Combinatorial Search

- permutations
- backtracking
- counting
- subsets
paths in a graph

Exhaustive search. Iterate through all elements of a search space.
Backtracking. Systematic method for examining feasible solutions to a problem, by systematically eliminating infeasible solutions.

Applicability. Huge range of problems (include NP-hard ones).
Caveat. Search space is typically exponential in size \Rightarrow effectiveness may be limited to relatively small instances.

Caveat to the caveat. Backtracking may prune search space to reasonable size, even for relatively large instances

Warmup: enumerate N -bit strings
Problem: process all $2^{\mathrm{N}} \mathrm{N}$-bit strings (stay tuned for applications).
Equivalent to counting in binary from 0 to $2^{N}-1$.

- maintain a[i] where a[i] represents bit i
- initialize all bits to 0
- simple recursive method does the job (call enumerate (0))

```
private void enumerate(int k)
{
    if (k == N)
    { process(); return; }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
                            clean up
```


Invariant (prove by induction);
Enumerates all (N-k)-bit strings and cleans up after itself.

Warmup: enumerate N -bit strings (full implementation)

Equivalent to counting in binary from 0 to $2^{N}-1$.
all the programs
in this lecture \longrightarrow
are variations on this theme

```
public class Counter
{
    private int N; // number of bits
    private int[] a; // bits (0 or 1)
    public Counter(int N)
    {
        this.N = N;
        a = new int[N];
        for (int i = 0; i < N; i++)
        a[i] = 0; }~\mathrm{ optional
        enumerate (0); (in this case)
    }
    private void enumerate(int k)
    {
        if (k == N)
        { process(); return; }
        enumerate (k+1);
        a[k] = 1;
        enumerate (k+1);
        a[k] = 0;
    }
    public static void main(String[] args)
{ int N = Integer.parseInt(args[0]);
{ int N = Integer.parseInt(args[0]);
        Counter c = new Counter(N);
    }
}
```

```
private void process()
{
    for (int i = 0; i < N; i++)
        StdOut.print(a[i]);
    StdOut.println();
}
```

\% java Counter 4
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

permutations

>backtracking
counting
> subsets
paths in a graph

N-rooks Problem

How many ways are there to place
N rooks on an N -by- N board so that no rook can attack any other?

No two in the same row, so represent solution with an array
a[i] = column of rook in row i.
No two in the same column, so array entries are all different
$a[$] is a permutation (rearrangement of $0,1, \ldots \mathrm{~N}-1$)

Answer: There are N! non mutually-attacking placements.
Challenge: Enumerate them all.

Enumerating permutations

Recursive algorithm to enumerate all N ! permutations of size N :

- Start with $012 \ldots$ N-1.
- For each value of i
- swap i into position o
- enumerate all (N-1)! arrangements of a [1. . N-1]
- clean up (swap i and o back into position)

N-rooks problem (enumerating all permutations): scaffolding

```
public class Rooks
{
    private int N;
    private int[] a;
    public Rooks(int N)
    {
        this.N = N;
        a = new int[N];
        for (int i = 0; i < N; i++) « initialize a[0..N-1] to 0..N-1
            a[i] = i;
        enumerate(0);
    }
    private void enumerate(int k)
    { /* See next slide. */ }
    private void exch(int i, int j)
    { int t = a[i]; a[i] = a[j]; a[j] = t; }
    private void process()
    {
        for (int i = 0; i < N; i++)
            StdOut.print(a[i] + " ");
        StdOut.println();
    }
    public static void main(String[] args)
    0 1 2
    {
        int N = Integer.parseInt(args[0]);
        Rooks t = new Rooks(N);
        1 20
    }
        2 10
}
2 0 1
```

N-rooks problem (enumerating all permutations): recursive enumeration
Recursive algorithm to enumerate all N ! permutations of size N :

- Start with $012 \ldots$... 1.
- For each value of i

```
% java Rooks 4
```

```
0 1 2 3
```

0 1 2 3
0 1 3 2
0 1 3 2
0 2 1 3
0 2 1 3
0 2 3 1
0 2 3 1
0 3 2 1
0 3 2 1
0 3 1 2
0 3 1 2
1 0 2 3
1 0 2 3
10 32
10 32
120 3
120 3
1230
1230
1320
1320
1302
1302
2 1 0 3
2 1 0 3
2 1 3 0
2 1 3 0
2013
2013
2 0 3 1
2 0 3 1
2 3 0 1
2 3 0 1
2 3 1 0
2 3 1 0
3120
3120
3 1 0 2
3 1 0 2
3 2 1 0
3 2 1 0
3 2 0 1
3 2 0 1
3 0 2 1
3 0 2 1
3 0 1 2

```
3 0 1 2
```

 - swap i into position o
 - enumerate all (N-1)! arrangements of a [1. .N-1]
 - clean up (swap i and o back into position)
    ```
private void enumerate(int k)
{
    if (k == N)
            process();
            return;
    }
    for (int i = k; i < N; i++)
    {
            exch(a, k, i);
            enumerate(k+1);
            exch(a, k, i);
    }
}
```


N -rooks problem: back-of-envelope running time estimate

[Studying slow way to compute N! but good warmup for calculations.]

