looking at the entries of V, guillotine and position produced by algorithm SDP (algorithm for
the staged RK problem) we can obtain solutions for each height in Q: we just have to access positions
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corresponding to the dimensions (W, hi) of these variables, for each hi 2 Q, 1 6 i 6 s. This last modification is
very important, as s can be very large and solving instances of the RK problem for each of the s different bins
would consume a lot of time. We did not use this idea for the 2CSV problem since it is not always better to
solve only instances of RK with the largest bin dimensions.

Note that, in the 2CSV problem, the instances may consist of bins of different widths. Consider, for exam-
ple, an instance consisting of x bins: one with dimensions (r, r2), another one with dimensions (r2, r) and the
remaining ones with dimensions smaller than r, for some integer r. If we call the algorithm DP for a bin with
dimensions (r2, r2) and assume that the number of discretization points is linearly proportional to the dimen-
sions of the bin, then the algorithm will consume time O(r6). But if we solve for each of the bins, the algorithm
will consume time O(x r5).

The reader should note that the first cutting phase is done automatically by the column generation algo-
rithm by choosing the best bins in a solution. Therefore, the algorithm SDP is called with the first cutting
phase in the vertical direction and one cutting phase less than the number of stages of the instance.

We implemented the algorithm CGS and its variant CGSr (for the orthogonal rotation case) and CGSp with
a perturbed residual instance. In the algorithm CGSp a good way to perturb the residual instance is to generate
a level using the algorithm FFDH with minimum wasted area (considering the height of the level). When rota-
tions are allowed we use an algorithm, which we denote by FFDHR2, to generate a perturbed instance. This
algorithm works like the algorithm FFDH, but if an item cannot be packed in any of the existing levels then
the algorithm tries to pack it in the other orientation before creating a new level.

5.1. Computational results for the SP problem

For the SP problem, we have used the instances gcut1d, . . . , gcut12d considering the maximum distance
between two horizontal cuts of the strip as the width of the bin. Although the instances for the SP problem
required considerably more time than the (same) instances for the 2CS problem, the corresponding times
required by the latter were still small and acceptable in practice.

The results on the performance of the algorithm CGSp for 2- and 4-staged cutting are shown in Tables 18
and 19, respectively. The lower bound corresponds to the optimal fractional solution of formulation (3).

For the 2-staged problem, all instances were solved in less than 10 seconds. On the average, the difference
between the solutions found by the algorithm and the lower bound was only 0.08%. The improvement of the
algorithm CGSp over FFDH was, on the average, of 4.85%. These improvements are very significant, since
algorithm FFDH also produces 2-staged solutions.

For the 4-staged problem, the difference between the solutions found by the algorithm CGSp an the lower
bound was 0.116% and the improvement over FFDH was 7.74%, on the average.

We also performed tests when orthogonal rotations are allowed. The results of the tests can be found in
Tables 20 and 21. On the average, the difference between the solutions found by the algorithm CGSRp and
Table 18
Performance of the algorithm CGSp with 2-staged patterns

Instance Solution of
CGSp

LB Difference from
LB (%)

Average time
(sec)

Columns
generated

Solution of
FFDH

Improvement over
FFDH (%)

gcut1d 51,604 51583.0 0.041 0.06 43 54,323 5.01
gcut2d 77,436 77369.5 0.086 0.26 141 77,436 0.00
gcut3d 80,206 80112.5 0.117 4.50 1479 83,529 3.98
gcut4d 196,480 196422.5 0.029 3.74 702 205,250 4.27
gcut5d 91,177 91177.0 0.000 0.04 29 96,693 5.70
gcut6d 168,148 167987.5 0.096 0.18 93 181,578 7.40
gcut7d 243,241 243076.0 0.068 0.65 232 259,462 6.25
gcut8d 332,924 332669.3 0.077 3.57 534 344,732 3.43
gcut9d 122,836 122532.5 0.248 0.08 66 129,706 5.30
gcut10d 272,919 272680.5 0.087 0.22 119 286,790 4.84
gcut11d 315,026 314747.5 0.088 1.50 332 338,271 6.87
gcut12d 573,806 573590.0 0.038 8.88 610 605,126 5.18



