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Outline of Lecture I

1. Probabilistic preliminaries: basics, binomial distribution

2. Models of random graphs: the models, monotonicity, equivalence

3. Jumbledness and expansion: edge-distribution, expansion

4. Threshold phenomena: Thresholds, giant component
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Probabilistic preliminaries

B Focus on discrete probability spaces: (Ω, P)

◦ |Ω| < ∞
◦ P : Ω → [0, 1]

◦
∑

ω∈Ω P(ω) = 1

B Random variable (r.v.): X : Ω → R
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Expectation and linearity

B Expectation:

E(X) =
∑

ω∈Ω

X(ω)P(ω) =
∑
x

xP(X = x) (1)

B Linearity:

E(
∑

i

aiXi) =
∑

i

aiE(Xi) (2)
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Variance and standard deviation

B Variance:

σ2(X) = Var(X) = E((X − E(X))2) = E(X2) − E(X)2 (3)

B Standard deviation:

σ(X) =
√

Var(X) (4)
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Indicator random variables

B XE = [event E holds]

B X =
∑

E∈E XE [= number of E ∈ E that hold]

B E(X) =
∑

E∈E E(XE) =
∑

E∈E P(E holds)

B Var(X) =
∑

(E,E ′) Cov(XE, XE ′)

B Cov(X, X ′) = E(XX ′) − E(X)E(X ′) [= 0 if X and X ′ independent]
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Markov’s and Chebyshev’s inequality

B Markov: if X ≥ 0, then for all t > 0 we have

P(X ≥ t) ≤
1

t
E(X). (5)

◦ Consequence: if X is integer-valued, taking t = 1 gives

P(X > 0) = P(X ≥ 1) ≤ E(X). (6)

Often, just estimate E(X) and show that E(X) = o(1).
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Markov’s and Chebyshev’s inequality

B Chebyshev: for all t > 0,

P(|X − E(X)| ≥ t) ≤
1

t2
Var(X). (7)

Proof. Apply Markov to Y = (X − E(X))2.

B Taking t = E(X), we have

P(X = 0) ≤ P(|X − E(X)| ≥ E(X)) ≤
Var(X)

E(X)2
. (8)
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Markov’s and Chebyshev’s inequality

B Cauchy–Schwarz: May obtain small improvement applying CS:

P(X = 0) ≤
Var(X)

E(X)2 + Var(X)
=

Var(X)

E(X2)
. (9)

For non-negative integer-valued r.vs:

P(X ≥ 1) ≥
E(X)2

E(X2)
. (10)

Proof. Exercise 1.
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Basic concentration

If Var(X) � E(X)2, then X is concentrated around its expectation: for any
fixed ε > 0,

P[|X − E(X)| ≥ εE(X)] ≤
Var(X)

ε2E(X)2
= o(1). (11)

Therefore, have P[X = (1± ε)E(X)] with probability 1 − o(1).
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Binomial distribution

X ∼ Bi(n, p): X = X1 + · · · + Xn, with each Xi ∼ Be(p)

B P(X = k) =
(
n
k

)
pk(1 − p)n−k

B E(X) = np

B Er(X) = E[(X)r] = E[X(X − 1) . . . (X − r + 1)] = (n)rpr. This gives
Var(X) = np(1 − p).

B X concentrated around E(X) if np → ∞
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Poisson distribution

X ∼ Po(λ): integer-valued, mean λ > 0, with

P(X = k) =
1

k!
e−λλk (12)

B Er(X) = E[(X)r] = λr

B Bi(n, p)
d→ Po(λ) if np → λ as n → ∞
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Hypergeometric distribution

X ∼ Hyp(n, b, d): X = |D ∩ B| when D ∈
(
[n]
d

)
uniformly at random,

and B ⊂ [n] with |B| = b is fixed

B P(X = k) =
(
b
k

)(
n−b
d−k

)(
n
d

)−1
=
(
d
k

)(
n−d
b−k

)(
n
b

)−1

B E(X) = bd/n
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Exponential bounds for the binomial

Suppose X ∼ Bi(n, p).

Theorem 1. We have

P(X ≥ k) ≤
(n
k

)
pk ≤

(
enp

k

)k
. (13)

Proof. Exercise 2.

B If k = λnp, bound is (e/λ)λnp = e−cλnp, where cλ = λ(log λ − 1).



Random Graphs I Exponential bounds
14

Exponential bounds for the binomial

Suppose X ∼ Bi(n, p).

Theorem 2. Let µ = E(X) = np and t ≥ 0. Then

P(X ≥ µ + t) ≤ exp

{
−

t2

2(µ + t/3)

}
(14)

and

P(X ≤ µ − t) ≤ exp

{
−

t2

2µ

}
. (15)
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Exponential bounds for the binomial

Suppose X ∼ Bi(n, p); µ = np.