```
% java Rooks }1
3628800 solutions
```

\qquad

``` instant
% java Rooks 11
39916800 solutions \longleftarrow about 2 seconds
% java Rooks 12
479001600 solutions \longleftarrow about 24 seconds (checks with N! hypothesis)
```

Hypothesis: Running time is about 2(N! / 11!) seconds.

Web
(2) $2^{\text {* }}((25!) /(11!))$ * seconds $=246277800$ centuries

More about calculator.
Search for documents containing the terms $\underline{2(25 / / / 11)}$) seconds in centuries.
\% java Rooks 25
\longleftarrow millions of centuries

How many ways are there to place
N queens on an N -by- N board so that no queen can attack any other?

Representation. Same as for rooks:
represent solution as a permutation: a [i] = column of queen in row i.

Additional constraint: no diagonal attack is possible

Challenge: Enumerate (or even count) the solutions

Iterate through elements of search space.

- when there are N possible choices, make one choice and recur.
- if the choice is a dead end, backtrack to previous choice, and make next available choice.

Identifying dead ends allows us to prune the search tree

For N queens:

- dead end: a diagonal conflict
- pruning: backtrack and try next row when diagonal conflict found

In general, improvements are possible:

- try to make an "intelligent" choice
- try to reduce cost of choosing/backtracking

4-Queens Search Tree (pruned)

N-Queens: Backtracking solution

```
private boolean backtrack(int k)
{
    for (int i = 0; i < k; i++)
    {
        if ((a[i] - a[k]) == (k - i)) return true;
        if ((a[k] - a[i]) == (k - i)) return true;
    }
        return false;
}
private void enumerate(int k)
{
    if (k == N)
    {
        process();
        return;
    }
    for (int i = k; i < N; i++)
    {
        exch(a, k, i);
        if (! backtrack(k)) enumerate(k+1);
        exch(a, k, i);
    }
}
```

```
% java Queens
1302
2 0 3 1
% java Queens 5
0 4 1 3
0 3 1 4 2
1 3 0 2 4
1420 3
2 0 3 1 4
2 4 1 3 0
3 1 4 2 0
3 0 2 4 1
4 1 3 0 2
420 3 1
% java Queens 6
1 3 5 0 2 4
2 5 1 4 0 3
3 0 4 1 5 2
4205 3 1
```


N-Queens: Effectiveness of backtracking

Pruning the search tree leads to enormous time savings

N	2	3	4	5	6	7	8	9	10	11	12
$Q(N)$	0	0	2	10	4	40	92	352	724	2,680	14,200
$N!$	2	6	24	120	720	5,040	40,320	362,880	$3,628,800$	$39,916,800$	$479,001,600$

N
$Q(N)$
$N!$

13	14
73,712	365,596
$6,227,020,800$	$87,178,291,200$

15
2,279,184
1 ,307,674,368,000

16
14,772,512
20, 922,789,888,000

N-Queens: How many solutions?

Answer to original question easy to obtain:

- add an instance variable to count solutions (initialized to 0)
- change process () to increment the counter
- add a method to return its value

```
% java Queens 4
2 solutions
% java Queens 8
92 solutions
% java Queens 16
14772512 solutions
```

Source: On-line encyclopedia of integer sequences, N. J. Sloane [sequence A000170]

N	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$Q(N)$	0	0	2	10	4	40	92	352	724	2,680	14,200	73,712	365,596	$2,279,184$
N		16		17		18		19			25			
(N)	$14,772,512$	$95,815,104$	$666,090,624$	$4,968,057,848$	\ldots	$2,207,893,435,808,350$								

N -queens problem: back-of-envelope running time estimate

Hypothesis ??

Hypothesis: Running time is about (N/2)! seconds.


```
Web
((25 / 2) !) seconds = 0.54204965 centuries
More about calculator.
```

Search

Search for documents containing the terms (25/2)! seconds in centuries.

