
§1 WORDTEST INTRODUCTION 1

October 16, 1998 at 10:17

1. Introduction. This program is a simple filter that sorts and outputs all lines of input that do not
appear in a given set of sorted files. It is called wordtest because each line of input is considered to be
a ‘word’ and each of the sorted files is considered to be a ’dictionary’. Words are output when they don’t
appear in any given dictionary.

The character set and alphabetic order are flexible. Every 8-bit character is mapped into an integer called
its ord. A character is called a null if its ord is zero; such characters are discarded from the input. A character
is called a break if its ord is negative; such characters break the input into so-called words. Otherwise a
character’s ord is positive, and the character is called a letter. One letter precedes another in alphabetic
order if and only if it has a smaller ord. Two letters are considered identical, for purposes of sorting, if their
ords are the same.

The null character ’\n’ must have ord 0; thus, it must remain null. Otherwise the ord mapping is arbitrary.
If the user doesn’t specify any special mapping, the default ord table simply maps every 8-bit character code
into itself, considering characters to be unsigned char values in the range 0–255, except that ASCII codes a-z
are mapped into the corresponding codes for A-Z, and newline is a break character. Optional command-line
arguments, described below, can change this default mapping to any other desired scheme.

A word is any nonempty sequence of letters that is immediately preceded and followed by break characters,
when nulls are ignored. Technically speaking, we pretend that a break character is present at the beginning
of a file but not at the end; thus, all letters following the final break character of a file are ignored, if any
such letters are present. Two words are equivalent to each other if their letters have the same sequence of
ord values. If two or more words of the input are equivalent, only the first will be output, and it will be
output only if it is not equivalent to any word in the given dictionary files. Words in each dictionary are
assumed to be in lexicographic order and to contain no nulls. Words in the output file will satisfy these
conditions; therefore wordtest can be used to generate and update the dictionaries it needs. Notice that
if no dictionaries are given, wordtest will act as a sorting routine that simply discards nulls and duplicate
lines.



2 INTRODUCTION WORDTEST §2

2. The UNIX command line ‘wordtest [options] [dictionaries]’ is interpreted by executing option
commands from left to right and then by regarding any remaining arguments as the names of dictionary
files.

Most of the option commands are designed to specify the ord table. Initially ord [c] = c for each unsigned
char code c. The command

-bstring

makes every character in the string a break character. If the string is empty, -b makes every nonnull character
a break (i.e., it sets ord [c] = −1 for 1 ≤ c ≤ 255). The command

-nstring

makes every character in the string a null character. If the string is empty, -n makes every character null.
The command

-astring

sets the ord of the kth element of the string equal to δ + k, where δ is an offset value (normally zero). The
command

-doffset

sets the value of δ; the offset should be a decimal integer between 0 and 255.
There is also an option that has no effect on the ord table:

-mlength

defines the length of the longest word. If any word of a file has more than this many characters, a break
is artificially inserted so that a word of this maximum length is obtained. The default value is 50. The
maximum legal value is 1000.

If the given options do not specify at least one break character, wordtest applies the option commands

-b"\

" -d64 -a"abcdefghijklmnopqrstuvwxyz"

which generate the default mapping mentioned above (unless other ords were changed).
The program is designed to run fastest when there are at most two dictionary files (usually one large system

dictionary and another personalized one), although it places no limit on the actual number of dictionaries
that can be mentioned on the command line. Users who want to specify a multitude of dictionaries should
ask themselves why they wouldn’t prefer to merge their dictionaries together first (using wordtest).
#define MAX_LENGTH_DEFAULT 50
#define MAX_LENGTH_LIMIT 1000



§3 WORDTEST INTRODUCTION 3

3. The general organization of wordtest is typical of applications written in C, and its approach is quite
simple. If any errors are detected, an indication of the error is sent to the stderr file and a nonzero value is
returned.
#include <stdio.h>

〈Typedefs 4 〉
int main (argc , argv )

int argc ; /∗ the number of command-line arguments ∗/
char ∗argv [ ]; /∗ the arguments themselves ∗/

{
〈Local variables 5 〉;
〈Scan the command line arguments 6 〉;
〈Sort the input into memory 17 〉;
〈Output all input words that aren’t in dictionaries 19 〉;
return 0;

}

4. 〈Typedefs 4 〉 ≡
typedef unsigned char byte; /∗ our bytes will range from 0 to 255 ∗/

See also sections 9 and 20.

