Capítulo 3 ÁRVORES

Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação (não necessariamente direta) entre quaisquer desses postos, qual é o n'umero m'inimo de linhas diretas que deve existir?

Pergunta : Qual é o número mínimo de arestas que um grafo com n vértices deve ter para ser conexo?
Resposta:
Já vimos (exercício 19 do Capítulo 1) que:
Se G é um grafo conexo com n vértices então G tem pelo menos $n-1$ arestas. Ou seja, $ A(G) \ge n-1$ é condição necessária para que um grafo G com n vértices seja conexo.
Pergunta 1: $ A(G) \ge n - 1$ é condição suficiente para garantir que um grafo G com n vértices seja conexo?
Resposta 1:
Pergunta 2: Existem grafos conexos com n vértices e $n-1$ arestas (para todo $n \ge 1$)? Resposta 2:
Desenhe todos os grafos conexos (não-isomorfos) com n vértices e $n-1$ arestas para $n=1,2,\ldots,6$
Observação:

Pergunta 3: É verdade que se G é um grafo conexo com n vértices e n-1 arestas então G não contém circuitos?

Resposta 3:

Proposição 3.1. Se G é um grafo conexo com n vértices e n-1 arestas então G não contém circuitos.

Prova. [na aula]

Pergunta 4: Vale a recíproca da Proposição 3.1?

Resposta 4:

Proposição 3.2. Se G é um grafo conexo com n vértices e G não contém circuitos, então G tem n-1 arestas.

Prova. [na aula]

<u>Def.</u> Dizemos que um grafo é **acíclico** se ele não contém circuitos.

 $\underline{\text{Def.}}$ Uma **árvore** é um grafo acíclico conexo. Uma **floresta** é um grafo acíclico (não necessariamente conexo); ou seja, é um grafo cujos componentes são árvores.

Juntando as Proposições 3.1 e 3.2, e a definição acima, temos:

Teorema 3.3. Um grafo conexo com n vértices é uma árvores se só se tem n-1 arestas.

Corolário 3.4. Toda árvore não trivial tem pelo menos 2 vértices de grau 1. Prova. [na aula]

Teorema 3.5. As seguintes afirmações a respeito de um grafo G são equivalentes:

- (a) G é uma árvore.
- (b) G não tem laços e entre quaisquer dois vértices de G existe um único caminho.
- (c) G é acíclico e se u, v são dois vértices não-adjacentes de G, então G+uv tem exatamente um circuito. (Isto é, G é um grafo acíclico maximal.)
- (d) G é conexo e se e é uma aresta de G então G-e é desconexo. (Em outras palavras, G é conexo e toda aresta de G é uma ponte.)

Prova. [na aula] (Escrever a prova numa folha complementar.)

Exercício 25. Prove que se G é um grafo conexo com n vértices e n arestas, $n \geq 1$, então G contém um único circuito.

Exercício 26. Prove que se G é um grafo simples com pelo menos 5 vértices então ou G ou o seu complemento \bar{G} contém um circuito.

<u>Def.</u> Uma **árvore geradora** ('spanning tree') de um grafo G é um subgrafo gerador de G que é uma árvore. (Lembramos que um subgrafo T de G é gerador se V(T) = V(G).) Exemplos:

Corolário 3.6. Todo grafo conexo contém uma árvore geradora.

Prova. [na aula]

Vértice-de-corte (ou vértice separador).

Num grafo G um vértice v é um **vértice-de-corte** se o conjunto das arestas de G pode ser particionado em dois subconjuntos não-vazios A_1 e A_2 tais que os subgrafos $G[A_1]$ e $G[A_2]$ têm apenas o vértice v em comum.

OBS: Se G é um grafo sem laços então a definição acima é equivalente a: v é um vértice-de-corte se c(G-v)>c(G), isto é, o número de componentes de G-v é maior do que o número de componentes de G.

Exemplos:

Def. Numa árvore um vértice de grau 1 é chamado folha.

Teorema 3.7. Em uma árvore um vértice v é um vértice-de-corte se e só se g(v) > 1.

Prova. [na aula]

Corolário 3.8. Todo grafo conexo não-trivial, sem laços, tem pelo menos 2 vértices que não são vértices-de-corte.

Prova. [na aula]

Corolário 3.9. Todo grafo conexo não-trivial G tem um vértice v tal que G - v é conexo.

Exercício 27. Seja G um grafo. Prove que uma aresta α de G é uma aresta-de-corte se e só se α não está contida em nenhum circuito de G.

