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Outline of Lecture |

1. Probabilistic preliminaries: basics, binomial distribution
2. Models of random graphs: the models, monotonicity, equivalence
3. Jumbledness and expansion: edge-distribution, expansion

4. Threshold phenomena: Thresholds, giant component
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Probabilistic preliminaries

> Focus on discrete probability spaces: (Q,P)

o |Q] < oo
o P: QO —[0,1]

o ZwEQP(w) =2

> Random variable (r.v.): X: QO — R
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Probabilistic prelims

> Expectation:

> Linearity:

Expectation a

E(X)= ) X(w)P

we)

nd linearity

(W) =) xP(X=x) (1)

E() aXi) =) aE(X{) (2)
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Variance and standard deviation

> \Variance;

o?(X) = Var(X) = E((X —E(X))?) = E(X}) —E(X)*  (3)

> Standard deviation:

a(X) = /Var(X) (4)
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Indicator random variables

> Xg = [event E holds]

> X =) pee Xg [=number of E € £ that hold]

> E(X) = ) gce E(Xg) = ) _geg P(E holds)

> Var(X) = Z(E)E,) Cov(Xg, Xg/)

> Cov(X, X’) = E(XX") —E(X)E(X’) [= 0if X and X’ independent]
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Markov’s and Chebyshev’s inequality

> Markov: if X > 0, then for all t > 0 we have

MXZUS%

E(X).
o Consequence: if X is integer-valued, taking t = 1 gives
P(X>0)=PX>1) <E(X).
Often, just estimate E(X) and show that E(X) = o(1).
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Markov’s and Chebyshev’s inequality

> Chebyshev: forall t > 0,

P(IX — E(X)| > t) < 3 Var(X). 7)

Proof. Apply Markov to Y = (X — E(X))?. N
> Taking t = [E(X), we have

P(X =0) <P(IX-E(X)] > E(X)) <
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Markov’s and Chebyshev’s inequality

> Cauchy—Schwarz: May obtain small improvement applying CS:

B Var(X) ~ Var(X)
PX=0) < E(X)2 +Var(X) E(X3)°

For non-negative integer-valued r.vs:

MXZUZEM%'

Proof. Exercise 1. ]
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Basic concentration

If Var(X) < E(X)?, then X is concentrated around its expectation: for any
fixed ¢ > 0,

Var(X)
PIX=EX)I 2 eEX)] < Hpa2

Therefore, have P[X = (1 & ¢)E(X)] with probability T — o(1).

—0(1). (11)
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Binomial distribution
X~ Bi(n,p): X=X7+ -+ Xn, with each X; ~ Be(p)

> P(X=K) = ()p*(1 —p)n
> E(X)=np

> Er(X) = E[(X)y] = EX(X—=1)...(X=1r+1)] = (n)rp". This gives
Var(X) =np(1 —p).

> X concentrated around E(X) if np — oo
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Poisson distribution

X ~ Po(A): integer-valued, mean A > 0, with

1
P(X =%k) = ge—7\7\‘< (12)

> Er(X) = E[(X)r] = AT

> Bi(n,p) d, Po(A) ifnp - Aasn — o
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Hypergeometric distribution

X ~ Hyp(n,b,d): X = |D N BlwhenD € ([2]) uniformly at random,
and B C [n] with |B| = b is fixed

> Px=1) = ()@ = @@

> E(X) =bd/n
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Exponential bounds for the binomial
Suppose X ~ Bi(n,p).
Theorem 1. We have

PO > K) < (M)p* < (TP)" (13)

Proof. Exercise 2. ]

> If k = Anp, bound is (e/A)MP = e~A"P where ¢y = A(log A — 1).
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Exponential bounds for the binomial

Suppose X ~ Bi(n,p).

