
1

Combinatorial Search

�permutations

�backtracking

�counting

�subsets

�paths in a graph

2

Overview

Exhaustive search. Iterate through all elements of a search space.

Backtracking. Systematic method for examining feasible solutions

to a problem, by systematically eliminating infeasible solutions.

Applicability. Huge range of problems (include NP-hard ones).

Caveat. Search space is typically exponential in size �

effectiveness may be limited to relatively small instances.

Caveat to the caveat. Backtracking may prune search space to

reasonable size, even for relatively large instances

1 1 1 0
1 1 0 0
1 0 0 0
0 0 0 0

3

Warmup: enumerate N-bit strings

Problem: process all 2N N-bit strings (stay tuned for applications).

Equivalent to counting in binary from 0 to 2N - 1.

• maintain a[i] where a[i] represents bit i

• initialize all bits to 0

• simple recursive method does the job

(call enumerate(0))

Invariant (prove by induction);

 Enumerates all (N-k)-bit strings and cleans up after itself.

private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
} clean up

starts with all 0s

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

example showing
cleanups that

zero out digits

ends with all 0s

4

Warmup: enumerate N-bit strings (full implementation)

Equivalent to counting in binary from 0 to 2N - 1.

public class Counter
{
 private int N; // number of bits
 private int[] a; // bits (0 or 1)

 public Counter(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = 0;
 enumerate(0);
 }

 private void enumerate(int k)
 {
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
 }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Counter c = new Counter(N);
 }
}

all the programs
in this lecture
are variations
on this theme

private void process()
{
 for (int i = 0; i < N; i++)
 StdOut.print(a[i]);
 StdOut.println();
}

optional
(in this case)

5

�permutations

�backtracking

�counting

�subsets

�paths in a graph

6

N-rooks Problem

How many ways are there to place

 N rooks on an N-by-N board so that no rook can attack any other?

No two in the same row, so represent solution with an array

 a[i] = column of rook in row i.

No two in the same column, so array entries are all different

 a[] is a permutation (rearrangement of 0, 1, ... N-1)

Answer: There are N! non mutually-attacking placements.

Challenge: Enumerate them all.

int[] a = { 1, 2, 0, 3, 6, 7, 4, 5 };

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

original problem: N = 8

7

Enumerating permutations

Recursive algorithm to enumerate all N! permutations of size N:

• Start with 0 1 2 ... N-1.

• For each value of i
- swap i into position 0

- enumerate all (N-1)! arrangements of a[1..N-1]
- clean up (swap i and 0 back into position)

3 1 2 0
3 1 0 2
3 2 1 0
3 2 0 1
3 0 2 1
3 0 1 2

1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 2 0
1 3 0 2
1 3 2 0
1 0 2 3
0 1 2 3

2 1 0 3
2 1 3 0
2 0 1 3
2 0 3 1
2 3 0 1
2 3 1 0

3 followed by

perms of 1 2 0

0 followed by

perms of 1 2 3

1 followed by

perms of 0 2 3

2 followed by

perms of 1 0 3

0 1 2
0 2 1
1 0 2
1 2 0
2 1 0
2 0 1

0 1
1 0

0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 2 1
0 3 1 2

example showing cleanup swaps
that bring perm back to original

public class Rooks
{
 private int N;
 private int[] a;

 public Rooks(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = i;
 enumerate(0);
 }

 private void enumerate(int k)
 { /* See next slide. */ }

 private void exch(int i, int j)
 { int t = a[i]; a[i] = a[j]; a[j] = t; }

 private void process()
 {
 for (int i = 0; i < N; i++)
 StdOut.print(a[i] + " ");
 StdOut.println();
 }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Rooks t = new Rooks(N);
 t.enumerate(0);
 }
} 8

N-rooks problem (enumerating all permutations): scaffolding

initialize a[0..N-1] to 0..N-1

private void enumerate(int k)
{
 if (k == N)
 {
 process();
 return;
 }
 for (int i = k; i < N; i++)
 {
 exch(a, k, i);
 enumerate(k+1);
 exch(a, k, i);
 }
}

N-rooks problem (enumerating all permutations): recursive enumeration

9

clean up

Recursive algorithm to enumerate all N! permutations of size N:

• Start with 0 1 2 ... N-1.