```
% java Queens 25
```


Counting: Java Implementation

Problem: enumerate all N -digit base-R numbers
Solution: generalize binary counter in lecture warmup
enumerate N-digit base-R numbers

```
```

private static void enumerate(int k)

```
```

private static void enumerate(int k)
{
{
if (k == N)
if (k == N)
{ process(); return; }
{ process(); return; }
for (int n = 0; n < R; n++)
for (int n = 0; n < R; n++)
{
{
a[k] = n;
a[k] = n;
enumerate(k + 1);
enumerate(k + 1);
}
}
a[k] = 0; < clean up not needed: Why?
a[k] = 0; < clean up not needed: Why?
} a[k]=0; < clean up not needed: Why?

```
```

 } a[k]=0; < clean up not needed: Why?
    ```
```

| 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 | 1 | 2 | 0 | 1 |
| 0 | 0 | 2 | 1 | 0 | 2 | 2 | 0 | 2 |
| 0 | 1 | 0 | 1 | 1 | 0 | 2 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 |
| 0 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 |
| 0 | 2 | 0 | 1 | 2 | 0 | 2 | 2 | 0 |
| 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
| 0 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 |
| 0 | 2 | 0 | | | | | | |
| 0 | 0 | 0 | | | | | | |

enumerate binary numbers (from warmup)
private void enumerate(int k)
f
if ($\mathrm{k}=\mathrm{N}$)
\{ process(); return; \}
enumerate ($k+1$);
$a[k]=1$;
enumerate ($k+1$);
$\mathrm{a}[\mathrm{k}]=0$;
\}

Problem:

Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

Remark: Natural generalization is NP-hard.

Counting application: Sudoku

Problem:

Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

| 7 | 2 | 8 | 9 | 4 | 6 | 3 | 1 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 3 | 4 | 2 | 5 | 1 | 6 | 7 | 8 |
| 5 | 1 | 6 | 7 | 3 | 8 | 2 | 4 | 9 |
| 1 | 4 | 7 | 5 | 9 | 3 | 8 | 2 | 6 |
| 3 | 6 | 9 | 4 | 8 | 2 | 1 | 5 | 7 |
| 8 | 5 | 2 | 1 | 6 | 7 | 4 | 9 | 3 |
| 2 | 9 | 3 | 6 | 1 | 5 | 7 | 8 | 4 |
| 4 | 8 | 1 | 3 | 7 | 9 | 5 | 6 | 2 |
| 6 | 7 | 5 | 8 | 2 | 4 | 9 | 3 | 1 |

Solution: Enumerate all 81-digit base-9 numbers (with backtracking).

Sudoku: Backtracking solution

Iterate through elements of search space.

- For each empty cell, there are 9 possible choices.
- Make one choice and recur.
- If you find a conflict in row, column, or box, then backtrack.

Improvements are possible.

- try to make an "intelligent" choice
- try to reduce cost of choosing/backtracking

Sudoku: Java implementation

```
private static void solve(int cell)
{
    if (cell == 81)
    { show(board); return; }
```

int[81] board;
for (int $i=0 ; i<81$; i++)
board[i] = StdOut.readInt();
Solver s = new Solver (board);
s.solve();
if (board[cell] != 0)
$\{$ solve (cell +1); return; $\} \longleftarrow$ already filled in
for (int $n=1 ; n<=9 ; n++$)
\{ \longleftarrow try all 9 possibilities
if (! backtrack(cell, n))
\{
board[cell] $=n$;
solve (cell + 1);
\}
\}

| more board.t | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | 00 | | | |
| | 0 | 0 | 2 | 01 | 10 | 0 | |
| | | 0 | | | | | |
| | 4 | 0 | 0 | 0 | 0 | | |
| | 0 | 0 | | 8 | | | |
| | 0 | 0 | | 0 | | | |
| | 9 | 0 | 6 | 00 | 0 | 0 | |
| | | 0 | | 70 | | | |
| 0 | 0 | 0 | 0 | 0 | 00 | | |
| java Solver | | | | | | | |
| | 2 | 8 | | 46 | 63 | 31 | |
| | | 4 | 2 | 51 | 16 | 6 | |
| | | 6 | | 38 | | | |
| | 4 | 7 | 5 | 93 | | | |
| | 6 | 9 | 4 | 8 | 21 | 1 | |
| | | | | | | | |
| | | 3 | 6 | 15 | 57 | | |
| | | | | | 95 | | |
| 75849 | | | | | | | |

Works remarkably well (plenty of constraints). Try it!

Enumerating subsets: natural binary encoding

Given n items, enumerate all 2^{n} subsets.