Theorem 3. If ε ≤ 3/2, then

P (|X − µ| ≥ εµ) ≤ 2 exp
{

−
1

3
ε2µ

}
. (16)
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Exponential bounds for the hypergeometric

Suppose X ∼ Hyp(n, b, d).

Theorem 4. We have

P(X ≥ k) ≤
(d
k

)(b

n

)k

≤
(

ebd

kn

)k

. (17)

Proof. Exercise 3.

B If k = λbd/n, then the bound is (e/λ)λbd/n = e−cλbd/n, where cλ =

λ(log λ − 1).



Random Graphs I Exponential bounds
17

Exponential bounds for the hypergeometric

Suppose X ∼ Hyp(n, b, d).

Theorem 5. Let µ = E(X) = bd/n and t ≥ 0. Then

P(X ≥ µ + t) ≤ exp

{
−

t2

2(µ + t/3)

}
(18)

and

P(X ≤ µ − t) ≤ exp

{
−

t2

2µ

}
. (19)
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Exponential bounds for the hypergeometric

Suppose X ∼ Hyp(n, b, d), µ = bd/n.

Theorem 6. If ε ≤ 3/2, then

P (|X − µ| ≥ εµ) ≤ 2 exp
{

−
1

3
ε2µ

}
. (20)
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Models of random graphs

B G(n, p): each element of
(
[n]
2

)
is present with probability p, indepen-

dently of all others

B G(n, M): uniform space on
(([n]

2 )
M

)
B G = (Gt)

N
t=0: random processes G0 ⊂ G1 ⊂ · · · ⊂ GN (N =

(
n
2

)
),

with each Gi on [n], say, and Gi obtained from Gi−1 by the addition of
a new random edge. Space has cardinality N!.

Always interested in n → ∞. Use the terms ‘almost surely’, ‘almost every’,
‘almost always’, etc to mean ‘with probability → 1 as n → ∞’.
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Monotonicity theorems

Definition 7 (Graph property). A graph property is a family of graphs closed
under isomorphism.

Definition 8 (Increasing and decreasing properties). A graph property is
decreasing if the removal of an edge does not destroy the property. A
graph property is increasing if the addition of an edge does not destroy the
property (vertices are not added).

B Examples: being planar, being connected
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Monotonicity theorems

Theorem 9. Suppose 0 ≤ p ≤ p ′ ≤ 1. If P is an increasing graph prop-
erty, then P(G(n, p) ∈ P) ≤ P(G(n, p ′) ∈ P).

Proof. Exercise 4.

B ‘2-round exposure trick’: G(n, p ′) = G(n, p) ∪ G(n, p ′′) (union of two
independent r.gs), with 1 − p ′ = (1 − p)(1 − p ′′)
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Monotonicity theorems

Theorem 10. Suppose 0 ≤ M ≤ M ′ ≤ N =
(
n
2

)
. If P is an increasing

graph property, then P(G(n, M) ∈ P) ≤ P(G(n, M ′) ∈ P).

Proof. Exercise 5.
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Equivalence theorems

Theorem 11. Suppose P is an increasing property, let M = M(n) → ∞,
and suppose δ > 0 is a constant with (1 + δ)M/N = (1 + δ)M/

(
n
2

)
≤ 1.

Set p = p(n) = M/N.

(i) If P(G(n, p) ∈ P) → 1, then P(G(n, M) ∈ P) → 1.

(ii) If P(G(n, p) ∈ P) → 0, then P(G(n, M) ∈ P) → 0.

(iii) If P(G(n, M) ∈ P) → 1, then P(G(n, (1 + δ)p) ∈ P) → 1.

(iv) If P(G(n, M) ∈ P) → 0, then P(G(n, (1 − δ)p) ∈ P) → 0.

Proof. Exercise 6.
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Jumbledness

Let G = Gn = (V, E) be a graph.

Definition 12 ((p, η)-uniform). Let p and η > 0 be given. We say that G is
(p, η)-uniform if, for all U, W ⊂ V , with U ∩W = ∅ and |U|, |W| ≥ ηn, we
have ∣∣∣e(U, W) − p|U||W|

∣∣∣ ≤ ηp|U||W|, (21)

where e(U, W) denotes the number of edges with one endvertex in U and
the other in W.
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Jumbledness

Let G = Gn = (V, E) be a graph.