This code is used in section 3.

5. 〈Local variables 5 〉 ≡
int targc ; /∗ temporary modifications to argc ∗/
byte ∗∗targv ; /∗ pointer to the current argument of interest ∗/
unsigned delta ; /∗ the offset used in the -a and -d options ∗/
unsigned max length = MAX_LENGTH_DEFAULT; /∗ longest allowable word ∗/
byte breakchar ; /∗ break character to use in the output ∗/
int ord [256]; /∗ table of ord values ∗/
register int c; /∗ an all-purpose index ∗/
register byte ∗u, ∗v; /∗ pointer to current string characters ∗/

See also sections 12, 16, and 22.

This code is used in section 3.



4 INTRODUCTION WORDTEST §6

6. We try to use newline as the output break character, if possible.
〈Scan the command line arguments 6 〉 ≡

for (c = 0; c < 256; c++) ord [c] = c;
delta = 0;
targc = argc − 1; targv = (byte ∗∗) argv + 1;
while (targc ∧ ∗∗targv ≡ ’-’) {
〈Execute the option command targv 7 〉;
targc−−; targv ++;
}
if (ord [’\n’] < 0) breakchar = ’\n’;
else {

breakchar = ’\0’;
for (c = 255; c; c−−)

if (ord [c] < 0) breakchar = c;
if (¬breakchar ) 〈 Set up the default ords 8 〉;
}
〈Allocate data structures for a total of targc files 21 〉;
for ( ; targc ; targc−−, targv ++) 〈Open the dictionary file named ∗targv 23 〉;

This code is used in section 3.

7. 〈Execute the option command targv 7 〉 ≡
switch ((∗targv )[1]) {
case ’a’:

for (c = delta , u = ∗targv + 2; ∗u; u++) ord [∗u] = ++c; break;
case ’b’:

if ((∗targv )[2])
for (u = ∗targv + 2; ∗u; u++) ord [∗u] = −1;

else
for (c = 1; c < 256; c++) ord [c] = −1;

break;
case ’n’:

if ((∗targv )[2])
for (u = ∗targv + 2; ∗u; u++) ord [∗u] = 0;

else
for (c = 1; c < 256; c++) ord [c] = 0;

break;
case ’d’:

if (sscanf ((char ∗) ∗targv + 2, "%u",&delta ) ≡ 1 ∧ delta < 256) break;
goto print usage ;

case ’m’:
if (sscanf ((char ∗) ∗targv + 2, "%u",&max length ) ≡ 1 & max length ≤ MAX_LENGTH_LIMIT) break;
goto print usage ;

default: print usage :
fprintf (stderr , "Usage: %s {-{{a|b|n}string|{d|m}number}}* dictionaryname*\n", ∗argv );
return −1;
}

This code is used in section 6.



§8 WORDTEST INTRODUCTION 5

8. 〈Set up the default ords 8 〉 ≡
{

ord [’\n’] = −1; /∗ newline is break character ∗/
breakchar = ’\n’;
for (c = 1; c ≤ 26; c++) ord [’a’ − 1 + c] = ’A’ − 1 + c;
}

This code is used in section 6.



6 TREAPS WORDTEST §9

9. Treaps. The most interesting part of this program is its sorting algorithm, which is based on the
“treap” data structure of Aragon and Seidel [30th IEEE Symposium on Foundations of Computer Science
(1989), 540–546]. A treap is a binary tree whose nodes have two key fields. The primary key, which in our
application is a word from the input, obeys tree-search order: All descendants of the left child of node p have
a primary key that is less than the primary key of p, and all descendants of its right child have a primary
key that is greater. The secondary key, which in our application is a unique pseudorandom integer attached
to each input word, obeys heap order: The secondary key of p’s children is greater than p’s own secondary
key.