- count in binary from 0 to $2^{n}-1$.
- bit i represents item i
- if 0 , in subset; if 1 , not in subset

| i | binary | | | | subset | complement |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | empty | 4321 |
| 1 | 0 | 0 | 0 | 1 | 1 | 432 |
| 2 | 0 | 0 | 1 | 0 | 2 | 431 |
| 3 | 0 | 0 | 1 | 1 | 21 | 43 |
| 4 | 0 | 1 | 0 | 0 | 3 | 421 |
| 5 | 0 | 1 | 0 | 1 | 31 | 42 |
| 6 | 0 | 1 | 1 | 0 | 32 | 41 |
| 7 | 0 | 1 | 1 | 1 | 321 | 4 |
| 8 | 1 | 0 | 0 | 0 | 4 | 321 |
| 9 | 1 | 0 | 0 | 1 | 41 | 32 |
| 10 | 1 | 0 | 1 | 0 | 42 | 31 |
| 11 | 1 | 0 | 1 | 1 | 421 | 3 |
| 12 | 1 | 1 | 0 | 0 | 43 | 21 |
| 13 | 1 | 1 | 0 | 1 | 431 | 2 |
| 14 | 1 | 1 | 1 | 0 | 432 | 1 |
| 15 | 1 | 1 | 1 | 1 | 4321 | empty |

Enumerating subsets: natural binary encoding

Given N items, enumerate all 2^{N} subsets.

- count in binary from 0 to $2^{\mathrm{N}}-1$.
- maintain a[i] where a[i] represents item i
- if $0, a[i]$ in subset; if $1, a[i]$ not in subset

Binary counter from warmup does the job

```
private void enumerate(int k)
{
    if (k == N)
    { process(); return; }
    enumerate (k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

Digression: Samuel Beckett play
Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

fuler function

Binary reflected gray code

The n-bit binary reflected Gray code is:

- the ($n-1$) bit code with a 0 prepended to each word, followed by
- the ($n-1$) bit code in reverse order, with a 1 prepended to each word.

Beckett: Java implementation

```
public static void moves(int n, boolean enter)
{
    if (n == 0) return;
    moves(n-1, true);
    if (enter) System.out.println("enter " + n);
    else System.out.println("exit " + n);
    moves(n-1, false);
}
```

\% java Beckett 4

| enter 1
 enter 2
 exit 1
 enter 3
 enter 1
 exit 2
 exit 1 | stage directions for 3 -actor play moves (3, true) |
| :---: | :---: |
| enter 4 | |
| enter 1
 enter 2
 exit 1
 exit 3
 enter 1
 exit 2
 exit 1 | reverse stage directions for 3-actor play moves(3, false) |

More Applications of Gray Codes

3-bit rotary encoder

Towers of Hanoi

8-bit rotary encoder

Chinese ring puzzle

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:

- flip a [k] instead of setting it to 1
- eliminate cleanup

```
Gray code enumeration standard binary (from warmup)
private void enumerate(int k)
{
    if (k == N)
    { process(); return; }
    enumerate (k+1);
    a[k] = 1 - a[k];
    enumerate(k+1);
}
```

```
    private void enumerate(int k)
```

 private void enumerate(int k)
 {
 {
 if (k == N)
 if (k == N)
 { process(); return; }
 { process(); return; }
 enumerate(k+1);
 enumerate(k+1);
 a[k] = 1;
 a[k] = 1;
 enumerate (k+1);
 enumerate (k+1);
 a[k] = 0;
 a[k] = 0;
 }
 }
 clean up
    ```
                                    clean up
```

```
000
```

000
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
010
0 1 1
0 1 1
110
111
101
100
101
101
110
110
111

```
111
```

Advantage (same as Beckett): only one item changes subsets

Scheduling

Scheduling (set partitioning). Given n jobs of varying length, divide among two machines to minimize the time the last job finishes.

Remark: NP-hard.

Scheduling (full implementation)

```
public class Scheduler
{
```



```
public Scheduler(double[] jobs)
{
    this.N = jobs.length;;
    this.jobs = jobs;
    a = new int[N];
    b = new int[N];
    for (int i = 0; i < N; i++)
        a[i] = 0;
    for (int i = 0; i < N; i++)
        b[i] = a[i];
        enumerate(0);
    }
    public int[] best()
    { return b; }
    private void enumerate(int k)
    { /* Gray code enumeration. */ }
trace of
```

```
private void process()
```

private void process()

```
private void process()
    {
    {
    {
        if (cost(a) < cost(b))
        if (cost(a) < cost(b))
        if (cost(a) < cost(b))
            for (int i = 0; i < N; i++)
            for (int i = 0; i < N; i++)
            for (int i = 0; i < N; i++)
                b[i] = a[i];
                b[i] = a[i];
                b[i] = a[i];
    }
```

