
Algorithms and Data Structures

Instructors:
Bob Sedgewick
Kevin Wayne

Computer Science 226

Fall 2007

Copyright © 2007 by Robert Sedgewick and Kevin Wayne.

outline

why study algorithms?

usual suspects

coursework

resources (web)

resources (books)

2

Course Overview

3

COS 226 course overview

What is COS 226?

• Intermediate-level survey course.

• Programming and problem solving with applications.

• Algorithm: method for solving a problem.

• Data structure: method to store information.

Topic Data Structures and Algorithms

data types stack, queue, list, union-find, priority queue

sorting quicksort, mergesort, heapsort, radix sorts

searching hash table, BST, red-black tree, B-tree

graphs BFS, DFS, Prim, Kruskal, Dijkstra

strings KMP, Rabin-Karp, TST, Huffman, LZW

geometry Graham scan, k-d tree, Voronoi diagram

4

Why study algorithms?

Their impact is broad and far-reaching

Internet. Web search, packet routing, distributed file sharing.

Biology. Human genome project, protein folding.

Computers. Circuit layout, file system, compilers.

Computer graphics. Movies, video games, virtual reality.

Security. Cell phones, e-commerce, voting machines.

Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV.

Transportation. Airline crew scheduling, map routing.

Physics. N-body simulation, particle collision simulation.

…

Old roots, new opportunities

Study of algorithms dates at least to Euclid

Some important algorithms were discovered

by undergraduates!

5

Why study algorithms?

300 BC

1920s

1940s
1950s
1960s
1970s
1980s
1990s
2000s

6

Why study algorithms?

To be able solve problems that could not otherwise be addressed

Example: Network connectivity

[stay tuned]

7

Why study algorithms?

For intellectual stimulation

They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models

in scientific enquiry

8

Why study algorithms?

20th century science
(formula based)

21st century science
(algorithm based)

for (double t = 0.0; true; t = t + dt)
 for (int i = 0; i < N; i++)
 {
 bodies[i].resetForce();
 for (int j = 0; j < N; j++)
 if (i != j)
 bodies[i].addForce(bodies[j]);
 }

E = mc2

F = ma F =
Gm1m2

r2

h
2

2m
2

+ V (r)

 (r) = E (r)

For fun and profit

9

Why study algorithms?

• Their impact is broad and far-reaching

• Old roots, new opportunities

• To be able to solve problems that could not otherwise be addressed

• For intellectual stimulation

• They may unlock the secrets of life and of the universe

• For fun and profit

10

Why study algorithms?

11

The Usual Suspects

Lectures: Bob Sedgewick

• TTh 11-12:20, Bowen 222

• Office hours T 3-5 at Cafe Viv in Frist

Course management (everything else): Kevin Wayne

Precepts: Kevin Wayne

• Thursdays.

1: 12:30 Friend 110

2: 3:30 Friend 109

• Discuss programming assignments, exercises, lecture material.

• First precept meets Thursday 9/20

• Kevin’s office hours TBA

Need a precept time? Need to change precepts?

• email Donna O’Leary (CS ugrad coordinator)
doleary@cs.princeton.edu

Check course web page for up-to-date info

12

Coursework and Grading

7-8 programming assignments. 45%

• Due 11:55pm, starting Monday 9/24.

• Available via course website.

Weekly written exercises. 15%

• Due at beginning of Wednesday lecture, starting 9/24.

• Available via course website.

Exams.

• Closed-book with cheatsheet.

• Midterm. 15%

• Final. 25%

Staff discretion. Adjust borderline cases.

• Participation in lecture and precepts

• Everyone needs to meet us both at office hours!

Challenge for the bored. Determine importance of 45-15-15-25 weights

Final

Midterm

Programs

HW

Course content.

 http://www.princeton.edu/~cos226

• syllabus

• exercises

• lecture slides

• programming assignments (description, code, test data, checklists)

Course administration.

 https://moodle.cs.princeton.edu/course/view.php?id=24

• programming assignment submission.

• grades.

Booksites.
http://www.cs.princeton.edu/IntroCS

http://www.cs.princeton.edu/IntroAlgsDS

• brief summary of content.

• code.

• links to web content.

13

Resources (web)

Algorithms in Java, 3rd edition

• Parts 1-4. [sorting, searching]

• Part 5. [graph algorithms]

Introduction to Programming in Java

• basic programming model

• elementary AofA and data structures

Algorithms in Pascal(!)/C/C++, 2nd edition

• strings

• elementary geometric algorithms

Algorithms, 4th edition

 (in preparation)

Resources (books)

14

Union-Find

15

network connectivity
quick find
quick union
improvements
applications

1

Union-Find Algorithms

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

• Define the problem.

• Find an algorithm to solve it.

• Fast enough?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java

2

3

network connectivity
quick find
quick union
improvements
applications

Network connectivity

Basic abstractions

• set of objects

• union command: connect two objects

• find query: is there a path connecting one object to another?

4

Union-find applications involve manipulating objects of all types.

• Computers in a network.

• Web pages on the Internet.

• Transistors in a computer chip.

• Variable name aliases.

• Pixels in a digital photo.

• Metallic sites in a composite system.

When programming, convenient to name them 0 to N-1.

• Hide details not relevant to union-find.

• Integers allow quick access to object-related info.

• Could use symbol table to translate from object names

5

Objects

use as array index

0 7

2 3

8

4

6 5 91

stay tuned

6

Union-find abstractions

Simple model captures the essential nature of connectivity.

• Objects.

• Disjoint sets of objects.

• Find query: are objects 2 and 9 in the same set?

• Union command: merge sets containing 3 and 8.

0 1 { 2 3 9 } { 5 6 } 7 { 4 8 }

0 1 { 2 3 4 8 9 } { 5-6 } 7

0 1 { 2 3 9 } { 5-6 } 7 { 4-8 }

add a connection between
two grid points

subsets of connected grid points

are two grid points connected?

0 1 2 3 4 5 6 7 8 9 grid points

Connected components

Connected component: set of mutually connected vertices

Each union command reduces by 1 the number of components

7

 in out

 3 4 3 4

 4 9 4 9

 8 0 8 0

 2 3 2 3

 5 6 5 6

 2 9

 5 9 5 9

 7 3 7 3

0

2 3

8

4

6 5 91

7 union commands

3 = 10-7 components

7

8

Network connectivity: larger example

find(u, v) ?

u

v

9

Network connectivity: larger example

63 components

find(u, v) ?

true

10

Union-find abstractions

• Objects.

• Disjoint sets of objects.

• Find queries: are two objects in the same set?

• Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

• Find queries and union commands may be intermixed.

• Number of operations M can be huge.

• Number of objects N can be huge.

11

network connectivity
quick find
quick union
improvements
applications

12

Quick-find [eager approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

13

Quick-find [eager approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

Union. To merge components containing p and q,

change all entries with id[p] to id[q].

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 6 6 6 6 6 7 8 6

id[3] = 9; id[6] = 6
3 and 6 not connected

problem: many values can change

14

Quick-find example

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 9 9 5 6 7 8 9

8-0 0 1 2 9 9 5 6 7 0 9

2-3 0 1 9 9 9 5 6 7 0 9

5-6 0 1 9 9 9 6 6 7 0 9

5-9 0 1 9 9 9 9 9 7 0 9

7-3 0 1 9 9 9 9 9 9 0 9

4-8 0 1 0 0 0 0 0 0 0 0

6-1 1 1 1 1 1 1 1 1 1 1

problem: many values can change

public class QuickFind
{
 private int[] id;

 public QuickFind(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean find(int p, int q)
 {
 return id[p] == id[q];
 }

 public void unite(int p, int q)
 {
 int pid = id[p];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = id[q];
 }
}

15

Quick-find: Java implementation

1 operation

N operations

set id of each
object to itself

16

Quick-find is too slow

Quick-find algorithm may take ~MN steps

to process M union commands on N objects

Rough standard (for now).

• 109 operations per second.

• 109 words of main memory.

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

• 1010 edges connecting 109 nodes.

• Quick-find takes more than 1019 operations.

• 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

• New computer may be 10x as fast.

• But, has 10x as much memory so problem may be 10x bigger.

• With quadratic algorithm, takes 10x as long!

a truism (roughly) since 1950 !

17

network connectivity
quick find
quick union
improvements
applications

18

Quick-union [lazy approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6

keep going until it doesn’t change

19

Quick-union [lazy approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. Set the id of q's root to the id of p's root.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6
3 and 5 are not connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 9 7 8 9

4

7

3 5

0 1 9

6

8

2

only one value changes

p q

keep going until it doesn’t change

20

Quick-union example

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 4 9 5 6 7 8 9

8-0 0 1 2 4 9 5 6 7 0 9

2-3 0 1 9 4 9 5 6 7 0 9

5-6 0 1 9 4 9 6 6 7 0 9

5-9 0 1 9 4 9 6 9 7 0 9

7-3 0 1 9 4 9 6 9 9 0 9

4-8 0 1 9 4 9 6 9 9 0 0

6-1 1 1 9 4 9 6 9 9 0 0

problem: trees can get tall

21

Quick-union: Java implementation

time proportional
to depth of p and q

time proportional
to depth of p and q

time proportional
to depth of i

public class QuickUnion
{
 private int[] id;

 public QuickUnion(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean find(int p, int q)
 {
 return root(p) == root(q);
 }

 public void unite(int p, int q)
 {
 int i = root(p);
 int j = root(q);
 id[i] = j;
 }
}

22

Quick-union is also too slow

Quick-find defect.

• Union too expensive (N steps).

• Trees are flat, but too expensive to keep them flat.

Quick-union defect.

• Trees can get tall.

• Find too expensive (could be N steps)

• Need to do find to do union

algorithm union find

Quick-find N 1

Quick-union N* N worst case

* includes cost of find

23

network connectivity
quick find
quick union
improvements
applications

24

Improvement 1: Weighting

Weighted quick-union.

• Modify quick-union to avoid tall trees.

• Keep track of size of each component.

• Balance by linking small tree below large one.

Ex. Union of 5 and 3.

• Quick union: link 9 to 6.

• Weighted quick union: link 6 to 9.

4

7

3

5

0 1 9 6 8

2

p

q

4 211 1 1size

25

Weighted quick-union example

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 5 3 3 3

no problem: trees stay flat

26

Weighted quick-union: Java implementation

Java implementation.

• Almost identical to quick-union.

• Maintain extra array sz[] to count number of elements

in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to

• merge smaller tree into larger tree

• update the sz[] array.

27

Weighted quick-union analysis

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

• Fact: depth is at most lg N. [needs proof]

Stop at guaranteed acceptable performance? No, easy to improve further.

Data Structure Union Find

Quick-find N 1

Quick-union N * N

Weighted QU lg N * lg N

* includes cost of find

28

Path compression. Just after computing the root of i,

set the id of each examined node to root(i).

Improvement 2: Path compression

2

41110

2

54

7

8

1110

root(9)

0

1

0

3

6

9

9

78

136

5

Path compression.

• Standard implementation: add second loop to root() to set

the id of each examined node to the root.

• Simpler one-pass variant: make every other node in path

point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

29

Weighted quick-union with path compression

only one extra line of code !

public int root(int i)
{
 while (i != id[i])
 {
 id[i] = id[id[i]];
 i = id[i];
 }
 return i;
}

30

Weighted quick-union with path compression

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 3 3 3 3

no problem: trees stay VERY flat

31

WQUPC performance

Theorem. Starting from an empty data structure, any sequence

of M union and find operations on N objects takes O(N + M lg* N) time.

• Proof is very difficult.

• But the algorithm is still simple!

Linear algorithm?

• Cost within constant factor of reading in the data.

• In theory, WQUPC is not quite linear.

• In practice, WQUPC is linear.

Amazing fact:

• In theory, no linear linking strategy exists

because lg* N is a constant
in this universe

number of times needed to take
the lg of a number until reaching 1

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

32

Summary

Ex. Huge practical problem.

• 1010 edges connecting 109 nodes.

• WQUPC reduces time from 3,000 years to 1 minute.

• Supercomputer won't help much.

• Good algorithm makes solution possible.

Bottom line.

 WQUPC makes it possible to solve problems

 that could not otherwise be addressed

M union-find ops on a set of N objects

Algorithm Worst-case time

Quick-find M N

Quick-union M N

Weighted QU N + M log N

Path compression N + M log N

Weighted + path (M + N) lg* N

WQUPC on Java cell phone beats QF on supercomputer!

33

network connectivity
quick find
quick union
improvements
applications

34

Union-find applications

Network connectivity.

• Percolation.

• Image processing.

• Least common ancestor.

• Equivalence of finite state automata.

• Hinley-Milner polymorphic type inference.

• Kruskal's minimum spanning tree algorithm.

• Games (Go, Hex)

• Compiling equivalence statements in Fortran.

Percolation

A model for many physical systems

• N-by-N grid.

• Each square is vacant or occupied.

• Grid percolates if top and bottom are connected by vacant squares.

35

percolates does not percolate

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation phase transition

Likelihood of percolation depends on site vacancy probability p

Experiments show a threshold p*

• p > p*: almost certainly percolates

• p < p*: almost certainly does not percolate

36

Q. What is the value of p* ?

p high: percolatesp low: does not percolate

 p*

37

• Initialize whole grid to be “not vacant”

• Implement “make site vacant” operation

that does union() with adjacent sites

• Make all sites on top and bottom rows vacant

• Make random sites vacant until find(top, bottom)

• Vacancy percentage estimates p*

UF solution to find percolation threshold

0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9

15 20 21

28 29 30 31 33

39 40 42 43 45

50 52 54 55 56 57

1 1 1 1 1 1 1 1

0 0 0 0

10 11 12 0

22 23 24 0

34 35 36 0

46 1 49

58 1

1 1 1 1 not vacant

vacant

top

bottom

14

14 14

14

32

32 1

1 11

1

1

16 16 16 16

38

Q. What is percolation threshold p* ?

A. about 0.592746 for large square lattices.

Q. Why is UF solution better than solution in IntroProgramming 2.4?

Percolation

percolation constant known
 only via simulation

percolates does not percolate

39

Hex

Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

• Two players alternate in picking a cell in a hex grid.

• Black: make a black path from upper left to lower right.

• White: make a white path from lower left to upper right.

Union-find application. Algorithm to detect when a player has won.

Reference: http://mathworld.wolfram.com/GameofHex.html

Subtext of today’s lecture (and this course)

Steps to developing an usable algorithm.

• Define the problem.

• Find an algorithm to solve it.

• Fast enough?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java

40

1

Collaboration policy

Exceptions

• Code from course materials OK [cite source]

• Coding with partner OK after first assignment [stay tuned]

Where to get help

• Email (but no code in email)

• Office hours

• Lab TAs in Friend 008/009

• Bounce ideas (but not code) off classmates

Note: Programming in groups except as above is a serious violation.

• working with classmates is encouraged

• checking solutions is OK

Programs: Do not use someone else’s code unless specifically authorized

Exercises: Write up your own solutions (no copying)

Stacks and Queues

stacks
dynamic resizing
queues
generics
applications

2

3

 Stacks and Queues

Fundamental data types.

• Values: sets of objects

• Operations: insert, remove, test if empty.

• Intent is clear when we insert.

• Which item do we remove?

Stack.

• Remove the item most recently added.

• Analogy: cafeteria trays, Web surfing.

Queue.

• Remove the item least recently added.

• Analogy: Registrar's line.

FIFO = "first in first out"

LIFO = "last in first out"

enqueue dequeue

pop

push

4

Client, Implementation, Interface

Separate interface and implementation so as to:

• Build layers of abstraction.

• Reuse software.

• Ex: stack, queue, symbol table.

Interface: description of data type, basic operations.

Client: program using operations defined in interface.

Implementation: actual code implementing operations.

5

Client, Implementation, Interface

Benefits.

• Client can't know details of implementation

client has many implementation from which to choose.

• Implementation can't know details of client needs

many clients can re-use the same implementation.

• Design: creates modular, re-usable libraries.

• Performance: use optimized implementation where it matters.

Interface: description of data type, basic operations.

Client: program using operations defined in interface.

Implementation: actual code implementing operations.

6

stacks
dynamic resizing
queues
generics
applications

Stack operations.

• push() Insert a new item onto stack.

• pop() Remove and return the item most recently added.

• isEmpty() Is the stack empty?

7

Stacks

pop

push

a sample stack client

public static void main(String[] args)
{
 StackOfStrings stack = new StackOfStrings();
 while(!StdIn.isEmpty())
 {

 String s = StdIn.readString();
 stack.push(s);
 }
 while(!stack.isEmpty())
 {

 String s = stack.pop();
 StdOut.println(s);

 }

}

8

Stack pop: Linked-list implementation

best the was it

best the was it first = first.next;

best the was it return item;

first

first

first

of item = first.item;

9

Stack push: Linked-list implementation

best the was it

second

best the was it

best the was it

first

of

second = first;

first.item = item;
first.next = second;

best the was it

second

first = new Node();

first second

first

first

10

Stack: Linked-list implementation

"inner class"

public class StackOfStrings
{
 private Node first = null;

 private class Node
 {
 String item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 {
 Node second = first;
 first = new Node();
 first.item = item;
 first.next = second;
 }

 public String pop()
 {
 String item = first.item;
 first = first.next;
 return item;
 }

}

Error conditions?
Example: pop() an empty stack

COS 217: bulletproof the code
COS 226: first find the code we want to use

11

Stack: Array implementation

Array implementation of a stack.

• Use array s[] to store N items on stack.

• push() add new item at s[N].

• pop() remove item from s[N-1].

it was the best

0 1 2 3 4 5 6 7 8 9

s[]

N

12

Stack: Array implementation

avoid loitering
(garbage collector only reclaims memory
if no outstanding references)

public class StackOfStrings
{
 private String[] s;
 private int N = 0;

 public StringStack(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 {
 String item = s[N-1];
 s[N-1] = null;
 N--;
 return item;
 }

}

13

stacks
dynamic resizing
queues
generics
applications

14

Stack array implementation: Dynamic resizing

Q. How to grow array when capacity reached?

Q. How to shrink array (else it stays big even when stack is small)?

First try:

• push(): increase size of s[] by 1

• pop() : decrease size of s[] by 1

Too expensive

• Need to copy all of the elements to a new array.

• Inserting N elements: time proportional to 1 + 2 + … + N N2/2.

Need to guarantee that array resizing happens infrequently

infeasible for large N

15

Q. How to grow array?

A. Use repeated doubling:

 if array is full, create a new array of twice the size, and copy items

Consequence. Inserting N items takes time proportional to N (not N2).

 public StackOfStrings()
 { this(8); }

 public void push(String item)
 {
 if (N >= s.length) resize();
 s[N++] = item;
 }

 private void resize(int max)
 {
 String[] dup = new String[max];
 for (int i = 0; i < N; i++)
 dup[i] = s[i];
 s = dup;
 }

Stack array implementation: Dynamic resizing

no-argument
constructor

create new array
copy items to it

8 + 16 + … + N/4 + N/2 + N 2N

16

Q. How (and when) to shrink array?

How: create a new array of half the size, and copy items.

When (first try): array is half full?

No, causes thrashing

When (solution): array is 1/4 full (then new array is half full).

Consequences.

• any sequence of N ops takes time proportional to N

• array is always between 25% and 100% full

 public String pop(String item)
 {
 String item = s[--N];
 sa[N] = null;
 if (N == s.length/4)
 resize(s.length/2);
 return item;
 }

Stack array implementation: Dynamic resizing

Not a.length/2
to avoid thrashing

 (push-pop-push-pop-... sequence: time proportional to N for each op)

17

Stack Implementations: Array vs. Linked List

Stack implementation tradeoffs. Can implement with either array or

linked list, and client can use interchangeably. Which is better?

Array.

• Most operations take constant time.

• Expensive doubling operation every once in a while.

• Any sequence of N operations (starting from empty stack)

takes time proportional to N.

Linked list.

• Grows and shrinks gracefully.

• Every operation takes constant time.

• Every operation uses extra space and time to deal with references.

Bottom line: tossup for stacks

but differences are significant when other operations are added

"amortized" bound

Stack implementations: Array vs. Linked list

Which implementation is more convenient?

18

array? linked list?

return count of elements in stack

remove the kth most recently added

sample a random element

19

stacks
dynamic resizing
queues
generics
applications

Queue operations.

• enqueue() Insert a new item onto queue.

• dequeue() Delete and return the item least recently added.

• isEmpty() Is the queue empty?

20

Queues

public static void main(String[] args)
{
 QueueOfStrings q = new QueueOfStrings();
 q.enqueue("Vertigo");
 q.enqueue("Just Lose It");
 q.enqueue("Pieces of Me");
 q.enqueue("Pieces of Me");
 System.out.println(q.dequeue());
 q.enqueue("Drop It Like It's Hot");

 while(!q.isEmpty()

 System.out.println(q.dequeue());

}

21

Dequeue: Linked List Implementation

was the best of

was the best of first = first.next;

was the best of return item;

first

first

first

it item = first.item;

last

last

last

Aside:
dequeue (pronounced “DQ”) means “remove from a queue”
deque (pronounced “deck”) is a data structure (see PA 1)

22

Enqueue: Linked List Implementation

x = new Node();
x.item = item;
x.next = null;

last = x;

last.next = x;

first

it was the best

x

of

last

first

it was the best

last

it was the best of

it was the best of

xfirst last

xfirst last

23

 Queue: Linked List Implementation

public class QueueOfStrings
{
 private Node first;
 private Node last;

 private class Node
 { String item; Node next; }

 public boolean isEmpty()

 { return first == null; }

 public void enqueue(String item)
 {
 Node x = new Node();
 x.item = item;
 x.next = null;
 if (isEmpty()) { first = x; last = x; }
 else { last.next = x; last = x; }
 }

 public String dequeue()
 {
 String item = first.item;
 first = first.next;
 return item;
 }
}

24

Queue: Array implementation

Array implementation of a queue.

• Use array q[] to store items on queue.

• enqueue(): add new object at q[tail].

• dequeue(): remove object from q[head].

• Update head and tail modulo the capacity.

[details: good exercise or exam question]

the best of times

0 1 2 3 4 5 6 7 8 9

q[]

head tail capacity = 10

25

stacks
dynamic resizing
queues
generics
applications

26

Generics (parameterized data types)

We implemented: StackOfStrings, QueueOfStrings.

We also want: StackOfURLs, QueueOfCustomers, etc?

Attempt 1. Implement a separate stack class for each type.

• Rewriting code is tedious and error-prone.

• Maintaining cut-and-pasted code is tedious and error-prone.

@#$*! most reasonable approach until Java 1.5 [hence, used in AlgsJava]

27

Stack of Objects

We implemented: StackOfStrings, QueueOfStrings.

We also want: StackOfURLs, QueueOfCustomers, etc?

Attempt 2. Implement a stack with items of type Object.

• Casting is required in client.

• Casting is error-prone: run-time error if types mismatch.

Stack s = new Stack();
Apple a = new Apple();
Orange b = new Orange();
s.push(a);
s.push(b);
a = (Apple) (s.pop());

run-time error

28

Generics

Generics. Parameterize stack by a single type.

• Avoid casting in both client and implementation.

• Discover type mismatch errors at compile-time instead of run-time.

Guiding principles.

• Welcome compile-time errors

• Avoid run-time errors

Why?

Stack<Apple> s = new Stack<Apple>();
Apple a = new Apple();
Orange b = new Orange();
s.push(a);
s.push(b);
a = s.pop();

compile-time error

no cast needed in client

parameter

29

Generic Stack: Linked List Implementation

public class StackOfStrings
{
 private Node first = null;

 private class Node
 {
 String item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 {
 Node second = first;
 first = new Node();
 first.item = item;
 first.next = second;
 }

 public String pop()
 {
 String item = first.item;
 first = first.next;
 return item;
 }

}

public class Stack<Item>
{
 private Node first = null;

 private class Node
 {
 Item item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(Item item)
 {
 Node second = first;
 first = new Node();
 first.item = item;
 first.next = second;
 }

 public Item pop()
 {
 Item item = first.item;
 first = first.next;
 return item;
 }

}

Generic type name

30

Generic stack: array implementation

public class Stack<Item>
{
 private Item[] s;
 private int N = 0;

 public Stack(int cap)
 { s = new Item[cap]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(Item item)
 { s[N++] = item; }

 public String pop()
 {
 Item item = s[N-1];
 s[N-1] = null;
 N--;
 return item;
 }

}

The way it should be.

public class StackOfStrings
{
 private String[] s;
 private int N = 0;

 public StackOfStrings(int cap)
 { s = new String[cap]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 {
 String item = s[N-1];
 s[N-1] = null;
 N--;
 return item;
 }

}

@#$*! generic array creation not allowed in Java

31

Generic stack: array implementation

public class Stack<Item>
{
 private Item[] s;
 private int N = 0;

 public Stack(int cap)
 { s = (Item[]) new Object[cap]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(Item item)
 { s[N++] = item; }

 public String pop()
 {
 Item item = s[N-1];
 s[N-1] = null;
 N--;
 return item;
 }

}

The way it is: an ugly cast in the implementation.

the ugly cast

Number of casts in good code: 0

32

Generic data types: autoboxing

Generic stack implementation is object-based.

What to do about primitive types?

Wrapper type.

• Each primitive type has a wrapper object type.

• Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.

Syntactic sugar. Behind-the-scenes casting.

Bottom line: Client code can use generic stack for any type of data

Stack<Integer> s = new Stack<Integer>();
s.push(17); // s.push(new Integer(17));
int a = s.pop(); // int a = ((int) s.pop()).intValue();

33

stacks
dynamic resizing
queues
generics
applications

34

Stack Applications

Real world applications.

• Parsing in a compiler.

• Java virtual machine.

• Undo in a word processor.

• Back button in a Web browser.

• PostScript language for printers.

• Implementing function calls in a compiler.

35

Function Calls

How a compiler implements functions.

• Function call: push local environment and return address.

• Return: pop return address and local environment.

Recursive function. Function that calls itself.

Note. Can always use an explicit stack to remove recursion.

 static int gcd(int p, int q) {

 if (q == 0) return p;

 else return gcd(q, p % q);

 }

gcd (216, 192)

 static int gcd(int p, int q) {

 if (q == 0) return p;

 else return gcd(q, p % q);

 }

gcd (192, 24)

 static int gcd(int p, int q) {

 if (q == 0) return p;

 else return gcd(q, p % q);

 }

gcd (24, 0)

p = 24, q = 0

p = 192, q = 24

p = 216, q = 192

36

Arithmetic Expression Evaluation

Goal. Evaluate infix expressions.

Two-stack algorithm. [E. W. Dijkstra]

• Value: push onto the value stack.

• Operator: push onto the operator stack.

• Left parens: ignore.

• Right parens: pop operator and two values;

push the result of applying that operator

to those values onto the operand stack.

Context. An interpreter!

operand operator

value stack
operator stack

37

Arithmetic Expression Evaluation

% java Evaluate
(1 + ((2 + 3) * (4 * 5)))
101.0

public class Evaluate {

 public static void main(String[] args) {

 Stack<String> ops = new Stack<String>();

 Stack<Double> vals = new Stack<Double>();

 while (!StdIn.isEmpty()) {

 String s = StdIn.readString();

 if (s.equals("(")) ;

 else if (s.equals("+")) ops.push(s);

 else if (s.equals("*")) ops.push(s);

 else if (s.equals(")")) {

 String op = ops.pop();

 if (op.equals("+")) vals.push(vals.pop() + vals.pop());

 else if (op.equals("*")) vals.push(vals.pop() * vals.pop());

 }

 else vals.push(Double.parseDouble(s));

 }

 StdOut.println(vals.pop());

 }

}

Note: Old books have two-pass algorithm because generics were not available!

38

Correctness

Why correct?

When algorithm encounters an operator surrounded by two values

within parentheses, it leaves the result on the value stack.

as if the original input were:

Repeating the argument:

Extensions. More ops, precedence order, associativity.

1 + (2 - 3 - 4) * 5 * sqrt(6 + 7)

(1 + ((2 + 3) * (4 * 5)))

(1 + (5 * (4 * 5)))

(1 + (5 * 20))

(1 + 100)

101

39

Stack-based programming languages

Observation 1.

Remarkably, the 2-stack algorithm computes the same value

if the operator occurs after the two values.

Observation 2.

All of the parentheses are redundant!

Bottom line. Postfix or "reverse Polish" notation.

Applications. Postscript, Forth, calculators, Java virtual machine, …

(1 ((2 3 +) (4 5 *) *) +)

1 2 3 + 4 5 * * +

Jan Lukasiewicz

Stack-based programming languages: PostScript

Page description language

• explicit stack

• full computational model

• graphics engine

Basics

• %!: “I am a PostScript program”

• literal: “push me on the stack”

• function calls take args from stack

• turtle graphics built in

40

%!

72 72 moveto

0 72 rlineto

72 0 rlineto

0 -72 rlineto

-72 0 rlineto

2 setlinewidth

stroke

a PostScript program

Stack-based programming languages: PostScript

Data types

• basic: integer, floating point, boolean, ...

• graphics: font, path,

• full set of built-in operators

Text and strings

• full font support

• show (display a string, using current font)

• cvs (convert anything to a string)

41

%!

/Helvetica-Bold findfont 16 scalefont setfont

72 168 moveto

(Square root of 2:) show

72 144 moveto

2 sqrt 10 string cvs show

like System.out.print()

like toString()

Square root of 2:
1.4142

Stack-based programming languages: PostScript

Variables (and functions)

• identifiers start with /

• def operator associates id with value

• braces

• args on stack

42

%!

/box
{

 /sz exch def

 0 sz rlineto

 sz 0 rlineto

 0 sz neg rlineto

 sz neg 0 rlineto

} def

72 144 moveto

72 box

288 288 moveto

144 box

2 setlinewidth

stroke

function definition

function calls

Stack-based programming languages: PostScript

for loop

• “from, increment, to” on stack

• loop body in braces

• for operator

if-else

• boolean on stack

• alternatives in braces

• if operator

... (hundreds of operators)

43

1 1 20

{ 19 mul dup 2 add moveto 72 box }

for

Stack-based programming languages: PostScript

An application: all figures in Algorithms in Java

44

%!

72 72 translate

/kochR

 {

 2 copy ge { dup 0 rlineto }

 {

 3 div

 2 copy kochR 60 rotate

 2 copy kochR -120 rotate

 2 copy kochR 60 rotate

 2 copy kochR

 } ifelse

 pop pop

 } def

0 0 moveto 81 243 kochR

0 81 moveto 27 243 kochR

0 162 moveto 9 243 kochR

0 243 moveto 1 243 kochR

stroke

See page 218

45

Queue applications

Familiar applications.

• iTunes playlist.

• Data buffers (iPod, TiVo).

• Asynchronous data transfer (file IO, pipes, sockets).

• Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.

• Traffic analysis.

• Waiting times of customers at call center.

• Determining number of cashiers to have at a supermarket.

46

M/D/1 queuing model

M/D/1 queue.

• Customers are serviced at fixed rate of μ per minute.

• Customers arrive according to Poisson process at rate of per minute.

Q. What is average wait time W of a customer?

Q. What is average number of customers L in system?

Arrival rate Departure rate μ

Infinite queue Server

Pr[X x] = 1 e x

inter-arrival time has exponential distribution

M/D/1 queuing model: example

47

M/D/1 queuing model: experiments and analysis

48

Observation.

As service rate μ approaches arrival rate , service goes to h***.

Queueing theory (see ORFE 309). W =
2μ (μ)

 +
1
μ

 , L = W

Little’s Law

wait time W and queue length L approach infinity as service rate approaches arrival rate

49

M/D/1 queuing model: event-based simulation

public class MD1Queue

{

 public static void main(String[] args)

 {

 double lambda = Double.parseDouble(args[0]); // arrival rate

 double mu = Double.parseDouble(args[1]); // service rate

 Histogram hist = new Histogram(60);

 Queue<Double> q = new Queue<Double>();

 double nextArrival = StdRandom.exp(lambda);

 double nextService = 1/mu;

 while (true)

 {

 while (nextArrival < nextService)

 {

 q.enqueue(nextArrival);

 nextArrival += StdRandom.exp(lambda);

 }

 double wait = nextService - q.dequeue();

 hist.addDataPoint(Math.min(60, (int) (wait)));

 if (!q.isEmpty())

 nextService = nextArrival + 1/mu;

 else

 nextService = nextService + 1/mu;

 }

 }

}

Analysis of Algorithms

overview
experiments
models
case study
hypotheses

1

Updated from:

 Algorithms in Java, Chapter 2

 Intro to Programming in Java, Section 4.1

2

Running time

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily

guide the future course of the science. Whenever any

result is sought by its aid, the question will arise - By what

course of calculation can these results be arrived at by the

machine in the shortest time? - Charles Babbage

Analytic Engine

how many times
do you have to
turn the crank?

Reasons to analyze algorithms

Predict performance

Compare algorithms

Provide guarantees

Understand theoretical basis

Primary practical reason: avoid performance bugs

3

this course (COS 226)

theory of algorithms (COS 423)

Client gets poor performance because programmer
 did not understand performance characteristics

4

Overview

Scientific analysis of algorithms:

 framework for predicting performance and comparing algorithms.