Table 19
Performance of the algorithm CGSp with 4-staged patterns

Instance Solution of
CGSp

LB Difference from
LB (%)

Average time
(sec)

Columns
generated

Solution of
FFDH

Improvement over
FFDH (%)

gcut1d 51,432 51332.8 0.193 0.23 178 54,323 5.32
gcut2d 77,436 77369.5 0.086 0.40 126 77,436 0.00
gcut3d 77,446 77287.0 0.206 19.80 4516 83,529 7.28
gcut4d 195,307 195249.5 0.029 9.70 1118 205,250 4.84
gcut5d 87,249 87164.4 0.097 0.11 62 96,693 9.77
gcut6d 158,137 158104.5 0.021 0.40 149 181,578 12.91
gcut7d 236,508 236412.8 0.040 1.48 314 259,462 8.85
gcut8d 310,672 310493.8 0.057 47.28 4544 344,732 9.88
gcut9d 119,861 119426.2 0.364 0.20 131 129,706 7.59
gcut10d 260,388 260259.5 0.049 0.39 132 286,790 9.21
gcut11d 305,348 304918.0 0.141 13.80 1557 338,271 9.73
gcut12d 559,159 558531.9 0.112 201.51 10,422 605,126 7.60

Table 20
Performance of the algorithm CGSRp with 2-staged patterns

Instance Solution of
CGSRp

LB Difference from
LB (%)

Average time
(sec)

Columns
generated

Solution of
FFDHR2

Improvement over
FFDHR2 (%)

gcut1dr 50,612 50589.0 0.045 0.10 54 54,323 6.83
gcut2dr 60,311 60192.0 0.198 1.18 347 74,744 19.31
gcut3dr 77,385 77296.3 0.115 5.88 1193 83,529 7.36
gcut4dr 175,996 175930.4 0.037 32.11 3501 191,383 8.04
gcut5dr 78,530 78370.8 0.203 0.56 235 96,530 18.65
gcut6dr 138,207 138041.0 0.120 0.97 224 181,578 23.89
gcut7dr 226,312 226163.8 0.066 3.28 531 244,742 7.53
gcut8dr 300,696 300499.3 0.065 29.54 1419 326,197 7.82
gcut9dr 119,584 119417.0 0.140 0.22 102 129,657 7.77
gcut10dr 236,531 236278.2 0.107 1.20 193 265,322 10.85
gcut11dr 286,164 285661.6 0.176 10.53 555 326,275 12.29
gcut12dr 549,751 549181.6 0.104 130.30 2908 605,126 9.15

Table 21
Performance of the algorithm CGSRp with 4-staged patterns

Instance Solution of
CGSRp

LB Difference
from LB

Average time
(sec)

Columns generated Solution of
FFDHR2

Improvement over
FFDHR2 (%)

gcut1dr 50,433 50329.0 0.207 0.47 255 54,323 7.16
gcut2dr 59,420 59124.5 0.500 10.75 2222 74,744 20.50
gcut3dr 75,396 75162.2 0.311 50.26 7261 83,529 9.74
gcut4dr 173,687 173534.3 0.088 259.84 20,740 191383 9.25
gcut5dr 74,717 74391.0 0.438 0.46 155 96,530 22.60
gcut6dr 135,952 135450.9 0.370 6.17 1332 181,578 25.13
gcut7dr 221,258 221137.5 0.054 8.19 791 244,742 9.60
gcut8dr 294,578 294188.1 0.133 764.96 23,291 326,197 9.69
gcut9dr 116,296 115927.8 0.318 0.51 164 129,657 10.30
gcut10dr 233,582 233066.7 0.221 5.24 376 265,322 11.96
gcut11dr 278,362 277230.7 0.408 206.29 5251 326,275 14.68
gcut12dr 541,998 541540.0 0.085 935.73 12,450 605,126 10.43
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the lower bound was 0.11% and 0.26% respectively for the 2- and 4-staged problem. Comparing with the solu-
tions generated by the FFDHR2 we obtain on the average an improvement of 11.6% and 13.4%, respectively,
for the 2- and 4-staged problem.
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6. Concluding remarks

In this paper we presented algorithms for the RK, 2CS, 2CSV and SP problems and their variants RKr,
2CSr, 2CSVr and SPr, where orthogonal rotations of the items are allowed.