• For each value of i
- swap i into position 0

- enumerate all (N-1)! arrangements of a[1..N-1]
- clean up (swap i and 0 back into position)

10

4-Rooks search tree

solutions

. . .

N-rooks problem: back-of-envelope running time estimate

[Studying slow way to compute N! but good warmup for calculations.]

11

% java Rooks 10
3628800 solutions

% java Rooks 11
39916800 solutions

% java Rooks 12
479001600 solutions

instant

about 2 seconds

about 24 seconds (checks with N! hypothesis)

Hypothesis: Running time is about 2(N! / 11!) seconds.

% java Rooks 25
millions of centuries

12

�permutations

�backtracking

�counting

�subsets

�paths in a graph

How many ways are there to place

 N queens on an N-by-N board so that no queen can attack any other?

Representation. Same as for rooks:

 represent solution as a permutation: a[i] = column of queen in row i.

Additional constraint: no diagonal attack is possible

Challenge: Enumerate (or even count) the solutions
13

N-Queens problem

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

original problem: N = 8

int[] a = { 4, 6, 0, 2, 7, 5, 3, 1 };

14

4-Queens search tree

solutions

15

Iterate through elements of search space.

• when there are N possible choices, make one choice and recur.

• if the choice is a dead end, backtrack to previous choice,

and make next available choice.

Identifying dead ends allows us to prune the search tree

For N queens:

• dead end: a diagonal conflict

• pruning: backtrack and try next row when diagonal conflict found

In general, improvements are possible:

• try to make an “intelligent” choice

• try to reduce cost of choosing/backtracking

N Queens: Backtracking solution

16

4-Queens Search Tree (pruned)

Backtrack on diagonal conflicts

solutions

17

N-Queens: Backtracking solution

private boolean backtrack(int k)
{
 for (int i = 0; i < k; i++)
 {
 if ((a[i] - a[k]) == (k - i)) return true;
 if ((a[k] - a[i]) == (k - i)) return true;
 }
 return false;
}

private void enumerate(int k)
{
 if (k == N)
 {
 process();
 return;
 }
 for (int i = k; i < N; i++)
 {
 exch(a, k, i);
 if (! backtrack(k)) enumerate(k+1);
 exch(a, k, i);
 }
}

N-Queens: Effectiveness of backtracking

Pruning the search tree leads to enormous time savings

18

N

Q(N)

N!

2 3 4 5 6 7 8 9 10 11 12

0 0 2 10 4 40 92 352 724 2,680 14,200

2 6 24 120 720 5,040 40,320 362,880 3,628,800 39,916,800 479,001,600

N

Q(N)

N!

13 14 15 16

73,712 365,596 2,279,184 14,772,512

6,227,020,800 87,178,291,200 1 ,307,674,368,000 20, 922,789,888,000

 savings: factor of more than 1-million

N-Queens: How many solutions?

Answer to original question easy to obtain:

• add an instance variable to count solutions (initialized to 0)

• change process() to increment the counter

• add a method to return its value

19

N

Q(N)

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 2 10 4 40 92 352 724 2,680 14,200 73,712 365,596 2,279,184

N

Q(N)

16 17 18 19 25

14,772,512 95,815,104 666,090,624 4,968,057,848 . . . 2, 207,893,435,808,350

took 53 years of CPU time (2005)

Source: On-line encyclopedia of integer sequences, N. J. Sloane [sequence A000170]

N-queens problem: back-of-envelope running time estimate

Hypothesis ??

20

% java Queens 13
73712 solutions

% java Queens 14
365596 solutions

% java Queens 15
2279184 solutions

% java Queens 16
14772512 solutions

about a second

about 7 seconds

about 49 seconds

Hypothesis: Running time is about (N/2) ! seconds.

% java Queens 25
about 54 years

about 360 seconds

ratio

6.32

6.73

7.38

�

21

�permutations

�backtracking

�counting

�subsets

�paths in a graph

22

Counting: Java Implementation

private static void enumerate(int k)
{
 if (k == N)
 { process(); return; }

 for (int n = 0; n < R; n++)
 {
 a[k] = n;
 enumerate(k + 1);
 }
 a[k] = 0;
}

Problem: enumerate all N-digit base-R numbers

Solution: generalize binary counter in lecture warmup

0 0 0
0 0 1
0 0 2
0 1 0
0 1 1
0 1 2
0 2 0
0 2 1
0 2 2

1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 1 2
1 2 0
1 2 1
1 2 2

2 0 0
2 0 1
2 0 2
2 1 0
2 1 1
2 1 2
2 2 0
2 2 1
2 2 2

private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
} clean up

0 2 0
0 0 0

example showing
cleanups that

zero out digits

enumerate binary numbers (from warmup)enumerate N-digit base-R numbers

clean up not needed: Why?