Scientific method.

• Observe some feature of the universe.

• Hypothesize a model that is consistent with observation.

• Predict events using the hypothesis.

• Verify the predictions by making further observations.

• Validate by repeating until the hypothesis and observations agree.

Principles.

• Experiments must be reproducible.

• Hypotheses must be falsifiable.

Universe = computer itself.

5

overview
experiments
models
case study
hypotheses

Experimental algorithmics

Every time you run a program you are doing an experiment!

First step:

 Debug your program!

Second step:

 Decide on model for experiments on large inputs.

Third step:

 Run the program for problems of increasing size.

6

?? Why is my
program so slow ?

7

Experimental evidence: measuring time

• Manual:

• Automatic: Stopwatch.java

Stopwatch sw = new Stopwatch();
// Run algorithm
double time = sw.elapsedTime();
StdOut.println("Running time: " + time + " seconds");

public class Stopwatch
{
 private final long start;

 public Stopwatch()
 { start = System.currentTimeMillis(); }

 public double elapsedTime()
 {
 long now = System.currentTimeMillis();
 return (now - start) / 1000.0;
 }
}

client code

implementation

8

Experimental algorithmics

Many obvious factors affect running time.

• machine

• compiler

• algorithm

• input data

More factors (not so obvious):

• caching

• garbage collection

• just-in-time compilation

• CPU use by other applications

Bad news: it is often difficult to get precise measurements

Good news: we can run a huge number of experiments [stay tuned]

Approach 1: Settle for affordable approximate results

Approach 2: Count abstract operations (machine independent)

9

overview
experiments
models
case study
hypotheses

10

Models for the analysis of algorithms

Total running time: sum of cost frequency for all operations.

• Need to analyze program to determine set of operations

• Cost depends on machine, compiler.

• Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available

Donald Knuth
1974 Turing Award

Developing models for algorithm performance

In principle, accurate mathematical models are available [Knuth]

In practice,

• formulas can be complicated

• advanced mathematics might be required

Ex.

Exact models best left for experts

Bottom line: We use approximate models in this course: TN ~ c N log N

11

TN = 24 AN + 11BN + 4CN + 3DN + 7N + 9SN

where

AN = 2(N+1) / 3

BN = (N + 1) (2HN+1 - 2H3 -1)/6 + 1/2

CN = (N + 1) (2HN+1 - 2H3 + 1)

DN = (N + 1)(1 - 2H3/3)

SN = (N + 1)/5 - 1

all constants rolled into one

frequencies
 (depend on algorithm, input)

costs (depend on machine, compiler)

Commonly used notations to model running time

notation provides example shorthand for used to

Big Theta growth rate (N2)
N2

9000 N2

 5 N2 + 22 N log N + 3N

classify

algorithms

Big Oh (N2) and smaller O(N2)
N2

100 N
 22 N log N + 3N

develop

upper bounds

Big Omega (N2) and larger (N2)
9000 N2

N5

 N3 + 22 N log N + 3N

develop

lower bounds

Tilde leading term ~ 10 N2

10 N2

10 N2 + 22 N log N
10 N2 + 2 N +37

provide

approximate model

used in
this course

Predictions and guarantees

Theory of algorithms: The running time of an algorithm is O(f(N))

advantages

• describes guaranteed performance

• O-notation absorbs input model

challenges

• cannot use to predict performance

• cannot use to compare algorithms

13

worst case implied

time

input size

f(N)

values represented
by O(f(N))

Predictions and guarantees (continued)

This course: The running time of an algorithm is ~ c f(N)

advantages

• can use to predict performance

• can use to compare algorithms

challenges

• need to develop accurate input model

• may not provide guarantees

14

time

input size

c f(N)

values represented
by ~ c f(N)

understanding of alg’s dependence on input implied

15

overview
experiments
models
case study
hypotheses

16

Case study [stay tuned for numerous algorithms and applications]

Sorting problem: rearrange N given items into ascending order

Hauser

Hong

Hsu

Hayes

Haskell

Hornet

...

...

Haskell

Hauser

Hayes

Hong

Hornet

Hsu

...

...

public static void less(double x, double y)

{ return x < y; }

public static void exch(double[] a, int i, int j)

{

 double t = a[i];

 a[i] = a[j];

 a[j] = t;

}

Basic operations: compares and exchanges

compare

exchange

17

Selection sort: an elementary sorting algorithm

Algorithm invariants

• scans from left to right.

• Elements to the left of are fixed and in ascending order.

• No element to left of is larger than any element to its right.

in final order

18

Selection sort inner loop

• move the pointer to the right

• identify index of minimum item on right.

• Exchange into position.

Maintains algorithm invariants

int min = i;
for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;

exch(a, i, min);

i++;

19

Selection sort: Java implementation

public static void sort(double[] a)

{

 for (int i = 0; i < a.length; i++)

 {

 int min = i;
 for (int j = i+1; j < a.length; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
}

most frequent operation
(“inner loop”)

20

Selection sort: initial observations

Observe, tabulate and plot operation counts for various values of N.

• study most frequently performed operation (compares)

• input model: N random numbers between 0 and 1

N compares

2,000 2.1 million

4,000 7.9 million

8,000 32.1 million

16,000 125.9 million

32,000 514.7 million

200M

100M

4K 8K 16K 32K2K

300M

400M

500M

600M

add counter to less()

21

Data analysis. Plot # compares vs. input size on log-log scale.

Regression. Fit straight line through data points a Nb.

Hypothesis. # compares is ~ N2/2

Selection sort: experimental hypothesis

slope

power law

2M

4M

8M

16M

32M

64M

2K 4K 8K 16K

lg C = lg a + b lg N

log-log scale

32K

C = a Nb

normal scale

128M

256M

512M

N compares

2,000 2.1 million

4,000 7.9 million

8,000 32.1 million

16,000 125.9 million

32,000 514.7 million

slope is 2

Selection sort: theoretical model

Hypothesis: number of compares is N + (N-1) + ... + 2 + 1 ~ N2/2

22

each black entry
 is 1 compare

 a[i]

 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E

 1 4 A O R T E X S M P L E

 2 10 A E R T O X S M P L E

 3 9 A E E T O X S M P L R

 4 7 A E E L O X S M P T R

 5 7 A E E L M X S O P T R

 6 8 A E E L M O S X P T R

 7 10 A E E L M O P X S T R

 8 8 A E E L M O P R S T X

 9 9 A E E L M O P R S T X

10 10 A E E L M O P R S T X

 A E E L M O P R S T X

= N(N + 1) / 2
= N2/2 + N/2
~ N2/2

circled entry is
min value found

gray entries
are untouched

23

Selection sort: Prediction and verification

Hypothesis (experimental and theoretical). # compares is ~ N2/2.

Prediction. 800 million compares for N = 40,000.

Observations.

Prediction. 20 billion compares for N = 200,000.

Observation.

19.997 billion200,000

comparesN

799.7 million40,000

801.6 million40,000

800.8 million40,000

comparesN

801.3 million40,000

Verifies.

Verifies.

Selection sort: validation

Implicit assumptions

• constant cost per compare

• cost of compares dominates running time

Hypothesis: Running time is ~ c N2

Validation: Observe actual running time.

Regression fit validates hypothesis.

24

N observed time .23x10-7 N2

2,000 0.1 seconds 0.1

4,000 0.4 seconds 0.4

8,000 1.5 seconds 1.5

16,000 5.6 seconds 5.9

32,000 23.2 seconds 23.5

A scientific connection between program and natural world.

.1 sec

.4 sec

1.6 sec

2K 4K 8K 16K 32K

6.4 sec

25.6 sec

25

Insertion sort: another elementary sorting algorithm

Algorithm invariants

• scans from left to right.

• Elements to the left of are in ascending order.

in order not yet seen

26

Insertion sort inner loop

• move the pointer to the right

• moving from right to left, exchange

a[i] with each larger element to its left

Maintains algorithm invariants

for (int j = i; j > 0; j--)

 if (less(a[j], a[j-1]))

 exch(a, j, j-1);

 else break;

i++;

in order not yet seen

in order not yet seen

Insertion sort: Java implementation

27

public static void sort(Comparable[] a)

{

 int N = a.length;

 for (int i = 0; i < N; i++)

 for (int j = i; j > 0; j--)

 if (less(a[j], a[j-1]))

 exch(a, j, j-1);

 else break;

}

Insertion sort: theoretical model

28

each black entry
 is 1 compare/exch

 a[i]

 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E

 2 1 O R S T E X A M P L E

 3 3 O R S T E X A M P L E

 4 0 E O R S T X A M P L E

 5 5 E O R S T X A M P L E

 6 0 A E O R S T X M P L E

 7 2 A E M O R S T X P L E

 8 4 A E M O P R S T X L E

 9 2 A E L M O P R S T X E

10 2 A E E L M O P R S T X

 A E E L M O P R S T X

Hypothesis: number of compares is (1 + 2 + ... + (N-1) + N)/2 ~ N2/4

on the average, for randomly ordered input

insertions are halfway back, on the average

circled entry is
inserted item

gray entries
are untouched

Experimental comparison of insertion sort and selection sort

Plot both running times on log log scale

• slopes are the same (both 2)

• both are quadratic

Compute ratio of running times

Need detailed analysis

to prefer one over the other

Neither is useful for huge randomly-ordered files

29

.1 sec

.4 sec

1.6 sec

2K 4K 8K 16K 32K

6.4 sec

25.6 sec

% java SortCompare Insertion Selection 4000

For 4000 random double values

Insertion is 1.7 times faster than selection

Would Be Nice (if analysis of algorithms were always this easy), But

Mathematics might be difficult

Ex. It is known that properties of singularities of functions

in the complex plane play a role in analysis of many algorithms

Leading term might not be good enough

Ex. Selection sort could be linear-time if cost of exchanges is huge

Actual data might not match model

Ex. Insertion sort could be linear-time if keys are roughly in order

Timing may be flawed

• different results on different computers

• different results on same computer at different times

30

assumption that compares dominate may be invalid

assumption that input is randomly ordered may be invalid

31

overview
experiments
models
case study
hypotheses

Practical approach to developing hypotheses

First step: determine asymptotic growth rate for chosen model

• approach 1: run experiments, regression

• approach 2: do the math

• best: do both

Good news: the relatively small set of functions

 1, log N, N, N log N, N2, N3, and 2N

suffices to describe asymptotic growth rate of typical algorithms

After determining growth rate

• use doubling hypothesis (to predict performance)

• use ratio hypothesis (to compare algorithms)

32

Common asymptotic-growth hypotheses (summary)

33

growth
rate

name typical code framework description example

1 constant a = b + c; statement add two numbers

log N logarithmic
while (N > 1)

{ N = N / 2; ... }
divide in half binary search

N linear
for (int i = 0; i < N; i++)

{ ... }
loop find the maximum

N log N linearithmic [see next lecture]
divide

and conquer
sort an array

N2 quadratic
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 { ... }
double loop check all pairs

N3 cubic

for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)

 { ... }

triple loop check all triples

2N exponential [see lecture 24]
exhaustive

search
check all

possibilities

Aside: practical implications of asymptotic growth

For back-of-envelope calculations, assume

How long to process millions of inputs?

How many inputs can be processed in minutes?

34

decade
processor

speed

instructions

per second

1970s 1M Hz

1980s 10M Hz

1990s 100M Hz

2000s 1G Hz

1

seconds

102

103

104

105

106

107

108

109

1010

1 second

equivalent

1.7 minutes

17 minutes

2.8 hours

1.1 days

1.6 weeks

3.8 months

3.1 years

3.1 decades

3.1 centuries

forever

1017 age of
universe

. . .

10 10 seconds
106

107

108

109

Ex. Population of NYC was “millions” in 1970s; still is

Ex. Customers lost patience waiting “minutes” in 1970s; still do

Aside: practical implications of asymptotic growth

35

growth
rate

problem size solvable in minutes time to process millions of inputs

1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s

1 any any any any instant instant instant instant

log N any any any any instant instant instant instant

N millions
tens of
millions

hundreds of
millions

billions minutes seconds second instant

N log N
hundreds of
thousands

millions millions
hundreds of

millions
hour minutes

tens of
seconds

seconds

N2 hundreds thousand thousands
tens of

thousands
decades years months weeks

N3 hundred hundreds thousand thousands never never never millenia

Practical implications of asymptotic-growth: another view

36

growth
rate

name description

effect on a program that
runs for a few seconds

time for 100x
more data

size for 100x
faster computer

1 constant independent of input size a few seconds same

log N logarithmic nearly independent of input size a few seconds same

N linear optimal for N inputs a few minutes 100x

N log N linearithmic nearly optimal for N inputs a few minutes 100x

N2 quadratic not practical for large problems several hours 10x

N3 cubic not practical for large problems several weeks 4-5x

2N exponential useful only for tiny problems forever 1x

Developing asymptotic order of growth hypotheses with doubling

To formulate hypothesis for asymptotic growth rate:

• compute T(2N)/T(N) as accurately (and for N as large) as is affordable

• use this table

37

ratio hypothesis reason

1
constant

or
 logarithmic

c / c = 1

c log 2N / c log N ~ 1

2
linear

or
linearithmic

c 2N / c N = 2

c 2 N log (2N) / c N log N ~ 2

4 quadratic c (2N)2 / c N2 = 4

9 cubic c (2N)2 / c N2 = 9

= 2 log(2N)/log N
= 2 (log 2 + log N)/log N
= 2 + 2 log 2/log N
~ 2

T

2T

4T

1K 2K 4K

cu
b
ic1024T

1024K

qu
ad

ra
ti

c

lin
ea

r

lin
ea

rit
hm

ic

constant

logarithmic

time

size

Example revisited: methods for timing sort algorithms

38

public static double time(String alg, Double[] a)

{

 Stopwatch sw = new Stopwatch();

 if (alg.equals("Insertion")) Insertion.sort(a);

 if (alg.equals("Selection")) Selection.sort(a);

 if (alg.equals("Shell")) Shell.sort(a);

 if (alg.equals("Merge")) Merge.sort(a);

 if (alg.equals("Quick")) Quick.sort(a);

 return sw.elapsedTime();

}

public static double timetrials(String alg, int N, int trials)

{

 double total = 0.0;

 Double[] a = new Double[N];

 for (int t = 0; t < trials; t++)

 {

 for (int i = 0; i < N; i++)

 a[i] = StdRandom.uniform();

 total += time(alg, a);

 }

 return total;

}

Compute time to sort a[] with alg

Compute total time to to sort trials arrays of N random doubles with alg

Developing asymptotic order of growth hypotheses with doubling

39

public class SortGrowth

{

 public static void main(String[] args)

 {

 String alg = args[0];

 int N = 1000;

 if (args.length > 1)

 N = Integer.parseInt(args[1]);

 int trials = 100;

 if (args.length > 2)

 trials = Integer.parseInt(args[2]);

 double ratio = timetrials(alg, 2*N, trials);

 / timetrials(alg, N, trials);

 StdOut.printf("Ratio is %f\n", ratio);

 if (ratio > 1.8 && ratio < 2.2)

 StdOut.printf(" %s is linear or linearithmic\n", alg);

 if (ratio > 3.8 && ratio < 4.2)

 StdOut.printf(" %s is quadratic\n", alg);

 }

}

THIS CODE
MAY NOT

BE READY
FOR THE

REAL WORLD

CAUTION

% java SortGrowth Selection

Ratio is 4.1

 Selection is quadratic

% java SortGrowth Insertion

Ratio is 3.645756

% java SortGrowth Insertion 4000 1000

Ratio is 3.969934

 Insertion is quadratic

Predicting performance with doubling hypotheses

A practical approach to predict running time:

• analyze algorithm and run experiments to develop hypothesis that

asymptotic growth rate of running time is ~ c T(N)

• run algorithm for some value of N, measure running time

• prediction: increasing input size by a factor of 2

 increases running time by a factor of T(2N)/T(N)

Use algorithm itself to implicitly compute leading-term constant
40

N observed time

2,000 0.1 seconds

4,000 0.4 seconds

8,000 1.5 seconds

16,000 5.6 seconds

32,000 23.2 seconds

numbers increase
by a factor of 2

numbers increase
by a factor of 4

Example: selection sort
growth

rate
name

T(2N)
T(N)

1 constant 1

log N logarithmic ~1

N linear 2

N log N linearithmic ~2

N2 quadratic 4

N3 cubic 9

Predicting performance with doubling hypotheses

41

public class SortPredict

{

 public static void main(String[] args)

 {

 String alg = args[0];

 int trials = 100;

 if (args.length > 1) trials = Integer.parseInt(args[1]);

 StdOut.printf("Seconds for %d trials\n", trials);

 StdOut.printf(" predicted actual\n 1000 ");

 double old = Double.POSITIVE_INFINITY;

 for (int N = 1000; true; N = 2*N)

 {

 total = timeTrials(alg, N, trials);

 double guess = (total/old)*total;

 StdOut.printf(" %7.1f\n %5d %7.1f", total, 2*N, guess);

 old = total;

 }

 }

}

THIS CODE
MAY NOT

BE READY
FOR THE

REAL WORLD

CAUTION

% java SortPredict Selection

Seconds for 100 trials

 predicted actual

 1000 0.9

 2000 0.0 3.5

 4000 13.9 14.4

 8000 58.8 58.9

 16000 240.9 239.2

 32000 971.6

Note: SortGrowth is not needed!

[This code works for any power law.]

and deep math says that running time
of typical algs must satisfy power law

Comparing algorithms with ratio hypotheses

A practical way to compare algorithms A and B with the same growth rate

• hypothesize that running times are ~ cA f(N) and ~ cB f(N)

• run algorithms for some value of N, measure running times

• Prediction: Algorithm A is a factor of cA/cB faster than Algorithm B

To compare algorithms with different growth rates

• hypothesize that the one with the smaller rate is faster

• validate hypothesis for inputs of interest

[values of constants may be significant]

To determine whether growth rates are the same or different

• compute ratios of running times as input size doubles

• [growth rates are the same if ratios do not change]

Use algorithms themselves to compute complex leading-term constants

42

Comparing algorithms with ratio hypothesis

43

public class SortCompare

{

 public static void main(String[] args)

 {

 String alg1 = args[0];

 String alg2 = args[1];

 int N = Integer.parseInt(args[2]);

 int trials = 100;

 if (args.length > 3) trials = Integer.parseInt(args[3]);

 double time1 = 0.0;

 double time2 = 0.0;

 Double[] a1 = new Double[N];

 Double[] a2 = new Double[N];

 for (int t = 0; t < trials; t++)

 {

 for (int i = 0; i < N; i++)

 { a1[i] = Math.random(); a2[i] = a1[i]; }

 time1 += time(alg1, a1);

 time2 += time(alg2, a2);

 }

 StdOut.printf("For %d random Double values\n %s is", N, alg1);

 StdOut.printf(" %.1f times faster than %s\n", time2/time1, alg2);

 }

}

THIS CODE
MAY NOT

BE READY
FOR THE

REAL WORLD

CAUTION

% java SortCompare Insertion Selection 4000

For 4000 random Double values

 Insertion is 1.7 times faster than Selection

best to test algs on same input

Summary: turning the crank

Yes, analysis of algorithms might be challenging, BUT

Mathematics might be difficult?

• only a few functions seem to turn up

• doubling, ratio tests cancel complicated constants

Leading term might not be good enough?

• debugging tools are available to identify bottlenecks

• typical programs have short inner loops

Actual data might not match model?

• need to understand input to effectively process it

• approach 1: design for the worst case

• approach 2: randomize, depend on probabilistic guarantee

Timing may be flawed?

• limits on experiments insignificant compared to other sciences

• different computers are different!
44

Sorting Algorithms

rules of the game
shellsort
mergesort
quicksort
animations

1

Reference:

 Algorithms in Java, Chapters 6-8

2

Classic sorting algorithms

Critical components in the world’s computational infrastructure.

• Full scientific understanding of their properties has enabled us

to develop them into practical system sorts.

• Quicksort honored as one of top 10 algorithms of 20th century

in science and engineering.

Shellsort.

• Warmup: easy way to break the N2 barrier.

• Embedded systems.

Mergesort.

• Java sort for objects.

• Perl, Python stable sort.

Quicksort.

• Java sort for primitive types.

• C qsort, Unix, g++, Visual C++, Python.

3

rules of the game
shellsort
mergesort
quicksort
animations

4

Basic terms

Ex: student record in a University.

Sort: rearrange sequence of objects into ascending order.

Goal: Sort any type of data

Example. List the files in the current directory, sorted by file name.

Next: How does sort compare file names?

5

% java Files .

Insertion.class

Insertion.java

InsertionX.class

InsertionX.java

Selection.class

Selection.java

Shell.class

Shell.java

ShellX.class

ShellX.java

index.html

Sample sort client

import java.io.File;

public class Files

{

 public static void main(String[] args)

 {

 File directory = new File(args[0]);

 File[] files = directory.listFiles();

 Insertion.sort(files);

 for (int i = 0; i < files.length; i++)

 System.out.println(files[i]);

 }

}

6

Callbacks

Goal. Write robust sorting library method that can sort

 any type of data using the data type's natural order.

Callbacks.

• Client passes array of objects to sorting routine.

• Sorting routine calls back object's comparison function as needed.

Implementing callbacks.

• Java: interfaces.

•C: function pointers.

•C++: functors.

Callbacks

7

sort implementation

client

object implementation
import java.io.File;

public class SortFiles

{

 public static void main(String[] args)

 {

 File directory = new File(args[0]);

 File[] files = directory.listFiles();

 Insertion.sort(files);

 for (int i = 0; i < files.length; i++)

 System.out.println(files[i]);

 }

}

Key point: no reference to File

public static void sort(Comparable[] a)

{

 int N = a.length;

 for (int i = 0; i < N; i++)

 for (int j = i; j > 0; j--)

 if (a[j].compareTo(a[j-1]))

 exch(a, j, j-1);

 else break;

}

public class File

implements Comparable<File>

{

 ...

 public int compareTo(File b)

 {

 ...

 return -1;

 ...

 return +1;

 ...

 return 0;

 }

}

interface

interface Comparable <Item>

{

 public int compareTo(Item);

}

built in to Java

8

Callbacks

Goal. Write robust sorting library that can sort any type of data

into sorted order using the data type's natural order.

Callbacks.

• Client passes array of objects to sorting routine.

• Sorting routine calls back object's comparison function as needed.

Implementing callbacks.

• Java: interfaces.

•C: function pointers.

•C++: functors.

Plus: Code reuse for all types of data

Minus: Significant overhead in inner loop

This course:

• enables focus on algorithm implementation

• use same code for experiments, real-world data

9

Interface specification for sorting

Comparable interface.

Must implement method compareTo() so that v.compareTo(w)returns:

• a negative integer if v is less than w

• a positive integer if v is greater than w

• zero if v is equal to w

Consistency.

Implementation must ensure a total order.

• if (a < b) and (b < c), then (a < c).

• either (a < b) or (b < a) or (a = b).

Built-in comparable types. String, Double, Integer, Date, File.

User-defined comparable types. Implement the Comparable interface.

10

Implementing the Comparable interface: example 1

only compare dates
to other dates

public class Date implements Comparable<Date>
{
 private int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date b)
 {
 Date a = this;
 if (a.year < b.year) return -1;
 if (a.year > b.year) return +1;
 if (a.month < b.month) return -1;
 if (a.month > b.month) return +1;
 if (a.day < b.day) return -1;
 if (a.day > b.day) return +1;
 return 0;
 }
}

Date data type (simplified version of built-in Java code)

11

Implementing the Comparable interface: example 2

Domain names

• Subdomain: bolle.cs.princeton.edu.

• Reverse subdomain: edu.princeton.cs.bolle.

• Sort by reverse subdomain to group by category. unsorted

sorted

public class Domain implements Comparable<Domain>
{
 private String[] fields;
 private int N;
 public Domain(String name)
 {
 fields = name.split("\\.");
 N = fields.length;
 }
 public int compareTo(Domain b)
 {
 Domain a = this;
 for (int i = 0; i < Math.min(a.N, b.N); i++)
 {
 int c = a.fields[i].compareTo(b.fields[i]);
 if (c < 0) return -1;
 else if (c > 0) return +1;
 }
 return a.N - b.N;
 }
} details included for the bored...

ee.princeton.edu

cs.princeton.edu

princeton.edu

cnn.com

google.com

apple.com

www.cs.princeton.edu

bolle.cs.princeton.edu

com.apple

com.cnn

com.google

edu.princeton

edu.princeton.cs

edu.princeton.cs.bolle

edu.princeton.cs.www

edu.princeton.ee

Several Java library data types implement Comparable

You can implement Comparable for your own types
12

% java Files .

Insertion.class

Insertion.java

InsertionX.class

InsertionX.java

Selection.class

Selection.java

Shell.class

Shell.java

Sample sort clients

import java.io.File;

public class Files

{

 public static void main(String[] args)

 {

 File directory = new File(args[0]);

 File[] files = directory.listFiles()

 Insertion.sort(files);

 for (int i = 0; i < files.length; i++)

 System.out.println(files[i]);

 }

}
% java Experiment 10

0.08614716385210452

0.09054270895414829

0.10708746304898642

0.21166190071646818

0.363292849257276

0.460954145685913

0.5340026311350087

0.7216129793703496

0.9003500354411443

0.9293994908845686

public class Experiment

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 Double[] a = new Double[N];

 for (int i = 0; i < N; i++)

 a[i] = Math.random();

 Selection.sort(a);

 for (int i = 0; i < N; i++)

 System.out.println(a[i]);

 }

}

File names Random numbers

Helper functions. Refer to data only through two operations.

• less. Is v less than w ?

• exchange. Swap object in array at index i with the one at index j.

13

Two useful abstractions

private static boolean less(Comparable v, Comparable w)
{
 return (v.compareTo(w) < 0);
}

private static void exch(Comparable[] a, int i, int j)
{
 Comparable t = a[i];
 a[i] = a[j];
 a[j] = t;
}

14

Sample sort implementations

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;
 for (int j = i+1; j < N; j++)
 if (less(a, j, min)) min = j;
 exch(a, i, min);
 }
 }
 ...
}

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 1; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }
 ...
}

selection sort

insertion sort

Why use less() and exch() ?

Switch to faster implementation for primitive types

Instrument for experimentation and animation

Translate to other languages

15

private static boolean less(double v, double
w)

{

 cnt++;

 return v < w;

...

for (int i = 1; i < a.length; i++)

 if (less(a[i], a[i-1]))

 return false;

 return true;}

Good code in C, C++,
JavaScript, Ruby....

private static boolean less(double v, double w)

{

 return v < w;

}

Properties of elementary sorts (review)

Selection sort

Running time: Quadratic (~c N2)

Exception: expensive exchanges

 (could be linear)

16

Bottom line: both are quadratic (too slow) for large randomly ordered files

Insertion sort

Running time: Quadratic (~c N2)

Exception: input nearly in order

 (could be linear)

 a[i]

 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E

 2 1 O R S T E X A M P L E

 3 3 O R S T E X A M P L E

 4 0 E O R S T X A M P L E

 5 5 E O R S T X A M P L E

 6 0 A E O R S T X M P L E

 7 2 A E M O R S T X P L E

 8 4 A E M O P R S T X L E

 9 2 A E L M O P R S T X E

10 2 A E E L M O P R S T X

 A E E L M O P R S T X

 a[i]

 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E

 1 4 A O R T E X S M P L E

 2 10 A E R T O X S M P L E

 3 9 A E E T O X S M P L R

 4 7 A E E L O X S M P T R

 5 7 A E E L M X S O P T R

 6 8 A E E L M O S X P T R

 7 10 A E E L M O P X S T R

 8 8 A E E L M O P R S T X

 9 9 A E E L M O P R S T X

10 10 A E E L M O P R S T X

 A E E L M O P R S T X

17

rules of the game
shellsort
mergesort
quicksort
animations

Visual representation of insertion sort

18

i

a[i]

left of pointer is in sorted order right of pointer is untouched

Reason it is slow: data movement

Idea: move elements more than one position at a time

by h-sorting the file for a decreasing sequence of values of h

Shellsort

19

a 3-sorted file is
3 interleaved sorted files

S O R T E X A M P L Einput

M O R T E X A S P L E

M O R T E X A S P L E

M O L T E X A S P R E

M O L E E X A S P R T

7-sort

E O L M E X A S P R T

E E L M O X A S P R T

E E L M O X A S P R T

A E L E O X M S P R T

A E L E O X M S P R T

A E L E O P M S X R T

A E L E O P M S X R T

A E L E O P M S X R T

3-sort

A E L E O P M S X R T

A E L E O P M S X R T

A E E L O P M S X R T

A E E L O P M S X R T

A E E L O P M S X R T

A E E L M O P S X R T

A E E L M O P S X R T

A E E L M O P S X R T

A E E L M O P R S X T

A E E L M O P R S T X

A E E L M O P R S T X

1-sort

A E E L M O P R S T Xresult

A E L E O P M S X R T

A E M R

 E O S T

 L P X

Idea: move elements more than one position at a time

by h-sorting the file for a decreasing sequence of values of h

Use insertion sort, modified to h-sort

 public static void sort(double[] a)
 {
 int N = a.length;
 int[] incs = { 1391376, 463792, 198768, 86961,
 33936, 13776, 4592, 1968, 861,
 336, 112, 48, 21, 7, 3, 1 };
 for (int k = 0; k < incs.length; k++)
 {
 int h = incs[k];
 for (int i = h; i < N; i++)
 for (int j = i; j >= h; j-= h)
 if (less(a[j], a[j-h]))
 exch(a, j, j-h);
 else break;
 }
 }

Shellsort

20

insertion sort!

magic increment
sequence

big increments:
 small subfiles

small increments:
 subfiles nearly in order

method of choice for both
small subfiles
subfiles nearly in order

Visual representation of shellsort

Bottom line: substantially faster!
21

big increment

small increment

22

Analysis of shellsort

Model has not yet been discovered (!)

102240,000

46720,000

20910,000

935,000

comparisonsN

226680,000

1059855

495349

230143

10658

2.5 N lg NN1.289

22572089

measured in thousands

Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains

Useful in practice

• fast unless file size is huge

• tiny, fixed footprint for code (used in embedded systems)

• hardware sort prototype

Simple algorithm, nontrivial performance, interesting questions

• asymptotic growth rate?

• best sequence of increments?

• average case performance?

Your first open problem in algorithmics (see Section 6.8):

 Find a better increment sequence

 mail rs@cs.princeton.edu

Lesson: some good algorithms are still waiting discovery
23

24

rules of the game
shellsort
mergesort
quicksort
animations

25

Mergesort (von Neumann, 1945(!))

Basic plan:

• Divide array into two halves.

• Recursively sort each half.

• Merge two halves.

trace
 a[i]

 lo hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 M E R G E S O R T E X A M P L E

 0 1 E M R G E S O R T E X A M P L E

 2 3 E M G R E S O R T E X A M P L E

 0 3 E G M R E S O R T E X A M P L E

 4 5 E G M R E S O R T E X A M P L E

 6 7 E G M R E S O R T E X A M P L E

 4 7 E G M R E O R S T E X A M P L E

 0 7 E E G M O R R S T E X A M P L E

 8 9 E E G M O R R S E T X A M P L E

 10 11 E E G M O R R S E T A X M P L E

 8 11 E E G M O R R S A E T X M P L E

 12 13 E E G M O R R S A E T X M P L E

 14 15 E E G M O R R S A E T X M P E L

 12 15 E E G M O R R S A E T X E L M P

 8 15 E E G M O R R S A E E L M P T X

 0 15 A E E E E G L M M O P R R S T X

M E R G E S O R T E X A M P L E

E E G M O R R S T E X A M P L E

E E G M O R R S A E E L M P T X

A E E E E G L M M O P R R S T X

plan

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

26

Merging

A G L O R H I M S T

A G H I L M

i j

k

l rm

aux[]

a[]

private static void merge(Comparable[] a,
 Comparable[] aux, int l, int m, int r)
{
 for (int k = l; k < r; k++) aux[k] = a[k];
 int i = l, j = m;
 for (int k = l; k < r; k++)
 if (i >= m) a[k] = aux[j++];
 else if (j >= r) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];

}

merge

copy

see book for a trick
to eliminate these

27

Mergesort: Java implementation of recursive sort

lo m hi

10 11 12 13 14 15 16 17 18 19

public class Merge
{
 private static void sort(Comparable[] a,
 Comparable[] aux, int lo, int hi)
 {
 if (hi <= lo + 1) return;
 int m = lo + (hi - lo) / 2;
 sort(a, aux, lo, m);
 sort(a, aux, m, hi);
 merge(a, aux, lo, m, hi);
 }

 public static void sort(Comparable[] a)
 {
 Comparable[] aux = new Comparable[a.length];
 sort(a, aux, 0, a.length);
 }
}

28

Mergesort analysis: Memory

Q. How much memory does mergesort require?

A. Too much!

• Original input array = N.

• Auxiliary array for merging = N.

• Local variables: constant.

• Function call stack: log2 N [stay tuned].

• Total = 2N + O(log N).

Q. How much memory do other sorting algorithms require?

• N + O(1) for insertion sort and selection sort.

• In-place = N + O(log N).