A given set of nodes with distinct primary keys and distinct secondary keys can be made into a treap
in exactly one way. This unique treap can be obtained, for example, by using ordinary tree insertion with
respect to primary keys while inserting nodes in order of their secondary keys. It follows that, if the secondary
keys are random, the binary tree will almost always be quite well balanced.

We will compute secondary keys as unsigned long integers, assigning the key (cn) mod 232 to the nth node,
where c is an odd number. This will guarantee that the secondary keys are distinct. By choosing c close to
232/φ, where φ is the golden ratio (1 +

√
5 )/2, we also spread the values out in a fashion that is unlikely to

match any existing order in the data.
#define PHICLONE 2654435769 /∗ ≈ 232/φ ∗/
〈Typedefs 4 〉 +≡

typedef struct node struct {
struct node struct ∗left , ∗right ; /∗ children ∗/
byte ∗keyword ; /∗ primary key ∗/
unsigned long rank ; /∗ secondary key ∗/
} node; /∗ node of a treap ∗/

10. We want to be able to compare two strings rapidly with respect to lexicographic order, as defined by
the ord table. This can be done if one string is delimited by ’\0’ as usual, while the other is delimited by
a break character. Then we are sure to have an unequal comparison, and the inner loop is fast.

Here is a routine that checks to see if a word is already present in the treap. The word is assumed to be
in buffer , terminated by breakchar . The words in the treap are terminated by nulls. The treap is accessed
by means of root , a pointer to its root node.
〈Search for buffer in the treap; goto found if it’s there 10 〉 ≡
{ register node ∗p = root ;

while (p) {
for (u = buffer , v = p~keyword ; ord [∗u] ≡ ord [∗v]; u++, v++) ;
if (∗v ≡ ’\0’ ∧ ∗u ≡ breakchar ) goto found ;
if (ord [∗u] < ord [∗v]) p = p~ left ;
else p = p~right ;
}

}
This code is used in section 17.



§11 WORDTEST TREAPS 7

11. We don’t need to insert nodes into the treap as often as we need to look words up, so we don’t mind
repeating the comparisons already made when we discover that insertion is necessary. (Actually a more
comprehensive study of this tradeoff ought to be done. But not today; I am trying here to keep the program
short and sweet.)

The insertion algorithm proceeds just as the lookup algorithm until we come to a node whose rank is
larger than the rank of the node to be inserted. We insert the new node in its place, then split the old node
and its descendants into two subtrees that will become the left and right subtrees of the new node.
〈 Insert the buffer word into the treap 11 〉 ≡
{ register node ∗p, ∗∗q, ∗∗qq , ∗r;

current rank += PHICLONE; /∗ unsigned addition mod 232 ∗/
p = root ; q = &root ;
while (p) {

if (p~rank > current rank ) break; /∗ end of the first phase ∗/
for (u = buffer , v = p~keyword ; ord [∗u] ≡ ord [∗v]; u++, v++) ;
if (ord [∗u] < ord [∗v]) q = &(p~ left ), p = ∗q;
else q = &(p~right ), p = ∗q;
}
〈Set r to the address of a new node, and move buffer into it 14 〉;
r~rank = current rank ;
∗q = r; /∗ link the new node into the tree ∗/
〈Split subtree p and attach it below node r 13 〉;

}
This code is used in section 17.

12. 〈Local variables 5 〉 +≡
unsigned long current rank = 0; /∗ pseudorandom number ∗/

13. At this point p may already be empty. If not, we can hook its parts together easily. (A formal proof
is a bit tricky, but the computer doesn’t slow down like people do when they get to a conceptually harder
part of an algorithm.)
〈Split subtree p and attach it below node r 13 〉 ≡
q = &(r~ left ); qq = &(r~right ); /∗ slots to fill in as we split the subtree ∗/
while (p) {

for (u = buffer , v = p~keyword ; ord [∗u] ≡ ord [∗v]; u++, v++) ;
if (ord [∗u] < ord [∗v]) {
∗qq = p;
qq = &(p~ left );
p = ∗qq ;

}
else {
∗q = p;
q = &(p~right );
p = ∗q;

}
}
∗q = ∗qq = Λ;

This code is used in section 11.