Theorem 2. Letu =E(X) =np andt > 0. Then

2
P(X>p+t) <exp {_Z(Mj—t/3)} (14)

and
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Exponential bounds for the binomial
Suppose X ~ Bi(n,p); w = np.
Theorem 3. If¢ < 3/2, then

P(X—pl > en) SZexp{—%ezu}- (16)
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Exponential bounds for the hypergeometric
Suppose X ~ Hyp(n, b, d).
Theorem 4. We have

k k
Pxz < ()(1) < (Te) (17)

Proof. Exercise 3. []

> If k = Abd/n, then the bound is (e/A)APd/ = e—cAbd/n where ¢y =
AllogA —1).
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Exponential bounds for the hypergeometric

Suppose X ~ Hyp(n,b, d).

Theorem 5. Letpu =E(X) =bd/nandt > 0. Then

2
P(X>p+t) <exp {_Z(Mj—t/3)} (18)

and
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Exponential bounds for the hypergeometric

Suppose X ~ Hyp(n,b,d), o = bd/n.

Theorem 6. If¢ < 3/2, then

P(IX—ul >epn) <2exp {—%azu} : (20)
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Models of random graphs

> G(n,p): each element of ([721]) IS present with probability p, indepen-

dently of all others

n]

> G(n, M): uniform space on ((1\2/1))

> G = (Gt)tN:O: random processes Gy C Gy C --- C Gn (N = (Tz‘))
with each G; on [n], say, and G; obtained from G;_ by the addition of
a new random edge. Space has cardinality N!.

Always interested in n — oco. Use the terms ‘almost surely’, ‘almost every’,
‘almost always’, etc to mean ‘with probability — 1T asn — o0’.
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Monotonicity theorems

Definition 7 (Graph property). A graph property is a family of graphs closed
under isomorphism,.

Definition 8 (Increasing and decreasing properties). A graph property is
decreasing if the removal of an edge does not destroy the property. A
graph property is increasing if the addition of an edge does not destroy the
property (vertices are not added).

> Examples: being planar, being connected
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Monotonicity theorems

Theorem 9. Suppose 0 < p < p’ < 1. If P is an increasing graph prop-
erty, thenP(G(n,p) € P) < P(G(n,p’) € P).

Proof. Exercise 4. ]

> ‘2-round exposure trick: G(n,p’) = G(n,p) U G(n,p"”) (union of two
independent r.gs), with 1 —p’ = (1 —p)(1 —p”)

21
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Monotonicity theorems

Theorem 10. Suppose 0 < M < M/ < N = (‘;) If P is an increasing
graph property, then P(G(n, M) € P) < P(G(n,M’) € P).

Proof. Exercise 5. []

22



Random Graphs | Equivalence

Equivalence theorems

Theorem 11. Suppose P is an increasing property, let M = M(n) — oo,
and suppose 6 > 0 is a constant with (1 4+ &M /N = (1 + 6)M/(12‘) < 1.
Setp =p(n) = M/N.

(i) IfP(G(n,p) e P) — 1,thenP(G(n,M) € P) — 1.

(i) IfP(G(n,p) € P) = 0, thenP(G(n,M) € P) — 0.

(iii) IfP(G(n,M) € P) — 1, thenP(G(n, (1+90)p) € P) — 1.
(iv) IfP(G(n,M) € P) — 0, thenP(G(n, (1 —0)p) € P) — 0.

Proof. Exercise 6. []
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Jumbledness
Let G = G™ = (V,E) be a graph.

Definition 12 ((p,n)-uniform). Letp andn > 0 be given. We say that G is
(p,n)-uniform if, forall U, W C V, withUN'W = § and [U|, [W| > nn, we
have

e(U, W) —plUf[w| < nplujw], (21)

where e(U, W) denotes the number of edges with one endvertex in U and
the other in W.
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Jumbledness
Let G = G™ = (V, E) be a graph.

Definition 13 ((p, «)-bijumbled). Letp and o« > 0 be given. We say that G
is (p, «)-bijumbled if, for all U, W C V, withUnNnW =0and1 < |U] <
W] < pn|U|, we have

e(U, W) — plUIWI|| < oy/IUIWI. (22)

Particular interest: « = O(,/np). We often set d = np (and call this the
‘average degree’, which is, of course, not quite right).
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Jumbledness

Theorem 14. Let G = G™ = (V, E) be a (p, «)-bijumbled graph. Then, for
allu c V, we have

|U|)

e(GIUN) —p (", ) < odUl. (23)

Proof. Exercise 7. []
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Jumbledness

Theorem 15. For every n > O there is C such that if d = pn > C,
then G(n,p) is a.s. (p,n)-uniform.