Challenge for the bored. In-place merge. [Kronrud, 1969]

cannot “fill the memory and sort”

29

Mergesort analysis

Def. T(N) number of array stores to mergesort an input of size N

 = T(N/2) + T(N/2) + N

Mergesort recurrence

• not quite right for odd N

• same recurrence holds for many algorithms

• same for any input of size N

• comparison count slightly smaller because of array ends

Solution of Mergesort recurrence

• true for all N

• easy to prove when N is a power of 2

T(N) = 2 T(N/2) + N
 for N > 1, with T(1) = 0

lg N log2 N

T(N) ~ N lg N

left half right half merge

30

Mergesort recurrence: Proof 1 (by recursion tree)

T(N)

T(N/2)T(N/2)

T(N/4)T(N/4)T(N/4) T(N/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

N

T(N / 2k)

2(N/2)

2k(N/2k)

N/2 (2)

...

lg N

N lg N

T(N) = 2 T(N/2) + N
 for N > 1, with T(1) = 0

= N

= N

= N

= N

+

...

T(N) = N lg N

(assume that N is a power of 2)

31

Mergesort recurrence: Proof 2 (by telescoping)

Pf.

T(N) = 2 T(N/2) + N
 for N > 1, with T(1) = 0

 T(N) = 2 T(N/2) + N

T(N)/N = 2 T(N/2)/N + 1

 = T(N/2)/(N/2) + 1

 = T(N/4)/(N/4) + 1 + 1

 = T(N/8)/(N/8) + 1 + 1 + 1

 . . .

 = T(N/N)/(N/N) + 1 + 1 +. . .+ 1

 = lg N

T(N) = N lg N

(assume that N is a power of 2)

given

divide both sides by N

algebra

telescope (apply to first term)

telescope again

stop telescoping, T(1) = 0

Claim. If T(N) satisfies this recurrence, then T(N) = N lg N.

Pf. [by induction on N]

• Base case: N = 1.

• Inductive hypothesis: T(N) = N lg N

• Goal: show that T(2N) + 2N lg (2N).

Ex. (for COS 340). Extend to show that T(N) ~ N lg N for general N

32

Mergesort recurrence: Proof 3 (by induction)

T(2N) = 2 T(N) + 2N given

 = 2 N lg N + 2 N inductive hypothesis

 = 2 N (lg (2N) - 1) + 2N algebra

 = 2 N lg (2N) QED

T(N) = 2 T(N/2) + N
 for N > 1, with T(1) = 0

(assume that N is a power of 2)

Basic plan:

• Pass through file, merging to double size of sorted subarrays.

• Do so for subarray sizes 1, 2, 4, 8, . . . , N/2, N.

33

Bottom-up mergesort

proof 4 that mergesort
uses N lgN compares

No recursion needed!

 a[i]

 lo hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 M E R G E S O R T E X A M P L E

 0 1 E M R G E S O R T E X A M P L E

 2 3 E M G R E S O R T E X A M P L E

 4 5 E M G R E S O R T E X A M P L E

 6 7 E M G R E S O R T E X A M P L E

 8 9 E M G R E S O R E T X A M P L E

 10 11 E M G R E S O R E T A X M P L E

 12 13 E M G R E S O R E T A X M P L E

 14 15 E M G R E S O R E T A X M P E L

 0 3 E G M R E S O R E T A X M P E L

 4 7 E G M R E O R S E T A X M P E L

 8 11 E E G M O R R S A E T X M P E L

 12 15 E E G M O R R S A E T X E L M P

 0 7 E E G M O R R S A E T X E L M P

 8 15 E E G M O R R S A E E L M P T X

 0 15 A E E E E G L M M O P R R S T X

34

Bottom-up Mergesort: Java implementation

public class Merge
{
 private static void merge(Comparable[] a, Comparable[] aux,
 int l, int m, int r)
 {
 for (int i = l; i < m; i++) aux[i] = a[i];
 for (int j = m; j < r; j++) aux[j] = a[m + r - j - 1];
 int i = l, j = r - 1;
 for (int k = l; k < r; k++)
 if (less(aux[j], aux[i])) a[k] = aux[j--];
 else a[k] = aux[i++];

 }

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 Comparable[] aux = new Comparable[N];
 for (int m = 1; m < N; m = m+m)
 for (int i = 0; i < N-m; i += m+m)
 merge(a, aux, i, i+m, Math.min(i+m+m, N));
 }
}

tricky merge
that uses sentinel
(see Program 8.2)

Concise industrial-strength code if you have the space

35

Mergesort: Practical Improvements

Use sentinel.

• Two statements in inner loop are array-bounds checking.

• Reverse one subarray so that largest element is sentinel (Program 8.2)

Use insertion sort on small subarrays.

• Mergesort has too much overhead for tiny subarrays.

• Cutoff to insertion sort for 7 elements.

Stop if already sorted.

• Is biggest element in first half smallest element in second half?

• Helps for nearly ordered lists.

Eliminate the copy to the auxiliary array. Save time (but not space) by

switching the role of the input and auxiliary array in each recursive call.

See Program 8.4 (or Java system sort)

36

Sorting Analysis Summary

Running time estimates:

• Home pc executes 108 comparisons/second.

• Supercomputer executes 1012 comparisons/second.

Lesson. Good algorithms are better than supercomputers.

Good enough?

computer

home

super

thousand

instant

instant

million

2.8 hours

1 second

billion

317 years

1.6 weeks

Insertion Sort (N2)

thousand

instant

instant

million

1 sec

instant

billion

18 min

instant

Mergesort (N log N)

18 minutes might be too long for some applications

37

rules of the game
shellsort
mergesort
quicksort
animations

38

Quicksort (Hoare, 1959)

Basic plan.

• Shuffle the array.

• Partition so that, for some i

element a[i] is in place

no larger element to the left of i

no smaller element to the right of i

• Sort each piece recursively.

Q U I C K S O R T E X A M P L E

E R A T E S L P U I M Q C X O K

E C A I E K L P U T M Q R X O S

A C E E I K L P U T M Q R X O S

A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

Sir Charles Antony Richard Hoare
1980 Turing Award

randomize

partition

sort left part

sort right part

input

result

39

Quicksort: Java code for recursive sort

public class Quick

{

 public static void sort(Comparable[] a)

 {

 StdRandom.shuffle(a);

 sort(a, 0, a.length - 1);

 }

 private static void sort(Comparable[] a, int l, int r)

 {

 if (r <= l) return;

 int m = partition(a, l, r);

 sort(a, l, m-1);

 sort(a, m+1, r);

 }

}

Quicksort trace

40

 a[i]

 l r i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Q U I C K S O R T E X A M P L E

 E R A T E S L P U I M Q C X O K

 0 15 5 E C A I E K L P U T M Q R X O S

 0 4 2 A C E I E K L P U T M Q R X O S

 0 1 1 A C E I E K L P U T M Q R X O S

 0 0 A C E I E K L P U T M Q R X O S

 3 4 3 A C E E I K L P U T M Q R X O S

 4 4 A C E E I K L P U T M Q R X O S

 6 15 12 A C E E I K L P O R M Q S X U T

 6 11 10 A C E E I K L P O M Q R S X U T

 6 9 7 A C E E I K L M O P Q R S X U T

 6 6 A C E E I K L M O P Q R S X U T

 8 9 9 A C E E I K L M O P Q R S X U T

 8 8 A C E E I K L M O P Q R S X U T

 11 11 A C E E I K L M O P Q R S X U T

 13 15 13 A C E E I K L M O P Q R S T U X

 14 15 15 A C E E I K L M O P Q R S T U X

 14 14 A C E E I K L M O P Q R S T U X

 A C E E I K L M O P Q R S T U X

array contents after each recursive sort

randomize
partition

input

no partition for
subfiles of size 1

Quicksort partitioning

Basic plan:

• scan from left for an item that belongs on the right

• scan from right for item item that belongs on the left

• exchange

• continue until pointers cross

41

array contents before and after each exchange

 a[i]

 i j r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-1 15 15 E R A T E S L P U I M Q C X O K

 1 12 15 E R A T E S L P U I M Q C X O K

 1 12 15 E C A T E S L P U I M Q R X O K

 3 9 15 E C A T E S L P U I M Q R X O K

 3 9 15 E C A I E S L P U T M Q R X O K

 5 5 15 E C A I E S L P U T M Q R X O K

 5 5 15 E C A I E K L P U T M Q R X O S

 E C A I E K L P U T M Q R X O S

scans

exchange

private static int partition(Comparable[] a, int l, int r)
{
 int i = l - 1;
 int j = r;
 while(true)
 {

 while (less(a[++i], a[r]))
 if (i == r) break;

 while (less(a[r], a[--j]))
 if (j == l) break;

 if (i >= j) break;

 exch(a, i, j);
 }

 exch(a, i, r);
 return i;
}

42

Quicksort: Java code for partitioning

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

i j

i j

<= v >= v

v

i

<= v >= v

v

v

43

Quicksort Implementation details

Partitioning in-place. Using a spare array makes partitioning easier,

but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit

trickier than it might seem.

Staying in bounds. The (i == r) test is redundant, but the (j == l)

test is not.

Preserving randomness. Shuffling is key for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively)

best to stop on elements equal to partitioning element.

Theorem. The average number of comparisons CN to quicksort a

random file of N elements is about 2N ln N.

• The precise recurrence satisfies C0 = C1 = 0 and for N 2:

• Multiply both sides by N

• Subtract the same formula for N-1:

• Simplify:

44

Quicksort: Average-case analysis

CN = N + 1 + ((C0 + CN-1) + . . . + (Ck-1 + CN-k) + . . . + (CN-1 + C1)) / N

 = N + 1 + 2 (C0 . . . + Ck-1 + . . . + CN-1) / N

NCN = N(N + 1) + 2 (C0 . . . + Ck-1 + . . . + CN-1)

NCN - (N - 1)CN-1 = N(N + 1) - (N - 1)N + 2 CN-1

NCN = (N + 1)CN-1 + 2N

partition right partitioning
probability

left

• Divide both sides by N(N+1) to get a telescoping sum:

• Approximate the exact answer by an integral:

• Finally, the desired result:

45

Quicksort: Average Case

NCN = (N + 1)CN-1 + 2N

CN / (N + 1) = CN-1 / N + 2 / (N + 1)

 = CN-2 / (N - 1) + 2/N + 2/(N + 1)

 = CN-3 / (N - 2) + 2/(N - 1) + 2/N + 2/(N + 1)

 = 2 (1 + 1/2 + 1/3 + . . . + 1/N + 1/(N + 1))

CN 2(N + 1)(1 + 1/2 + 1/3 + . . . + 1/N)

 = 2(N + 1) HN 2(N + 1) dx/x

CN 2(N + 1) ln N 1.39 N lg N

1

N

46

Quicksort: Summary of performance characteristics

Worst case. Number of comparisons is quadratic.

• N + (N-1) + (N-2) + … + 1 N2 / 2.

• More likely that your computer is struck by lightning.

Average case. Number of comparisons is ~ 1.39 N lg N.

• 39% more comparisons than mergesort.

• but faster than mergesort in practice because of lower cost of

other high-frequency operations.

Random shuffle

• probabilistic guarantee against worst case

• basis for math model that can be validated with experiments

Caveat emptor. Many textbook implementations go quadratic if input:

• Is sorted.

• Is reverse sorted.

• Has many duplicates (even if randomized)! [stay tuned]

47

Sorting analysis summary

Running time estimates:

• Home pc executes 108 comparisons/second.

• Supercomputer executes 1012 comparisons/second.

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

computer

home

super

thousand

instant

instant

million

2.8 hours

1 second

billion

317 years

1.6 weeks

Insertion Sort (N2)

thousand

instant

instant

million

1 sec

instant

billion

18 min

instant

Mergesort (N log N)

thousand

instant

instant

million

0.3 sec

instant

billion

6 min

instant

Quicksort (N log N)

48

Quicksort: Practical improvements

Median of sample.

• Best choice of pivot element = median.

• But how to compute the median?

• Estimate true median by taking median of sample.

Insertion sort small files.

• Even quicksort has too much overhead for tiny files.

• Can delay insertion sort until end.

Optimize parameters.

• Median-of-3 random elements.

• Cutoff to insertion sort for 10 elements.

Non-recursive version.

• Use explicit stack.

• Always sort smaller half first.

All validated with refined math models and experiments

guarantees O(log N) stack size

 12/7 N log N comparisons

49

rules of the game
shellsort
mergesort
quicksort
animations

Mergesort animation

50

done

merge in progress
input

merge in progress
output

auxiliary array

untouched

Bottom-up mergesort animation

51

merge in progress
input

merge in progress
output

this pass

auxiliary array

last pass

Quicksort animation

52

j

i

v

done

first partition

second partition

1

Advanced Topics in Sorting

complexity
system sorts
duplicate keys
comparators

2

complexity
system sorts
duplicate keys
comparators

3

Complexity of sorting

Computational complexity. Framework to study efficiency of

algorithms for solving a particular problem X.

Machine model. Focus on fundamental operations.

Upper bound. Cost guarantee provided by some algorithm for X.

Lower bound. Proven limit on cost guarantee of any algorithm for X.

Optimal algorithm. Algorithm with best cost guarantee for X.

Example: sorting.

• Machine model = # comparisons

• Upper bound = N lg N from mergesort.

• Lower bound ?

lower bound ~ upper bound

access information only through compares

4

Decision Tree

a b c

b < c

yes no

b < c

yes no

a < c

yes no

a < c

yes no

a c b c a b

b a c

b c a c b a

a < b

yes no

code between comparisons
(e.g., sequence of exchanges)

5

Comparison-based lower bound for sorting

Theorem. Any comparison based sorting algorithm must use more than

N lg N - 1.44 N comparisons in the worst-case.

Pf.

• Assume input consists of N distinct values a1 through aN.

• Worst case dictated by tree height h.

• N ! different orderings.

• (At least) one leaf corresponds to each ordering.

• Binary tree with N ! leaves cannot have height less than lg (N!)

Stirling's formula

h lg N!

 lg (N / e) N

 = N lg N - N lg e

 N lg N - 1.44 N

6

Complexity of sorting

Upper bound. Cost guarantee provided by some algorithm for X.

Lower bound. Proven limit on cost guarantee of any algorithm for X.

Optimal algorithm. Algorithm with best cost guarantee for X.

Example: sorting.

• Machine model = # comparisons

• Upper bound = N lg N (mergesort)

• Lower bound = N lg N - 1.44 N

Mergesort is optimal (to within a small additive factor)

First goal of algorithm design: optimal algorithms

lower bound upper bound

7

Complexity results in context

Mergesort is optimal (to within a small additive factor)

Other operations?

• statement is only about number of compares

• quicksort is faster than mergesort (lower use of other operations)

Space?

• mergesort is not optimal with respect to space usage

• insertion sort, selection sort, shellsort, quicksort are space-optimal

• is there an algorithm that is both time- and space-optimal?

Nonoptimal algorithms may be better in practice

• statement is only about guaranteed worst-case performance

• quicksort’s probabilistic guarantee is just as good in practice

Lessons

• use theory as a guide

• know your algorithms

don’t try to design an algorithm that uses
half as many compares as mergesort

stay tuned for heapsort

use quicksort when time and space are critical

8

Example: Selection

Find the kth largest element.

• Min: k = 1.

• Max: k = N.

• Median: k = N/2.

Applications.

• Order statistics.

• Find the “top k”

Use theory as a guide

• easy O(N log N) upper bound: sort, return a[k]

• easy O(N) upper bound for some k: min, max

• easy (N) lower bound: must examine every element

Which is true?

• (N log N) lower bound? [is selection as hard as sorting?]

• O(N) upper bound? [linear algorithm for all k]

9

Complexity results in context (continued)

Lower bound may not hold if the algorithm has information about

• the key values

• their initial arrangement

Partially ordered arrays. Depending on the initial order of the input,

we may not need N lg N compares.

Duplicate keys. Depending on the input distribution of duplicates, we

may not need N lg N compares.

Digital properties of keys. We can use digit/character comparisons

instead of key comparisons for numbers and strings.

insertion sort requires O(N) compares on
an already sorted array

stay tuned for 3-way quicksort

stay tuned for radix sorts

Partition array so that:

• element a[m] is in place

• no larger element to the left of m

• no smaller element to the right of m

Repeat in one subarray, depending on m.

Finished when m = k

10

Selection: quick-select algorithm

public static void select(Comparable[] a, int k)
{
 StdRandom.shuffle(a);
 int l = 0;
 int r = a.length - 1;
 while (r > l)
 {
 int i = partition(a, l, r);
 if (m > k) r = m - 1;
 else if (m < k) l = m + 1;
 else return;
 }
}

l m r

if k is here
set r to m-1

if k is here
set l to m+1

a[k] is in place, no larger element to the left, no smaller element to the right

11

Quick-select analysis

Theorem. Quick-select takes linear time on average.

Pf.

• Intuitively, each partitioning step roughly splits array in half.

• N + N/2 + N/4 + … + 1 2N comparisons.

• Formal analysis similar to quicksort analysis:

Note. Might use ~N2/2 comparisons, but as with quicksort, the random shuffle provides a
probabilistic guarantee.

Theorem. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a

selection algorithm that take linear time in the worst case.
Note. Algorithm is far too complicated to be useful in practice.

Use theory as a guide

• still worthwhile to seek practical linear-time (worst-case) algorithm

• until one is discovered, use quick-select if you don’t need a full sort

Ex: (2 + 2 ln 2) N comparisons to find the median

CN = 2 N + k ln (N / k) + (N - k) ln (N / (N - k))

12

complexity
system sorts
duplicate keys
comparators

13

Sorting Challenge 1

Problem: sort a file of huge records with tiny keys.

Ex: reorganizing your MP3 files.

Which sorting method to use?

1. mergesort

2. insertion sort

3. selection sort

14

Sorting Challenge 1

Problem: sort a file of huge records with tiny keys.

Ex: reorganizing your MP3 files.

Which sorting method to use?

1. mergesort probably no, selection sort simpler and faster

2. insertion sort no, too many exchanges

3. selection sort YES, linear time under reasonable assumptions

Ex: 5,000 records, each 2 million bytes with 100-byte keys.

Cost of comparisons: 100 50002 / 2 = 1.25 billion

Cost of exchanges: 2,000,000 5,000 = 10 trillion

Mergesort might be a factor of log (5000) slower.

15

Sorting Challenge 2

Problem: sort a huge randomly-ordered file of small records.

Ex: process transaction records for a phone company.

Which sorting method to use?

1. quicksort

2. insertion sort

3. selection sort

16

Sorting Challenge 2

Problem: sort a huge randomly-ordered file of small records.

Ex: process transaction records for a phone company.

Which sorting method to use?

1. quicksort YES, it's designed for this problem

2. insertion sort no, quadratic time for randomly-ordered files

3. selection sort no, always takes quadratic time

17

Sorting Challenge 3

Problem: sort a huge number of tiny files (each file is independent)

Ex: daily customer transaction records.

Which sorting method to use?

1. quicksort

2. insertion sort

3. selection sort

18

Sorting Challenge 3

Problem: sort a huge number of tiny files (each file is independent)

Ex: daily customer transaction records.

Which sorting method to use?

1. quicksort no, too much overhead

2. insertion sort YES, much less overhead than system sort

3. selection sort YES, much less overhead than system sort

Ex: 4 record file.

4 N log N + 35 = 70

2N2 = 32

19

Sorting Challenge 4

Problem: sort a huge file that is already almost in order.

Ex: re-sort a huge database after a few changes.

Which sorting method to use?

1. quicksort

2. insertion sort

3. selection sort

20

Sorting Challenge 4

Problem: sort a huge file that is already almost in order.

Ex: re-sort a huge database after a few changes.

Which sorting method to use?

1. quicksort probably no, insertion simpler and faster

2. insertion sort YES, linear time for most definitions of "in order"

3. selection sort no, always takes quadratic time

Ex:
A B C D E F H I J G P K L M N O Q R S T U V W X Y Z

Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

21

obvious applications

problems become easy once
items are in sorted order

non-obvious applications

Sorting Applications

Sorting algorithms are essential in a broad variety of applications

• Sort a list of names.

• Organize an MP3 library.

• Display Google PageRank results.

• List RSS news items in reverse chronological order.

• Find the median.

• Find the closest pair.

• Binary search in a database.

• Identify statistical outliers.

• Find duplicates in a mailing list.

• Data compression.

• Computer graphics.

• Computational biology.

• Supply chain management.

• Load balancing on a parallel computer.

. . .

Every system needs (and has) a system sort!

22

System sort: Which algorithm to use?

Many sorting algorithms to choose from

internal sorts.

• Insertion sort, selection sort, bubblesort, shaker sort.

• Quicksort, mergesort, heapsort, samplesort, shellsort.

• Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

external sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

radix sorts.

• Distribution, MSD, LSD.

• 3-way radix quicksort.

parallel sorts.

• Bitonic sort, Batcher even-odd sort.

• Smooth sort, cube sort, column sort.

• GPUsort.

23

System sort: Which algorithm to use?

Applications have diverse attributes

• Stable?

• Multiple keys?

• Deterministic?

• Keys all distinct?

• Multiple key types?

• Linked list or arrays?

• Large or small records?

• Is your file randomly ordered?

• Need guaranteed performance?

Elementary sort may be method of choice for some combination.

Cannot cover all combinations of attributes.

Q. Is the system sort good enough?

A. Maybe (no matter which algorithm it uses).

many more combinations of
attributes than algorithms

24

complexity
system sorts
duplicate keys
comparators

25

Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

• Sort population by age.

• Finding collinear points.

• Remove duplicates from mailing list.

• Sort job applicants by college attended.

 Typical characteristics of such applications.

• Huge file.

• Small number of key values.

Mergesort with duplicate keys: always ~ N lg N compares

Quicksort with duplicate keys

• algorithm goes quadratic unless partitioning stops on equal keys!

• [many textbook and system implementations have this problem]

• 1990s Unix user found this problem in qsort()

Duplicate keys: the problem

Assume all keys are equal.

Recursive code guarantees that case will predominate!

Mistake: Put all keys equal to the partitioning element on one side

• easy to code

• guarantees N2 running time when all keys equal

Recommended: Stop scans on keys equal to the partitioning element

• easy to code

• guarantees N lg N compares when all keys equal

Desirable: Put all keys equal to the partitioning element in place

Common wisdom to 1990s: not worth adding code to inner loop

26

B A A B A B C C B C B A A A A A A A A A A A

B A A B A B C C B C B A A A A A A A A A A A

A A A B B B B B C C C A A A A A A A A A A A

27

3-way partitioning. Partition elements into 3 parts:

• Elements between i and j equal to partition element v.

• No larger elements to left of i.

• No smaller elements to right of j.

Dutch national flag problem.

• not done in practical sorts before mid-1990s.

• new approach discovered when fixing mistake in Unix qsort()

• now incorporated into Java system sort

3-Way Partitioning

28

Solution to Dutch national flag problem.

3-way partitioning (Bentley-McIlroy).

• Partition elements into 4 parts:

no larger elements to left of i

no smaller elements to right of j

equal elements to left of p

equal elements to right of q

• Afterwards, swap equal keys into center.

All the right properties.

• in-place.

• not much code.

• linear if keys are all equal.

• small overhead if no equal keys.

private static void sort(Comparable[] a, int l, int r)
{
 if (r <= l) return;
 int i = l-1, j = r;
 int p = l-1, q = r;

 while(true)
 {
 while (less(a[++i], a[r])) ;
 while (less(a[r], a[--j])) if (j == l) break;
 if (i >= j) break;
 exch(a, i, j);
 if (eq(a[i], a[r])) exch(a, ++p, i);
 if (eq(a[j], a[r])) exch(a, --q, j);
 }
 exch(a, i, r);

 j = i - 1;
 i = i + 1;
 for (int k = l ; k <= p; k++) exch(a, k, j--);
 for (int k = r-1; k >= q; k--) exch(a, k, i++);

 sort(a, l, j);
 sort(a, i, r);
}

29

3-way Quicksort: Java Implementation

swap equal keys to left or right

swap equal keys back to middle

recursively sort left and right

4-way partitioning

30

Duplicate keys: lower bound

Theorem. [Sedgewick-Bentley] Quicksort with 3-way partitioning is

optimal for random keys with duplicates.

Proof (beyond scope of 226).

• generalize decision tree

• tie cost to entropy

• note: cost is linear when number of key values is O(1)

Bottom line: Randomized Quicksort with 3-way partitioning reduces

cost from linearithmic to linear (!) in broad class of applications

3-way partitioning animation

31

j q

p i

32

complexity
system sorts
duplicate keys
comparators

33

Generalized compare

Comparable interface: sort uses type’s compareTo() function:

public class Date implements Comparable<Date>
{
 private int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date b)
 {
 Date a = this;
 if (a.year < b.year) return -1;
 if (a.year > b.year) return +1;
 if (a.month < b.month) return -1;
 if (a.month > b.month) return +1;
 if (a.day < b.day) return -1;
 if (a.day > b.day) return +1;
 return 0;
 }
}

34

Generalized compare

Comparable interface: sort uses type’s compareTo() function:

Problem 1: Not type-safe

Problem 2: May want to use a different order.

Problem 3: Some types may have no “natural” order.

Ex. Sort strings by:

• Natural order. Now is the time

• Case insensitive. is Now the time

• French. real réal rico

• Spanish. café cuidado champiñón dulce

String[] a;
...
Arrays.sort(a);
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
Arrays.sort(a, Collator.getInstance(Locale.FRENCH));
Arrays.sort(a, Collator.getInstance(Locale.SPANISH));

ch and rr are single letters

import java.text.Collator;

Generalized compare

Comparable interface: sort uses type’s compareTo() function:

Problem 1: Not type-safe

Problem 2: May want to use a different order.

Problem 3: Some types may have no “natural” order.

A bad client public class BadClient

 {

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 Comparable[] a = new Comparable[N];

 ...

 a[i] = 1;

 ...

 a[j] = 2.0;

 ...

 Insertion.sort(a);

 }

}

autoboxed to Integer

autoboxed to Double

Exception ... java.lang.ClassCastException: java.lang.Double

 at java.lang.Integer.compareTo(Integer.java:35)

Generalized compare

Comparable interface: sort uses type’s compareTo() function:

Problem 1: Not type-safe

Problem 2: May want to use a different order.

Problem 3: Some types may have no “natural” order.

Fix: generics

 Client can sort array of any Comparable type: Double[], File[], Date[], ...

public class Insertion
{
 public static <Key extends Comparable<Key>>
 void sort(Key[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1])) exch(a, j, j-1);
 else break;
 }
}

Necessary in system library code; not in this course (for brevity)

37

Generalized compare

Comparable interface: sort uses type’s compareTo() function:

Problem 1: Not type-safe

Problem 2: May want to use a different order.

Problem 3: Some types may have no “natural” order.

Solution: Use Comparator interface

Comparator interface. Require a method compare() so that

compare(v, w) is a total order that behaves like compareTo().

Advantage. Separates the definition of the data type from

definition of what it means to compare two objects of that type.

• add any number of new orders to a data type.

• add an order to a library data type with no natural order.

38

Generalized compare

Comparable interface: sort uses type’s compareTo() function:

Problem 2: May want to use a different order.

Problem 3: Some types may have no “natural” order.

Solution: Use Comparator interface

Example:

public class ReverseOrder implements Comparator<String>
{

 public int compare(String a, String b)

 { return - a.compareTo(b); }

}

 ...
 Arrays.sort(a, new ReverseOrder());
 ...

reverse sense of comparison

39

Generalized compare

Easy modification to support comparators in our sort implementations

• pass comparator to sort(), less()

• use it in less()

Example: (insertion sort)

public static void sort(Object[] a, Comparator comparator)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(comparator, a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
}

private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }

private static void exch(Object[] a, int i, int j)
{ Object t = a[i]; a[i] = a[j]; a[j] = t; }

40

Generalized compare

Comparators enable multiple sorts of single file (different keys)

Example. Enable sorting students by name or by section.

Arrays.sort(students, Student.BY_NAME);
Arrays.sort(students, Student.BY_SECT);

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

sort by name then sort by section

Comparators enable multiple sorts of single file (different keys)

Example. Enable sorting students by name or by section.

41

Generalized compare

public class Student

{
 public static final Comparator<Student> BY_NAME = new ByName();

 public static final Comparator<Student> BY_SECT = new BySect();

 private String name;

 private int section;

 ...

 private static class ByName implements Comparator<Student>

 {

 public int compare(Student a, Student b)

 { return a.name.compareTo(b.name); }

 }

 private static class BySect implements Comparator<Student>

 {

 public int compare(Student a, Student b)

 { return a.section - b.section; }

 }

}
only use this trick if no danger of overflow

42

Generalized compare problem

A typical application

• first, sort by name

• then, sort by section

@#%&@!! Students in section 3 no longer in order by name.

A stable sort preserves the relative order of records with equal keys.

Is the system sort stable?

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Arrays.sort(students, Student.BY_NAME); Arrays.sort(students, Student.BY_SECT);

43

Stability

Q. Which sorts are stable?

• Selection sort?

• Insertion sort?

• Shellsort?

• Quicksort?

• Mergesort?

A. Careful look at code required.

Annoying fact. Many useful sorting algorithms are unstable.

Easy solutions.

• add an integer rank to the key

• careful implementation of mergesort

Open: Stable, inplace, optimal, practical sort??

44

Java system sorts

Use theory as a guide: Java uses both mergesort and quicksort.

• Can sort array of type Comparable or any primitive type.

• Uses quicksort for primitive types.

• Uses mergesort for objects.

Q. Why use two different sorts?

A. Use of primitive types indicates time and space are critical

A. Use of objects indicates time and space not so critical

import java.util.Arrays;
public class IntegerSort
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int[] a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = StdIn.readInt();
 Arrays.sort(a);
 for (int i = 0; i < N; i++)
 System.out.println(a[i]);
 }
}

45

Arrays.sort() for primitive types

Bentley-McIlroy. [Engineeering a Sort Function]

• Original motivation: improve qsort() function in C.

• Basic algorithm = 3-way quicksort with cutoff to insertion sort.

• Partition on Tukey's ninther: median-of-3 elements, each of which is

a median-of-3 elements.

Why use ninther?

• better partitioning than sampling

• quick and easy to implement with macros

• less costly than random

R A M G X JK B E

A MR X KG J EB

K EM

K ninther

medians

groups of 3

nine evenly spaced elements
approximate median-of-9

Good idea? Stay tuned.

46

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Based on all this research, Java’s system sort is solid, right?

McIlroy's devious idea. [A Killer Adversary for Quicksort]

• Construct malicious input while running system quicksort,

in response to elements compared.

• If p is pivot, commit to (x < p) and (y < p), but don't commit to

(x < y) or (x > y) until x and y are compared.

Consequences.

• Confirms theoretical possibility.

• Algorithmic complexity attack: you enter linear amount of data;

server performs quadratic amount of work.

47

Achilles heel in Bentley-McIlroy implementation (Java system sort)

A killer input:

• blows function call stack in Java and crashes program

• would take quadratic time if it didn’t crash first

Attack is not effective if file is randomly ordered before sort

Java's sorting library crashes, even if
you give it as much stack space as Windows allows.

250,000 integers between
0 and 250,000

more disastrous possibilities in C

% java IntegerSort < 250000.txt
Exception in thread "main" java.lang.StackOverflowError
 at java.util.Arrays.sort1(Arrays.java:562)
 at java.util.Arrays.sort1(Arrays.java:606)
 at java.util.Arrays.sort1(Arrays.java:608)
 at java.util.Arrays.sort1(Arrays.java:608)
 at java.util.Arrays.sort1(Arrays.java:608)
 . . .

% more 250000.txt
0
218750
222662
11
166672
247070
83339
156253
...

48

System sort: Which algorithm to use?

Applications have diverse attributes

• Stable?

• Multiple keys?

• Deterministic?

• Keys all distinct?

• Multiple key types?

• Linked list or arrays?

• Large or small records?

• Is your file randomly ordered?

• Need guaranteed performance?

Elementary sort may be method of choice for some combination.

Cannot cover all combinations of attributes.

Q. Is the system sort good enough?

A. Maybe (no matter which algorithm it uses).

many more combinations of
attributes than algorithms

1

Priority Queues

API
elementary implementations
binary heaps
heapsort
event-driven simulation

References:

 Algorithms in Java, Chapter 9
 http://www.cs.princeton.edu/introalgsds/34pq

2

API
elementary implementations
binary heaps
heapsort
event-driven simulation

3

Priority Queues

Data. Items that can be compared.

Basic operations.

• Insert.

• Remove largest.

• Copy.

• Create.

• Destroy.

• Test if empty.

defining ops

generic ops

4

Priority Queue Applications

• Event-driven simulation. [customers in a line, colliding particles]

• Numerical computation. [reducing roundoff error]

• Data compression. [Huffman codes]

• Graph searching. [Dijkstra's algorithm, Prim's algorithm]

• Computational number theory. [sum of powers]

• Artificial intelligence. [A* search]

• Statistics. [maintain largest M values in a sequence]

• Operating systems. [load balancing, interrupt handling]

• Discrete optimization. [bin packing, scheduling]

• Spam filtering. [Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

5

Priority queue client example

Problem: Find the largest M of a stream of N elements.