Definition 13 ((p, α)-bijumbled). Let p and α > 0 be given. We say that G

is (p, α)-bijumbled if, for all U, W ⊂ V , with U ∩ W = ∅ and 1 ≤ |U| ≤
|W| ≤ pn|U|, we have∣∣∣e(U, W) − p|U||W|

∣∣∣ ≤ α
√

|U||W|. (22)

Particular interest: α = O(
√

np). We often set d = np (and call this the
‘average degree’, which is, of course, not quite right).
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Jumbledness

Theorem 14. Let G = Gn = (V, E) be a (p, α)-bijumbled graph. Then, for
all U ⊂ V , we have ∣∣∣∣∣e(G[U]) − p

(|U|

2

)∣∣∣∣∣ ≤ α|U|. (23)

Proof. Exercise 7.
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Jumbledness

Theorem 15. For every η > 0 there is C such that if d = pn ≥ C,
then G(n, p) is a.s. (p, η)-uniform.

Proof. Exercise 8.

Theorem 16. For every 0 < p = p(n) < 1, the random graph G(n, p) is
a.s. (p, e3/2

√
d)-bijumbled, where d = np.

Proof. Exercise 9.

Exercise 10: why do we have the condition 1 ≤ |U| ≤ |W| ≤ pn|U| in
Definition 13?



Random Graphs I Jumbledness and expansion
28

Jumbledness

Corollary 17. Suppose pn ≥ C logn for some constant C > 3. Then
a.e. G(n, p) satisfies (22) for every pair of disjoint sets U, W ⊂ V(G(n, p))

with α = e3/2
√

d.

Proof (Sketch). Theorem 16 tells us that G(n, p) is a.s. (p, e3/2
√

d)-bi-
jumbled. Now let U and W be such that |W| > d|U|. Then e3/2

√
d|U||W| >

e3/2d|U|. In particular, p|U||W| − e3/2
√

d|U||W| ≤ p|U|n − e3/2d|U| < 0 ≤
e(U, W).

As d = np = C logn and C > 3, we have that ∆(G(n, p)) ≤ 2d almost
surely. Therefore e(U, W) ≤ 2d|U| ≤ e3/2d|U| ≤ p|U||W|+e3/2

√
d|U||W|.
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Expansion results

Definition 18 ((b, f)-expansion). Let B = (U, W; E) be a bipartite graph
with vertex classes U and W and edge set E. Let positive reals b and f be
given. We say that B is (b, f; U)-expanding if, for every X ⊂ U with |X| ≤
b, we have |Γ(X)| ≥ f|X|. If B is both (b, f; U)-expanding and (b, f; W)-
expanding, let us say that B is (b, f)-expanding.

As usual, Γ(X) is the neighbourhood of X, that is, the set of all vertices
adjacent to some x ∈ X.
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Expansion results

Let G = Gn = (V, E) be (p, A
√

d)-bijumbled, where d = np. Suppose U

and W ⊂ V are disjoint; let |W| = αn. Suppose

dW(u) = |Γ(u) ∩W| ≥ ρp|W| (24)

for all u ∈ U.

Theorem 19. For any η > 0 and any 0 < f ≤ (ηαρ/A)2d, the bipartite
graph G[U, W] is ((1 − η)ρ|W|/f, f; U)-expanding.
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Expansion results

Proof. By contradiction: let f be as in the statement. Let X ⊂ U be such
that |X| ≤ (1 − η)ρ|W|/f. Let Y = Γ(X) ∩W and suppose |Y| < f|X|.

By the (p, A
√

d)-bijumbledness condition on G, we have

e(X, Y) ≤ p|X||Y| + A
√

d|X||Y| < p|X|(1 − η)ρ|W| + A
√

d|X||Y|, (25)

and, from (24), we deduce that

e(X, Y) = e(X, W) ≥ ρp|W||X|. (26)

Combining (25) and (26), we have (ηρp|W||X|)2 < A2d|X||Y|. Therefore

|Y| >
(ηρp|W||X|)2

A2d|X|
≥
(

ηρα

A

)2
d|X| ≥ f|X|. (27)

As we supposed that |Y| < f|X|, we have a contradiction.
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Long paths in expanding bipartite graphs

The following lemma is known as the bipartite version of Posá’s lemma.

Lemma 20. Let b ≥ 1 be an integer. If the bipartite graph B is (b, 2)-
expanding, then B contains a path P4b on 4b vertices.

Proof. Later we shall see a proof of Posá’s original lemma.
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The Friedman–Pippenger lemma

Suppose G = (V, E) is (b, f)-expanding: every X ⊂ V with |X| ≤ b is such
that |ΓG(X)| ≥ f|X|.

Theorem 21 (Friedman and Pippenger 1987). Any (2n−2, d+1)-expander
contains every tree T = Tn with maximum degree ∆(T) ≤ d.