Exercício 28. Seja G um grafo conexo e α uma aresta de G. Prove que α pertence a todas as árvores geradoras de G se e só se α é uma aresta-de-corte de G.

Teorema 3.10. O número de árvores geradoras (rotuladas) distintas de K_n , $n \ge 2$, é igual n^{n-2} .

Prova. [Idéia a ser discutida em aula]

APLICAÇÕES

O PROBLEMA DA INTERLIGAÇÃO MÍNIMA

Deseja-se interligar (conectar) um certo número de locais através de uma rede de comunicação (fibra ótica). Sabendo-se que o custo para construir uma ligação direta de um local i para um local j é c_{ij} , deseja-se construir uma tal rede de forma que o custo total de construção seja o menor possível.

Considerando cada local i como sendo um vértice v_i de um grafo com custos c_{ij} associados às arestas $v_i v_i$, o problema acima pode ser formulado da seguinte maneira:

Dado um grafo G = (V, A), com custo $c(a) \ge 0$ associado a cada aresta $a \in A$, encontrar em G um subgrafo gerador conexo de custo mínimo.

É imediato que no problema acima estamos interessados em encontrar em G uma **árvore geradora** de custo mínimo. Uma tal árvore será chamada de **árvore ótima**. O custo de um grafo T, denotado por c(T), é definido como a soma dos custos das arestas em T; isto é

$$c(T) := \sum_{a \in T} c(a).$$

ALGORITMO DE KRUSKAL

Entrada: Grafo conexo G = (V, A), com custo $c(a) \ge 0$ em cada aresta $a \in A$. Saída: Árvore ótima T (árvore geradora de custo mínimo).

- 1. (Ordenação) Ordene as arestas de G em ordem não-decrescente de seus custos. Chame-as de a_1, a_2, \ldots, a_m , sendo $c(a_1) \leq c(a_2) \leq \ldots \leq c(a_m)$.
- 2. $F \leftarrow \emptyset$.
- 3. Para i=1 até m faça se $G[F \cup \{a_i\}]$ é acíclico então $F \leftarrow F \cup \{a_i\}$.
- 4. $T \leftarrow G[F]$. Pare.

OBS: O passo 3 pode ser melhorado. Note que quando |F| = |V| - 1 não há mais necessidade de testar mais outras arestas.

OBS: Em aula, discussão sobre os casos em que os custos podem ser negativos.

O algoritmo acima é um *bom* algoritmo (muito eficiente). (Em aula: detalhes sobre a implementação e complexidade.)

Teorema 3.11. Se T é um subgrafo construído pelo algoritmo de Kruskal, então T é uma árvore ótima de G.

Prova. Seja T um subgrafo construído pelo algoritmo de Kruskal. Claramente T é um subgrafo acíclico maximal de G com V(T) = V(G), e portanto, T é uma árvore geradora de G. Vamos provar que T é uma árvore ótima.

Suponha que $A(T) = \{e_1, e_2, \dots, e_k\}$, e que e_i foi escolhido antes de e_j se i < j.

Escolha uma árvore ótima T^* de G tal que T^* tenha o maior número possível de arestas em comum com T (isto é, tal que $|A(T^*) \cap A(T)|$ seja máxima). Vamos provar que $T^* = T$.

Suponha que $T^* \neq T$. Seja e_j a primeira aresta escolhida para pertencer a T que não é uma aresta de T^* . (Isto significa que as arestas e_1, \ldots, e_{j-1} pertencem a T e a T^*). Sejam u e v os extremos da aresta e_j , e seja P o (único) caminho em T^* que vai de u para v. Note que o caminho P tem pelo menos uma aresta, digamos xy, que não pertence a T (caso contrário, T conteria um circuito). Como a aresta uv (= e_j) foi escolhida pelo algorimto e xy não foi, segue que $c(xy) \geq c(uv)$. De fato, basta notar que $G[\{e_1, \ldots, e_{j-1}\} \cup \{xy\}]$ é acíclico, e portanto, se tivéssemos c(xy) < c(uv), então a aresta xy deveria ter sido escolhida pelo algoritmo.

Seja $T':=T^*+uv-xy$; Note que T' é uma árvore geradora [justifique esta afirmação] e $c(T')=c(T^*)+c(uv)-c(xy)\leq c(T^*)$. Como T^* é uma árvore ótima, então $c(T')=c(T^*)$, e portanto T' é também uma árvore ótima. Mas T' tem mais arestas em comum com T do que T^* (isto é, $|A(T')\cap A(T)|>|A(T^*)\cap A(T)|$), uma contradição à escolha de T^* . Logo, devemos ter $T^*=T$, o que completa a prova.