• Fraud detection: isolate $$ transactions.

• File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N elements.

Solution. Use a priority queue.

sort

Operation

elementary PQ

binary heap

best in theory

N

space

M

M

M

N lg N

time

M N

N lg M

N

MinPQ<Transaction> pq
 = new MinPQ<Transaction>();

while(!StdIn.isEmpty())
{
 String s = StdIn.readLine();
 t = new Transaction(s);
 pq.insert(t);
 if (pq.size() > M)
 pq.delMin();
}

while (!pq.isEmpty())
 System.out.println(pq.delMin());

6

API
elementary implementations
binary heaps
heapsort
event-driven simulation

public class UnorderedPQ<Item extends Comparable>
{
 private Item[] pq; // pq[i] = ith element on PQ
 private int N; // number of elements on PQ

 public UnorderedPQ(int maxN)
 { pq = (Item[]) new Comparable[maxN]; }

 public boolean isEmpty()
 { return N == 0; }

 public void insert(Item x)
 { pq[N++] = x; }

 public Item delMax()
 {
 int max = 0;
 for (int i = 1; i < N; i++)
 if (less(max, i)) max = i;
 exch(max, N-1);
 return pq[--N];
 }
}

7

Priority queue: unordered array implementation

no generic array creation

8

Priority queue elementary implementations

Challenge. Implement both operations efficiently.

unordered array

Implementation

ordered array

N

Del Max

1

1

Insert

N

worst-case asymptotic costs for PQ with N items

9

API
elementary implementations
binary heaps
heapsort
event-driven simulation

10

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.

• Empty or

• Node with links to left and

right trees.

11

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.

• Empty or

• Node with links to left and

right trees.

Heap-ordered binary tree.

• Keys in nodes.

• No smaller than children’s keys.

12

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.

• Empty or

• Node with links to left and

right trees.

Heap-ordered binary tree.

• Keys in nodes.

• No smaller than children’s keys.

Array representation.

• Take nodes in level order.

• No explicit links needed since

tree is complete.

13

Binary Heap Properties

Property A. Largest key is at root.

14

Binary Heap Properties

Property A. Largest key is at root.

Property B. Can use array indices to move through tree.

• Note: indices start at 1.

• Parent of node at k is at k/2.

• Children of node at k are at 2k and 2k+1.

15

Binary Heap Properties

Property A. Largest key is at root.

Property B. Can use array indices to move through tree.

• Note: indices start at 1.

• Parent of node at k is at k/2.

• Children of node at k are at 2k and 2k+1.

Property C. Height of N node heap is 1 + lg N .

N = 16
height = 5

height increases only when
N is a power of 2

16

Promotion In a Heap

Scenario. Exactly one node has a larger key than its parent.

To eliminate the violation:

• Exchange with its parent.

• Repeat until heap order restored.

Peter principle: node promoted to level

of incompetence.

private void swim(int k)
{
 while (k > 1 && less(k/2, k))
 {
 exch(k, k/2);
 k = k/2;
 }
}

parent of node at k is at k/2

17

Insert

Insert. Add node at end, then promote.

public void insert(Item x)
{
 pq[++N] = x;
 swim(N);
}

18

Demotion In a Heap

Scenario. Exactly one node has a smaller key than does a child.

To eliminate the violation:

• Exchange with larger child.

• Repeat until heap order restored.

Power struggle: better subordinate promoted.

children of node
at k are 2k and 2k+1

private void sink(int k)
{
 while (2*k <= N)
 {
 int j = 2*k;
 if (j < N && less(j, j+1)) j++;
 if (!less(k, j)) break;
 exch(k, j);
 k = j;
 }
}

public Item delMax()
{
 Item max = pq[1];
 exch(1, N--);
 sink(1);
 pq[N+1] = null;
 return max;
}

19

Remove the Maximum

Remove max. Exchange root with node at end, then demote.

prevent loitering

array helper functions

heap helper functions

PQ ops

20

Binary heap implementation summary

public class MaxPQ<Item extends Comparable>

{

 private Item[] pq;

 private int N;

 public MaxPQ(int maxN)

 { . . . }

 public boolean isEmpty()

 { . . . }

 public void insert(Item x)

 { . . . }

 public Item delMax()

 { . . . }

 private void swim(int k)

 { . . . }

 private void sink(int k)

 { . . . }

 private boolean less(int i, int j)

 { . . . }

 private void exch(int i, int j)

 { . . . }

}

same as array-based PQ,
but allocate one extra element

21

Binary heap considerations

Minimum oriented priority queue

• replace less() with greater()

• implement greater().

Array resizing

• add no-arg constructor

• apply repeated doubling.

Immutability of keys.

• assumption: client does not change keys while they're on the PQ

• best practice: use immutable keys

Other operations.

• remove an arbitrary item.

• change the priority of an item.

leads to O(log N) amortized time per op

easy to implement with sink() and swim() [stay tuned]

22

Priority Queues Implementation Cost Summary

Hopeless challenge. Make all ops O(1).

Why hopeless?

ordered array

Operation

ordered list

unordered array

unordered list

binary heap

1

Remove Max

1

N

N

lg N

1

Find Max

1

N

N

1

N

Insert

N

1

1

lg N

worst-case asymptotic costs for PQ with N items

23

API
elementary implementations
binary heaps
heapsort
event-driven simulation

24

Digression: Heapsort

First pass: build heap.

• Insert items into heap, one at at time.

• Or can use faster bottom-up method; see book.

Second pass: sort.

• Remove maximum items, one at a time.

• Leave in array, instead of nulling out.

Property D. At most 2 N lg N comparisons.

for (int k = N/2; k >= 1; k--)
 sink(a, k, N);

while (N > 1
{
 exch(a, 1, N--);
 sink(a, 1, N);
}

Q. Sort in O(N log N) worst-case without using extra memory?

A. Yes. Heapsort.

Not mergesort? Linear extra space.

Not quicksort? Quadratic time in worst case.

Heapsort is optimal for both time and space, but:

• inner loop longer than quicksort’s.

• makes poor use of cache memory.

25

Significance of Heapsort

in-place merge possible, not practical

 O(N log N) worst-case quicksort
possible, not practical.

26

Sorting algorithms: summary

key comparisons to sort N distinct randomly-ordered keys

inplace stable worst average best remarks

selection

insertion

shell

quick

merge

heap

x N2 / 2 N2 / 2 N2 / 2 N exchanges

x x N2 / 2 N2 / 4 N use for small N or partly ordered

x N tight code

x N2 / 2 2N ln N N lg N
N log N probabilistic guarantee

fastest in practice

x N lg N N lg N N lg N N log N guarantee, stable

x 2N lg N 2N lg N N lg N N log N guarantee, in-place

27

API
elementary implementations
binary heaps
heapsort
event-driven simulation

Bouncing balls (COS 126)

Review

28

public class BouncingBalls

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 Ball balls[] = new Ball[N];

 for (int i = 0; i < N; i++)

 balls[i] = new Ball();

 while(true)

 {

 StdDraw.clear();

 for (int i = 0; i < N; i++)

 {

 balls[i].move();

 balls[i].draw();

 }

 StdDraw.show(50);

 }

 }

}

Bouncing balls (COS 126)

Missing: check for balls colliding with each other

• physics problems: when? what effect?

• CS problems: what object does the checks? too many checks?

Review

29

public class Ball

{

 private double rx, ry; // position

 private double vx, vy; // velocity

 private double radius; // radius

 public Ball()

 { ... initialize position and velocity ... }

 public void move()

 {

 if ((rx + vx < radius) || (rx + vx > 1.0 - radius)) { vx = -vx; }

 if ((ry + vy < radius) || (ry + vy > 1.0 - radius)) { vy = -vy; }

 rx = rx + vx;

 ry = ry + vy;

 }

 public void draw()

 { StdDraw.filledCircle(rx, ry, radius); }

}

checks for
colliding with

walls

30

Molecular dynamics simulation of hard spheres

Goal. Simulate the motion of N moving particles that behave

according to the laws of elastic collision.

Hard sphere model.

• Moving particles interact via elastic collisions with each other,

and with fixed walls.

• Each particle is a sphere with known position, velocity, mass, and radius.

• No other forces are exerted.

Significance. Relates macroscopic observables to microscopic dynamics.

• Maxwell and Boltzmann: derive distribution of speeds of interacting

molecules as a function of temperature.

• Einstein: explain Brownian motion of pollen grains.

motion of individual
atoms and molecules

 temperature, pressure,
diffusion constant

31

Time-driven simulation

Time-driven simulation.

• Discretize time in quanta of size dt.

• Update the position of each particle after every dt units of time, and

check for overlaps.

• If overlap, roll back the clock to the time of the collision, update the

velocities of the colliding particles, and continue the simulation.

t t + dt t + 2 dt
(collision detected)

t + t
(roll back clock)

32

Time-driven simulation

Main drawbacks.

• N2 overlap checks per time quantum.

• May miss collisions if dt is too large and colliding particles fail to

overlap when we are looking.

• Simulation is too slow if dt is very small.

t t + dt t + 2 dt

33

Event-driven simulation

Change state only when something happens.

• Between collisions, particles move in straight-line trajectories.

• Focus only on times when collisions occur.

• Maintain priority queue of collision events, prioritized by time.

• Remove the minimum = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,

when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s)

according to laws of elastic collisions.

Note: Same approach works for a broad variety of systems

34

Particle-wall collision

Collision prediction.

• Particle of radius at position (rx, ry).

• Particle moving in unit box with velocity (vx, vy).

• Will it collide with a horizontal wall? If so, when?

Collision resolution. (vx', vy') = (vx, -vy).

t =

 if vy = 0

 (ry)/vy if vy < 0

 (1 ry)/vy if vy > 0

(rx, ry)

time = t

(vx, vy) (vx, -vy)

(rx', ry')

time = t + t

35

Particle-particle collision prediction

Collision prediction.

• Particle i: radius i, position (rxi, ryi), velocity (vxi, vyi).

• Particle j: radius j, position (rxj, ryj), velocity (vxj, vyj).

• Will particles i and j collide? If so, when?

j

i

(rxi , ryi)

time = t

(vxi , vyi)

m i

i

j

(rxi', ryi')

time = t + t

(vxj', vyj')

(vxi', vyi')

(vxj , vyj)

36

Particle-particle collision prediction

Collision prediction.

• Particle i: radius i, position (rxi, ryi), velocity (vxi, vyi).

• Particle j: radius j, position (rxj, ryj), velocity (vxj, vyj).

• Will particles i and j collide? If so, when?

t =

 if v r 0

 if d < 0

 -
v r + d

v v
 otherwise

d = (v r)2 (v v) (r r 2) = i + j

v = (vx, vy) = (vxi vx j , vyi vyj)
r = (rx, ry) = (rxi rx j , ryi ryj)

v v = (vx)2
+ (vy)2

r r = (rx)2
+ (ry)2

v r = (vx)(rx)+ (vy)(ry)

 public double dt(Particle b)

 {

 Particle a = this;

 if (a == b) return INFINITY;

 double dx = b.rx - a.rx;

 double dy = b.ry - a.ry;

 double dvx = b.vx - a.vx;

 double dvy = b.vy - a.vy;

 double dvdr = dx*dvx + dy*dvy;

 if(dvdr > 0) return INFINITY;

 double dvdv = dvx*dvx + dvy*dvy;

 double drdr = dx*dx + dy*dy;

 double sigma = a.radius + b.radius;

 double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);

 if (d < 0) return INFINITY;

 return -(dvdr + Math.sqrt(d)) / dvdv;

 }

Particle-particle collision prediction implementation

37

Particle has method to predict collision with another particle

and methods dtX() and dtY() to predict collisions with walls

Particle-particle collision prediction implementation

38

 private void predict(Particle a, double limit)

 {

 if (a == null) return;

 for(int i = 0; i < N; i++)

 {

 double dt = a.dt(particles[i]);

 if(t + dt <= limit)

 pq.insert(new Event(t + dt, a, particles[i]));

 }

 double dtX = a.dtX();

 double dtY = a.dtY();

 if (t + dtX <= limit)

 pq.insert(new Event(t + dtX, a, null));

 if (t + dtY <= limit)

 pq.insert(new Event(t + dtY, null, a));

 }

CollisionSystem has method to predict all collisions

39

Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

vxi = vxi + Jx / mi

vyi = vyi + Jy / mi

vx j = vx j Jx / mj

vyj = vx j Jy / mj

Jx =
J rx

, Jy =
J ry

, J =
2mi mj (v r)

(mi +mj)

impulse due to normal force
(conservation of energy, conservation of momentum)

Newton's second law
(momentum form)

 public void bounce(Particle b)

 {

 Particle a = this;

 double dx = b.rx - a.rx;

 double dy = b.ry - a.ry;

 double dvx = b.vx - a.vx;

 double dvy = b.vy - a.vy;

 double dvdr = dx*dvx + dy*dvy;

 double dist = a.radius + b.radius;

 double J = 2 * a.mass * b.mass * dvdr / ((a.mass + b.mass) * dist);

 double Jx = J * dx / dist;

 double Jy = J * dy / dist;

 a.vx += Jx / a.mass;

 a.vy += Jy / a.mass;

 b.vx -= Jx / b.mass;

 b.vy -= Jy / b.mass;

 a.count++;

 b.count++;

 }

Particle-particle collision resolution implementation

40

Particle has method to resolve collision with another particle

and methods bounceX() and bounceY() to resolve collisions with walls

41

Collision system: event-driven simulation main loop

Initialization.

• Fill PQ with all potential particle-wall collisions

• Fill PQ with all potential particle-particle collisions.

Main loop.

• Delete the impending event from PQ (min priority = t).

• If the event in no longer valid, ignore it.

• Advance all particles to time t, on a straight-line trajectory.

• Update the velocities of the colliding particle(s).

• Predict future particle-wall and particle-particle collisions involving

the colliding particle(s) and insert events onto PQ.

“potential” since collision may not happen if
some other collision intervenes

 public void simulate(double limit)

 {

 pq = new MinPQ<Event>();

 for(int i = 0; i < N; i++)

 predict(particles[i], limit);

 pq.insert(new Event(0, null, null));

 while(!pq.isEmpty())

 {

 Event e = pq.delMin();

 if(!e.isValid()) continue;

 Particle a = e.a();

 Particle b = e.b();

 for(int i = 0; i < N; i++)

 particles[i].move(e.time() - t);

 t = e.time();

 if (a != null && b != null) a.bounce(b);

 else if (a != null && b == null) a.bounceX()

 else if (a == null && b != null) b.bounceY();

 else if (a == null && b == null)

 {

 StdDraw.clear(StdDraw.WHITE);

 for(int i = 0; i < N; i++) particles[i].draw();

 StdDraw.show(20);

 if (t < limit)

 pq.insert(new Event(t + 1.0 / Hz, null, null));

 }

 predict(a, limit);

 predict(b, limit);

 }

 }

Collision system: main event-driven simulation loop implementation

42

initialize PQ with
collision events and
redraw event

main event-driven
simulation loop

update positions
and time

process event

predict new
events based on
changes

java CollisionSystem 200

43

java CollisionSystem < billiards5.txt

44

java CollisionSystem < squeeze2.txt

java CollisionSystem < brownianmotion.txt

45

java CollisionSystem < diffusion.txt

46

1

Symbol Tables

API
basic implementations
iterators
Comparable keys
challenges

References:

 Algorithms in Java, Chapter 12

 Intro to Programming, Section 4.4
 http://www.cs.princeton.edu/introalgsds/41st

2

API
basic implementations
iterators
Comparable keys
challenges

3

Symbol Tables

Key-value pair abstraction.

• Insert a value with specified key.

• Given a key, search for the corresponding value.

Example: DNS lookup.

• Insert URL with specified IP address.

• Given URL, find corresponding IP address

Can interchange roles: given IP address find corresponding URL

key value

 www.cs.princeton.edu

URL IP address

128.112.136.11

 www.princeton.edu 128.112.128.15

 www.yale.edu 130.132.143.21

 www.harvard.edu 128.103.060.55

 www.simpsons.com 209.052.165.60

4

Symbol Table Applications

Application Purpose Key Value

Phone book Look up phone number Name Phone number

Bank Process transaction Account number Transaction details

File share Find song to download Name of song Computer ID

Dictionary Look up word Word Definition

Web search Find relevant documents Keyword List of documents

Genomics Find markers DNA string Known positions

DNS Find IP address given URL URL IP address

Reverse DNS Find URL given IP address IP address URL

Book index Find relevant pages Keyword List of pages

Web cache Download Filename File contents

Compiler Find properties of variable Variable name Value and type

File system Find file on disk Filename Location on disk

Routing table Route Internet packets Destination Best route

5

Symbol Table API

Associative array abstraction: Unique value associated with each key.

Our conventions:

1. Values are not null.

2. Method get() returns null if key not present

3. Method put() overwrites old value with new value.

a[key] = val;

 public boolean contains(Key key)

 { return get(key) != null; }

Some languages (not Java) allow this notation

enables this code in all implementations:

public class *ST<Key extends Comparable<Key>, Value>

*ST() create a symbol table

void put(Key key, Value val) put key-value pair into the table

Value get(Key key)
return value paired with key
(null if key not in table)

boolean contains(Key key) is there a value paired with key?

void remove(Key key) remove key-value pair from table

Iterator<Key> iterator() iterator through keys in table

insert

search

stay tuned

ST client: make a dictionary and process lookup requests

Command line arguments

• a comma-separated value (CSV) file

• key field

• value field

Example 1: DNS lookup

6

% more ip.csv
www.princeton.edu,128.112.128.15
www.cs.princeton.edu,128.112.136.35
www.math.princeton.edu,128.112.18.11
www.cs.harvard.edu,140.247.50.127
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.econ.yale.edu,128.36.236.74
www.cs.yale.edu,128.36.229.30
espn.com,199.181.135.201
yahoo.com,66.94.234.13
msn.com,207.68.172.246
google.com,64.233.167.99
baidu.com,202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn,202.108.33.32
ebay.com,66.135.192.87
adobe.com,192.150.18.60
163.com,220.181.29.154
passport.net,65.54.179.226
tom.com,61.135.158.237
nate.com,203.226.253.11
cnn.com,64.236.16.20
daum.net,211.115.77.211
blogger.com,66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org,66.230.200.100
rakuten.co.jp,202.72.51.22
...

% java Lookup ip.csv 0 1
adobe.com
192.150.18.60
www.princeton.edu
128.112.128.15
ebay.edu
Not found

% java Lookup ip.csv 1 0
128.112.128.15
www.princeton.edu
999.999.999.99
Not found

URL is key IP is value

IP is key URL is value

7

ST client: make a dictionary and process lookup requests

public class Lookup

{

 public static void main(String[] args)

 {

 In in = new In(args[0]);

 int keyField = Integer.parseInt(args[1]);

 int valField = Integer.parseInt(args[2]);

 String[] database = in.readAll().split("\\n");

 ST<String, String> st = new ST<String, String>();

 for (int i = 0; i < database.length; i++)

 {

 String[] tokens = database[i].split(",");

 String key = tokens[keyField];

 String val = tokens[valField];

 st.put(key, val);

 }

 while (!StdIn.isEmpty())

 {

 String s = StdIn.readString();

 if (!st.contains(s)) StdOut.println("Not found");

 else StdOut.println(st.get(s));

 }

 }

}

process input file

build symbol table

process lookups
with standard I/O

ST client: make a dictionary and process lookup requests

Command line arguments

• a comma-separated value (CSV) file

• key field

• value field

Example 2: Amino acids

8

% more amino.csv
TTT,Phe,F,Phenylalanine
TTC,Phe,F,Phenylalanine
TTA,Leu,L,Leucine
TTG,Leu,L,Leucine
TCT,Ser,S,Serine
TCC,Ser,S,Serine
TCA,Ser,S,Serine
TCG,Ser,S,Serine
TAT,Tyr,Y,Tyrosine
TAC,Tyr,Y,Tyrosine
TAA,Stop,Stop,Stop
TAG,Stop,Stop,Stop
TGT,Cys,C,Cysteine
TGC,Cys,C,Cysteine
TGA,Stop,Stop,Stop
TGG,Trp,W,Tryptophan
CTT,Leu,L,Leucine
CTC,Leu,L,Leucine
CTA,Leu,L,Leucine
CTG,Leu,L,Leucine
CCT,Pro,P,Proline
CCC,Pro,P,Proline
CCA,Pro,P,Proline
CCG,Pro,P,Proline
CAT,His,H,Histidine
CAC,His,H,Histidine
CAA,Gln,Q,Glutamine
CAG,Gln,Q,Glutamine
CGT,Arg,R,Arginine
CGC,Arg,R,Arginine
CGA,Arg,R,Arginine
CGG,Arg,R,Arginine
ATT,Ile,I,Isoleucine
ATC,Ile,I,Isoleucine
ATA,Ile,I,Isoleucine
ATG,Met,M,Methionine
...

% % java Lookup amino.csv 0 3
ACT
Threonine
TAG
Stop
CAT
Histidine

codon is key name is value

ST client: make a dictionary and process lookup requests

Command line arguments

• a comma-separated value (CSV) file

• key field

• value field

Example 3: Class lists

9

% more classlist.csv
10,Bo Ling,P03,bling
10,Steven A Ross,P01,saross
10,Thomas Oliver Horton
Conway,P03,oconway
08,Michael R. Corces
Zimmerman,P01A,mcorces
09,Bruce David Halperin,P02,bhalperi
09,Glenn Charles Snyders Jr.,P03,gsnyders
09,Siyu Yang,P01A,siyuyang
08,Taofik O. Kolade,P01,tkolade
09,Katharine Paris
Klosterman,P01A,kkloster
SP,Daniel Gopstein,P01,dgtwo
10,Sauhard Sahi,P01,ssahi
10,Eric Daniel Cohen,P01A,edcohen
09,Brian Anthony Geistwhite,P02,bgeistwh
09,Boris Pivtorak,P01A,pivtorak
09,Jonathan Patrick
Zebrowski,P01A,jzebrows
09,Dexter James Doyle,P01A,ddoyle
09,Michael Weiyang Ye,P03,ye
08,Delwin Uy Olivan,P02,dolivan
08,Edward George Conbeer,P01A,econbeer
09,Mark Daniel Stefanski,P01,mstefans
09,Carter Adams Cleveland,P03,cclevela
10,Jacob Stephen Lewellen,P02,jlewelle
10,Ilya Trubov,P02,itrubov
09,Kenton William Murray,P03,kwmurray
07,Daniel Steven Marks,P02,dmarks
09,Vittal Kadapakkam,P01,vkadapak
10,Eric Ruben Domb,P01A,edomb
07,Jie Wu,P03,jiewu
08,Pritha Ghosh,P02,prithag
10,Minh Quang Anh Do,P01,mqdo
...

% java Lookup classlist.csv 3 1
jsh
Jeffrey Scott Harris
dgtwo
Daniel Gopstein
ye
Michael Weiyang Ye

% java Lookup classlist.csv 3 2
jsh
P01A
dgtwo
P01

login is key name is value

login is key precept is value

10

Keys and Values

Associative array abstraction.

• Unique value associated with each key

• If client presents duplicate key, overwrite to change value.

Key type: several possibilities

1. Assume keys are any generic type, use equals() to test equality.

2. Assume keys are Comparable, use compareTo().

3. Use equals() to test equality and hashCode() to scramble key.

Value type. Any generic type.

Best practices. Use immutable types for symbol table keys.

• Immutable in Java: String, Integer, BigInteger.

• Mutable in Java: Date, GregorianCalendar, StringBuilder.

a[key] = val;

Elementary ST implementations

Unordered array

Ordered array

Unordered linked list

Ordered linked list

Why study elementary implementations?

• API details need to be worked out

• performance benchmarks

• method of choice can be one of these in many situations

• basis for advanced implementations

Always good practice to study elementary implementations

11

12

API
basic implementations
iterators
Comparable keys
challenges

13

Unordered array ST implementation

Maintain parallel arrays of keys and values.

Instance variables

• array keys[] holds the keys.

• array vals[] holds the values.

• integer N holds the number of entries.

Need to use standard array-doubling technique

Alternative: define inner type for entries

• space overhead for entry objects

• more complicated code

0 1 2 3 4 5

keys[]

vals[]

it was the best of times

2 2 1 1 1 1

N = 6

public class UnorderedST<Key, Value>

{

 private Value[] vals;

 private Key[] keys;

 private int N = 0;

 public UnorderedST(int maxN)

 {

 keys = (Key[]) new Object[maxN];

 vals = (Value[]) new Object[maxN];

 }

 public boolean isEmpty()

 { return N == 0; }

 public void put(Key key, Value val)

 // see next slide

 public Value get(Key key)
 // see next slide

}

14

Unordered array ST implementation (skeleton)

standard ugly casts

standard array doubling code omitted

parallel arrays lead to cleaner code
than defining a type for entries

Key, Value are generic and can be any type

15

Unordered array ST implementation (search)

public Value get(Key key)

{
 for (int i = 0; i < N; i++)
 if (keys[i].equals(key))
 return vals[i];
 return null;
}

0 1 2 3 4 5

keys[]

vals[]

it was the best of times

2 2 1 1 1 1

0 1 2 3 4 5

keys[]

vals[]

it was the best of times

2 2 1 1 1 1

get(“worst”)
returns null

Java convention: all objects implement equals()

get(“the”)
returns 1

Associative array abstraction

• must search for key and overwrite with new value if it is there

• otherwise, add new key, value at the end (as in stack)
16

Unordered array ST implementation (insert)

public void put(Key key, Value val)

{

 int i;

 for (i = 0; i < N; i++)

 if (key.equals(keys[i]))

 break;

 vals[i] = val;

 keys[i] = key;

 if (i == N) N++;

}

0 1 2 3 4 5

keys[]

vals[]

it was the best of times

2 2 1 1 1 1

0 1 2 3 4 5

keys[]

vals[]

it was the best of times

2 2 2 1 1 1

put(“the”, 2)
overwrites the 1

0 1 2 3 4 5 6

keys[]

vals[]

it was the best of times worst

2 2 2 1 1 1 1

put(“worst”, 1)
adds a new entry

17

Java conventions for equals()

All objects implement equals() but default implementation is (x == y)

Customized implementations.

 String, URL, Integer.

User-defined implementations.

 Some care needed (example: type of argument must be Object)

Equivalence relation. For any references x, y and z:

• Reflexive: x.equals(x) is true.

• Symmetric: x.equals(y) iff y.equals(x).

• Transitive: If x.equals(y) and y.equals(z), then x.equals(z).

• Non-null: x.equals(null) is false.

• Consistency: Multiple calls to x.equals(y) return same value.

is the object referred to by x
the same object that is referred to by y?

Implementing equals()

Seems easy

18

public class PhoneNumber
{
 private int area, exch, ext;

 ...

 public boolean equals(PhoneNumber y)
 {

 PhoneNumber a = this;
 PhoneNumber b = (PhoneNumber) y;
 return (a.area == b.area)
 && (a.exch == b.exch)
 && (a.ext == b.ext);
 }
}

Implementing equals()

Seems easy, but requires some care

19

public final class PhoneNumber
{
 private final int area, exch, ext;

 ...

 public boolean equals(Object y)
 {
 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())
 return false;

 PhoneNumber a = this;
 PhoneNumber b = (PhoneNumber) y;
 return (a.area == b.area)
 && (a.exch == b.exch)
 && (a.ext == b.ext);
 }
}

If I’m executing this code,
I’m not null.

Optimize for true object equality

no safe way to use with inheritance

Must be Object.
Why? Experts still debate.

Objects must be in the same class.

Maintain a linked list with keys and values.

inner Node class

• instance variable key holds the key

• instance variable val holds the value

instance variable

• Node first refers to the first node in the list

20

Linked list ST implementation

it

2

was

2

the

1

best

1

of

1

times

1

first

public class LinkedListST<Key, Value>

{

 private Node first;

 private class Node

 {

 Key key;

 Value val;

 Node next;

 Node(Key key, Value val, Node next)

 {

 this.key = key;

 this.val = val;

 this.next = next;

 }

 }

 public void put(Key key, Value val)

 // see next slides

 public Val get(Key key)
 // see next slides

}

21

Linked list ST implementation (skeleton)

instance variable

inner class

Key, Value are generic and can be any type

22

Linked list ST implementation (search)

Java convention: all objects implement equals()

public Value get(Key key)

{
 for (Node x = first; x != null; x = x.next))
 if (key.equals(x.key))
 return vals[i];
 return null;
}

get(“the”)
returns 1

get(“worst”)
returns null

it

2

was

2

the

1

best

1

of

1

times

1

first

it

2

was

2

the

1

best

1

of

1

times

1

first

23

Linked list ST implementation (insert)

public void put(Key key, Value val)

{

 for (Node x = first; x != null; x = x.next)

 if (key.equals(x.key))

 { x.value = value; return; }

 first = new Node(key, value, first);

}

put(“the”, 2)
overwrites the 1

put(“worst”, 1)
adds a new entry

after searching

the entire list

it

2

was

2

the

1

best

1

of

1

times

1

first

Associative array abstraction
must search for key and, if it is
there, overwrite with new value
otherwise, add new key, value at
the beginning (as in stack)

was

2

the

2

best

1

of

1

times

1

worst

1

first

it

2

24

API
basic implementations
iterators
Comparable keys
challenges

Iterators

Symbol tables should be Iterable

Q. What is Iterable?

A. Implements iterator()

Q. What is an Iterator?

A. Implements hasNext() and next().

Q. Why should symbol tables be iterable?

A. Java language supports elegant client code for iterators

25

Iterator<String> i = st.iterator();
while (i.hasNext())
{
 String s = i.next();
 StdOut.println(st.get(s));
}

public interface Iterator<Item>

{

 boolean hasNext();

 Item next();

 void remove();

}

for (String s: st)
 StdOut.println(st.get(s));

optional in Java
use at your own risk

“foreach” statement equivalent code

public interface Iterable<Item>

{

 Iterator<Item> iterator();

}

java.util.Iterator

Iterable ST client: count frequencies of occurrence of input strings

Standard input: A file (of strings)

Standard output: All the distinct strings in the file with frequency

26

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCount < tiny.txt
2 age
1 best
1 foolishness
4 it
4 of
4 the
2 times
4 was
1 wisdom
1 worst

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair
we had everything before us
we had nothing before us
...
% java FrequencyCount < tale.txt
2941 a
1 aback
1 abandon
10 abandoned
1 abandoning
1 abandonment
1 abashed
1 abate
1 abated
5 abbaye
2 abed
1 abhorrence
1 abided
1 abiding
1 abilities
2 ability
1 abject
1 ablaze
17 able
1 abnegating

tiny example
24 words

10 distinct

real example
137177 words
9888 distinct

27

Iterable ST client: count frequencies of occurrence of input strings

public class FrequencyCount
{
 public static void main(String[] args)
 {
 ST<String, Integer> st;
 st = new ST<String, Integer>();

 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();

 if (!st.contains(key))
 st.put(key, 1);
 else
 st.put(key, st.get(key) + 1);

 }

 for (String s: st)
 StdOut.println(st.get(s) + " " + s);

 }
}

read a string

insert

print all strings

increment

Note: Only slightly more work required to build an index

of all of the places where each key occurs in the text.

Iterators for array, linked list ST implementations

28

import java.util.Iterator;
public class LinkedListST<Key, Value>
 implements Iterable<Key>

{
 ...

 public Iterator<Key> iterator()
 { return new ListIterator(); }

 private class ListIterator
 implements Iterator<Key>
 {
 private Node current = first;

 public boolean hasNext()
 { return current != null; }

 public void remove() { }

 public Key next()
 {
 Key key = current.key;
 current = current.next;
 return key;
 }
 }
}

import java.util.Iterator;
public class UnorderedST<Key, Value>
 implements Iterable<Key>

{
 ...

 public Iterator<Key> iterator()
 { return new ArrayIterator(); }

 private class ArrayIterator
 implements Iterator<Key>
 {
 private int i = 0;

 public boolean hasNext()
 { return i < N; }

 public void remove() { }

 public Key next()
 { return keys[i++]; }
 }
}

Iterable ST client: A problem?

Clients who use Comparable keys might expect ordered iteration

• not a requirement for some clients

• not a problem if postprocessing, e.g. with sort or grep

• not in API
29

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCount < tiny.txt
4 it
4 was
4 the
1 best
4 of
2 times
1 worst
2 age
1 wisdom
1 foolishness

Use UnorderedST in FrequencyCount

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCount < tiny.txt
1 foolishness
1 wisdom
2 age
1 worst
2 times
4 of
1 best
4 the
4 was
4 it

Use LinkedListST in FrequencyCount

30

API
basic implementations
iterators
Comparable keys
challenges

31

Ordered array ST implementation

Assume that keys are Comparable

Maintain parallel arrays with keys and values that are sorted by key.

Instance variables

• keys[i] holds the ith smallest key

• vals[i] holds the value associated with the ith smallest key

• integer N holds the number of entries.