Proof. Exercise 11++.

Open problem 12: give an efficient algorithm for finding the tree guaran-
teed in Theorem 21.
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Random graphs are fault tolerant

Write G →η J if every H ⊂ G with |E(H)| ≥ η|E(G)| contains a copy of
every J ∈ J as a subgraph.

Theorem 22. For any η > 0 and any ∆, there is C such that a.e. G =

G(n, p) with p = C/n satisfies

G(n, p) →η T , (28)

where T is the family of all trees T = T t with t ≤ n/C and ∆(T) ≤ ∆.

Proof. Exercise 13+.

B There exist linear fault-tolerant graphs for trees. Exercise 14++: how
about for even cycles?
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Threshold functions

Consider G(n, p) [similar for G(n, M)]. Let P be an increasing graph prop-
erty.

Definition 23 (Threshold). The function p0 = p0(n) is a threshold function
for P if

lim
n→∞ P(G(n, p) has P) =

{
0 if p � p0

1 if p � p0.
(29)

B 0-statement, 1-statement
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Sharp threshold functions

Let P be an increasing graph property.

Definition 24 (Sharp and coarse thresholds). The function p0 = p0(n) is
a sharp threshold function for P if, for every ε > 0, we have

lim
n→∞ P(G(n, p) has P) =

{
0 if p ≤ (1 − ε)p0

1 if p ≥ (1 + ε)p0.
(30)

Coarse threshold: not sharp
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Threshold functions, examples

B K4 ⊂ G(n, p): p0 = p0(n) = n−2/3 [Exercise 15]. This threshold is
coarse [Exercise 16].

B G(n, p) → (K3)v
2: p0 = n−2/3 [Exercise 17++].

B G(n, p) → (K3)e
2: p0 = n−1/2 [Exercise 18++; > 2 colours: Exer-

cise 19++; Open problem 20: conjectured to be sharp for all k ≥ 2;
very tough for k = 2]

B G(n, p) →1/2+η K3: p0 = n−1/2 [Exercise 21++; Open problem 22:
conjectured to be sharp]
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The Bollobás–Thomason theorem

Theorem 25. Let P be an increasing property. Then P admits a threshold.

Proof (Sketch). Consider pε so that G(n, pε) has P with probability ≥ ε.
Let G = G1∪ · · · ∪Gt, where each Gi is an independent copy of G(n, pε).
Then G = G(n, p ′) with p ′ ≤ tp. Suppose t = t(ε) is such that (1 − ε)t ≤
ε. Then G(n, p ′) has P with probability at least 1 − ε. This implies the
theorem [Exercise 23].



Random Graphs I Threshold phenomena
39

A (very) sharp threshold

Theorem 26. Let

p =
1

n
(logn + cn) . (31)

Then

lim
n→∞ P(G(n, p) is connected) =


0 if limn cn = −∞,
e−e−c

if limn cn = c ∈ R,
1 if limn cn = ∞.

(32)

Proof. Exercise 24++.
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The Friedgut theorem for sharp thresholds

Theorem 27. Let P be an increasing graph property with a coarse thresh-
old. Then there exist real constants 0 < c < C and β > 0, a rational ρ, and
a sequence p = p(n) satisfying

cn−1/ρ < p(n) < Cn−1/ρ, (33)

such that β < P[G(n, p) ∈ P] < 1 − β for infinitely many n.
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The Friedgut theorem for sharp thresholds

Given a graph M and a disjoint set of n vertices, let M∗ be a labelled copy
of M placed uniformly at random on one of the n!/(n − |V(M)|)! possible
ways.

Theorem 28. Furthermore, there exist α and ξ > 0 and a balanced graph M

with density ρ for which the following holds: For every graph property G
such that G(n, p) ∈ G a.s., there are infinitely many values of n for which
there exists a graph G on n vertices for which the following holds:

(i) G ∈ G,

(ii) G 6∈ P ,

(iii) P(G ∪M∗ ∈ P) > 2α,

(iv) P(G ∪G(n, ξp) ∈ P) < α.
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The emergence of the giant component

For a graph G, write let Lk(G) for the number of vertices in the kth largest
component.

Theorem 29. Let ε > 0 be fixed. For almost every random graph pro-
cess G = (Gt)

N
t=0, the following holds:

(i) we have L1(Gt) = o(n) for all t ≤ (1/2 − ε)n,

(ii) we have L1(Gt) ≥ cn and L2(Gt) = o(n) for all t ≥ (1/2 + ε)n,
where c = c(ε) is a constant that depends only on ε.

Thus, at around time t = n/2, our evolving graph Gt suffers a sudden
change in structure: the so called giant component emerges.