8 TREAPS WORDTEST §14

14. We allocate node memory dynamically, in blocks of 100 nodes at a time. We also allocate string
memory dynamically, 1000 characters at once (in addition to space for the current string). The variable l
will be set to the length of the word in buffer .
#define NODES_PER_BLOCK 100
#define CHARS_PER_BLOCK 1000
#define out of mem (x)

{ fprintf (stderr , "%s: Memory exhausted!\n", ∗argv );
return x; }

〈Set r to the address of a new node, and move buffer into it 14 〉 ≡
if (next node ≡ bad node ) {

next node = (node ∗) calloc(NODES_PER_BLOCK, sizeof (node));
if (next node ≡ Λ) out of mem (−2);
bad node = next node + NODES_PER_BLOCK;
}
r = next node ++;
〈Move buffer to a new place in the string memory, and make r~keyword point to it 15 〉;

This code is used in section 11.

15. 〈Move buffer to a new place in the string memory, and make r~keyword point to it 15 〉 ≡
if (next string + l + 1 ≥ bad string ) { int block size = CHARS_PER_BLOCK + l + 1;

next string = (byte ∗) malloc(block size );
if (next string ≡ Λ) out of mem (−3);
bad string = next string + block size ;
}
r~keyword = next string ;
for (u = buffer , v = next string ; ord [∗u] > 0; u++, v++) ∗v = ∗u;
∗v = ’\0’;
next string = v + 1;

This code is used in section 14.

16. We had better define the variables we’ve been assuming in these storage allocation routines.
〈Local variables 5 〉 +≡

node ∗next node = Λ, ∗bad node = Λ;
byte ∗next string = Λ, ∗bad string = Λ;
node ∗root = Λ;
byte ∗buffer ;
int l; /∗ length of current string in buffer ∗/



§17 WORDTEST TREAPS 9

17. The mechanisms for sorting the input words are now all in place. We merely need to invoke them at
the right times.
〈Sort the input into memory 17 〉 ≡

buffer = (byte ∗) malloc(max length + 1);
if (buffer ≡ Λ) out of mem (−5);
while (1) {
〈 Set buffer to the next word from stdin ; goto done if file ends 18 〉;
if (l) {
〈Search for buffer in the treap; goto found if it’s there 10 〉;
〈 Insert the buffer word into the treap 11 〉;

found : ;
}
}

done : ;
This code is used in section 3.

18. 〈Set buffer to the next word from stdin ; goto done if file ends 18 〉 ≡
u = buffer ; l = 0;
while (l < max length ) {
c = getchar ( );
if (c ≡ EOF) {

if (ferror (stdin )) {
fprintf (stderr , "%s: File read error on standard input!\n", ∗argv );
return −6;
}
goto done ; /∗ end of file; the current word, if any, is discarded ∗/

}
if (ord [c] ≤ 0) {

if (ord [c] < 0) break;
}
else {
∗u++ = (byte) c;
l++;

}
}
∗u = breakchar ;

This code is used in section 17.



10 TREAPS WORDTEST §19

19. At the end we want to traverse the treap in symmetric order, so that we see its words in alphabetic
order. We might as well destroy the treap structure as we do this. During this phase, root will point to a
stack of nodes that remain to be visited (followed by traversal of their right subtrees).
〈Output all input words that aren’t in dictionaries 19 〉 ≡

if (root 6= Λ) { register node ∗p, ∗q;
p = root ;
root = Λ;
while (1) {

while (p~ left 6= Λ) {
q = p~ left ;
p~ left = root ; /∗ left links are now used for the stack ∗/
root = p;
p = q;

}
visit : 〈Output p~keyword , if it’s not in the dictionaries 25 〉;

if (p~right ≡ Λ) {
if (root ≡ Λ) break; /∗ the stack is empty, we’re done ∗/
p = root ;
root = root~ left ; /∗ pop the stack ∗/
goto visit ;
}
else p = p~right ;

}
}

This code is used in section 3.