Note: no duplicate keys

Need to use standard array-doubling technique

Two reasons to consider using ordered arrays

• provides ordered iteration (for free)

• can use binary search to significantly speed up search

0 1 2 3 4 5

keys[]

vals[]

best it of the times was

1 2 1 1 1 2

N = 6

public class OrderedST

 <Key extends Comparable<Key>, Value>

 implements Iterable<Key>

{

 private Value[] vals;

 private Key[] keys;

 private int N = 0;

 public OrderedST(int maxN)

 {

 keys = (Key[]) new Object[maxN];

 vals = (Value[]) new Object[maxN];

 }

 public boolean isEmpty()

 { return N == 0; }

 public void put(Key key, Value val)

 // see next slides

 public Val get(Key key)
 // see next slides

}

32

Ordered array ST implementation (skeleton)

standard array doubling code omitted

standard array iterator code omitted

3
of
3

Keeping array in order enables binary search algorithm

33

Ordered array ST implementation (search)

0 4 8
age best it of the times was wisdom worst
2 1 4 3 4 2 4 1 1

get(“of”)
returns 3

 public Value get(Key key)
 {
 int i = bsearch(key);
 if (i == -1) return null;
 return vals[i];
 }

 private int bsearch(Key key)
 {
 int lo = 0, hi = N-1;
 while (lo <= hi)
 {
 int m = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[m]);
 if (cmp < 0) hi = m - 1;
 else if (cmp > 0) lo = m + 1;
 else return m;
 }
 return -1;
 }

0 1 3
age best it of
2 1 4 3

2 3
it of
4 3

lo him

34

Binary search analysis: Comparison count

Def. T(N) number of comparisons to binary search in an ST of size N

 = T(N/2) + 1

Binary search recurrence

• not quite right for odd N

• same recurrence holds for many algorithms

• same number of comparisons for any input of size N.

Solution of binary search recurrence

• true for all N

• easy to prove when N is a power of 2.

T(N) = T(N/2) + 1
 for N > 1, with T(1) = 0

T(N) ~ lg N

left or right half

can then use induction for general N
(see COS 340)

middle

Pf.

35

Binary search recurrence: Proof by telescoping

T(N) = T(N/2) + 1
 for N > 1, with T(1) = 0

 T(N) = T(N/2) + 1

 = T(N/4) + 1 + 1

 = T(N/8) + 1 + 1 + 1

 . . .

 = T(N/N) + 1 + 1 +. . .+ 1

 = lg N

T(N) = lg N

(assume that N is a power of 2)

given

telescope (apply to first term)

telescope again

stop telescoping, T(1) = 0

Binary search is little help for put(): still need to move larger keys

36

Ordered array ST implementation (insert)

age best it of the times was wisdom worst
2 1 4 4 4 2 4 1 1

 public Val put(Key key, Value val)
 {
 int i = bsearch(key);
 if (i != -1)
 { vals[i] = val; return; }

 for (i = N; i > 0; i--)
 {
 if key.compareTo(keys[i-1] < 0) break;
 keys[i] = keys[i-1];
 vals[i] = vals[i-1];
 }
 vals[i] = val;
 keys[i] = key;
 N++;

 }

age best foolish it of the times was wisdom worst
2 1 1 4 4 4 2 4 1 1

overwrite with new value
if key in table

put(“foolish”)

move larger keys to make room
if key not in table

Ordered array ST implementation: an important special case

Test whether key is equal to or greater than largest key

If either test succeeds, constant-time insert!

Method of choice for some clients:

• sort database by key

• insert N key-value pairs in order by key

• support searches that never use more than lg N compares

• support occasional (expensive) inserts

37

public Val put(Key key, Value val)
{
 if (key.compareTo(keys[N-1]) == 0)
 { vals[N-1] = val; return; }

 if (key.compareTo(keys[N-1] > 0)
 {
 vals[N] = val;
 keys[N] = key;
 N++;
 return;
 }
}

Ordered linked-list ST implementation

Binary search depends on array indexing for efficiency.

Jump to the middle of a linked list?

Advantages of keeping linked list in order for Comparable keys:

• support ordered iterator (for free)

• cuts search/insert time in half (on average) for random search/insert

[code omitted]

38

was

2

times

1

the

1

of

1

it

2

best

1

first

39

API
basic implementations
iterators
Comparable keys
challenges

Searching challenge 1A:

Problem: maintain symbol table of song names for an iPod

Assumption A: hundreds of songs

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

40

Searching challenge 1B:

Problem: maintain symbol table of song names for an iPod

Assumption B: thousands of songs

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

41

Searching challenge 2A:

Problem: IP lookups in a web monitoring device

Assumption A: billions of lookups, millions of distinct addresses

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

42

Searching challenge 2B:

Problem: IP lookups in a web monitoring device

Assumption B: billions of lookups, thousands of distinct addresses

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

43

Searching challenge 3:

Problem: Frequency counts in “Tale of Two Cities”

Assumptions: book has 135,000+ words

 about 10,000 distinct words

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

44

Searching challenge 4:

Problem: Spell checking for a book

Assumptions: dictionary has 25,000 words

 book has 100,000+ words

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

45

Searching challenge 5:

Problem: Sparse matrix-vector multiplication

Assumptions: matrix dimension is billions by billions

 average number of nonzero entries/row is ~10

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

46

A * x = b

Summary and roadmap

• basic algorithmics

• no generics

• more code

• more analysis

• equal keys in ST (not associative arrays)

• iterators

• ST as associative array (all keys distinct)

• BST implementations

• applications

• distinguish algs by operations on keys

• ST as associative array (all keys distinct)

• important special case for binary search

• challenges

47

48

Elementary implementations: summary

Next challenge.

 Efficient implementations of search and insert and ordered iteration

 for arbitrary sequences of operations.

implementation
worst case average case ordered

iteration?
operations

on keys
search insert search insert

unordered array N N N/2 N/2 no equals()

ordered array lg N N lg N N/2 yes compareTo()

unordered list N N N/2 N no equals()

ordered list N N N/2 N/2 yes compareTo()

studying STs
for the midterm?

Start here.

(ordered array meets challenge if keys arrive approximately in order)

1

Binary Search Trees

basic implementations
randomized BSTs
deletion in BSTs

References:

 Algorithms in Java, Chapter 12

 Intro to Programming, Section 4.4
 http://www.cs.princeton.edu/introalgsds/43bst

2

Elementary implementations: summary

Challenge:

 Efficient implementations of get() and put() and ordered iteration.

implementation
worst case average case ordered

iteration?
operations

on keys
search insert search insert

unordered array N N N/2 N/2 no equals()

ordered array lg N N lg N N/2 yes compareTo()

unordered list N N N/2 N no equals()

ordered list N N N/2 N/2 yes compareTo()

3

basic implementations
randomized BSTs
deletion in BSTs

4

Binary Search Trees (BSTs)

Def. A BINARY SEARCH TREE is a binary tree in symmetric order.

A binary tree is either:

• empty

• a key-value pair and two binary trees

[neither of which contain that key]

Symmetric order means that:

• every node has a key

• every node’s key is

larger than all keys in its left subtree

smaller than all keys in its right subtree

smaller larger

x

node

subtrees

the

was

it

of times

best

equal keys ruled out to facilitate
associative array implementations

5

BST representation

A BST is a reference to a Node.

A Node is comprised of four fields:

• A key and a value.

• A reference to the left and right subtree.

Key and Value are generic types;
Key is Comparable

root

it 2

was 2

the 1

best 1

of 1 times 1

private class Node

{

 Key key;

 Value val;

 Node left, right;

}

smaller keys larger keys

public class BST<Key extends Comparable<Key>, Value>

 implements Iterable<Key>

{

 private Node root;

 private class Node

 {

 Key key;

 Value val;

 Node left, right;

 Node(Key key, Value val)

 {

 this.key = key;

 this.val = val;

 }

 }

 public void put(Key key, Value val)

 // see next slides

 public Val get(Key key)
 // see next slides

}

6

BST implementation (skeleton)

instance variable

inner class

7

BST implementation (search)

public Value get(Key key)

{
 Node x = root;

 while (x != null)
 {
 int cmp = key.compareTo(x.key);

 if (cmp == 0) return x.val;
 else if (cmp < 0) x = x.left;

 else if (cmp > 0) x = x.right;
 }
 return null;

}

get(“the”)
returns 1

get(“worst”)
returns null

root

it 2

was 2

the 1

best 1

of 1 times 1

8

BST implementation (insert)

public void put(Key key, Value val)

{ root = put(root, key, val); }

root

it 2

was 2

the 1

best 1

of 1 times 1

put(“the”, 2)
overwrites the 1

put(“worst”, 1)
adds a new entry

worst 1

private Node put(Node x, Key key, Value val)

{

 if (x == null) return new Node(key, val);

 int cmp = key.compareTo(x.key);

 if (cmp == 0) x.val = val;

 else if (cmp < 0) x.left = put(x.left, key, val);

 else if (cmp > 0) x.right = put(x.right, key, val);

 return x;

}

Caution: tricky recursive code.
Read carefully!

9

BST: Construction

Insert the following keys into BST. A S E R C H I N G X M P L

Tree shape.

• Many BSTs correspond to same input data.

• Cost of search/insert is proportional to depth of node.

Tree shape depends on order of insertion

10

Tree Shape

E

S

A

C

H

H

A E I S

C R

R

I

H

A

E

I

S

C

R

typical best

worst

BST implementation: iterator?

11

public Iterator<Key> iterator()
{ return new BSTIterator(); }

private class BSTIterator
 implements Iterator<Key>

{

 BSTIterator()
 { }

 public boolean hasNext()
 { }

 public Key next()
 { }

}

E

S
A

C

H R

I

N

BST implementation: iterator?

12

public void visit(Node x)

{
 if (x == null) return;

 visit(x.left)
 StdOut.println(x.key);
 visit(x.right);

}

E

S
A

C

H R

I

N

Approach: mimic recursive inorder traversal

visit(E)
 visit(A)
 print A
 visit(C)
 print C
 print E
 visit(S)
 visit(I)
 visit(H)
 print H
 print I
 visit(R)
 visit(N)
 print N
 print R
 print S

 A

 C
 E

 H

 I

 N
 R
 S

E
A E
E
C E
E

S
I S
H I S
I S
S
R S
N R S
R S
S

Stack contents

To process a node

• follow left links until empty

 (pushing onto stack)

• pop and process

• process node at right link

13

BST implementation: iterator

public Iterator<Key> iterator()
{ return new BSTIterator(); }

private class BSTIterator
 implements Iterator<Key>

{
 private Stack<Node>

 stack = new Stack<Node>();

 private void pushLeft(Node x)

 {
 while (x != null)

 { stack.push(x); x = x.left; }
 }

 BSTIterator()
 { pushLeft(root); }

 public boolean hasNext()
 { return !stack.isEmpty(); }

 public Key next()

 {
 Node x = stack.pop();
 pushLeft(x.right);

 return x.key;
 }

}

E

S
A

C

H R

I

 A E

A C E

C E

E H I S

H I S

I N R S

N R S

R S

S

N

1-1 correspondence between BSTs and Quicksort partitioning

14

A

C

E

I

K

L

M

O

P

Q

R

S

T

U

XE

no
equal
 keys

15

BSTs: analysis

Theorem. If keys are inserted in random order, the expected number

of comparisons for a search/insert is about 2 ln N.

Proof: 1-1 correspondence with quicksort partitioning

Theorem. If keys are inserted in random order, height of tree

is proportional to lg N, except with exponentially small probability.

But… Worst-case for search/insert/height is N.

e.g., keys inserted in ascending order

mean 6.22 lg N, variance = O(1)

 1.38 lg N, variance = O(1)

Searching challenge 3 (revisited):

Problem: Frequency counts in “Tale of Two Cities”

Assumptions: book has 135,000+ words

 about 10,000 distinct words

Which searching method to use?

1) unordered array

2) unordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

6) BSTs

16

insertion cost < 10000 * 1.38 * lg 10000 < .2 million

lookup cost < 135000 * 1.38 * lg 10000 < 2.5 million

17

Elementary implementations: summary

Next challenge:

 Guaranteed efficiency for get() and put() and ordered iteration.

implementation
guarantee average case ordered

iteration?
operations

on keys
search insert search insert

unordered array N N N/2 N/2 no equals()

ordered array lg N N lg N N/2 yes compareTo()

unordered list N N N/2 N no equals()

ordered list N N N/2 N/2 yes compareTo()

BST N N 1.38 lg N 1.38 lg N yes compareTo()

18

basic implementations
randomized BSTs
deletion in BSTs

Two fundamental operations to rearrange nodes in a tree.

• maintain symmetric order.

• local transformations (change just 3 pointers).

• basis for advanced BST algorithms

Strategy: use rotations on insert to adjust tree shape to be more balanced

Key point: no change in search code (!)

19

Rotation in BSTs

h = rotL(u)

h = rotR(v)

A B

C

CB

A

u
h

h

v
u

v

20

Rotation

Fundamental operation to rearrange nodes in a tree.

• easier done than said

• raise some nodes, lowers some others

private Node rotL(Node h)

{

 Node v = h.r;

 h.r = v.l;

 v.l = h;

 return v;

}

private Node rotR(Node h)

{

 Node u = h.l;

 h.l = u.r;

 u.r = h;

 return u;

}

root = rotL(A) A.left = rotR(S)

21

Recursive BST Root Insertion

Root insertion: insert a node and make it the new root.

• Insert as in standard BST.

• Rotate inserted node to the root.

• Easy recursive implementation

insert G

private Node putRoot(Node x, Key key, Val val)

{

 if (x == null) return new Node(key, val);

 int cmp = key.compareTo(x.key);

 if (cmp == 0) x.val = val;

 else if (cmp < 0)

 { x.left = putRoot(x.left, key, val); x = rotR(x); }

 else if (cmp > 0)

 { x.right = putRoot(x.right, key, val); x = rotL(x); }

 return x;

}

Caution: very tricky recursive
code.

Read very carefully!

22

Constructing a BST with root insertion

Ex. A S E R C H I N G X M P L

Why bother?

• Recently inserted keys are near the top (better for some clients).

• Basis for advanced algorithms.

Randomized BSTs (Roura, 1996)

Intuition. If tree is random, height is logarithmic.

Fact. Each node in a random tree is equally likely to be the root.

Idea. Since new node should be the root with probability 1/(N+1),

make it the root (via root insertion) with probability 1/(N+1).

23

private Node put(Node x, Key key, Value val)

{

 if (x == null) return new Node(key, val);

 int cmp = key.compareTo(x.key);

 if (cmp == 0) { x.val = val; return x; }

 if (StdRandom.bernoulli(1.0 / (x.N + 1.0))

 return putRoot(h, key, val);

 if (cmp < 0) x.left = put(x.left, key, val);

 else if (cmp > 0) x.right = put(x.right, key, val);

 x.N++;

 return x;

}

need to maintain count of
nodes in tree rooted at x

24

Constructing a randomized BST

Ex: Insert distinct keys in ascending order.

Surprising fact:

 Tree has same shape as if keys were

 inserted in random order.

Random trees result from any insert order

Note: to maintain associative array abstraction
need to check whether key is in table and replace
value without rotations if that is the case.

25

Randomized BST

Property. Randomized BSTs have the same distribution as BSTs under

random insertion order, no matter in what order keys are inserted.

• Expected height is ~6.22 lg N

• Average search cost is ~1.38 lg N.

• Exponentially small chance of bad balance.

Implementation cost. Need to maintain subtree size in each node.

Summary of symbol-table implementations

Randomized BSTs provide the desired guarantee

Bonus (next): Randomized BSTs also support delete (!)
26

implementation
guarantee average case ordered

iteration?
operations

on keys
search insert search insert

unordered array N N N/2 N/2 no equals()

ordered array lg N N lg N N/2 yes compareTo()

unordered list N N N/2 N no equals()

ordered list N N N/2 N/2 yes compareTo()

BST N N 1.38 lg N 1.38 lg N yes compareTo()

randomized BST 7 lg N 7 lg N 1.38 lg N 1.38 lg N yes compareTo()

probabilistic, with
exponentially small

chance of quadratic time

27

basic implementations
randomized BSTs
deletion in BSTs

28

BST delete: lazy approach

To remove a node with a given key

• set its value to null

• leave key in tree to guide searches

[but do not consider it equal to any search key]

Cost. O(log N') per insert, search, and delete, where N' is the number

of elements ever inserted in the BST.

Unsatisfactory solution: Can get overloaded with tombstones.

E

S
A

C

H R

I

N

E

S
A

C

H R

I

N

remove I a “tombstone”

29

BST delete: first approach

To remove a node from a BST. [Hibbard, 1960s]

• Zero children: just remove it.

• One child: pass the child up.

• Two children: find the next largest node using right-left*

 swap with next largest

 remove as above.

Unsatisfactory solution. Not symmetric, code is clumsy.

Surprising consequence. Trees not random (!) sqrt(N) per op.

Longstanding open problem: simple and efficient delete for BSTs

zero children one child two children

Deletion in randomized BSTs

To delete a node containing a given key

• remove the node

• join the two remaining subtrees to make a tree

Ex. Delete S in

30

E

S
A

C

H R

I

N

X

Deletion in randomized BSTs

To delete a node containing a given key

• remove the node

• join its two subtrees

Ex. Delete S in

31

E

A

C

H R

I

N

X

join these
two subtrees

private Node remove(Node x, Key key)

{

 if (x == null)

 return new Node(key, val);

 int cmp = key.compareTo(x.key);

 if (cmp == 0)

 return join(x.left, x.right);

 else if (cmp < 0)

 x.left = remove(x.left, key);

 else if (cmp > 0)

 x.right = remove(x.right, key);

 return x;

}

Join in randomized BSTs

To join two subtrees with all keys in one less than all keys in the other

• maintain counts of nodes in subtrees (L and R)

• with probability L/(L+R)

make the root of the left the root

make its left subtree the left subtree of the root

join its right subtree to R to make the right subtree of the root

• with probability L/(L+R) do the symmetric moves on the right

32

H R

I

N

X

to join these
two subtrees

H

R

N

X

make I the root
with probability 4/5

I need to join these
two subtrees

Join in randomized BSTs

To join two subtrees with all keys in one less than all keys in the other

• maintain counts of nodes in subtrees (L and R)

• with probability L/(L+R)

make the root of the left the root

make its left subtree the left subtree of the root

join its right subtree to R to make the right subtree of the root

• with probability L/(L+R) do the symmetric moves on the right

33X

to join these
two subtrees

R

N

X

make R the root
with probability 2/3

R

N

private Node join(Node a, Node b)

{

 if (a == null) return a;

 if (b == null) return b;

 int cmp = key.compareTo(x.key);

 if (StdRandom.bernoulli((double)*a.N / (a.N + b.N))

 { a.right = join(a.right, b); return a; }

 else

 { b.left = join(a, b.left); return b; }

}

Deletion in randomized BSTs

To delete a node containing a given key

• remove the node

• join its two subtrees

Ex. Delete S in

Theorem. Tree still random after delete (!)

Bottom line. Logarithmic guarantee for search/insert/delete
34

E

S
A

C

H R

I

N

X

E

X

A

C H R

I

N

Summary of symbol-table implementations

Randomized BSTs provide the desired guarantees

Next lecture: Can we do better?
35

implementation
guarantee average case ordered

iteration?
search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

probabilistic, with
exponentially small

chance of error

1

Balanced Trees

2-3-4 trees
red-black trees
B-trees

References:

 Algorithms in Java, Chapter 13
 http://www.cs.princeton.edu/introalgsds/44balanced

2

Symbol Table Review

Symbol table: key-value pair abstraction.

• Insert a value with specified key.

• Search for value given key.

• Delete value with given key.

Randomized BST.

• Guarantee of ~c lg N time per operation (probabilistic).

• Need subtree count in each node.

• Need random numbers for each insert/delete op.

This lecture. 2-3-4 trees, left-leaning red-black trees, B-trees.

new for Fall 2007!

Summary of symbol-table implementations

Randomized BSTs provide the desired guarantees

This lecture: Can we do better?
3

implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.39 lg N 1.39 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.39 lg N 1.39 lg N 1.39 lg N yes

probabilistic, with
exponentially small

chance of quadratic time

Typical random BSTs

4

 N = 250
 lg N 8
1.39 lg N 11

average node depth

5

2-3-4 trees
red-black trees
B-trees

6

2-3-4 Tree

2-3-4 tree. Generalize node to allow multiple keys; keep tree balanced.

Perfect balance. Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.

• 2-node: one key, two children.

• 3-node: two keys, three children.

• 4-node: three keys, four children.

S VF G J

K R

C E M O W

A D L N Q Y Z

smaller than K larger than R

between
K and R

Search.

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

Ex. Search for L

7

Searching in a 2-3-4 Tree

S VF G J

K R

C E M O W

A D L N Q Y Z

found L

smaller than M

between
K and R

8

Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

Ex. Insert B

S VF G J

K R

C E M O W

A D L N Q Y Z

smaller than K

B not found

smaller than C

9

Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to 3-node.

Ex. Insert B

S VF G J

K R

C E M O W

D L N Q Y Z

smaller than K

B fits here

smaller than C

A B

Insert.

• Search to bottom for key.

Ex. Insert X

10

Insertion in a 2-3-4 Tree

S VF G J

K R

C E M O W

A D L N Q Y Z

X not found

larger than R

larger than W

11

Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to 3-node.

• 3-node at bottom: convert to 4-node.

Ex. Insert X

S VF G J

K R

C E M O W

D L N Q

X fits here

A B X Y Z

Insert.

• Search to bottom for key.

Ex. Insert H

12

Insertion in a 2-3-4 Tree

S VF G J

K R

C E M O W

A D L N Q Y Z

smaller than K

larger than E

H not found

13

Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to 3-node.

• 3-node at bottom: convert to 4-node.

• 4-node at bottom: ??

Ex. Insert H

S VF G J

K R

C E M O W

D L N Q

H does not fit here!

A B X Y Z

Idea: split the 4-node to make room

Problem: Doesn’t work if parent is a 4-node

Solution 1: Split the parent (and continue splitting up while necessary).

Solution 2: Split 4-nodes on the way down.
14

Splitting a 4-node in a 2-3-4 tree

F G J

C E

D

H does not fit here

A B
D

H does fit here!

A B

C E G

F J

DA B

C E G

F H J

move middle
key to parent

split remainder
into two 2-nodes

15

Splitting 4-nodes in a 2-3-4 tree

Idea: split 4-nodes on the way down the tree.

• Ensures that most recently seen node is not a 4-node.

• Transformations to split 4-nodes:

Invariant. Current node is not a 4-node.

Consequences

• 4-node below a 4-node case never happens

• insertion at bottom node is easy since it's not a 4-node.

local transformations
that work anywhere

in the tree

16

Splitting a 4-node below a 2-node in a 2-3-4 tree

A local transformation that works anywhere in the tree

A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z

K Q W

D QD

K W

could be huge unchanged

17

A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

K Q W K W

could be huge unchanged

E-G

D H

A-C E-G

D H Q

Splitting a 4-node below a 3-node in a 2-3-4 tree

A local transformation that works anywhere in the tree

Growth of a 2-3-4 tree

Tree grows up from the bottom

18

A E S

A

A S

insert A

insert S

insert E

insert R

E

A R S

E

A S

split 4-node to

and then insert

insert C

E

R SA C

insert H

E

R S

tree grows
up one level

A C H

insert I

E

A C H I R S

Growth of a 2-3-4 tree (continued)

Tree grows up from the bottom

19

split 4-node to

and then insert

tree grows
up one level

E

A C H I R S

A C H

E R

I S

SI N

E R

split 4-node to

and then insert

SI N

split 4-node to

and then insert

E C R

A H

E C R

A G H

C

E R

I NA G H

C

E R

S X

20

Balance in 2-3-4 trees

Key property: All paths from root to leaf have same length.

Tree height.

• Worst case: lg N [all 2-nodes]

• Best case: log4 N = 1/2 lg N [all 4-nodes]

• Between 10 and 20 for a million nodes.

• Between 15 and 30 for a billion nodes.

21

2-3-4 Tree: Implementation?

Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.

• Implementation of getChild() involves multiple compares.

• Large number of cases for split(), make3Node(), and make4Node().

Bottom line: could do it, but stay tuned for an easier way.

fantasy code

private void insert(Key key, Val val)
{
 Node x = root;
 while (x.getChild(key) != null)
 {
 x = x.getChild(key);
 if (x.is4Node()) x.split();
 }
 if (x.is2Node()) x.make3Node(key, val);
 else if (x.is3Node()) x.make4Node(key, val);
}

Summary of symbol-table implementations

22

implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

constants depend upon
implementation

23

2-3-4 trees
red-black trees
B-trees

24

Left-leaning red-black trees (Guibas-Sedgewick, 1979 and Sedgewick, 2007)

1. Represent 2-3-4 tree as a BST.

2. Use "internal" left-leaning edges for 3- and 4- nodes.

Key Properties

• elementary BST search works

• 1-1 correspondence between 2-3-4 and left-leaning red-black trees

F G J

C E

D

internal “glue”

A B

A

B

C

D

E

F

G

J

25

Left-leaning red-black trees

1. Represent 2-3-4 tree as a BST.

2. Use "internal" left-leaning edges for 3- and 4- nodes.

Disallowed:

• right-leaning red edges

• three red edges in a row

standard red-black trees
allow these two

Search implementation for red-black trees

Search code is the same as elementary BST (ignores the color)

[runs faster because of better balance in tree]

Note: iterator code is also the same.

26

public Val get(Key key)

{
 Node x = root;

 while (x != null)
 {
 int cmp = key.compareTo(x.key);

 if (cmp == 0) return x.val;
 else if (cmp < 0) x = x.left;

 else if (cmp > 0) x = x.right;
 }
 return null;

}

A

B

C

D

E

F

G

J

Insert implementation for red-black trees (skeleton)

27

public class BST<Key extends Comparable<Key>, Value>

 implements Iterable<Key>

{

 private static final boolean RED = true;

 private static final boolean BLACK = false;

 private Node root;

 private class Node

 {

 Key key;

 Value val;

 Node left, right;

 boolean color;

 Node(Key key, Value val, boolean color)

 {

 this.key = key;

 this.val = val;

 this.color = color;

 }

 }

 public void put(Key key, Value val)

 {

 root = put(root, key, val);

 root.color = BLACK;

 }

}

color of incoming link

private boolean isRed(Node x)

{

 if (x == null) return false;

 return (x.color == RED);

}

helper method to test node color

Basic idea: maintain 1-1 correspondence with 2-3-4 trees

1. If key found on recursive search reset value, as usual

2. If key not found insert a new red node at the bottom

3. Split 4-nodes on the way DOWN the tree.

Insert implementation for left-leaning red-black trees (strategy)

28

[stay tuned]

[stay tuned]

[stay tuned]

[stay tuned]

Inserting a new node at the bottom in a LLRB tree

Maintain 1-1 correspondence with 2-3-4 trees

1. Add new node as usual, with red link to glue it to node above

2. Rotate left if necessary to make link lean left

29

or

or or

OK

rotate
left

rotate
left

rotate
left

OK

30

Splitting a 4-node below a 2-node in a left-leaning red-black tree

Maintain correspondence with 2-3-4 trees

A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z

D

K

W

could be huge unchanged

K

Q

W D

Q

left rotate
(if necessary)

to make red link
lean left

also make
this black

right rotate and
switch colors to

attach middle node
to node above

b

c

d

b

c

d eb

d

ce

a

31

Splitting a 4-node below a 3-node in a left-leaning red-black tree

A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

K W

could be huge unchanged

E-G A-C E-G

Maintain correspondence with 2-3-4 trees

also make
this black

b

c

d

e
b

c

d
eb

d

c
e

a

a

left rotate
(if necessary)

to make red link
lean left

right rotate and
switch colors to

attach middle node
to node above

K

Q

WD

H

H
Q

D

a

32

Splitting 4-nodes a left-leaning red-black tree

The two transformations are the same

left
rotate

(if necessary)

also make
this black

right
rotate

b

c

d

e
b

c

d
eb

d

c
e

a

left
rotate

(if necessary)
right

rotate

b

c

d

e b

c

d eb

d

ce

a

also make
this black

Insert implementation for left-leaning red-black trees (strategy revisited)

Basic idea: maintain 1-1 correspondence with 2-3-4 trees

Search as usual

• if key found reset value, as usual

• if key not found insert a new red node at the bottom

[might be right-leaning red link]

Split 4-nodes on the way DOWN the tree.

• right-rotate and flip color

• might leave right-leaning link higher up in the tree

NEW TRICK: enforce left-leaning condition on the way UP the tree.

• left-rotate any right-leaning link on search path

• trivial with recursion (do it after recursive calls)

• no other right-leaning links elsewhere

Note: nonrecursive top-down implementation possible, but requires
keeping track of great-grandparent on search path (!) and lots of cases.

33

or

Insert implementation for left-leaning red-black trees (basic operations)

Insert a new node at bottom

Split a 4-node

Enforce left-leaning condition

34

right
rotate

fix
color

or

left
rotate

Key point: may leave
right-leaning link
to be fixed later

Insert implementation for left-leaning red-black trees (code for basic operations)

Insert a new node at bottom

Split a 4-node

Enforce left-leaning condition

35

right

rotate

fix color of

left node

or

left

rotate

private Node splitFourNode(Node h)

{

 x = rotR(h);

 x.left.color = BLACK;

 return x;

}

private Node leanLeft(Node h)

{

 x = rotL(h);

 x.color = x.left.color;

 x.left.color = RED;

 return x;

}

if (h == null)

 return new Node(key, value, RED);

could be

red or black

h x

h
x

could be

left or right

middle node

is red

Insert implementation for left-leaning red-black trees (code)

36

 private Node insert(Node h, Key key, Value val)
 {
 if (h == null)
 return new Node(key, val, RED);

 if (isRed(h.left))
 if (isRed(h.left.left))
 h = splitFourNode(h);

 int cmp = key.compareTo(h.key);
 if (cmp == 0) h.val = val;
 else if (cmp < 0)
 h.left = insert(h.left, key, val);
 else
 h.right = insert(h.right, key, val);

 if (isRed(h.right))
 h = leanLeft(h);

 return h;
 }

insert new node at bottom

split 4-nodes on the way down

search

enforce left-leaning condition
on the way back up

37

Balance in left-leaning red-black trees

Proposition A. Every path from root to leaf has same number of black links.

Proposition B. Never three red links in-a-row.

Proposition C. Height of tree is less than 3 lg N + 2 in the worst case.

Property D. Height of tree is ~lg N in typical applications.

Property E. Nearly all 4-nodes are on the bottom in the typical applications.

Why left-leaning trees?

38

private Node insert(Node x, Key key, Value val, boolean sw)
{
 if (x == null)
 return new Node(key, value, RED);
 int cmp = key.compareTo(x.key);

 if (isRed(x.left) && isRed(x.right))
 {
 x.color = RED;
 x.left.color = BLACK;
 x.right.color = BLACK;
 }
 if (cmp == 0) x.val = val;
 else if (cmp < 0))
 {
 x.left = insert(x.left, key, val, false);
 if (isRed(x) && isRed(x.left) && sw)
 x = rotR(x);
 if (isRed(x.left) && isRed(x.left.left))
 {
 x = rotR(x);
 x.color = BLACK; x.right.color = RED;
 }
 }
 else // if (cmp > 0)
 {
 x.right = insert(x.right, key, val, true);
 if (isRed(h) && isRed(x.right) && !sw)
 x = rotL(x);
 if (isRed(h.right) && isRed(h.right.right))
 {
 x = rotL(x);
 x.color = BLACK; x.left.color = RED;
 }
 }
 return x;
}

private Node insert(Node h, Key key, Value val)
{
 int cmp = key.compareTo(h.key);
 if (h == null)
 return new Node(key, val, RED);
 if (isRed(h.left))
 if (isRed(h.left.left))
 {
 h = rotR(h);
 h.left.color = BLACK;
 }
 if (cmp == 0) x.val = val;
 else if (cmp < 0)
 h.left = insert(h.left, key, val);
 else
 h.right = insert(h.right, key, val);
 if (isRed(h.right))
 {
 h = rotL(h);
 h.color = h.left.color;
 h.left.color = RED;
 }
 return h;
}

old code (that students had to learn in the past) new code (that you have to learn)

extremely tricky

straightforward
 (if you’ve paid attention)

Take your pick:

Why left-leaning trees?

39

Simplified code

• left-leaning restriction reduces number of cases

• recursion gives two (easy) chances to fix each node

• short inner loop

Same ideas simplify implementation of other operations

• delete min

• delete max

• delete

Built on the shoulders of many, many old balanced tree algorithms

• AVL trees

• 2-3 trees

• 2-3-4 trees

• skip lists

Bottom line: Left-leaning red-black trees are the simplest to implement

and at least as efficient

old

new

Summary of symbol-table implementations

40

implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

red-black tree 3 lg N 3 lg N 3 lg N lg N lg N lg N yes

exact value of coefficient unknown
but extremely close to 1

Typical random left-leaning red-black trees

41

 N = 500

lg N 9

average node depth

42

2-3-4 trees
red-black trees
B-trees

43

B-trees (Bayer-McCreight, 1972)

B-Tree. Generalizes 2-3-4 trees by allowing up to M links per node.

Main application: file systems.

• Reading a page into memory from disk is expensive.

• Accessing info on a page in memory is free.

• Goal: minimize # page accesses.

• Node size M = page size.

Space-time tradeoff.