Proof. Exercise 8. L]

Theorem 16. Forevery 0 < p = p(n) < 1, the random graph G(n,p) is
a.s. (p, e3/2/d)-bijumbled, where d = np.

Proof. Exercise 9. []

Exercise 10: why do we have the condition 1 < |U| < [W| < pn|U| in
Definition 137
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Jumbledness

Corollary 17. Suppose pn > Clogn for some constant C > 3. Then

a.e. G(n, p) satisfies (22) for every pair of disjoint sets U, W C V(G(n,p))
with o« = e3/2+/4d.

Proof (Sketch). Theorem 16 tells us that G(n,p) is a.s. (p, e3/2v/d)-bi-
jumbled. Now let U and W be such that [W/| > d|U|. Then e3/2,/d|U||W| >

e3/2d|Ul. In particular, p|U/[W| —e3/2,/d[U||W| < plUn — e3/2d|U| < 0 <
e(U, W).

As d = np = Clogn and C > 3, we have that A(G(n,p)) < 2d almost
surely. Therefore e(U, W) < 2d|U| < e3/2d[U| < p|U|[W|+e3/2,/d[U]jWI.
[]
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Expansion results

Definition 18 ((b, f)-expansion). Let B = (U, W, E) be a bipartite graph
with vertex classes U and W and edge set E. Let positive reals b and f be
given. We say that B is (b, f; U)-expanding if, for every X C U with [X] <
b, we have |I'(X)| > f|X|. If B is both (b, f;U)-expanding and (b, f;W)-
expanding, let us say that B is (b, f)-expanding.

As usual, I'(X) is the neighbourhood of X, that is, the set of all vertices
adjacent to some x € X.
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Expansion results

Let G = G™ = (V,E) be (p, AV/d)-bijumbled, where d = np. Suppose U
and W C V are disjoint; let |[W| = an. Suppose

dw(u) = I'u) N W| > pp|W]| (24)

for all u € U.

Theorem 19. For anyn > 0 and any 0 < f < (nap/A)%d, the bipartite
graph G[U, W] is ((1 —n)p|W/|/f, f; U)-expanding.



Random Graphs | Expansion

Expansion results

Proof. By contradiction: let f be as in the statement. Let X C U be such
that [X] < (1 —n)p/W|/f. Let Y =T'(X) N W and suppose |Y| < f|X|.

By the (p, Av/d)-bijumbledness condition on G, we have
e(X,Y) < pX[[Y[+ Ay dIX[[Y] < p[X[(T —n)pW|+ Ay/dIX][Y], (25)

and, from (24), we deduce that
e(X,Y) = e(X, W) > pp[WI||X]. (26)
Combining (25) and (26), we have (npp|WI|X|)? < A2d|X||Y|. Therefore

2 2
(Mmep|/WI|X]) > (npoc> x| > fXI. (27)
AZd|X| A

As we supposed that |Y| < f|X|, we have a contradiction. ]

Y] >
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Long paths in expanding bipartite graphs
The following lemma is known as the bipartite version of Posa’s lemma.

Lemma 20. Let b > 1 be an integer. If the bipartite graph B is (b, 2)-
expanding, then B contains a path P4t on 4b vertices.

Proof. Later we shall see a proof of Posa’s original lemma. ]
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The Friedman—Pippenger lemma

Suppose G = (V, E) is (b, f)-expanding: every X C V with |X| < b is such
that [T (X)| > f|X].

Theorem 21 (Friedman and Pippenger 1987). Any (2n—2, d+1)-expander
contains every tree T = T™ with maximum degree A(T) < d.

Proof. Exercise 1177, B

Open problem 12: give an efficient algorithm for finding the tree guaran-
teed in Theorem 21.
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Random graphs are fault tolerant

Write G —y J if every H C G with [E(H)| > n|E(G)| contains a copy of
every | € J as a subgraph.