§20 WORDTEST THE DICTIONARIES 11

20. The dictionaries. So now all we have to do is provide a mechanism for reading the words in the
dictionaries. The dictionaries are sorted, and by now the input words have been sorted too. So we need only
scan through the dictionaries once; we’ll try to zoom through as quickly as possible.

First we need data structures. There will be an array of pointers to filenodes, for all dictionary files
currently open. Each filenode will contain a buffer of size BUFSIZ + 1 for raw input bytes not yet scanned,
as well as a buffer of size MAX_LENGTH_LIMIT + 1 for the current word being considered.
〈Typedefs 4 〉 +≡

typedef struct filenode struct {
struct filenode struct ∗link ; /∗ pointer to next open file ∗/
FILE ∗dfile ; /∗ dictionary file ∗/
byte buf [BUFSIZ + 1], curword [MAX_LENGTH_LIMIT + 1];
byte ∗pos ; /∗ current position in buf ∗/
byte ∗limit ; /∗ end of input bytes in buf ∗/
byte ∗endword ; /∗ the first break character in curword ∗/

} filenode;

21. 〈Allocate data structures for a total of targc files 21 〉 ≡
if (targc) {

curfile = (filenode ∗) calloc(targc , sizeof (filenode));
if (curfile ≡ Λ) out of mem (−7);
for (f = curfile ; f < curfile + targc − 1; f++) f~ link = f + 1;
f~ link = curfile ; /∗ circular linking ∗/

}
else curfile = Λ;

This code is used in section 6.

22. 〈Local variables 5 〉 +≡
filenode ∗curfile ; /∗ current filenode of interest ∗/
filenode ∗f ; /∗ temporary register for filenode list processing ∗/

23. 〈Open the dictionary file named ∗targv 23 〉 ≡
{

curfile~dfile = fopen ((char ∗) ∗targv , "r");
if (curfile~dfile ≡ Λ) {

fprintf (stderr , "%s: Can’t open dictionary file %s!\n", ∗argv , (char ∗) ∗targv );
return −8;

}
curfile~pos = curfile~ limit = curfile~buf ; /∗ buf is empty ∗/
curfile~buf [0] = ’\0’;
curfile~endword = curfile~curword ; /∗ curword is empty too ∗/
curfile~curword [0] = breakchar ;
curfile = curfile~ link ; /∗ move to next filenode ∗/

}
This code is used in section 6.

24. We will implicitly merge the dictionaries together by using a brute force scheme that works fine when
there are only a few of them. Namely, curfile will point to a file having the currently smallest current word.
To get to the next word of the merge, we advance to the next word in that file, comparing it with the current
words of the other files to see if curfile should switch to one of them. When we get to the end of a file, its
filenode simply leaves the circular list. Eventually the list will be empty, and we will set curfile to Λ; we will
then have seen all the dictionary words in order.



12 THE DICTIONARIES WORDTEST §25

25. 〈Output p~keyword , if it’s not in the dictionaries 25 〉 ≡
while (curfile 6= Λ) {

for (u = p~keyword , v = curfile~curword ; ord [∗u] ≡ ord [∗v]; u++, v++) ;
if (∗u ≡ ’\0’ ∧ ∗v ≡ breakchar ) goto word done ; /∗ we found it in the dictionary ∗/
if (ord [∗u] < ord [∗v]) break; /∗ we didn’t find it ∗/
〈Advance to the next dictionary word 27 〉;

}
〈Print p~keyword and breakchar on stdout 26 〉

word done : ;
This code is used in section 19.

26. 〈Print p~keyword and breakchar on stdout 26 〉 ≡
for (u = p~keyword ; ∗u; u++) putchar (∗u);
putchar (breakchar );

This code is used in section 25.

27. 〈Advance to the next dictionary word 27 〉 ≡
〈Read a new word into curfile~curword , as fast as you can 28 〉;
〈Adjust curfile , if necessary, to point to a file with minimal curword 30 〉;

This code is used in section 25.



§28 WORDTEST THE DICTIONARIES 13

28. The dictionaries are supposed to be in order, and they shouldn’t contain nulls. But if they fail to meet
these criteria, we don’t want wordtest to crash; it should just run more slowly and/or more peculiarly.