23

8

5

2 1

3

4

3 8

1

2 6

9

9 6

7

4

5

7

Problem:

 Fill 9-by-9 grid so that every row, column, and box

 contains each of the digits 1 through 9.

Remark: Natural generalization is NP-hard.

Counting application: Sudoku

2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

24

Problem:

 Fill 9-by-9 grid so that every row, column, and box

 contains each of the digits 1 through 9.

Solution: Enumerate all 81-digit base-9 numbers (with backtracking).

Counting application: Sudoku

2 1

7 8

5

3

4

3 8

1

2 6

9

9 6

7

4

5

2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

using digits 1 to 9 8 67 1 3 4 5 3 8 … 80

2 60 1 3 4 5 7 8 80

25

Iterate through elements of search space.

• For each empty cell, there are 9 possible choices.

• Make one choice and recur.

• If you find a conflict in row, column, or box, then backtrack.

Improvements are possible.

• try to make an “intelligent” choice

• try to reduce cost of choosing/backtracking

Sudoku: Backtracking solution

5

2 1

3 8

1

2 6

9

6

7

4

5

2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

4

9

7 8 3

26

Sudoku: Java implementation

private static void solve(int cell)
{

 if (cell == 81)
 { show(board); return; }

 if (board[cell] != 0)
 { solve(cell + 1); return; }

 for (int n = 1; n <= 9; n++)
 {
 if (! backtrack(cell, n))
 {
 board[cell] = n;
 solve(cell + 1);
 }
 }

 board[cell] = 0;
}

clean up

try all 9 possibilities

unless a Sudoku
constraint is violated

(see booksite for code)

Works remarkably well (plenty of constraints). Try it!

already filled in

27

�permutations

�backtracking

�counting

�subsets

�paths in a graph

28

Enumerating subsets: natural binary encoding

Given n items, enumerate all 2n subsets.

• count in binary from 0 to 2n - 1.

• bit i represents item i

• if 0, in subset; if 1, not in subset

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

empty
1
2

2 1
3

3 1
3 2
3 2 1
4

4 1
4 2
4 2 1
4 3
4 3 1
4 3 2

 4 3 2 1

4 3 2 1
4 3 2
4 3 1
4 3
4 2 1
4 2
4 1
4

3 2 1
3 2
3 1
3

2 1
2
1

empty

i binary subset complement

29

Enumerating subsets: natural binary encoding

Given N items, enumerate all 2N subsets.

• count in binary from 0 to 2N - 1.

• maintain a[i] where a[i] represents item i

• if 0, a[i] in subset; if 1, a[i] not in subset

Binary counter from warmup does the job

private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
}

30

Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit

one at a time, such that each subset of actors appears exactly once.

ruler function

31

Binary reflected gray code

The n-bit binary reflected Gray code is:

• the (n-1) bit code with a 0 prepended to each word, followed by

• the (n-1) bit code in reverse order, with a 1 prepended to each word.

32

Beckett: Java implementation

public static void moves(int n, boolean enter)
{
 if (n == 0) return;
 moves(n-1, true);
 if (enter) System.out.println("enter " + n);
 else System.out.println("exit " + n);
 moves(n-1, false);
}

% java Beckett 4
enter 1
enter 2
exit 1
enter 3
enter 1
exit 2
exit 1
enter 4
enter 1
enter 2
exit 1
exit 3
enter 1
exit 2
exit 1

stage directions
for 3-actor play
moves(3, true)

reverse stage directions
for 3-actor play
moves(3, false)

33

More Applications of Gray Codes

3-bit rotary encoder

Chinese ring puzzle

8-bit rotary encoder

Towers of Hanoi

34

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:

• flip a[k] instead of setting it to 1

• eliminate cleanup

Advantage (same as Beckett): only one item changes subsets

private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}

private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
} clean up

standard binary (from warmup)Gray code enumeration

35

Scheduling

Scheduling (set partitioning). Given n jobs of varying length, divide

among two machines to minimize the time the last job finishes.