Theorem 22. For any 1 > 0 and any A, there is C such that a.e. G =
G(n,p) withp = C/n satisfies

G(“)D) HT] T) (28)
where T is the family of all trees T = Tt witht < n/C and A(T) < A.

Proof. Exercise 137. n

> There exist linear fault-tolerant graphs for trees. Exercise 1417 how
about for even cycles?
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Threshold functions

Consider G(n, p) [similar for G(n, M )]. Let P be an increasing graph prop-
erty.

Definition 23 (Threshold). The functionpy = po(n) is a threshold function
for P if

im P(G(n,p) hasP) = ¢ ° TP <Po (29)
n—oo 1 ifp > py.

> 0-statement, 1-statement
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Sharp threshold functions

Let P be an increasing graph property.

Definition 24 (Sharp and coarse thresholds). The function py = po(n) is
a sharp threshold function for P if, for every ¢ > 0, we have

| 0 ifp < (1—e)pg
| P(G(n,p) hasP) = , 30
s (G(n,p) ) {1 ifp > (1+¢)py. (30)

Coarse threshold: not sharp
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Threshold functions, examples

> K* ¢ G(n,p): pg = po(n) = n—2/3 [Exercise 15]. This threshold is
coarse [Exercise 16].

> G(n,p) — (K3)¥: pg =n~2/3 [Exercise 1771].

> G(n,p) — (K3)$: po = n~1/2 [Exercise 18" F; > 2 colours: Exer-
cise 197 ; Open problem 20: conjectured to be sharp for all k > 2;
very tough for k = 2]

> G(n,p) —1/24q K3 po = n~1/2 [Exercise 217; Open problem 22:
conjectured to be sharp]
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The Bollobas—Thomason theorem

Theorem 25. Let’P be an increasing property. Then P admits a threshold.

Proof (Sketch). Consider p¢ so that G(n,pe¢) has P with probability > «.
Let G = G;U---U G, where each G; is an independent copy of G(n, pe).
Then G = G(n,p’) with p’ < tp. Suppose t = t(e) is such that (1 —¢)t <
e. Then G(n,p’) has P with probability at least 1 — ¢. This implies the
theorem [Exercise 23]. ]



Random Graphs | Threshold phenomena

A (very) sharp threshold

Theorem 26. Let

p::—l(logn—l—cn). (31)
Then
0 if limp cn = —o0,
Jim_P(G(n,p) is connected) = e € " Jflimpcn=ccR, (32
\1 Iflimn cn = oo.

Proof. Exercise 2417, u
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The Friedgut theorem for sharp thresholds

Theorem 27. Let P be an increasing graph property with a coarse thresh-
old. Then there exist real constants0 < ¢ < C and 3 > 0, a rational p, and
a sequence p = p(n) satisfying

cn /P <pn) < Ccn /P (33)
such that p < P[G(n,p) € P] < 1— 3 for infinitely many n.

40
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The Friedgut theorem for sharp thresholds

Given a graph M and a disjoint set of n vertices, let M* be a labelled copy
of M placed uniformly at random on one of the n!/(n — [V(M)|)! possible
ways.

Theorem 28. Furthermore, there exist o« and & > 0 and a balanced graph M
with density p for which the following holds: For every graph property G
such that G(n,p) € G a.s., there are infinitely many values of n for which
there exists a graph G on n vertices for which the following holds:

(i) Gedg,
(i) G &P,
(i) P(GUM* € P) > 2a,
(iv) P(GU G(n, ép) € P) < «.
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The emergence of the giant component

For a graph G, write let L .(G) for the number of vertices in the kth largest
component.

Theorem 29. Let ¢ > 0 be fixed. For almost every random graph pro-
cess G = (G)N.,, the following holds:

(i) we have L{(G¢) =o(n) forallt < (1/2 —¢)n,
(i) we have L1(G¢) > cn and 11(Gy) = o(n) forallt > (1/2 4+ ¢)n,

where ¢ = c(¢) is a constant that depends only on «.

Thus, at around time t = n/2, our evolving graph G; suffers a sudden
change in structure: the so called giant component emerges.