The logic of the code here removes null characters, at the cost of speed. If the dictionary contains words
out of order, say α > β where α precedes β in the file, the effect will be as if β were not present. (In
particular, if the dictionary would happen to have a null word because of a break character inserted by our
max length logic, that null word would cause no harm, because a null word is always less than any nonnull
word.)

A null character always appears in curfile~ limit .
〈Read a new word into curfile~curword , as fast as you can 28 〉 ≡
v = curfile~curword ;
l = max length ; /∗ here l represents max characters to put in curword ∗/
while (1) { register byte ∗w = curfile~ limit ;
u = curfile~pos ;
if (u+ l ≥ w)

while (ord [∗u] > 0) ∗v++ = ∗u++; /∗ this is the inner loop ∗/
else {
w = u+ l;
c = ∗w;
∗w = ’\0’; /∗ temporarily store a null to avoid overlong string ∗/
while (ord [∗u] > 0) ∗v++ = ∗u++; /∗ this too is the inner loop ∗/
∗w = c; /∗ restore the damaged byte ∗/

}
if (ord [∗u] < 0) {

curfile~pos = u+ 1; /∗ good, we found the next break character ∗/
break;
}
l −= u− curfile~pos ;
if (l ≡ 0) { /∗ max length reached ∗/

curfile~pos = u;
break;

}
if (u ≡ w) { /∗ we’re at curfile~ limit ∗/
〈Refill curfile~buf ; or remove the current file from the circular list and goto update done , if it has

ended 29 〉;
}
else curfile~pos = u+ 1; /∗ bypass a null character in the dictionary ∗/
}
curfile~endword = v;
∗v = breakchar ;

update done : ;
This code is used in section 27.



14 THE DICTIONARIES WORDTEST §29

29. 〈Refill curfile~buf ; or remove the current file from the circular list and goto update done , if it has
ended 29 〉 ≡

if (ferror (curfile~dfile )) {
fprintf (stderr , "%s: File read error on dictionary file!\n", ∗argv );
return −9;

}
if (feof (curfile~dfile )) {
f = curfile~ link ;
if (f ≡ curfile ) curfile = Λ; /∗ the last dictionary file has ended ∗/
else {

while (f~ link 6= curfile ) f = f~ link ;
f~ link = curfile~ link ; /∗ remove a filenode from the circular list ∗/
curfile = f ; /∗ and point to one of the remaining filenodes ∗/

}
goto update done ;

}
curfile~ limit = curfile~buf + fread (curfile~buf , 1, BUFSIZ, curfile~dfile );
∗curfile~ limit = ’\0’;
curfile~pos = curfile~buf ;

This code is used in section 28.

30. 〈Adjust curfile , if necessary, to point to a file with minimal curword 30 〉 ≡
if (curfile 6= Λ) { filenode ∗sentinel = curfile ;

for (f = curfile~ link ; f 6= sentinel ; f = f~ link )
〈Change curfile to f if f~curword < curfile~curword 31 〉;

}
This code is used in section 27.

31. 〈Change curfile to f if f~curword < curfile~curword 31 〉 ≡
{
∗f~endword = ’\0’;
for (u = f~curword , v = curfile~curword ; ord [∗u] ≡ ord [∗v]; u++, v++) ;
if (ord [∗u] < ord [∗v]) curfile = f ;
∗f~endword = breakchar ;

}
This code is used in section 30.



§32 WORDTEST INDEX 15

32. Index. Here is a list of the identifiers used by wordtest, showing the sections in which they appear,
underlined at points of definition.