• M large only a few levels in tree.

• M small less wasted space.

• Typical M = 1000, N < 1 trillion.

Bottom line. Number of page accesses is logMN per op.

in practice: 3 or 4 (!)

44

B-Tree Example

M = 5

no room
for 275

no room
for 737

45

B-Tree Example (cont)

no room
for 526

Summary of symbol-table implementations

46

implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.44 lg N 1.44 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.44 lg N 1.44 lg N 1.44 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N yes

B-tree 1 1 1 1 1 1 yes

B-Tree. Number of page accesses is logMN per op.

47

Balanced trees in the wild

Red-black trees: widely used as system symbol tables

• Java: java.util.TreeMap, java.util.TreeSet.

• C++ STL: map, multimap, multiset.

• Linux kernel: linux/rbtree.h.

B-Trees: widely used for file systems and databases

• Windows: HPFS.

• Mac: HFS, HFS+.

• Linux: ReiserFS, XFS, Ext3FS, JFS.

• Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

Bottom line: ST implementation with lg N guarantee for all ops.

• Algorithms are variations on a theme: rotations when inserting.

• Easiest to implement, optimal, fastest in practice: LLRB trees

• Abstraction extends to give search algorithms for huge files: B-trees

After the break: Can we do better??

Red-black trees in the wild

48

Common sense. Sixth sense.
Together they're the FBI's newest team.

Red-black trees in the wild

49

!!

Common sense. Sixth sense.
Together they're the FBI's newest team.

red-black tree

Red-black trees in the wild

50

!!

Common sense. Sixth sense.
Together they're the FBI's newest team.

red-black tree

1

Hashing

hash functions
collision resolution
applications

References:

 Algorithms in Java, Chapter 14
 http://www.cs.princeton.edu/introalgsds/42hash

Summary of symbol-table implementations

Can we do better?
2

implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.39 lg N 1.39 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.39 lg N 1.39 lg N 1.39 lg N yes

red-black tree 3 lg N 3 lg N 3 lg N lg N lg N lg N yes

3

Optimize Judiciously

Reference: Effective Java by Joshua Bloch.

More computing sins are committed in the name of efficiency

(without necessarily achieving it) than for any other single reason -

including blind stupidity. - William A. Wulf

We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil. - Donald E. Knuth

We follow two rules in the matter of optimization:

 Rule 1: Don't do it.

 Rule 2 (for experts only). Don't do it yet - that is, not until

 you have a perfectly clear and unoptimized solution.

 - M. A. Jackson

4

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing table index from key.

Issues.

1. Computing the hash function

2. Collision resolution: Algorithm and data structure

to handle two keys that hash to the same index.

3. Equality test: Method for checking whether two keys are equal.

Classic space-time tradeoff.

• No space limitation: trivial hash function with key as address.

• No time limitation: trivial collision resolution with sequential search.

• Limitations on both time and space: hashing (the real world).

0

1

2

3 “it”

4

5

hash(“it”) = 3

hash(“times”) = 3

??

5

hash functions
collision resolution
applications

6

Computing the hash function

Idealistic goal: scramble the keys uniformly.

• Efficiently computable.

• Each table position equally likely for each key.

Practical challenge: need different approach for each type of key

Ex: Social Security numbers.

• Bad: first three digits.

• Better: last three digits.

Ex: date of birth.

• Bad: birth year.

• Better: birthday.

Ex: phone numbers.

• Bad: first three digits.

• Better: last three digits.

573 = California, 574 = Alaska

assigned in chronological order within a
given geographic region

thoroughly researched problem,
still problematic in practical applications

7

Hash Codes and Hash Functions

Java convention: all classes implement hashCode()

hashcode() returns a 32-bit int (between -2147483648 and 2147483647)

Hash function. An int between 0 and M-1 (for use as an array index)

First try:

Bug. Don't use (code % M) as array index

1-in-a billion bug. Don't use (Math.abs(code) % M) as array index.

OK. Safe to use ((code & 0x7fffffff) % M) as array index.

String s = "call";
int code = s.hashCode();
int hash = code % M;

7121 8191

hex literal 31-bit mask

3045982

8

Java’s hashCode() convention

Theoretical advantages

• Ensures hashing can be used for every type of object

• Allows expert implementations suited to each type

Requirements:

• If x.equals(y) then x and y must have the same hash code.

• Repeated calls to x.hashCode() must return the same value.

Practical realities

• True randomness is hard to achieve

• Cost is an important consideration

Available implementations

• default (inherited from Object): Memory address of x (! ! !)

• customized Java implementations: String, URL, Integer, Date.

• User-defined types: users are on their own

x.hashCode()

x

y.hashCode()

y

that’s you!

9

A typical type

Assumption when using hashing in Java:

 Key type has reasonable implementation of hashCode() and equals()

Ex. Phone numbers: (609) 867-5309.

Fundamental problem:

 Need a theorem for each data type to ensure reliability.

sufficiently
random?

exchange extension

public final class PhoneNumber
{
 private final int area, exch, ext;
 public PhoneNumber(int area, int exch, int ext)
 {
 this.area = area;
 this.exch = exch;
 this.ext = ext;
 }
 public boolean equals(Object y) { // as before }
 public int hashCode()
 { return 10007 * (area + 1009 * exch) + ext; }
}

10

A decent hash code design

Java 1.5 string library [see also Program 14.2 in Algs in Java].

• Equivalent to h = 31L-1 s0 + … + 312 sL-3 + 31 sL-2 + sL-1.

• Horner's method to hash string of length L: L multiplies/adds

Ex.

Provably random? Well, no.

String s = "call";
int code = s.hashCode();

3045982 = 99 313 + 97 312 + 108 311 + 108 310

 = 108 + 31 (108 + 31 (99 + 31 (97)))

ith character of s

Unicodechar

… …

'a' 97

'b' 98

'c' 99

… …

public int hashCode()
{
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
}

11

A poor hash code design

Java 1.1 string library.

• For long strings: only examines 8-9 evenly spaced characters.

• Saves time in performing arithmetic…

but great potential for bad collision patterns.

Basic rule: need to use the whole key.

http://www.cs.princeton.edu/introcs/13loop/Hello.java

http://www.cs.princeton.edu/introcs/13loop/Hello.class

http://www.cs.princeton.edu/introcs/13loop/Hello.html

http://www.cs.princeton.edu/introcs/13loop/index.html

http://www.cs.princeton.edu/introcs/12type/index.html

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length() / 8);
 for (int i = 0; i < length(); i += skip)
 hash = (37 * hash) + s[i];
 return hash;
}

Digression: using a hash function for data mining

Use content to characterize documents.

Applications

• Search documents on the web for documents similar to a given one.

• Determine whether a new document belongs in one set or another

Approach

• Fix order k and dimension d

• Compute hashCode() % d for all

k-grams in the document

• Result: d-dimensional vector

profile of each document

• To compare documents:

Consider angle θ separating vectors

cos θ close to 0: not similar

cos θ close to 1: similar

12

cos θ = a b /

｜a｜｜b｜

a
b

θ

Digression: using a hash function for data mining

13

tale.txt genome.txt

i
10-grams with

hashcode() i
freq

10-grams with

hashcode() i
freq

0 0 0

1 0 0

2 0 0

435
best of ti

foolishnes
2

TTTCGGTTTG

TGTCTGCTGC
2

8999 it was the 8 0

...

12122 0 CTTTCGGTTT 3

...

34543 t was the b 5 ATGCGGTCGA 4

...

65535

65536

% more tale.txt

it was the best of times

it was the worst of times

it was the age of wisdom

it was the age of

foolishness

...

% more genome.txt

CTTTCGGTTTGGAACC

GAAGCCGCGCGTCT

TGTCTGCTGCAGC

ATCGTTC

...

k = 10
d = 65536

cos θ small: not similar

profiles

Digression: using a hash function to profile a document for data mining

14

public class Document
{
 private String name;
 private double[] profile;
 public Document(String name, int k, int d)
 {
 this.name = name;
 String doc = (new In(name)).readAll();
 int N = doc.length();
 profile = new double[d];
 for (int i = 0; i < N-k; i++)
 {
 int h = doc.substring(i, i+k).hashCode();
 profile[Math.abs(h % d)] += 1;
 }
 }
 public double simTo(Document other)
 {
 // compute dot product and divide by magnitudes
 }
}

Digression: using a hash function to compare documents

15

public class CompareAll
{
 public static void main(String args[])
 {
 int k = Integer.parseInt(args[0]);
 int d = Integer.parseInt(args[1]);
 int N = StdIn.readInt();
 Document[] a = new Document[N];
 for (int i = 0; i < N; i++)
 a[i] = new Document(StdIn.readString(), k, d);
 System.out.print(" ");
 for (int j = 0; j < N; j++)
 System.out.printf(" %.4s", a[j].name());
 System.out.println();
 for (int i = 0; i < N; i++)
 {
 System.out.printf("%.4s ", a[i].name());
 for (int j = 0; j < N; j++)
 System.out.printf("%8.2f", a[i].simTo(a[j]));
 System.out.println();
 }
 }
}

Digression: using a hash function to compare documents

16

% java CompareAll 5 1000 < docs.txt
 Cons TomS Huck Prej Pict DJIA Amaz ACTG
Cons 1.00 0.89 0.87 0.88 0.35 0.70 0.63 0.58
TomS 0.89 1.00 0.98 0.96 0.34 0.75 0.66 0.62
Huck 0.87 0.98 1.00 0.94 0.32 0.74 0.65 0.61
Prej 0.88 0.96 0.94 1.00 0.34 0.76 0.67 0.63
Pict 0.35 0.34 0.32 0.34 1.00 0.29 0.48 0.24
DJIA 0.70 0.75 0.74 0.76 0.29 1.00 0.62 0.58
Amaz 0.63 0.66 0.65 0.67 0.48 0.62 1.00 0.45
ACTG 0.58 0.62 0.61 0.63 0.24 0.58 0.45 1.00

Cons US Constitution

TomS “Tom Sawyer”

Huck “Huckleberry Finn”

Prej “Pride and Prejudice”

Pict a photograph

DJIA financial data

Amaz Amazon.com website .html source

ACTG genome

17

hash functions
collision resolution
applications

18

Helpful results from probability theory

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem.

 Expect two balls in the same bin after M / 2 tosses.

Coupon collector.

 Expect every bin has 1 ball after (M ln M) tosses.

Load balancing.

 After M tosses, expect most loaded bin has (log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

19

Collisions

Collision. Two distinct keys hashing to same index.

Conclusion. Birthday problem can't avoid collisions unless you have

a ridiculous amount of memory.

Challenge. Deal with collisions efficiently.

Approach 1:

accept multiple collisions

Approach 2:

minimize collisions

20

Collision resolution: two approaches

1. Separate chaining. [H. P. Luhn, IBM 1953]

Put keys that collide in a list associated with index.

2. Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]

When a new key collides, find next empty slot, and put it there.

st[0]

st[1]

st[2]

st[8190]

untravelledst[3] considerating

null

separate chaining (M = 8191, N = 15000)

easy extension of linked list ST implementation

null

null

linear probing (M = 30001, N = 15000)

easy extension of array ST implementation

seriouslyjocularly

listen

suburban

browsing

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30001]

st[3]

21

Collision resolution approach 1: separate chaining

Use an array of M < N linked lists.

• Hash: map key to integer i between 0 and M-1.

• Insert: put at front of ith chain (if not already there).

• Search: only need to search ith chain.

3untravelled

3suburban

5017ishmael

0seriously

.. . .

3480

7121

hash

me

call

key

good choice: M N/10

st[0]

st[1]

st[2]

st[8190]

untravelledst[3] considerating

null

seriouslyjocularly

listen

suburban

browsing

Separate chaining ST implementation (skeleton)

22

public class ListHashST<Key, Value>

{

 private int M = 8191;

 private Node[] st = new Node[M];

 private class Node

 {

 Object key;

 Object val;

 Node next;

 Node(Key key, Value val, Node next)

 {

 this.key = key;

 this.val = val;

 this.next = next;

 }

 }

 private int hash(Key key)

 { return (key.hashcode() & 0x7ffffffff) % M; }

 public void put(Key key, Value val)

 // see next slide

 public Val get(Key key)
 // see next slide
}

compare with
linked lists

no generics in
arrays in Java

could use
doubling

Separate chaining ST implementation (put and get)

23

public void put(Key key, Value val)

{

 int i = hash(key);

 for (Node x = st[i]; x != null; x = x.next)

 if (key.equals(x.key))

 { x.val = val; return; }

 st[i] = new Node(key, value, first);

}

public Value get(Key key)

{

 int i = hash(key);

 for (Node x = st[i]; x != null; x = x.next)

 if (key.equals(x.key))

 return (Value) x.val;

 return null;

}

Identical to linked-list code, except hash to pick a list.

24

Analysis of separate chaining

Separate chaining performance.

• Cost is proportional to length of list.

• Average length = N / M.

• Worst case: all keys hash to same list.

Theorem. Let = N / M > 1 be average length of list. For any t > 1,

probability that list length > t is exponentially small in t.

Parameters.

• M too large too many empty chains.

• M too small chains too long.

• Typical choice: = N / M 10 constant-time ops.

depends on hash map being random map

25

Collision resolution approach 2: open addressing

Use an array of size M >> N.

• Hash: map key to integer i between 0 and M-1.

Linear probing:

• Insert: put in slot i if free; if not try i+1, i+2, etc.

• Search: search slot i; if occupied but no match, try i+1, i+2, etc.

good choice: M 2N

-

0

-

1

-

2

S

3

H

4

-

5

-

6

A

7

C

8

E

9

R

10

-

11

N

12

insert I

hash(I) = 11
-

0

-

1

-

2

S

3

H

4

-

5

-

6

A

7

C

8

E

9

R

10

I

11

-

12

insert N

hash(N) = 8
-

0

-

1

-

2

S

3

H

4

-

5

-

6

A

7

C

8

E

9

R

10

I

11

N

12

Linear probing ST implementation

26

public class ArrayHashST<Key, Value>

{

 private int M = 30001;

 private Value[] vals = (Value[]) new Object[maxN];

 private Key[] keys = (Key[]) new Object[maxN];

 privat int hash(Key key) // as before

 public void put(Key key, Value val)

 {

 int i;

 for (i = hash(key); keys[i] != null; i = (i+1) % M)

 if (key.equals(keys[i]))

 break;

 vals[i] = val;

 keys[i] = key;

 }

 public Value get(Key key)
 {

 for (int i = hash(key); keys[i] != null; i = (i+1) % M)

 if (key.equals(keys[i]))

 return vals]i];

 return null;

 }

}

standard ugly casts

standard
array doubling
code omitted
(double when

half full)

compare with
elementary

unordered array
implementation

27

Clustering

Cluster. A contiguous block of items.

Observation. New keys likely to hash into middle of big clusters.

Knuth's parking problem. Cars arrive at one-way street with M parking

spaces. Each desires a random space i: if space i is taken, try i+1, i+2, …

What is mean displacement of a car?

Empty. With M/2 cars, mean displacement is about 3/2.

Full. Mean displacement for the last car is about M / 2

- - - S H A C E - - - X M I - - - P - - R L - -

cluster

()

28

Analysis of linear probing

Linear probing performance.

• Insert and search cost depend on length of cluster.

• Average length of cluster = = N / M.

• Worst case: all keys hash to same cluster.

Theorem. [Knuth 1962] Let = N / M < 1 be the load factor.

Parameters.

• Load factor too small too many empty array entries.

• Load factor too large clusters coalesce.

• Typical choice: M 2N constant-time ops.

but keys more likely to
hash to big clusters

1

(1 α)2

1
—
2 1 + = (1 + α + 2α2 + 3α3 + 4α4 + . . .) /

2

() 1

(1 α)

1
—
2

1 + = 1 + (α + α2 + α3 + α4 + . . .) /2

Average probes for insert/search miss

Average probes for search hit

Hashing: variations on the theme

Many improved versions have been studied:

Ex: Two-probe hashing

• hash to two positions, put key in shorter of the two lists

• reduces average length of the longest list to log log N

Ex: Double hashing

• use linear probing, but skip a variable amount, not just 1 each time

• effectively eliminates clustering

• can allow table to become nearly full

29

30

Double hashing

Idea Avoid clustering by using second hash to compute skip for search.

Hash. Map key to integer i between 0 and M-1.

Second hash. Map key to nonzero skip value k.

Ex: k = 1 + (v mod 97).

Effect. Skip values give different search paths for keys that collide.

Best practices. Make k and M relatively prime.

hashCode()

31

Theorem. [Guibas-Szemerédi] Let = N / M < 1 be average length of list.

Parameters. Typical choice: α 1.2 constant-time ops.

Disadvantage. Delete cumbersome to implement.

Double Hashing Performance

1

(1 α)

1
—
α ln = 1 + α/2 + α2 /3 + α3 /4 + α4 /5

+ . . .

Average probes for insert/search miss

Average probes for search hit

 1

(1 α)
= 1 + α + α2 + α3 + α4 + . . .

32

Hashing Tradeoffs

Separate chaining vs. linear probing/double hashing.

• Space for links vs. empty table slots.

• Small table + linked allocation vs. big coherent array.

Linear probing vs. double hashing.

load factor

50% 66% 75% 90%

linear
probing

get 1.5 2.0 3.0 5.5

put 2.5 5.0 8.5 55.5

double
hashing

get 1.4 1.6 1.8 2.6

put 1.5 2.0 3.0 5.5

number of probes

Summary of symbol-table implementations

33

implementation
guarantee average case ordered

iteration?
operations

on keys
search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no equals()

ordered array lg N N N lg N N/2 N/2 yes compareTo()

unordered list N N N N/2 N N/2 no equals()

ordered list N N N N/2 N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N yes compareTo()

hashing 1* 1* 1* 1* 1* 1* no
equals()
hashCode()

* assumes random hash code

Hashing versus balanced trees

Hashing

• simpler to code

• no effective alternative for unordered keys

• faster for simple keys (a few arithmetic ops versus lg N compares)

• (Java) better system support for strings [cached hashcode]

• does your hash function produce random values for your key type??

Balanced trees

• stronger performance guarantee

• can support many more operations for ordered keys

• easier to implement compareTo() correctly than equals() and hashCode()

Java system includes both

• red-black trees: java.util.TreeMap, java.util.TreeSet

• hashing: java.util.HashMap, java.util.IdentityHashMap

34

Typical “full” ST API

Hashing is not suitable for implementing such an API (no order)

BSTs are easy to extend to support such an API (basic tree ops)

Ex: Can use LLRB trees implement priority queues for distinct keys
35

public class *ST<Key extends Comparable<Key>, Value>

*ST() create a symbol table

void put(Key key, Value val) put key-value pair into the table

Value get(Key key)
return value paired with key
(null if key is not in table)

boolean contains(Key key) is there a value paired with key?

Key min() smallest key

Key max() largest key

Key next(Key key) next largest key (null if key is max)

Key prev(Key key) next smallest key (null if key is min)

void remove(Key key) remove key-value pair from table

Iterator<Key> iterator() iterator through keys in table

36

hash functions
collision resolution
applications

37

Set ADT

Set. Collection of distinct keys.

Normal mathematical assumption: collection is unordered

Typical (eventual) client expectation: ordered iteration

Q. How to implement?

A0. Hashing (our ST code [value removed] or java.util.HashSet)

A1. Red-black BST (our ST code [value removed] or java.util.TreeSet)

public class *SET<Key extends Comparable<Key>, Value>

SET() create a set

void add(Key key) put key into the set

boolean contains(Key key) is there a value paired with key?

void remove(Key key) remove key from the set

Iterator<Key> iterator() iterator through all keys in the set

unordered iterator
O(1) search

ordered iterator
O(log N) search

38

SET client example 1: dedup filter

Remove duplicates from strings in standard input

• Read a key.

• If key is not in set, insert and print it.

Simplified version of FrequencyCount (no iterator needed)

public class DeDup
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();
 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (!set.contains(key))
 {
 set.add(key);
 StdOut.println(key);
 }
 }
 }
}

% more tale.txt

it was the best of times

it was the worst of times

it was the age of wisdom

it was the age of

foolishness

...

% java Dedup < tale.txt

it

was

the

best

of

times

worst

age

wisdom

foolishness

...

No iterator needed.
Output is in same order

as input with
dups removed.

Print words from standard input that are found in a list

• Read in a list of words from one file.

• Print out all words from standard input that are in the list.

39

SET client example 2A: lookup filter

public class LookupFilter
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (set.contains(word))
 StdOut.println(word);
 }
 }
}

process list

create SET

print words that
are not in list

Print words from standard input that are not found in a list

• Read in a list of words from one file.

• Print out all words from standard input that are not in the list.

40

SET client example 2B: exception filter

public class LookupFilter
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (!set.contains(word))
 StdOut.println(word);
 }
 }
}

process list

create SET

print words that
are not in list

41

SET filter applications

application purpose key type in list not in list

dedup eliminate duplicates dedup duplicates unique keys

spell checker find misspelled words word exception dictionary misspelled words

browser mark visited pages URL lookup visited pages

chess detect draw board lookup positions

spam filter eliminate spam IP addr exception spam good mail

trusty filter allow trusted mail URL lookup good mail

credit cards check for stolen cards number exception stolen cards good cards

Searching challenge:

Problem: Index for a PC or the web

Assumptions: 1 billion++ words to index

Which searching method to use?

1) hashing implementation of SET

2) hashing implementation of ST

3) red-black-tree implementation of ST

4) red-black-tree implementation of SET

5) doesn’t matter much

42

Index for search in a PC

43

ST<String, SET<File>> st = new ST<String, SET<File>>();
for (File f: filesystem)
{
 In in = new In(f);
 String[] words = in.readAll().split("\\s+");
 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<File>());
 SET<File> files = st.get(s);
 files.add(f);
 }
}

SET<File> files = st.get(s);
for (File f: files) ...

build index

process
lookup

request

Searching challenge:

Problem: Index for a book

Assumptions: book has 100,000+ words

Which searching method to use?

1) hashing implementation of SET

2) hashing implementation of ST

3) red-black-tree implementation of ST

4) red-black-tree implementation of SET

5) doesn’t matter much

44

Index for a book

45

public class Index
{
 public static void main(String[] args)
 {
 String[] words = StdIn.readAll().split("\\s+");
 ST<String, SET<Integer>> st;
 st = new ST<String, SET<Integer>>();

 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<Integer>());
 SET<Integer> pages = st.get(s);
 pages.add(page(i));
 }

 for (String s : st)
 StdOut.println(s + ": " + st.get(s));

 }
}

process all
words

read book and
create ST

print index!

Requires ordered iterators (not hashing)

46

Hashing in the wild: Java implementations

Java has built-in libraries for hash tables.

• java.util.HashMap = separate chaining implementation.

• java.util.IdentityHashMap = linear probing implementation.

Null value policy.

• Java HashMap allows null values.

• Our implementation forbids null values.

import java.util.HashMap;
public class HashMapDemo
{
 public static void main(String[] args)
 {
 HashMap<String, String> st = new HashMap <String, String>();
 st.put("www.cs.princeton.edu", "128.112.136.11");
 st.put("www.princeton.edu", "128.112.128.15");
 StdOut.println(st.get("www.cs.princeton.edu"));
 }
}

47

 Using HashMap

Implementation of our API with java.util.HashMap.

import java.util.HashMap;
import java.util.Iterator;

public class ST<Key, Value> implements Iterable<Key>
{
 private HashMap<Key, Value> st = new HashMap<Key, Value>();

 public void put(Key key, Value val)
 {
 if (val == null) st.remove(key);
 else st.put(key, val);
 }
 public Value get(Key key) { return st.get(key); }
 public Value remove(Key key) { return st.remove(key); }
 public boolean contains(Key key) { return st.contains(key); }
 public int size() contains(Key key) { return st.size(); }
 public Iterator<Key> iterator() { return st.keySet().iterator(); }
}

48

Hashing in the wild: algorithmic complexity attacks

Is the random hash map assumption important in practice?

• Obvious situations: aircraft control, nuclear reactor, pacemaker.

• Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

• Bro server: send carefully chosen packets to DOS the server,

using less bandwidth than a dial-up modem

• Perl 5.8.0: insert carefully chosen strings into associative array.

• Linux 2.4.20 kernel: save files with carefully chosen names.

Reference: http://www.cs.rice.edu/~scrosby/hash

malicious adversary learns your ad hoc hash function

(e.g., by reading Java API) and causes a big pile-up in

single address that grinds performance to a halt

Goal. Find strings with the same hash code.

Solution. The base-31 hash code is part of Java's string API.

49

Algorithmic complexity attack on the Java Library

2N strings of length 2N
that hash to same value!

Key hashCode()

AaAaAaAa -540425984

AaAaAaBB -540425984

AaAaBBAa -540425984

AaAaBBBB -540425984

AaBBAaAa -540425984

AaBBAaBB -540425984

AaBBBBAa -540425984

AaBBBBBB -540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

BBAaAaAa

BBAaAaBB

BBAaBBAa

BBAaBBBB

BBBBAaAa

BBBBAaBB

BBBBBBAa

BBBBBBBB

Key hashCode()

Aa 2112

BB 2112

Does your hash function

produce random values

for your key type??

50

One-Way Hash Functions

One-way hash function. Hard to find a key that will hash to a desired

value, or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

Applications. Digital fingerprint, message digest, storing passwords.

Too expensive for use in ST implementations (use balanced trees)

insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

// prints bytes as hex string

1

Undirected Graphs

Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges

References:

 Algorithms in Java, Chapters 17 and 18

 Intro to Programming in Java, Section 4.5
 http://www.cs.princeton.edu/introalgsds/51undirected

2

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

• Interesting and broadly useful abstraction.

• Challenging branch of computer science and discrete math.

• Hundreds of graph algorithms known.

• Thousands of practical applications.

3

Graph applications

communication

graph

telephones, computers

vertices edges

fiber optic cables

circuits gates, registers, processors wires

mechanical joints rods, beams, springs

hydraulic reservoirs, pumping stations pipelines

financial stocks, currency transactions

transportation street intersections, airports highways, airway routes

scheduling tasks precedence constraints

software systems functions function calls

internet web pages hyperlinks

games board positions legal moves

social relationship people, actors friendships, movie casts

neural networks neurons synapses

protein networks proteins protein-protein interactions

chemical compounds molecules bonds

4

Social networks

Reference: Bearman, Moody and Stovel, 2004

image by Mark Newman

high school dating

Reference: Adamic and Adar, 2004

corporate e-mail

5

Power transmission grid of Western US

Reference: Duncan Watts

6

Protein interaction network

Reference: Jeong et al, Nature Review | Genetics

7

The Internet

The Internet as mapped by The Opte Project

http://www.opte.org

8

Graph terminology

9

Some graph-processing problems

Path. Is there a path between s to t?

Shortest path. What is the shortest path between s and t?

Longest path. What is the longest simple path between s and t?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?

Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?

MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

First challenge: Which of these problems is easy? difficult? intractable?

10

Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges

G

E

CB

F

D

A

Vertex representation.

• This lecture: use integers between 0 and V-1.

• Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.

11

Graph representation

symbol table

6

4

21

5

3

0

12

Graph API

Graph G = new Graph(V, E);
StdOut.println(G);
for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 // process edge v-w

Client that iterates through all edges

create an empty graph with V verticesGraph(int V)

public class Graph (graph data type)

create a random graph with V vertices, E edgesGraph(int V, int E)

add an edge v-waddEdge(int v, int w)void

return an iterator over the neighbors of vadj(int v)Iterable<Integer>

return number of verticesV()int

return a string representationtoString()String

processes BOTH
v-w and w-v

Store a list of the edges (linked list or array)

13

0-1
0-6
0-2
11-12
9-12
9-11
9-10
4-3
5-3
7-8
5-4
0-5
6-4

Set of edges representation

6

4

21

5

3

0

87

109

1211

Maintain a two-dimensional V V boolean array.

For each edge v-w in graph: adj[v][w] = adj[w][v] = true.

14

Adjacency matrix representation

 0 0 1 1 0 0 1 1 0 0 0 0 0 0
 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 2 1 0 0 0 0 0 0 0 0 0 0 0 0
 3 0 0 0 0 1 1 0 0 0 0 0 0 0
 4 0 0 0 1 0 1 1 0 0 0 0 0 0
 5 1 0 0 1 1 0 0 0 0 0 0 0 0
 6 1 0 0 0 1 0 0 0 0 0 0 0 0
 7 0 0 0 0 0 0 0 0 1 0 0 0 0
 8 0 0 0 0 0 0 0 1 0 0 0 0 0
 9 0 0 0 0 0 0 0 0 0 0 1 1 1
10 0 0 0 0 0 0 0 0 0 1 0 0 0
11 0 0 0 0 0 0 0 0 0 1 0 0 1
12 0 0 0 0 0 0 0 0 0 1 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12

6

4

21

5

3

0

87

109

1211

two entries
for each

edge

adjacency
matrix

create empty
V-vertex graph

add edge v-w
(no parallel edges)

15

Adjacency-matrix graph representation: Java implementation

public class Graph
{
 private int V;
 private boolean[][] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = new boolean[V][V];
 }

 public void addEdge(int v, int w)
 {
 adj[v][w] = true;
 adj[w][v] = true;
 }

 public Iterable<Integer> adj(int v)
 {
 return new AdjIterator(v);
 }
}

iterator for
v’s neighbors

16

Adjacency matrix: iterator for vertex neighbors

private class AdjIterator implements Iterator<Integer>,
 Iterable<Integer>
{
 int v, w = 0;
 AdjIterator(int v)
 { this.v = v; }

 public boolean hasNext()
 {
 while (w < V)
 { if (adj[v][w]) return true; w++ }
 return false;
 }

 public int next()
 {
 if (hasNext()) return w++ ;
 else throw new NoSuchElementException();
 }

 public Iterator<Integer> iterator()
 { return this; }

}

17

Adjacency-list graph representation

Maintain vertex-indexed array of lists (implementation omitted)

0: 5 2 1 6

1: 0

2: 0

3: 5 4

4: 6 5 3

5: 0 4 3

6: 4 0

7: 8

8: 7

9: 10 11 12

10: 9

11: 9 12

12: 9 11

6

4

21

5

3

0

87

109

1211

two entries
for each

edge

18

Adjacency-SET graph representation

Maintain vertex-indexed array of SETs

(take advantage of balanced-tree or hashing implementations)

0: { 1 2 5 6 }

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

6

4

21

5

3

0

87

109

1211

{ 0 }

{ 0 }

{ 4 5 }

{ 3 5 6 }

{ 0 3 4 }

{ 0 4 }

{ 8 }

{ 7 }

{ 10 11 12 }

{ 9 }

{ 9 12 }

{ 9 1 }

two entries
for each

edge

adjacency
sets

create empty
V-vertex graph

add edge v-w
(no parallel edges)

iterable SET for
v’s neighbors

19

Adjacency-SET graph representation: Java implementation

public class Graph
{
 private int V;
 private SET<Integer>[] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = (SET<Integer>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 adj[w].add(v);
 }

 public Iterable<Integer> adj(int v)
 {
 return adj[v];
 }
}

Graphs are abstract mathematical objects, BUT

• ADT implementation requires specific representation.

• Efficiency depends on matching algorithms to representations.

In practice: Use adjacency SET representation

• Take advantage of proven technology

• Real-world graphs tend to be “sparse”

[huge number of vertices, small average vertex degree]

• Algs all based on iterating over edges incident to v.

20

Graph representations

representation space
edge between

v and w?
iterate over edges

incident to v?

list of edges E E E

adjacency matrix V2 1 V

adjacency list E + V degree(v) degree(v)

adjacency SET E + V log (degree(v)) degree(v)*

* easy to also support
 ordered iteration and
 randomized iteration

21

Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges

22

Maze exploration

Maze graphs.

• Vertex = intersections.

• Edge = passage.

Goal. Explore every passage in the maze.

23

Trémaux Maze Exploration

Trémaux maze exploration.

• Unroll a ball of string behind you.

• Mark each visited intersection by turning on a light.

• Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur;

Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

24

25

Maze Exploration

26

Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges

Flood fill

Photoshop “magic wand”

27

Graph-processing challenge 1:

Problem: Flood fill

Assumptions: picture has millions to billions of pixels

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

28

Goal. Systematically search through a graph.

Idea. Mimic maze exploration.

Typical applications.

• find all vertices connected to a given s

• find a path from s to t

Running time.

• O(E) since each edge examined at most twice

• usually less than V to find paths in real graphs

Depth-first search

Mark s as visited.

Visit all unmarked vertices v adjacent to s.

DFS (to visit a vertex s)

recursive

30

Typical client program.

• Create a Graph.

• Pass the Graph to a graph-processing routine, e.g., DFSearcher.

• Query the graph-processing routine for information.

Decouple graph from graph processing.

Design pattern for graph processing

public static void main(String[] args)
{
 In in = new In(args[0]);
 Graph G = new Graph(in);
 int s = 0;
 DFSearcher dfs = new DFSearcher(G, s);
 for (int v = 0; v < G.V(); v++)
 if (dfs.isConnected(v))
 System.out.println(v);
}

Client that prints all vertices connected to (reachable from) s

true if
connected to s

constructor
marks vertices
connected to s

recursive DFS
does the work

client can ask whether
any vertex is

connected to s

31

Depth-first search (connectivity)

public class DFSearcher
{
 private boolean[] marked;

 public DFSearcher(Graph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean isReachable(int v)
 {
 return marked[v];
 }
}

32

Connectivity application: Flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph

• vertex: pixel.