For the RK problem we presented the (exact) pseudo-polynomial algorithms DP and SDP (the latter is for
k-staged patterns). These algorithms can either use the algorithm DEE or DDP to generate the discretization
points. We have also shown that these algorithms can be implemented to run in polynomial time when the
items are not so small compared to the size of the bin. In this case the algorithms DP and SDP also run in
polynomial time. We have also mentioned how to use DP and SDP to solve the problem RKr.

We presented column generation based algorithms to solve the 2CS, 2CSV and SP problems. These algo-
rithms use, as subroutines, the algorithms DP and SDP to generate the columns. We propose variants of the
column generation algorithms that solve in different ways the residual instances.

For the 2CS and 2CSV problems, the first algorithm uses the algorithm M-HFF to solve the last residual
instance and the second uses a perturbation strategy.

The algorithm CG combines different techniques: Simplex method with column generation, an exact algo-
rithm for the discretization points, and an approximation algorithm (M-HFF) for the last residual instance.
An approach of this nature has shown to be promising, and has been used to tackle the one-dimensional cut-
ting stock problem [47,17].

The algorithm CGp is a variant of CG, in which we use an idea that consists in perturbing the residual
instances. We have also designed the algorithms CGR and CGRp for the problems in which orthogonal rota-
tions are allowed. The algorithm CGR uses as a subroutine (the algorithm FFDHR) that we have designed.
The same ideas are used in the algorithms for the 2CSV problem.

The algorithm for the SP problem was obtained adapting the algorithm for the 2CSV problem. We have
used the same strategy used in the algorithms for the 2CS and 2CSV problems. The residual instances were
solved with an approximation algorithm (FFDH) or another algorithm we proposed (called FFDHR2) when
rotations are allowed.

The column generation algorithms run in polynomial time, on the average, when the items are not
so small compared to the size of the bin and when no perturbation is performed (under the assumption that
the Simplex method runs in polynomial time on the average). The computational results with these algo-
rithms were very satisfactory: optimal or quasi-optimal solutions were found for the instances we have
considered.

For almost all instances tested, the algorithms that use a perturbation method found solutions of a slightly
better quality than CG (respectively, CGR) at the cost of a slight increase in the running time.

A natural development of our work would be to adapt the approach used in the algorithm CG for the ver-
sion with arbitrary orthogonal cutting patterns (the cuts need not be guillotine). One can find an initial solu-
tion using homogeneous patterns; the columns can be generated using any of the algorithms that have
appeared in the literature for the two-dimensional cutting stock problem with value [6,3]. To solve the last
residual instance one can use approximation algorithms [16,11,34].

One can also use column generation for the variant of 2CS in which the quantity of items in each bin is
bounded (a variant proposed by Christofides and Whitlock [15]). Each new column can be generated with
any of the known algorithms for the restricted two-dimensional cutting stock problem with value [15,41],
and the last residual instance can be solved with the algorithm M-HFF. This restricted version with guillotine
cut requirement can also be solved using the ideas we have just described: the homogeneous patterns and the
patterns produced by M-HFF can be obtained with guillotine cuts, and the columns can be generated with the
algorithm of Cung et al. [24].

As a final remark we mention that we did not use heuristics to solve the column generation step: for all
instances we always found optimal solutions for the relaxed LP. These optimal fractional solutions yielded
excellent lower bounds for the optimal solutions.