Aragon, Cecilia Rodriguez: 9.
argc : 3, 5, 6.
argv : 3, 6, 7, 14, 18, 23, 29.
bad node : 14, 16.
bad string : 15, 16.
block size : 15.
breakchar : 5, 6, 8, 10, 18, 23, 25, 26, 28, 31.
buf : 20, 23, 29.
buffer : 10, 11, 13, 14, 15, 16, 17, 18.
BUFSIZ: 20, 29.
byte: 4, 5, 6, 9, 15, 16, 17, 18, 20, 28.
c: 5.
calloc : 14, 21.
CHARS_PER_BLOCK: 14, 15.
curfile : 21, 22, 23, 24, 25, 28, 29, 30, 31.
current rank : 11, 12.
curword : 20, 23, 25, 28, 31.
delta : 5, 6, 7.
dfile : 20, 23, 29.
done : 17, 18.
endword : 20, 23, 28, 31.
EOF: 18.
f : 22.
feof : 29.
ferror : 18, 29.
filenode: 20, 21, 22, 30.
filenode struct: 20.
fopen : 23.
found : 10, 17.
fprintf : 7, 14, 18, 23, 29.
fread : 29.
getchar : 18.
keyword : 9, 10, 11, 13, 15, 25, 26.
l: 16.
left : 9, 10, 11, 13, 19.
limit : 20, 23, 28, 29.
link : 20, 21, 23, 29, 30.
main : 3.
malloc : 15, 17.
max length : 5, 7, 17, 18, 28.
MAX_LENGTH_DEFAULT: 2, 5.
MAX_LENGTH_LIMIT: 2, 7, 20.
next node : 14, 16.
next string : 15, 16.
node: 9, 10, 11, 14, 16, 19.
node struct: 9.
NODES_PER_BLOCK: 14.
ord : 2, 5, 6, 7, 8, 10, 11, 13, 15, 18, 25, 28, 31.
out of mem : 14, 15, 17, 21.
p: 10, 11, 19.

PHICLONE: 9, 11.
pos : 20, 23, 28, 29.
print usage : 7.
putchar : 26.
q: 11, 19.
qq : 11, 13.
r: 11.
rank : 9, 11.
right : 9, 10, 11, 13, 19.
root : 10, 11, 16, 19.
Seidel, Raimund: 9.
sentinel : 30.
sscanf : 7.
stderr : 3, 7, 14, 18, 23, 29.
stdin : 18.
targc : 5, 6, 21.
targv : 5, 6, 7, 23.
u: 5.
update done : 28, 29.
v: 5.
visit : 19.
w: 28.
word done : 25.



16 NAMES OF THE SECTIONS WORDTEST

〈Adjust curfile , if necessary, to point to a file with minimal curword 30 〉 Used in section 27.

〈Advance to the next dictionary word 27 〉 Used in section 25.

〈Allocate data structures for a total of targc files 21 〉 Used in section 6.

〈Change curfile to f if f~curword < curfile~curword 31 〉 Used in section 30.

〈Execute the option command targv 7 〉 Used in section 6.

〈 Insert the buffer word into the treap 11 〉 Used in section 17.

〈Local variables 5, 12, 16, 22 〉 Used in section 3.

〈Move buffer to a new place in the string memory, and make r~keyword point to it 15 〉 Used in section 14.

〈Open the dictionary file named ∗targv 23 〉 Used in section 6.

〈Output all input words that aren’t in dictionaries 19 〉 Used in section 3.

〈Output p~keyword , if it’s not in the dictionaries 25 〉 Used in section 19.

〈Print p~keyword and breakchar on stdout 26 〉 Used in section 25.

〈Read a new word into curfile~curword , as fast as you can 28 〉 Used in section 27.

〈Refill curfile~buf ; or remove the current file from the circular list and goto update done , if it has ended 29 〉
Used in section 28.

〈Scan the command line arguments 6 〉 Used in section 3.

〈Search for buffer in the treap; goto found if it’s there 10 〉 Used in section 17.

〈Set up the default ords 8 〉 Used in section 6.

〈Set buffer to the next word from stdin ; goto done if file ends 18 〉 Used in section 17.

〈Set r to the address of a new node, and move buffer into it 14 〉 Used in section 11.

〈Sort the input into memory 17 〉 Used in section 3.

〈Split subtree p and attach it below node r 13 〉 Used in section 11.

〈Typedefs 4, 9, 20 〉 Used in section 3.



WORDTEST

Section Page
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
Treaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6
The dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 11
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 15