• edge: between two adjacent lime pixels.

• blob: all pixels connected to given pixel.

recolor red blob to blue

33

Connectivity Application: Flood Fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph

• vertex: pixel.

• edge: between two adjacent red pixels.

• blob: all pixels connected to given pixel.

recolor red blob to blue

Graph-processing challenge 2:

Problem: Is there a path from s to t ?

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

34

0-1
0-6
0-2
4-3
5-3
5-4

6

4

21

3

0

5

Problem: Find a path from s to t.

Assumptions: any path will do

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

Graph-processing challenge 3:

35

0-1
0-6
0-2
4-3
5-3
5-4
0-5

6

4

21

3

0

5

36

Paths in graphs

Is there a path from s to t? If so, find one.

37

Paths in graphs

Is there a path from s to t?

If so, find one.

• Union-Find: no help (use DFS on connected subgraph)

• DFS: easy (stay tuned)

UF advantage. Can intermix queries and edge insertions.

DFS advantage. Can recover path itself in time proportional to its length.

method preprocess time

Union Find V + E log* V

DFS E + V

query time

 log* V †

1

space

V

E + V

† amortized

38

Keeping track of paths with DFS

DFS tree. Upon visiting a vertex v for the first time, remember that

you came from pred[v] (parent-link representation).

Retrace path. To find path between s and v, follow pred back from v.

add instance variable for
parent-link representation

of DFS tree

initialize it in the
constructor

set parent link

add method for client
to iterate through path

39

Depth-first-search (pathfinding)

public class DFSearcher
{
 ...
 private int[] pred;
 public DFSearcher(Graph G, int s)
 {
 ...
 pred = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 pred[v] = -1;
 ...
 }
 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 {
 pred[w] = v;
 dfs(G, w);
 }
 }

 public Iterable<Integer> path(int v)
 { // next slide }
}

40

Depth-first-search (pathfinding iterator)

 public Iterable<Integer> path(int v)
 {
 Stack<Integer> path = new Stack<Integer>();
 while (v != -1 && marked[v])
 {
 list.push(v);
 v = pred[v];
 }
 return path;
 }
}

41

DFS summary

Enables direct solution of simple graph problems.

• Find path from s to t.

• Connected components (stay tuned).

• Euler tour (see book).

• Cycle detection (simple exercise).

• Bipartiteness checking (see book).

Basis for solving more difficult graph problems.

• Biconnected components (see book).

• Planarity testing (beyond scope).

42

Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges

43

Breadth First Search

Depth-first search. Put unvisited vertices on a stack.

Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

Property. BFS examines vertices in increasing distance from s.

Put s onto a FIFO queue.

Repeat until the queue is empty:

 remove the least recently added vertex v

 add each of v's unvisited neighbors to the queue,

 and mark them as visited.

BFS (from source vertex s)

distances from s

initialize distances

44

Breadth-first search scaffolding

public class BFSearcher
{
 private int[] dist;

 public BFSearcher(Graph G, int s)
 {
 dist = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 dist[v] = G.V() + 1;
 dist[s] = 0;

 bfs(G, s);
 }

 public int distance(int v)
 { return dist[v]; }

 private void bfs(Graph G, int s)
 { // See next slide. }

}

answer client
query

compute
distances

45

Breadth-first search (compute shortest-path distances)

private void bfs(Graph G, int s)
{
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 while (!q.isEmpty())
 {
 int v = q.dequeue();
 for (int w : G.adj(v))
 {
 if (dist[w] > G.V())
 {
 q.enqueue(w);
 dist[w] = dist[v] + 1;
 }
 }
 }
}

46

BFS Application

• Kevin Bacon numbers.

• Facebook.

• Fewest number of hops in a communication network.

ARPANET

47

Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges

Def. Vertices v and w are connected if there is a path between them.

Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w?

 in constant time

Union-Find? not quite

48

Connectivity Queries

H

A

K

EL

F

D

G

M

CJ

B

I

Vertex Component

 A 0

 B 1

 C 1

 D 0

 E 0

 F 0

 G 2

 H 0

 I 2

 J 1

 K 0

 L 0

 M 1

49

Goal. Partition vertices into connected components.

Connected Components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS and identify all vertices

discovered as part of the same connected component.

Connected components

preprocess Time

E + V

query Time

1

extra Space

V

component labels

DFS for each
component

standard DFS

constant-time
connectivity query

50

Depth-first search for connected components

public class CCFinder

{

 private final static int UNMARKED = -1;

 private int components;

 private int[] cc;

 public CCFinder(Graph G)

 {

 cc = new int[G.V()];

 for (int v = 0; v < G.V(); v++)

 cc[v] = UNMARKED;

 for (int v = 0; v < G.V(); v++)

 if (cc[v] == UNMARKED)

 { dfs(G, v); components++; }

 }

 private void dfs(Graph G, int v)

 {

 cc[v] = components;

 for (int w : G.adj(v))

 if (cc[w] == UNMARKED) dfs(G, w);

 }

 public int connected(int v, int w)

 { return cc[v] == cc[w]; }

}

51

Connected Components

63 components

52

Connected components application: Image processing

Goal. Read in a 2D color image and find regions of connected pixels

that have the same color.

Input: scanned image

Output: number of red and blue states

53

Connected components application: Image Processing

Goal. Read in a 2D color image and find regions of connected pixels

that have the same color.

Efficient algorithm.

• Connect each pixel to neighboring pixel if same color.

• Find connected components in resulting graph.

0 1 1 1 1 1 6 6

0 0 0 1 6 6 6 8

3 0 0 1 6 6 4 8

3 0 0 1 1 6 2 11

10 10 10 10 1 1 2 11

7 7 2 2 2 2 2 11

7 7 5 5 5 2 2 11

8 9 9 11

8 11 9 11

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

54

Connected components application: Particle detection

Particle detection. Given grayscale image of particles, identify "blobs."

• Vertex: pixel.

• Edge: between two adjacent pixels with grayscale value 70.

• Blob: connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.

black = 0
white = 255

55

Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges

Graph-processing challenge 4:

Problem: Find a path from s to t

Assumptions: any path will do

Which is faster, DFS or BFS?

1) DFS

2) BFS

3) about the same

4) depends on the graph

5) depends on the graph representation

56

0-1
0-6
0-2
4-3
5-3
5-4
0-5
6-4
1-2
5-0

6

4

21

3

0

5

Graph-processing challenge 5:

Problem: Find a path from s to t

Assumptions: any path will do

 randomized iterators

Which is faster, DFS or BFS?

1) DFS

2) BFS

3) about the same

4) depends on the graph

5) depends on the graph representation

57

0-1
0-6
0-2
4-3
5-3
5-4
0-5
6-4
1-2
5-0

6

4

21

3

0

5

Graph-processing challenge 6:

Problem: Find a path from s to t that uses every edge

Assumptions: need to use each edge exactly once

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

58

0-1
0-6
0-2
4-3
5-3
5-4
0-5
6-4
1-2
5-0

6

4

21

3

0

5

59

The Seven Bridges of Königsberg. [Leonhard Euler 1736]

Euler tour. Is there a cyclic path that uses each edge exactly once?

Answer. Yes iff connected and all vertices have even degree.

 Tricky DFS-based algorithm to find path (see Algs in Java).

"… in Königsberg in Prussia, there is an island A, called the Kneiphof;

the river which surrounds it is divided into two branches ... and these

branches are crossed by seven bridges. Concerning these bridges, it

was asked whether anyone could arrange a route in such a way that he

could cross each bridge once and only once…"

Bridges of Königsberg
earliest application of
graph theory or topology

Graph-processing challenge 7:

Problem: Find a path from s to t that visits every vertex

Assumptions: need to visit each vertex exactly once

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

60

0-1
0-6
0-2
4-3
5-3
5-4
0-5
6-4
1-2
2-6

6

4

21

3

0

5

Graph-processing challenge 8:

Problem: Are two graphs identical except for vertex names?

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

61

0-1
0-6
0-2
4-3
5-3
5-4
0-5
6-4

6

4

21

5

3

0

2-1
2-4
2-0
6-5
5-3
3-6
2-3
6-4

4

6

0

2

3

5

1

Graph-processing challenge 9:

Problem: Can you lay out a graph in the plane without crossing edges?

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

62

2-1
2-4
2-0
6-5
5-3
3-6
2-3
6-4

4

6

0

2

3

5

1

1

Directed Graphs

digraph search
transitive closure
topological sort
strong components

References:

 Algorithms in Java, Chapter 19
 http://www.cs.princeton.edu/introalgsds/52directed

2

Directed graphs (digraphs)

Set of objects with oriented pairwise connections.

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

6 22

 one-way streets in a map

hyperlinks connecting web pages

dependencies in software modules prey-predator relationships

3

Digraph applications

digraph vertex edge

financial stock, currency transaction

transportation street intersection, airport highway, airway route

scheduling task precedence constraint

WordNet synset hypernym

Web web page hyperlink

game board position legal move

telephone person placed call

food web species predator-prey relation

infectious disease person infection

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

4

Some digraph problems

Transitive closure.

Is there a directed path from v to w?

Strong connectivity.

Are all vertices mutually reachable?

Topological sort.

Can you draw the digraph so that all edges point

from left to right?

PERT/CPM.

Given a set of tasks with precedence constraints,

how we can we best complete them all?

Shortest path. Find best route from s to t

in a weighted digraph

PageRank. What is the importance of a web page?

5

Digraph representations

Vertices

• this lecture: use integers between 0 and V-1.

• real world: convert between names and integers with symbol table.

Edges: four easy options

• list of vertex pairs

• vertex-indexed adjacency arrays (adjacency matrix)

• vertex-indexed adjacency lists

• vertex-indexed adjacency SETs

Same as undirected graph

 BUT

orientation of edges is significant.

0

6

4

21

5

3

7

12

109

11

8

6

Adjacency matrix digraph representation

Maintain a two-dimensional V V boolean array.

For each edge v w in graph: adj[v][w] = true.

 0 0 1 1 0 0 1 1 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 2 0 0 0 0 0 0 0 0 0 0 0 0 0
 3 0 0 0 0 0 0 0 0 0 0 0 0 0
 4 0 0 0 1 0 0 0 0 0 0 0 0 0
 5 0 0 0 1 1 0 0 0 0 0 0 0 0
 6 0 0 0 0 1 0 0 0 0 0 0 0 0
 7 0 0 0 0 0 0 0 0 1 0 0 0 0
 8 0 0 0 0 0 0 0 0 0 0 0 0 0
 9 0 0 0 0 0 0 0 0 0 0 1 1 1
10 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

from

to

0

6

4

21

5

3

7 12

109

118

one entry
for each

edge

7

Adjacency-list digraph representation

Maintain vertex-indexed array of lists.

0: 5 2 1 6

1:

2:

3:

4: 3

5: 4 3

6: 4

7: 8

8:

9: 10 11 12

10:

11: 12

12:

0

6

4

21

5

3

7 12

109

118

one entry
for each

edge

8

Adjacency-SET digraph representation

Maintain vertex-indexed array of SETs.

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

0

6

4

21

5

3

7 12

109

118

{ 1 2 5 6 }

{ }

{ }

{ }

{ 3 }

{ 3 4 }

{ 4 }

{ 8 }

{ }

{ 10 11 12 }

{ }

{ 12 }

{ }

one entry
for each

edge

adjacency
SETs

create empty
V-vertex graph

add edge from v to w
(Graph also has adj[w].add[v])

iterable SET for
v’s neighbors

9

Adjacency-SET digraph representation: Java implementation

Same as Graph, but only insert one copy of each edge.

public class Digraph
{
 private int V;
 private SET<Integer>[] adj;

 public Digraph(int V)
 {
 this.V = V;
 adj = (SET<Integer>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 }

 public Iterable<Integer> adj(int v)
 {
 return adj[v];
 }
}

Digraphs are abstract mathematical objects, BUT

• ADT implementation requires specific representation.

• Efficiency depends on matching algorithms to representations.

In practice: Use adjacency SET representation

• Take advantage of proven technology

• Real-world digraphs tend to be “sparse”

[huge number of vertices, small average vertex degree]

• Algs all based on iterating over edges incident to v.

10

Digraph representations

representation space
edge between

v and w?
iterate over edges

incident to v?

list of edges E E E

adjacency matrix V2 1 V

adjacency list E + V degree(v) degree(v)

adjacency SET E + V log (degree(v)) degree(v)

11

Typical digraph application: Google's PageRank algorithm

Goal. Determine which web pages on Internet are important.

Solution. Ignore keywords and content, focus on hyperlink structure.

Random surfer model.

• Start at random page.

• With probability 0.85, randomly select a hyperlink to visit next;

with probability 0.15, randomly select any page.

• PageRank = proportion of time random surfer spends on each page.

Solution 1: Simulate random surfer for a long time.

Solution 2: Compute ranks directly until they converge

Solution 3: Compute eigenvalues of adjacency matrix!

None feasible without sparse digraph representation

Every square matrix is a weighted digraph

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

12

digraph search
transitive closure
topological sort
strong components

13

Digraph application: program control-flow analysis

Every program is a digraph (instructions connected to possible successors)

Dead code elimination.

Find (and remove) unreachable code

Infinite loop detection.

Determine whether exit is unreachable

can arise from compiler optimization (or bad code)

can’t detect all possible infinite loops (halting problem)

14

Digraph application: mark-sweep garbage collector

Every data structure is a digraph (objects connected by references)

Roots. Objects known to be directly

 accessible by program (e.g., stack).

Reachable objects.

 Objects indirectly accessible by

 program (starting at a root and

 following a chain of pointers).

Mark-sweep algorithm. [McCarthy, 1960]

• Mark: mark all reachable objects.

• Sweep: if object is unmarked, it is garbage, so add to free list.

Memory cost: Uses 1 extra mark bit per object, plus DFS stack.

easy to identify pointers in type-safe language

15

Reachability

Goal. Find all vertices reachable from s along a directed path.

s

16

Reachability

Goal. Find all vertices reachable from s along a directed path.

s

Digraph-processing challenge 1:

Problem: Mark all vertices reachable from a given vertex.

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

17

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
3-1

6

4

21

3

0

5

18

Depth-first search in digraphs

Same method as for undirected graphs

Every undirected graph is a digraph

• happens to have edges in both directions

• DFS is a digraph algorithm

Mark v as visited.

Visit all unmarked vertices w adjacent to v.

DFS (to visit a vertex v)

recursive

19

Depth-first search (single-source reachability)

Identical to undirected version (substitute Digraph for Graph).

true if
connected to s

constructor
marks vertices
connected to s

recursive DFS
does the work

client can ask whether
any vertex is

connected to s

public class DFSearcher
{
 private boolean[] marked;

 public DFSearcher(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean isReachable(int v)
 {
 return marked[v];
 }
}

DFS enables direct solution of simple digraph problems.

• Reachability.

• Cycle detection

• Topological sort

• Transitive closure.

• Is there a path from s to t ?

Basis for solving difficult digraph problems.

• Directed Euler path.

• Strong connected components.

20

Depth-first search (DFS)

stay tuned

21

Breadth-first search in digraphs

Same method as for undirected graphs

Every undirected graph is a digraph

• happens to have edges in both directions

• BFS is a digraph algorithm

Visits vertices in increasing distance from s

Put s onto a FIFO queue.

Repeat until the queue is empty:

 remove the least recently added vertex v

 add each of v's unvisited neighbors to the

 queue and mark them as visited.

BFS (from source vertex s)

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .0

 1 .0

 2 .0

 3 .0

 4 .0

 5 .0

 6 .0

 7 .0

 8 .0

 9 .0

 10 .0

 11 .0

 12 .0

 13 .0

 14 .0

 15 .0

 16 .0

 17 .0

 18 .0

 19 .0

 20 .0

 21 .0

 22 .0

 23 .0

 24 .0

 25 .0

 26 .0

 27 .0

 28 .0

 29 .0

 30 .0

 31 .0

 32 .0

 33 .0

 34 .0

 35 .0

 36 .0

 37 .0

 38 .0

 39 .0

 40 .0

 41 .0

 42 .0

 43 .0

 44 .0

 45 .0

 46 .0

 47 .0

 48 .0

 49 .0

6 22

22

Digraph BFS application: Web Crawler

The internet is a digraph

Goal. Crawl Internet, starting from some root website.

Solution. BFS with implicit graph.

BFS.

• Start at some root website

(say http://www.princeton.edu.).

• Maintain a Queue of websites to explore.

• Maintain a SET of discovered websites.

• Dequeue the next website

and enqueue websites to which it links

(provided you haven't done so before).

Q. Why not use DFS?

A. Internet is not fixed (some pages generate new ones when visited)

subtle point: think about it!

Queue<String> q = new Queue<String>();

SET<String> visited = new SET<String>();

String s = "http://www.princeton.edu";

q.enqueue(s);

visited.add(s);

while (!q.isEmpty())

{

 String v = q.dequeue();

 System.out.println(v);

 In in = new In(v);

 String input = in.readAll();

 String regexp = "http://(\\w+\\.)*(\\w+)";

 Pattern pattern = Pattern.compile(regexp);

 Matcher matcher = pattern.matcher(input);

 while (matcher.find())

 {

 String w = matcher.group();

 if (!visited.contains(w))

 {

 visited.add(w);

 q.enqueue(w);

 }

 }

}
23

Web crawler: BFS-based Java implementation

read in raw html for next site in queue

use regular expression
to find all URLs in site

if unvisited, mark as visited
and put on queue

http://xxx.yyy.zzz

start crawling from s

queue of sites to crawl

set of visited sites

24

digraph search
transitive closure
topological sort
strong components

Graph-processing challenge (revisited)

Problem: Is there a path from s to t ?

Goals: linear ~(V + E) preprocessing time

 constant query time

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

25

0-1
0-6
0-2
4-3
5-3
5-4

6

4

21

3

0

5

Digraph-processing challenge 2

Problem: Is there a directed path from s to t ?

Goals: linear ~(V + E) preprocessing time

 constant query time

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

26

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

27

The transitive closure of G has an directed edge from v to w

 if there is a directed path from v to w in G

Transitive Closure

G

Transitive closure
of G

TC is usually dense
so adjacency matrix
representation is OK

graph is usually sparse

Digraph-processing challenge 2 (revised)

Problem: Is there a directed path from s to t ?

Goals: ~V2 preprocessing time

 constant query time

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

28

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

Digraph-processing challenge 2 (revised again)

Problem: Is there a directed path from s to t ?

Goals: ~VE preprocessing time (~V3 for dense digraphs)

 ~V2 space

 constant query time

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

29

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

30

Transitive closure: Java implementation

public class TransitiveClosure
{

 private DFSearcher[] tc;

 public TransitiveClosure(Digraph G)
 {
 tc = new DFSearcher[G.V()];
 for (int v = 0; v < G.V(); v++)
 tc[v] = new DFSearcher(G, v);
 }

 public boolean reachable(int v, int w)
 {
 return tc[v].isReachable(w);
 }
}

is there a directed path from v to w ?

Use an array of DFSearcher objects,

one for each row of transitive closure
public class DFSearcher
{
 private boolean[] marked;
 public DFSearcher(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }
 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }
 public boolean isReachable(int v)
 {
 return marked[v];
 }
}

31

digraph search
transitive closure
topological sort
strong components

32

Digraph application: Scheduling

Scheduling. Given a set of tasks to be completed with precedence

constraints, in what order should we schedule the tasks?

Graph model.

• Create a vertex v for each task.

• Create an edge v w if task v must precede task w.

• Schedule tasks in topological order.

0. read programming assignment
1. download files
2. write code
3. attend precept
…
12. sleep

tasks

precedence
constraints

feasible
schedule

33

Topological Sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point left to right.

Observation. Not possible if graph has a directed cycle.

Digraph-processing challenge 3

Problem: Check that the digraph is a DAG.

 If it is a DAG, do a topological sort.

Goals: linear ~(V + E) preprocessing time

 provide client with vertex iterator for topological order

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

34

0-1
0-6
0-2
0-5
2-3
4-9
6-4
6-9
7-6
8-7
9-10
9-11
9-12
11-12

35

Topological sort in a DAG: Java implementation

public class TopologicalSorter
{
 private int count;
 private boolean[] marked;
 private int[] ts;

 public TopologicalSorter(Digraph G)
 {
 marked = new boolean[G.V()];
 ts = new int[G.V()];
 count = G.V();
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) tsort(G, v);
 }

 private void tsort(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) tsort(G, w);
 ts[--count] = v;
 }
}

standard DFS
with 5

extra lines of code

add iterator that returns
ts[0], ts[1], ts[2]...

Seems easy? Missed by experts for a few decades

36

Topological sort of a dag: trace

1

4

52

3

0

6

0: 1 2 5
1: 4
2:
3: 2 4 5 6
4:
5: 2
6: 0 4

visit 0: 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 visit 1: 1 1 0 0 0 0 0 0 0 0 0 0 0 0

 visit 4: 1 1 0 0 1 0 0 0 0 0 0 0 0 0

 leave 4: 1 1 0 0 1 0 0 0 0 0 0 0 0 4

 leave 1: 1 1 0 0 1 0 0 0 0 0 0 0 1 4

 visit 2: 1 1 1 0 1 0 0 0 0 0 0 0 1 4

 leave 2: 1 1 1 0 1 0 0 0 0 0 0 2 1 4

 visit 5: 1 1 1 0 1 1 0 0 0 0 0 2 1 4

 check 2: 1 1 1 0 1 1 0 0 0 0 0 2 1 4

 leave 5: 1 1 1 0 1 1 0 0 0 0 5 2 1 4

leave 0: 1 1 1 0 1 1 0 0 0 0 5 2 1 4

check 1: 1 1 1 0 1 1 0 0 0 0 5 2 1 4

check 2: 1 1 1 0 1 1 0 0 0 0 5 2 1 4

visit 3: 1 1 1 1 1 1 0 0 0 0 5 2 1 4

 check 2: 1 1 1 1 1 1 0 0 0 0 5 2 1 4

 check 4: 1 1 1 1 1 1 0 0 0 0 5 2 1 4

 check 5: 1 1 1 1 1 1 0 0 0 0 5 2 1 4

 visit 6: 1 1 1 1 1 1 1 0 0 0 5 2 1 4

 leave 6: 1 1 1 1 1 1 1 0 6 0 5 2 1 4

leave 3: 1 1 1 1 1 1 1 3 6 0 5 2 1 4

check 4: 1 1 1 1 1 1 0 3 6 0 5 2 1 4

check 5: 1 1 1 1 1 1 0 3 6 0 5 2 1 4

check 6: 1 1 1 1 1 1 0 3 6 0 5 2 1 4

marked[] ts[]

“visit” means “call tsort()” and “leave” means “return from tsort()

adj SETs

3 6 0 5 2 1 4

0

1 2 5

4

3

6

37

Topological sort in a DAG: correctness proof

Invariant:

 tsort(G, v) visits all vertices

 reachable from v with a directed path

Proof by induction:

• w marked: vertices reachable from w

are already visited

• w not marked: call tsort(G, w) to

visit the vertices reachable from w

Therefore, algorithm is correct

in placing v before all vertices visited

during call to tsort(G, v) just before returning.

Q. How to tell whether the digraph has a cycle (is not a DAG)?

A. Use TopologicalSorter (exercise)

public class TopologicalSorter
{
 private int count;
 private boolean[] marked;
 private int[] ts;

 public TopologicalSorter(Digraph G)
 {
 marked = new boolean[G.V()];
 ts = new int[G.V()];
 count = G.V();
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) tsort(G, v);
 }

 private void tsort(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) tsort(G, w);
 ts[--count] = v;
 }
}

38

Topological sort applications.

• Causalities.

• Compilation units.

• Class inheritance.

• Course prerequisites.

• Deadlocking detection.

• Temporal dependencies.

• Pipeline of computing jobs.

• Check for symbolic link loop.

• Evaluate formula in spreadsheet.

• Program Evaluation and Review Technique / Critical Path Method

39

Topological sort application (weighted DAG)

Precedence scheduling

• Task v takes time[v] units of time.

• Can work on jobs in parallel.

• Precedence constraints:

• must finish task v before beginning task w.

• Goal: finish each task as soon as possible

Example:

index time prereq

A 0 -

task

begin

B 4 Aframing

C 2 Broofing

D 6 Bsiding

E 5 Dwindows

F 3 Dplumbing

G 4 C, Eelectricity

H 6 C, Epaint

I 0 F, Hfinish

4

6

2

5

3

4 60 0

IHG

C

B

E

D

A

F

vertices labelled
A-I in topological order

Program Evaluation and Review Technique / Critical Path Method

40

4

6

2

5

3

4 60 0

IHG

C

B

E

D

A

F

PERT/CPM algorithm.

• compute topological order of vertices.

• initialize fin[v] = 0 for all vertices v.

• consider vertices v in topologically sorted order.

for each edge v w, set fin[w]= max(fin[w], fin[v] + time[w])

Critical path

• remember vertex that set value.

• work backwards from sink

4

10

6

19 25

15

13

13

critical
path

25

41

digraph search
transitive closure
topological sort
strong components

Strong connectivity in digraphs

Analog to connectivity in undirected graphs

42

0
6

4

21

5

3

7

12

109

11

8

 0 1 2 3 4 5 6 7 8 9 10 11 12

cc 0 0 0 0 0 0 0 1 1 2 2 2 2

public int connected(int v, int w)

{ return cc[v] == cc[w]; }

0
6

4

21

5

3

7

12

109

11

8

In a Graph, u and v are connected
when there is a path from u to v

In a Digraph, u and v are strongly connected
when there is a directed path from u to v
 and a directed path from v to u

 0 1 2 3 4 5 6 7 8 9 10 11 12

sc 2 1 2 2 2 2 2 3 3 0 0 0 0

public int connected(int v, int w)

{ return cc[v] == cc[w]; }

constant-time client connectivity query constant-time client strong connectivity query

3 connected components
(sets of mutually connected vertices)

4 strongly connected components
(sets of mutually strongly connected vertices)

Connectivity table (easy to compute with DFS) Strong connectivity table (how to compute?)

Digraph-processing challenge 4

Problem: Is there a directed cycle containing s and t ?

Equivalent: Are there directed paths from s to t and from t to s?

Equivalent: Are s and t strongly connected?

Goals: linear (V + E) preprocessing time (like for undirected graphs)

 constant query time

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

43

44

Typical strong components applications

Strong component: subset with common energy flow

• source in kernel DAG: needs outside energy?

• sink in kernel DAG: heading for growth?

Ecological food web Software module dependency digraphs

Strong component: subset of mutually interacting modules

• approach 1: package strong components together

• approach 2: use to improve design!

Internet explorer

Firefox

Strong components algorithms: brief history

1960s: Core OR problem

• widely studied

• some practical algorithms

• complexity not understood

1972: Linear-time DFS algorithm (Tarjan)

• classic algorithm

• level of difficulty: CS226++

• demonstrated broad applicability and importance of DFS

1980s: Easy two-pass linear-time algorithm (Kosaraju)

• forgot notes for teaching algorithms class

• developed algorithm in order to teach it!

• later found in Russian scientific literature (1972)

1990s: More easy linear-time algorithms (Gabow, Mehlhorn)

• Gabow: fixed old OR algorithm

• Mehlhorn: needed one-pass algorithm for LEDA
45

46

Simple (but mysterious) algorithm for computing strong components

• Run DFS on GR and compute postorder.

• Run DFS on G, considering vertices in reverse postorder

• [has to be seen to be believed: follow example in book]

Theorem. Trees in second DFS are strong components. (!)

 Proof. [stay tuned in COS 423]

Kosaraju's algorithm

G

GR

Digraph-processing summary: Algorithms of the day

47

Single-source

reachability
DFS

transitive closure DFS from each vertex

topological sort

(DAG)
DFS

strong components
Kosaraju

DFS (twice)

1

Minimum Spanning Trees

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics

References:

 Algorithms in Java, Chapter 20
 http://www.cs.princeton.edu/introalgsds/54mst

2

Minimum Spanning Tree

23

10

21

 14

24

 16

 4

18

9

7

11

 8

G

5

6

Given. Undirected graph G with positive edge weights (connected).

Goal. Find a min weight set of edges that connects all of the vertices.

3

Minimum Spanning Tree

Given. Undirected graph G with positive edge weights (connected).

Goal. Find a min weight set of edges that connects all of the vertices.

23

10

21

 14

24

 16

 4

18

9

7

11

 8

weight(T) = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

5

6

Brute force: Try all possible spanning trees

• problem 1: not so easy to implement

• problem 2: far too many of them Ex: [Cayley, 1889]: VV-2 spanning trees
on the complete graph on V vertices.

4

MST Origin

Otakar Boruvka (1926).

• Electrical Power Company of Western Moravia in Brno.

• Most economical construction of electrical power network.

• Concrete engineering problem is now a cornerstone

problem-solving model in combinatorial optimization.

Otakar Boruvka

5

Applications

MST is fundamental problem with diverse applications.

• Network design.

telephone, electrical, hydraulic, TV cable, computer, road

• Approximation algorithms for NP-hard problems.

traveling salesperson problem, Steiner tree

• Indirect applications.

max bottleneck paths

LDPC codes for error correction

image registration with Renyi entropy

learning salient features for real-time face verification

reducing data storage in sequencing amino acids in a protein

model locality of particle interactions in turbulent fluid flows

autoconfig protocol for Ethernet bridging to avoid cycles in a network

• Cluster analysis.

6

Medical Image Processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

7http://ginger.indstate.edu/ge/gfx

8

Two Greedy Algorithms

Kruskal's algorithm. Consider edges in ascending order of cost.

Add the next edge to T unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T

from s. At each step, add the cheapest edge to T that has exactly

one endpoint in T.

Proposition. Both greedy algorithms compute an MST.

Greed is good. Greed is right. Greed works. Greed

clarifies, cuts through, and captures the essence of the

evolutionary spirit." - Gordon Gecko

9

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics

10

Weighted Graph API

iterate through all edges (once in each direction)

create an empty graph with V verticesWeightedGraph(int V)

public class WeightedGraph

insert edge einsert(Edge e)void

return an iterator over edges incident to vadj(int v)Iterable<Edge>

return the number of verticesV()int

return a string representationtoString()String

Identical to Graph.java but use Edge adjacency sets instead of int.

11

public class WeightedGraph
{
 private int V;
 private SET<Edge>[] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = (SET<Edge>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Edge>();
 }

 public void addEdge(Edge e)
 {
 int v = e.v, w = e.w;
 adj[v].add(e);
 adj[w].add(e);
 }

 public Iterable<Edge> adj(int v)
 { return adj[v]; }

}

Weighted graph data type

12

Weighted edge data type

public class Edge implements Comparable<Edge>

{

 private final int v, int w;

 private final double weight;

 public Edge(int v, int w, double weight)

 {

 this.v = v;

 this.w = w;

 this.weight = weight;

 }

 public int either()

 { return v; }

 public int other(int vertex)

 {

 if (vertex == v) return w;

 else return v;

 }

 public int weight()

 { return weight; }

 // See next slide for edge compare methods.

}

Edge abstraction
needed for weights

slightly tricky accessor methods
(enables client code like this)

for (int v = 0; v < G.V(); v++)
{
 for (Edge e : G.adj(v))
 {
 int w = e.other(v);

 // edge v-w
 }
}

13

Weighted edge data type: compare methods

public final static Comparator<Edge> BY_WEIGHT = new ByWeightComparator();

private static class ByWeightComparator implements Comparator<Edge>

{

 public int compare(Edge e, Edge f)

 {

 if (e.weight < f.weight) return -1;

 if (e.weight > f.weight) return +1;

 return 0;

 }

}

 public int compareTo(Edge that)

 {

 if (this.weight < that.weight) return -1;

 else if (this.weight > that.weight) return +1;

 else if (this.weight > that.weight) return 0;

 }

}

Two different compare methods for edges

• compareTo() so that edges are Comparable (for use in SET)

• compare() so that clients can compare edges by weight.

14

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics

15

Spanning Tree

MST. Given connected graph G with positive edge weights,

find a min weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph G is a subgraph T that is

connected and acyclic.

Property. MST of G is always a spanning tree.

16

Greedy Algorithms

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max cost edge

belonging to C. Then the MST does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min

cost edge with exactly one endpoint in S. Then the MST contains e.

f
C

S

e is in the MST

e

f is not in the MST

17

Cycle Property

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max cost edge

belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

• Suppose f belongs to T*. Let's see what happens.

• Deleting f from T* disconnects T*. Let S be one side of the cut.

• Some other edge in C, say e, has exactly one endpoint in S.

• T = T* { e } { f } is also a spanning tree.

• Since ce < cf, cost(T) < cost(T*).

• Contradicts minimality of T*.

f

 T*

e

S

C

18

Cut Property

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of vertices, and let e be the min cost

edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

• Suppose e does not belong to T*. Let's see what happens.

• Adding e to T* creates a (unique) cycle C in T*.

• Some other edge in C, say f, has exactly one endpoint in S.