Remark: NP-hard.

1.41

1.73

2.00

2.23

0

0

2

3

lengthjob
or, equivalently, difference

between finish times

 public double[] finish(int[] a)
 {
 double[] time = new double[2];
 time[0] = 0.0; time[1] = 0.0;
 for (int i = 0; i < N; i++)
 time[a[i]] += jobs[i];
 return time;
 }

 private double cost(int[] a)
 {
 double[] time = finish(a);
 return Math.abs(time[0] - time[1]);
 }

2

1

3

0

3

1 2

machine 0

machine 1

machine 0

machine 1

cost

1

i a[] time[0] time[1]

 0 1 1 0 1.41 0
0 0 1 1 0 1.41 0
1 0 1 1 0 1.41 1.73
2 0 1 1 0 1.41 3.73
3 0 1 1 0 3.64 3.73
 3.64 3.73

 cost: .09

36

Scheduling (full implementation)

public class Scheduler
{
 int N; // Number of jobs.
 int[] a; // Subset assignments.
 int[] b; // Best assignment.
 double[] jobs; // Job lengths.

 public Scheduler(double[] jobs)
 {
 this.N = jobs.length;;
 this.jobs = jobs;
 a = new int[N];
 b = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = 0;
 for (int i = 0; i < N; i++)
 b[i] = a[i];
 enumerate(0);
 }

 public int[] best()
 { return b; }

 private void enumerate(int k)
 { /* Gray code enumeration. */ }

 private void process()
 {
 if (cost(a) < cost(b))
 for (int i = 0; i < N; i++)
 b[i] = a[i];
 }

 public static void main(String[] args)
 { /* Create Scheduler, print result. */ }
}

% java Scheduler 4 < jobs.txt

a[] finish times cost

trace of

Large number of subsets leads to remarkably low cost

Scheduling (larger example)

37

 java SchedulerEZ 24 < jobs.txt
 MACHINE 0 MACHINE 1
 1.4142135624
 1.7320508076
 2.0000000000
 2.2360679775
 2.4494897428
 2.6457513111
 2.8284271247
 3.0000000000
 3.1622776602
 3.3166247904
 3.4641016151
 3.6055512755
 3.7416573868
 3.8729833462
 4.0000000000
 4.1231056256
 4.2426406871
 4.3588989435
 4.4721359550
 4.5825756950
 4.6904157598
 4.7958315233
 4.8989794856
 5.0000000000

 42.3168901295 42.3168901457

Scheduling: improvements

Many opportunities (details omitted)

• fix last job on machine 0 (quick factor-of-two improvement)

• backtrack when partial schedule cannot beat best known

(check total against goal: half of total job times)

• process all 2k subsets of last k jobs, keep results in memory,

(reduces time to 2N-k when 2k memory available).

38

private void enumerate(int k)
{
 if (k == N-1)
 { process(); return; }
 if (backtrack(k)) return;
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}

Backtracking summary

N-Queens : permutations with backtracking

Soduko : counting with backtracking

Scheduling: subsets with backtracking

39

40

�permutations

�backtracking

�counting

�subsets

�paths in a graph

41

Hamilton Path

Hamilton path. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.

visit every edge
exactly once

42

Knight's Tour

Knight's tour. Find a sequence of moves for a knight so that, starting

from any square, it visits every square on a chessboard exactly once.

Solution. Find a Hamilton path in knight's graph.

legal knight moves a knight's tour

43

Hamilton Path: Backtracking Solution

Backtracking solution. To find Hamilton path starting at v:

• Add v to current path.

• For each vertex w adjacent to v

find a simple path starting at w using all remaining vertices

• Remove v from current path.

How to implement?

 Add cleanup to DFS (!!)

44

Hamilton Path: Java implementation

public class HamiltonPath
{
 private boolean[] marked;
 private int count;

 public HamiltonPath(Graph G)
 {
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 dfs(G, v, 1);
 count = 0;
 }

 private void dfs(Graph G, int v, int depth)
 {
 marked[v] = true;

 if (depth == G.V()) count++;

 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w, depth+1);

 marked[v] = false;
 }
}

also need code to

count solutions

(path length = V)

clean up

Easy exercise: Modify this code to find and print the longest path

45

The Longest Path

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988 while a student at Johns Hopkins during a difficult algorithms final.