 }
    ```
```

% java Scheduler 4 < jobs.txt

| a [] | | | | finish times | | cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 7.38 | 0.00 | |
| 0 | 0 | 0 | 1 | 5.15 | 2.24 | 2.91 |
| 0 | 0 | 1 | 1 | 3.15 | 4.24 | 1.09 |
| 0 | 0 | 1 | 0 | 5.38 | 2.00 | |
| 0 | 1 | 1 | 0 | 3.65 | 3.73 | 0.08 |
| 0 | 1 | 1 | 1 | 1.41 | 5.97 | |
| 0 | 1 | 0 | 1 | 3.41 | 3.97 | |
| 0 | 1 | 0 | 0 | 5.65 | 1.73 | |
| 1 | 1 | 0 | 0 | 4.24 | 3.15 | |
| 1 | 1 | 0 | 1 | 2.00 | 5.38 | |
| 1 | 1 | 1 | 1 | 0.00 | 7.38 | |
| 1 | 1 | 1 | 0 | 2.24 | 5.15 | |
| 1 | 0 | 1 | 0 | 3.97 | 3.41 | |
| 1 | 0 | 1 | 1 | 1.73 | 5.65 | |
| 1 | 0 | 0 | 1 | 3.73 | 3.65 | |
| 1 | 0 | 0 | 0 | 5.97 | 1.41 | |
| $\begin{aligned} & \text { MACHINE O MACHINE } \\ & 1.4142135624 \end{aligned}$ | | | | | | |
| | | | | | | |
| | | | | 1.7 | 20508 | |
| | | | | 2. | 00000 | |
| 2.2360679775 | | | | | | |
| 3.6502815399 | | | | 93.7320508076 | | |

```
public static void main(String[] args)
\{ /* Create Scheduler, print result. */ \}
\}

\section*{Scheduling (larger example)}
```

 java SchedulerEZ 24 < jobs.txt
 MACHINE 0 MACHINE 1
 1.4142135624
 1.7320508076
 2.0000000000
 2.2360679775
 2.4494897428
 2.6457513111
 2.8284271247
 3.0000000000
 3.1622776602
 3.3166247904
 3.4641016151
 3.6055512755
 3.7416573868
 3.8729833462
4.0000000000
4.1231056256
4.2426406871
4.3588989435
4.4721359550
4.5825756950
4.6904157598
4.7958315233
4.8989794856
--------------------------->

```

Scheduling: improvements

Many opportunities (details omitted)
- fix last job on machine 0 (quick factor-of-two improvement)
- backtrack when partial schedule cannot beat best known (check total against goal: half of total job times)
```

private void enumerate(int k)
{
if (k == N-1)
{ process(); return; }
if (backtrack(k)) return;
enumerate(k+1);
a[k] = 1 - a[k];
enumerate(k+1);
}

```
- process all \(2^{k}\) subsets of last \(k\) jobs, keep results in memory, (reduces time to \(2^{\mathrm{N}-\mathrm{k}}\) when \(2^{\mathrm{k}}\) memory available).

\section*{Backtracking summary}

N-Queens: permutations with backtracking
Soduko : counting with backtracking
Scheduling: subsets with backtracking
permutations
> backtracking
counting
subsets
paths in a graph

Hamilton path. Find a simple path that visits every vertex exactly once.


Remark. Euler path easy, but Hamilton path is NP-complete.
\(\uparrow\)
visit every edge
exactly once

\section*{Knight's Tour}

Knight's tour. Find a sequence of moves for a knight so that, starting from any square, it visits every square on a chessboard exactly once.


Solution. Find a Hamilton path in knight's graph.

Hamilton Path: Backtracking Solution
Backtracking solution. To find Hamilton path starting at v:
- Add v to current path.
- For each vertex wadjacent to v
find a simple path starting at wusing all remaining vertices
- Remove v from current path.

How to implement?
Add cleanup to DFS (!!)

\section*{Hamilton Path: Java implementation}
```

public class HamiltonPath
{
private boolean[] marked;
private int count;
public HamiltonPath(Graph G)
{
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
dfs(G, v, 1);
count = 0;
}
private void dfs(Graph G, int v, int depth) also need code to
{
marked[v] = true;
if (depth == G.V()) count++;
for (int w : G.adj(v))
if (!marked[w]) dfs(G, w, depth+1);
marked[v] = false;
}
}

Easy exercise: Modify this code to find and print the longest path

The Longest Path

Recorded by Dan Barrett in 1988 while a student at Johns Hopkins during a difficult algorithms final.

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.
The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.
Garey, Johnson, Karp and other men (and women)
Tried to make it order $N \log N$.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