We performed many tests and compared the solutions obtained for the different variants of the problems.
We noted the average percentage of increase in computational time and decrease of space occupation when we
considered 2-, 3- and 4-staged patterns, as well as when rotations were considered. It should be noted that very
few papers consider 4-staged patterns. Finally, we observe that for all tests performed, the algorithms we
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implemented found optimal or quasi-optimal solutions in a reasonable amount of time, showing that they may
be useful for practical purposes.
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Paulo, 2004.
[19] G.F. Cintra, F.K. Miyazawa, Y. Wakabayashi, E.C. Xavier, A note on the approximability of cutting stock problems, European

Journal on Operations Research 183 (3) (2007) 1328–1332.
[20] G.F. Cintra, Y. Wakabayashi, Dynamic programming and column generation based approaches for two-dimensional guillotine

cutting problems, in: Proceedings of WEA 2004: Workshop on Efficient and Experimental Algorithms, Lecture Notes in Computer
Science, vol. 3059, 2004, pp. 175–190.

[21] E.G. Coffman Jr., M.R. Garey, D.S. Johnson, R.E. Tarjan, Performance bounds for level oriented two-dimensional packing
algorithms, SIAM Journal on Computing 9 (1980) 808–826.

[22] COIN-OR Linear Program Solver, An Open Source code for Solving Linear Programming Problems, http://www.coin-or.org/Clp/
index.html.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, second ed., MIT Press,
Cambridge, MA, 2001.

[24] Van-Dat Cung, Mhand Hifi, Bertrand Le Cun, Constrained two-dimensional cutting stock problems a best-first branch-and-bound
algorithm, Int. Trans. Oper. Res. 7 (3) (2000) 185–210.

[25] L. Epstein, Two dimensional packing: The power of rotation, in: Proceedings of the 28th International Symposium of Mathematical
Foundations of Computer Science, Lecture Notes on Computer Science – LNCS, vol. 2747, Springer–Verlag, 2003, pp. 398–407.

[26] S.P. Fekete, J. Schepers, J.C. van der Veen, An exact algorithm for higher-dimensional orthogonal packing, Operations Research 55
(3) (2007) 569–587.

[27] P. Gilmore, R. Gomory, A linear programming approach to the cutting stock problem, Operations Research 9 (1961) 849–859.

http://www.math.tu-dresden.de/~capad/PAPERS/03-varwidth.pdf
http://www.math.tu-dresden.de/~capad/PAPERS/03-varwidth.pdf
http://www.coin-or.org/Clp/index.html
http://www.coin-or.org/Clp/index.html


G.F. Cintra et al. / European Journal of Operational Research 191 (2008) 61–85 85
[28] P. Gilmore, R. Gomory, A linear programming approach to the cutting stock problem – Part II, Operations Research 11 (1963) 863–
888.

[29] P. Gilmore, R. Gomory, Multistage cutting stock problems of two and more dimensions, Operations Research 13 (1965) 94–120.
[30] M. Hifi, Exact algorithms for the guillotine strip cutting/packing problem, Computers & Operations Research 25 (11) (1998) 925–940.
[31] J.C. Herz, A recursive computational procedure for two-dimensional stock-cutting, IBM Journal of Research and Development

(1972) 462–469.
[32] K. Jansen, R. van Stee, On strip packing with rotations, in: Proceedings of the ACM Symposium on Theory of Computing, 2005, pp.

755–761.
[33] K. Jansen, G. Zhang, On rectangle packing: maximizing benefits, in: Proceedings of the 15th Annual ACM-SIAM Symposium on

Discrete Algorithms, 2004, pp. 204–213.
[34] C. Kenyon, E. Rémila, A near-optimal solution to a two-dimensional cutting stock problem, Mathematics of Operations Research 25

(2000) 645–656.
[35] A. Lodi, S. Martello, D. Vigo, Models and bounds for two-dimensional level packing problems, Journal of Combinatorial

Optimization 8 (2004) 363–379.
[36] A. Lodi, M. Monaci, Integer linear programming models for 2-staged two-dimensional knapsack problem, Mathematical

Programming 94 (2003) 257–278.
[37] S. Martello, M. Monaci, D. Vigo, An exact approach to the strip-packing problem, INFORMS Journal on Computing 15 (3) (2003)

310–319.
[38] F.K. Miyazawa, Y. Wakabayashi, Packing problems with orthogonal rotations, in: Proceedings of Latin American Theoretical

INformatics, Lecture Notes in Computer Science, vol. 2976, Springer-Verlag, Buenos Aires, Argentina, 2004, pp. 359–368.
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