• T = T* { e } { f } is also a spanning tree.

• Since ce < cf, cost(T) < cost(T*).

• Contradicts minimality of T*.

f

 MST T*

e

S

cycle C

19

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced algorithms
clustering

20

Kruskal's algorithm. [Kruskal, 1956] Consider edges in ascending order

of cost. Add the next edge to T unless doing so would create a cycle.

Kruskal's Algorithm: Example

3-5 1-7 6-7

0-2 0-7 0-1 3-4 4-5 4-7

3-5 0.18

1-7 0.21

6-7 0.25

0-2 0.29

0-7 0.31

0-1 0.32

3-4 0.34

4-5 0.40

4-7 0.46

0-6 0.51

4-6 0.51

0-5 0.60

21

Kruskal's algorithm example

25%

50%

75%

100%

22

w

v

C

e

Kruskal's algorithm correctness proof

Proposition. Kruskal's algorithm computes the MST.

Pf. [case 1] Suppose that adding e to T creates a cycle C

• e is the max weight edge in C (weights come in increasing order)

• e is not in the MST (cycle property)

23

w

v

e
S

Kruskal's algorithm correctness proof

Proposition. Kruskal's algorithm computes the MST.

Pf. [case 2] Suppose that adding e = (v, w) to T does not create a cycle

• let S be the vertices in v’s connected component

• w is not in S

• e is the min weight edge with exactly one endpoint in S

• e is in the MST (cut property) ■

24

Kruskal's algorithm implementation

Q. How to check if adding an edge to T would create a cycle?

A1. Naïve solution: use DFS.

• O(V) time per cycle check.

• O(E V) time overall.

25

Kruskal's algorithm implementation

Q. How to check if adding an edge to T would create a cycle?

A2. Use the union-find data structure from lecture 1 (!).

• Maintain a set for each connected component.

• If v and w are in same component, then adding v-w creates a cycle.

• To add v-w to T, merge sets containing v and w.

Case 2: add v-w to T and merge sets

v w

Case 1: adding v-w creates a cycle

v

w

Easy speedup: Stop as soon as there are V-1 edges in MST.

sort edges
by weight

greedily add
edges to MST

return to client iterable
sequence of edges

26

public class Kruskal
{
 private SET<Edge> mst = new SET<Edge>();

 public Kruskal(WeightedGraph G)
 {
 Edge[] edges = G.edges();
 Arrays.sort(edges, Edge.BY_WEIGHT);

 UnionFind uf = new UnionFind(G.V());
 for (Edge e: edges)
 if (!uf.find(e.either(), e.other()))
 {
 uf.unite(e.either(), e.other());
 mst.add(edge);
 }

 }

 public Iterable<Edge> mst()
 { return mst; }
}

Kruskal's algorithm: Java implementation

27

Kruskal's algorithm running time

Kruskal running time: Dominated by the cost of the sort.

Remark 1. If edges are already sorted, time is proportional to E log* V

Remark 2. Linear in practice with PQ or quicksort partitioning

 (see book: don’t need full sort)

Operation

sort

union

find

Time per op

E log E

 log* V †

 log* V †

Frequency

1

V

E

† amortized bound using weighted quick union with path compression

recall: log* V 5 in this universe

28

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics

29

Prim's algorithm example

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]

Start with vertex 0 and greedily grow tree T. At each step,

add cheapest edge that has exactly one endpoint in T.

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

30

Prim's Algorithm example

25%

50%

75%

100%

31

Prim's algorithm correctness proof

Proposition. Prim's algorithm computes the MST.

Pf.

• Let S be the subset of vertices in current tree T.

• Prim adds the cheapest edge e with exactly one endpoint in S.

• e is in the MST (cut property) ■

S e

32

Prim's algorithm implementation

Q. How to find cheapest edge with exactly one endpoint in S?

A1. Brute force: try all edges.

• O(E) time per spanning tree edge.

• O(E V) time overall.

33

Prim's algorithm implementation

Q. How to find cheapest edge with exactly one endpoint in S?

A2. Maintain a priority queue of vertices connected by an edge to S

• Delete min to determine next vertex v to add to S.

• Disregard v if already in S.

• Add to PQ any vertex brought closer to S by v.

Running time.

• log V steps per edge (using a binary heap).

• E log V steps overall.

Note: This is a lazy version of implementation in Algs in Java

 lazy: put all adjacent vertices (that are not already in MST) on PQ

eager: first check whether vertex is already on PQ and decrease its key

34

Key-value priority queue

Associate a value with each key in a priority queue.

API:

Implementation:

• start with same code as standard heap-based priority queue

• use a parallel array vals[] (value associated with keys[i] is vals[i])

• modify exch() to maintain parallel arrays (do exch in vals[])

• modify delMin() to return Value

• add min() (just returns keys[1])

public class MinPQplus<Key extends Comparable<Key>, Value>

MinPQplus() create a key-value priority queue

void put(Key key, Value val) put key-value pair into the priority queue

Value delMin() return value paired with minimal key

Key min() return minimal key

add to PQ any vertices
brought closer to S by v

35

Lazy implementation of Prim's algorithm

marks vertices in MST

public class LazyPrim
{
 Edge[] pred = new Edge[G.V()];
 public LazyPrim(WeightedGraph G)
 {
 boolean[] marked = new boolean[G.V()];
 double[] dist = new double[G.V()];
 MinPQplus<Double, Integer> pq;
 pq = new MinPQplus<Double, Integer>();
 dist[s] = 0.0;
 marked[s] = true;
 pq.put(dist[s], s);
 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 if (marked[v]) continue;
 marked(v) = true;
 for (Edge e : G.adj(v))
 {
 int w = e.other(v);
 if (!done[w] && (dist[w] > e.weight()))
 {
 dist[w] = e.weight(); pred[w] = e;
 pq.insert(dist[w], w);
 }
 }
 }
 }
}

get next vertex

pred[v] is edge
attaching v to MST

distance to MST

ignore if already in MST

key-value PQ

36

Prim's algorithm (lazy) example

Priority queue key is distance (edge weight); value is vertex

Lazy version leaves obsolete entries in the PQ

 therefore may have multiple entries with same value

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 0-1 7-4 0-6 0-5 7-6 0-1 7-4 0-6 0-5

0-1 7-4 0-6 0-5 4-3 4-5 0-6 0-5 3-5 4-5 0-6 0-5

 red: pq value (vertex)

blue: obsolete value

Eager implementation of Prim’s algorithm

Use indexed priority queue that supports

• contains: is there a key associated with value v in the priority queue?

• decrease key: decrease the key associated with value v

[more complicated data structure, see text]

Putative “benefit”: reduces PQ size guarantee from E to V

• not important for the huge sparse graphs found in practice

• PQ size is far smaller in practice

• widely used, but practical utility is debatable

37

38

Removing the distinct edge costs assumption

Simplifying assumption. All edge weights we are distinct.

Fact. Prim and Kruskal don't actually rely on the assumption

 (our proof of correctness does)

Suffices to introduce tie-breaking rule for compare().

Approach 1:

Approach 2: add tiny random perturbation.

public int compare(Edge e, Edge f)
{
 if (e.weight < f.weight) return -1;
 if (e.weight > f.weight) return +1;
 if (e.v < f.v) return -1;
 if (e.v > f.v) return +1;
 if (e.w < f.w) return -1;
 if (e.w > f.w) return +1;
 return 0;
}

39

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics

40

Advanced MST theorems: does an algorithm with a linear-time guarantee exist?

Worst Case

E log log V

E log log V

E log* V, E + V log V

E log (log* V)

E (V) log (V)

Discovered By

Yao

Cheriton-Tarjan

Fredman-Tarjan

Gabow-Galil-Spencer-Tarjan

Chazelle

E (V)

optimal

Chazelle

Pettie-Ramachandran

Year

1975

1976

1984

1986

1997

2000

2002

deterministic comparison based MST algorithms

related problems

Problem

Planar MST

MST Verification

Discovered By

Cheriton-Tarjan

Dixon-Rauch-Tarjan

Year

1976

1992

Time

E

E

Randomized MST Karger-Klein-Tarjan1995 E

E ???20xx

41

Euclidean MST

Euclidean MST. Given N points in the plane, find MST connecting them.

• Distances between point pairs are Euclidean distances.

Brute force. Compute N2 / 2 distances and run Prim's algorithm.

Ingenuity. Exploit geometry and do it in O(N log N)

 [stay tuned for geometric algorithms]

42

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.

distance function. numeric value specifying "closeness" of two objects.

Fundamental problem.

 Divide into clusters so that points in different clusters are far apart.

Applications.

• Routing in mobile ad hoc networks.

• Identify patterns in gene expression.

• Document categorization for web search.

• Similarity searching in medical image databases

• Skycat: cluster 109 sky objects into stars, quasars, galaxies.

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

43

k-clustering of maximum spacing

k-clustering. Divide a set of objects classify into k coherent groups.

distance function. Numeric value specifying "closeness" of two objects.

Spacing. Min distance between any pair of points in different clusters.

k-clustering of maximum spacing.

Given an integer k, find a k-clustering such that spacing is maximized.

spacing

k = 4

44

Single-link clustering algorithm

“Well-known” algorithm for single-link clustering:

• Form V clusters of one object each.

• Find the closest pair of objects such that each object is in a

different cluster, and add an edge between them.

• Repeat until there are exactly k clusters.

Observation. This procedure is precisely Kruskal's algorithm

 (stop when there are k connected components).

Property. Kruskal’s algorithm finds a k-clustering of maximum spacing.

45

Clustering application: dendrograms

Dendrogram.

Scientific visualization of hypothetical sequence of evolutionary events.

• Leaves = genes.

• Internal nodes = hypothetical ancestors.

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf

46

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed

gene not expressed

1

Shortest Paths

Dijkstra’s algorithm
implementation
negative weights

References:

 Algorithms in Java, Chapter 21
 http://www.cs.princeton.edu/introalgsds/55dijkstra

2

Edsger W. Dijkstra: a few select quotes

The question of whether computers can think is like

the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a

ripple on the surface of our culture. In their

capacity as intellectual challenge, they are without

precedent in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching

should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is

the language of the future for the programming

techniques of the past: it creates a new generation

of coding bums.

Edger Dijkstra
Turing award 1972

Shortest paths in a weighted digraph

3

4

Shortest paths in a weighted digraph

Given a weighted digraph, find the shortest directed path from s to t.

Note: weights are arbitrary numbers

• not necessarily distances

• need not satisfy the triangle inequality

• Ex: airline fares [stay tuned for others]

Path: s 6 3 5 t

Cost: 14 + 18 + 2 + 16 = 50

cost of path = sum of edge costs in path

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15 50

34

45

s

Versions

• source-target (s-t)

• single source

• all pairs.

• nonnegative edge weights

• arbitrary weights

• Euclidean weights.

5

6

Early history of shortest paths algorithms

Shimbel (1955). Information networks.

Ford (1956). RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957).

Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958). Simplex method for linear programming.

Bellman (1958). Dynamic programming.

Moore (1959). Routing long-distance telephone calls for Bell Labs.

Dijkstra (1959). Simpler and faster version of Ford's algorithm.

7

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Applications

Shortest-paths is a broadly useful problem-solving model

• Maps

• Robot navigation.

• Texture mapping.

• Typesetting in TeX.

• Urban traffic planning.

• Optimal pipelining of VLSI chip.

• Subroutine in advanced algorithms.

• Telemarketer operator scheduling.

• Routing of telecommunications messages.

• Approximating piecewise linear functions.

• Network routing protocols (OSPF, BGP, RIP).

• Exploiting arbitrage opportunities in currency exchange.

• Optimal truck routing through given traffic congestion pattern.

8

Dijkstra’s algorithm
implementation
negative weights

9

Single-source shortest-paths

Given. Weighted digraph, single source s.

Distance from s to v: length of the shortest path from s to v .

Goal. Find distance (and shortest path) from s to every other vertex.

Shortest paths form a tree

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15
50

34

45

10

Single-source shortest-paths: basic plan

Goal: Find distance (and shortest path) from s to every other vertex.

Design pattern:

• ShortestPaths class (WeightedDigraph client)

• instance variables: vertex-indexed arrays dist[] and pred[]

• client query methods return distance and path iterator

shortest path tree
(parent-link representation)

Note: Same pattern as Prim, DFS, BFS; BFS works when weights are all 1.

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15
50

34

45

 v s 2 3 4 5 6 7 t

dist[] 0 9 32 45 34 14 15 50

pred[] 0 0 6 5 3 0 0 5

s

2 6 7

3

5

2 t

11

 Edge relaxation

For all v, dist[v] is the length of some path from s to v.

Relaxation along edge e from v to w.

• dist[v] is length of some path from s to v

• dist[w] is length of some path from s to w

• if v-w gives a shorter path to w through v, update dist[w] and pred[w]

Relaxation sets dist[w] to the length of a shorter path from s to w (if v-w gives one)

s w

v

47

11

if (dist[w] > dist[v] + e.weight())
{
 dist[w] = dist[v] + e.weight());
 pred[w] = e;
}

0

s w

v

33

44

11

0

S: set of vertices for which the shortest path length from s is known.

Invariant: for v in S, dist[v] is the length of the shortest path from s to v.

Initialize S to s, dist[s] to 0, dist[v] to for all other v

Repeat until S contains all vertices connected to s

• find e with v in S and w in S’ that minimizes dist[v] + e.weight()

• relax along that edge

• add w to S

12

Dijkstra's algorithm

s

w

v

dist[v]

S

e

S: set of vertices for which the shortest path length from s is known.

Invariant: for v in S, dist[v] is the length of the shortest path from s to v.

Initialize S to s, dist[s] to 0, dist[v] to for all other v

Repeat until S contains all vertices connected to s

• find e with v in S and w in S’ that minimizes dist[v] + e.weight()

• relax along that edge

• add w to S

13

Dijkstra's algorithm

s

w

v

dist[v]

S

e

S: set of vertices for which the shortest path length from s is known.

Invariant: for v in S, dist[v] is the length of the shortest path from s to v.

Pf. (by induction on |S|)

• Let w be next vertex added to S.

• Let P* be the s-w path through v.

• Consider any other s-w path P, and let x be first node on path outside S.

• P is already longer than P* as soon as it reaches x by greedy choice.

14

Dijkstra's algorithm proof of correctness

S

s

x

w

P

v

15

Shortest Path Tree

50%

75% 100%

25%

16

Dijkstra’s algorithm
implementation
negative weights

17

Weighted directed edge data type

public class Edge implements Comparable<Edge>

{

 public final int v, int w;

 public final double weight;

 public Edge(int v, int w, double weight)

 {

 this.v = v;

 this.w = w;

 this.weight = weight;

 }

 public int from()

 { return v; }

 public int to()

 { return w; }

 public int weight()

 { return weight; }

 public int compareTo(Edge that)

 {

 if (this.weight < that.weight) return -1;

 else if (this.weight > that.weight) return +1;

 else if (this.weight > that.weight) return 0;

 }

}

code is the same as for
(undirected) WeightedGraph

except
 from() and to() replace
 either() and other()

Identical to WeightedGraph but just one representation of each Edge.

18

public class WeightedDigraph
{
 private int V;
 private SET<Edge>[] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = (SET<Edge>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Edge>();
 }

 public void addEdge(Edge e)
 {
 int v = e.from();
 adj[v].add(e);
 }

 public Iterable<Edge> adj(int v)
 { return adj[v]; }

}

Weighted digraph data type

Initialize S to s, dist[s] to 0, dist[v] to for all other v

Repeat until S contains all vertices connected to s

• find v-w with v in S and w in S’ that minimizes dist[v] + weight[v-w]

• relax along that edge

• add w to S

Idea 1 (easy): Try all edges

Total running time proportional to VE

19

Dijkstra's algorithm: implementation approach

Initialize S to s, dist[s] to 0, dist[v] to for all other v

Repeat until S contains all vertices connected to s

• find v-w with v in S and w in S’ that minimizes dist[v] + weight[v-w]

• relax along that edge

• add w to S

Idea 2 (Dijkstra) : maintain these invariants

• for v in S, dist[v] is the length of the shortest path from s to v.

• for w in S’, dist[w] minimizes dist[v] + weight[v-w].

Two implications

• find v-w in V steps (smallest dist[] value among vertices in S’)

• update dist[] in at most V steps (check neighbors of w)

Total running time proportional to V2

20

Dijkstra's algorithm: implementation approach

Initialize S to s, dist[s] to 0, dist[v] to for all other v

Repeat until S contains all vertices connected to s

• find v-w with v in S and w in S’ that minimizes dist[v] + weight[v-w]

• relax along that edge

• add w to S

Idea 3 (modern implementations):

• for all v in S, dist[v] is the length of the shortest path from s to v.

• use a priority queue to find the edge to relax

Total running time proportional to E lg E

21

Dijkstra's algorithm implementation

sparse dense

easy V2 EV

Dijkstra V2 V2

modern E lg E E lg E

Q. What goes onto the priority queue?

A. Fringe vertices connected by a single edge to a vertex in S

Starting to look familiar?

Dijkstra's algorithm implementation

22

23

Lazy implementation of Prim's MST algorithm

marks vertices in MST

public class LazyPrim

{

 Edge[] pred = new Edge[G.V()];

 public LazyPrim(WeightedGraph G)

 {

 boolean[] marked = new boolean[G.V()];

 double[] dist = new double[G.V()];

 for (int v = 0; v < G.V(); v++)

 dist[v] = Double.POSITIVE_INFINITY;

 MinPQplus<Double, Integer> pq;

 pq = new MinPQplus<Double, Integer>();

 dist[s] = 0.0;

 pq.put(dist[s], s);

 while (!pq.isEmpty())

 {

 int v = pq.delMin();

 if (marked[v]) continue;

 marked(v) = true;

 for (Edge e : G.adj(v))

 {

 int w = e.other(v);

 if (!marked[w] && (dist[w] > e.weight()))

 {

 dist[w] = e.weight();

 pred[w] = e;

 pq.insert(dist[w], w);

 }

 }

 }

 }

}

get next vertex

edges to MST

distance to MST

ignore if already in MST

key-value PQ

add to PQ any vertices
brought closer to S by v

code is the same as Prim’s (!!)

except
• WeightedDigraph, not WeightedGraph
• weight is distance to s, not to tree
• add client query for distances

24

Lazy implementation of Dijkstra's SPT algorithm

public class LazyDijkstra

{

 double[] dist = new double[G.V()];

 Edge[] pred = new Edge[G.V()];

 public LazyDijkstra(WeightedDigraph G, int s)

 {

 boolean[] marked = new boolean[G.V()];

 for (int v = 0; v < G.V(); v++)

 dist[v] = Double.POSITIVE_INFINITY;

 MinPQplus<Double, Integer> pq;

 pq = new MinPQplus<Double, Integer>();

 dist[s] = 0.0;

 pq.put(dist[s], s);

 while (!pq.isEmpty())

 {

 int v = pq.delMin();

 if (marked[v]) continue;

 marked(v) = true;

 for (Edge e : G.adj(v))

 {

 int w = e.to();

 if (dist[w] > dist[v] + e.weight())

 {

 dist[w] = dist[v] + e.weight();

 pred[w] = e;

 pq.insert(dist[w], w);

 }

 }

 }

 }

}

25

Dijkstra’s algorithm example

Dijkstra’s algorithm. [Dijkstra 1957]

Start with vertex 0 and greedily grow tree T. At each step,

add cheapest path ending in an edge that has exactly one endpoint in T.

0-1 0.41

0-5 0.29

1-2 0.51

1-4 0.32

2-3 0.50

3-0 0.45

3-5 0.38

4-2 0.32

4-3 0.36

5-1 0.29

5-4 0.21

0

1

3 2

5

4

0-5 .29 0-1 .41

0

1

3 2

5

4

0-1 .41 5-4 .50

0

1

3 2

5

4

5-4 .50 1-2 .92

0

1

3 2

5

4

4-2 .82 4-3 .86 1-2 .92

0

1

3 2

5

4

4-3 .86 1-2 .92

0

1

3 2

5

4

1-2 .92

Eager implementation of Dijkstra’s algorithm

Use indexed priority queue that supports

• contains: is there a key associated with value v in the priority queue?

• decrease key: decrease the key associated with value v

[more complicated data structure, see text]

Putative “benefit”: reduces PQ size guarantee from E to V

• no signficant impact on time since lg E < 2lg V

• extra space not important for huge sparse graphs found in practice

[PQ size is far smaller than E or even V in practice]

• widely used, but practical utility is debatable (as for Prim’s)
26

Improvements to Dijkstra’s algorithm

Use a d-way heap (Johnson, 1970s)

• easy to implement

• reduces costs to E d logd V

• indistinguishable from linear for huge sparse graphs found in practice

Use a Fibonacci heap (Sleator-Tarjan, 1980s)

• very difficult to implement

• reduces worst-case costs (in theory) to E + V lg V

• not quite linear (in theory)

• practical utility questionable

Find an algorithm that provides a linear worst-case guarantee?

 [open problem]

27

28

Dijkstra's Algorithm: performance summary

Fringe implementation directly impacts performance

Best choice depends on sparsity of graph.

• 2,000 vertices, 1 million edges. heap 2-3x slower than array

• 100,000 vertices, 1 million edges. heap gives 500x speedup.

• 1 million vertices, 2 million edges. heap gives 10,000x speedup.

Bottom line.

• array implementation optimal for dense graphs

• binary heap far better for sparse graphs

• d-way heap worth the trouble in performance-critical situations

• Fibonacci heap best in theory, but not worth implementing

29

Priority-first search

Insight: All of our graph-search methods are the same algorithm!

Maintain a set of explored vertices S

Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.

BFS. Take from vertex which was discovered least recently.

Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to s.

... Gives simple algorithm for many graph-processing problems

Challenge: express this insight in (re)usable Java code

s

w

v

dist[v]

S

e

30

Priority-first search: application example

Shortest s-t paths in Euclidean graphs (maps)

• Vertices are points in the plane.

• Edge weights are Euclidean distances.

A sublinear algorithm.

• Assume graph is already in memory.

• Start Dijkstra at s.

• Stop when you reach t.

Even better: exploit geometry

• For edge v-w, use weight d(v, w) + d(w, t) – d(v, t).

• Proof of correctness for Dijkstra still applies.

• In practice only O(V 1/2) vertices examined.

• Special case of A* algorithm

[Practical map-processing programs precompute many of the paths.]

Euclidean distance

31

Dijkstra’s algorithm
implementation
negative weights

Currency conversion. Given currencies and exchange rates, what is

best way to convert one ounce of gold to US dollars?

• 1 oz. gold $327.25.

• 1 oz. gold £208.10 $327.00.

• 1 oz. gold 455.2 Francs 304.39 Euros $327.28.

32

Currency

UK Pound

Euro

Japanese Yen

Swiss Franc

£

1.0000

1.4599

189.050

2.1904

US Dollar

Gold (oz.)

1.5714

0.004816

Euro

0.6853

1.0000

129.520

1.4978

1.0752

0.003295

¥

0.005290

0.007721

1.0000

0.011574

0.008309

0.0000255

Franc

0.4569

0.6677

85.4694

1.0000

0.7182

0.002201

$

0.6368

0.9303

120.400

1.3941

1.0000

0.003065

Gold

208.100

304.028

39346.7

455.200

327.250

1.0000

Shortest paths application: Currency conversion

[208.10 1.5714]

[455.2 .6677 1.0752]

Graph formulation.

• Vertex = currency.

• Edge = transaction, with weight equal to exchange rate.

• Find path that maximizes product of weights.

33

Shortest paths application: Currency conversion

$G

£ EF

0.003065

1.3941
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

Reduce to shortest path problem by taking logs

• Let weight(v-w) = - lg (exchange rate from currency v to w)

• multiplication turns to addition

• Shortest path with costs c corresponds to best exchange sequence.

Challenge. Solve shortest path problem with negative weights.

34

Shortest paths application: Currency conversion

-lg(455.2) = -8.8304

0.5827

-0.1046

$G

£ EF

0.003065

0.7182
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

35

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

Re-weighting. Adding a constant to every edge weight also doesn’t work.

Bad news: need a different algorithm.

0

3

1

2

4

2-9

6

0

3

1

11

13

20

15

Dijkstra selects vertex 3 immediately after 0.

But shortest path from 0 to 3 is 0 1 2 3.

Adding 9 to each edge changes the shortest path

because it adds 9 to each segment, wrong thing to do

for paths with many segments.

36

Shortest paths with negative weights: negative cycles

Negative cycle. Directed cycle whose sum of edge weights is negative.

Observations.

• If negative cycle C on path from s to t, then shortest path can be

made arbitrarily negative by spinning around cycle

• There exists a shortest s-t path that is simple.

Worse news: need a different problem

s t

C
cost(C) < 0

-6

7

 -4

37

Shortest paths with negative weights

Problem 1. Does a given digraph contain a negative cycle?

Problem 2. Find the shortest simple path from s to t.

Bad news: Problem 2 is intractable

Good news: Can solve problem 1 in O(VE) steps

Good news: Same algorithm solves problem 2 if no negative cycle

Bellman-Ford algorithm

• detects a negative cycle if any exist

• finds shortest simple path if no negative cycle exists

-6

7

 -4

s t

C
cost(C) < 0

38

 Edge relaxation

For all v, dist[v] is the length of some path from s to v.

Relaxation along edge e from v to w.

• dist[v] is length of some path from s to v

• dist[w] is length of some path from s to w

• if v-w gives a shorter path to w through v, update dist[w] and pred[w]

Relaxation sets dist[w] to the length of a shorter path from s to w (if v-w gives one)

s w

v

47

11

if (dist[w] > dist[v] + e.weight())
{
 dist[w] = dist[v] + e.weight());
 pred[w] = e;
}

0

s w

v

33

44

11

0

39

Shortest paths with negative weights: dynamic programming algorithm

A simple solution that works!

• Initialize dist[v] = , dist[s]= 0.

• Repeat V times: relax each edge e.

for (int i = 1; i <= G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (Edge e : G.adj(v))
 {
 int w = e.to();
 if (dist[w] > dist[v] + e.weight())
 {
 dist[w] = dist[v] + e.weight())
 pred[w] = e;
 }
 }

phase i

relax v-w

40

Shortest paths with negative weights: dynamic programming algorithm

Running time proportional to E V

Invariant. At end of phase i, dist[v] length of any path from s to v

using at most i edges.

Theorem. If there are no negative cycles, upon termination dist[v] is

the length of the shortest path from from s to v.

and pred[] gives the shortest paths

41

Observation. If dist[v] doesn't change during phase i,

 no need to relax any edge leaving v in phase i+1.

FIFO implementation.

Maintain queue of vertices whose distance changed.

Running time.

• still could be proportional to EV in worst case

• much faster than that in practice

Shortest paths with negative weights: Bellman-Ford-Moore algorithm

be careful to keep at most one copy of each vertex on queue

42

Shortest paths with negative weights: Bellman-Ford-Moore algorithm

Initialize dist[v] = and marked[v]= false for all vertices v.

Queue<Integer> q = new Queue<Integer>();
marked[s] = true;
dist[s] = 0;
q.enqueue(s);

while (!q.isEmpty())
{
 int v = q.dequeue();
 marked[v] = false;
 for (Edge e : G.adj(v))
 {
 int w = e.target();
 if (dist[w] > dist[v] + e.weight())
 {
 dist[w] = dist[v] + e.weight();
 pred[w] = e;
 if (!marked[w])
 {
 marked[w] = true;
 q.enqueue(w);
 }
 }
 }
}

43

Single Source Shortest Paths Implementation: Cost Summary

Remark 1. Negative weights makes the problem harder.

Remark 2. Negative cycles makes the problem intractable.

algorithm worst case typical case

nonnegative costs

Dijkstra (classic) V2 V2

Dijkstra (heap) E lg E E

no negative cycles

Dynamic programming EV EV

Bellman-Ford-Moore EV E

44

Shortest paths application: arbitrage

Is there an arbitrage opportunity in currency graph?

• Ex: $1 1.3941 Francs 0.9308 Euros $1.00084.

• Is there a negative cost cycle?

• Fastest algorithm is valuable!

 -0.4793 + 0.5827 - 0.1046 < 0

0.5827

$G

£ EF

0.003065

1.3941
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

-0.4793 -0.1046

45

Negative cycle detection

If there is a negative cycle reachable from s.

Bellman-Ford-Moore gets stuck in loop, updating vertices in cycle.

Finding a negative cycle. If any vertex v is updated in phase V,

there exists a negative cycle, and we can trace back pred[v] to find it.

s 3

v

2 6

7

4

5
pred[v]

46

Negative cycle detection

Goal. Identify a negative cycle (reachable from any vertex).

Solution. Add 0-weight edge from artificial source s to each vertex v.

Run Bellman-Ford from vertex s.

 -0.48 -0.11

0.58

s

Shortest paths summary

Dijkstra’s algorithm

• easy and optimal for dense digraphs

• PQ/ST data type gives near optimal for sparse graphs

Priority-first search

• generalization of Dijkstra’s algorithm

• encompasses DFS, BFS, and Prim

• enables easy solution to many graph-processing problems

Negative weights

• arise in applications

• make problem intractable in presence of negative cycles (!)

• easy solution using old algorithms otherwise

Shortest-paths is a broadly useful problem-solving model

47

1

Geometric Algorithms

primitive operations
convex hull
closest pair
voronoi diagram

References:

 Algorithms in C (2nd edition), Chapters 24-25
 http://www.cs.princeton.edu/introalgsds/71primitives

 http://www.cs.princeton.edu/introalgsds/72hull

2

Geometric Algorithms

Applications.

• Data mining.

• VLSI design.

• Computer vision.

• Mathematical models.

• Astronomical simulation.

• Geographic information systems.

• Computer graphics (movies, games, virtual reality).

• Models of physical world (maps, architecture, medical imaging).

History.

• Ancient mathematical foundations.

• Most geometric algorithms less than 25 years old.

Reference: http://www.ics.uci.edu/~eppstein/geom.html

airflow around an aircraft wing

3

primitive operations
convex hull
closest pair
voronoi diagram

4

Geometric Primitives

Point: two numbers (x, y).

Line: two numbers a and b [ax + by = 1]

Line segment: two points.

Polygon: sequence of points.

Primitive operations.

• Is a point inside a polygon?

• Compare slopes of two lines.

• Distance between two points.

• Do two line segments intersect?

• Given three points p1, p2, p3, is p1-p2-p3 a counterclockwise turn?

Other geometric shapes.

• Triangle, rectangle, circle, sphere, cone, …

• 3D and higher dimensions sometimes more complicated.

any line not through origin

5

Intuition

Warning: intuition may be misleading.

• Humans have spatial intuition in 2D and 3D.

• Computers do not.

• Neither has good intuition in higher dimensions!

Is a given polygon simple?

we think of this algorithm sees this

1 6 5 8 7 2

7 8 6 4 2 1

1 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 2 18 4 18 4 19 4 19 4 20 3 20 3 20

1 10 3 7 2 8 8 3 4

6 5 15 1 11 3 14 2 16

no crossings

6

Polygon Inside, Outside

Jordan curve theorem. [Veblen 1905] Any continuous simple closed

curve cuts the plane in exactly two pieces: the inside and the outside.

Is a point inside a simple polygon?

Application. Draw a filled polygon on the screen.

http://www.ics.uci.edu/~eppstein/geom.html

7

public boolean contains(double x0, double y0)
{
 int crossings = 0;
 for (int i = 0; i < N; i++)
 {
 double slope = (y[i+1] - y[i]) / (x[i+1] - x[i]);
 boolean cond1 = (x[i] <= x0) && (x0 < x[i+1]);
 boolean cond2 = (x[i+1] <= x0) && (x0 < x[i]);
 boolean above = (y0 < slope * (x0 - x[i]) + y[i]);
 if ((cond1 || cond2) && above) crossings++;
 }
 return (crossings % 2 != 0);
 }

Polygon Inside, Outside: Crossing Number

Does line segment intersect ray?

y0 =
 yi+1 - yi

 xi+1 - xi
 (x0 - xi) + yi

xi x0 xi+1

(xi, yi)

(xi+1, yi+1)

(x0, y0)

8

CCW. Given three point a, b, and c, is a-b-c a counterclockwise turn?

• Analog of comparisons in sorting.

• Idea: compare slopes.

Lesson. Geometric primitives are tricky to implement.

• Dealing with degenerate cases.

• Coping with floating point precision.

Implementing CCW

c

a

b

yes

b

a

c

no

c

a

b

Yes
(slope)

c

a

b

???
(collinear)

c

b

a

???
(collinear)

b

a

c

???
(collinear)

< 0> 0

9

Implementing CCW

CCW. Given three point a, b, and c, is a-b-c a counterclockwise turn?

• Determinant gives twice area of triangle.

• If area > 0 then a-b-c is counterclockwise.

• If area < 0, then a-b-c is clockwise.

• If area = 0, then a-b-c are collinear.

2 Area(a, b, c) =

ax ay 1

bx by 1

cx cy 1

= (bx ax)(cy ay) (by ay)(cx ax)

(ax, ay)

(bx, by)

(cx, cy) (ax, ay)

(bx, by)

(cx, cy)

10

Immutable Point ADT

public final class Point
{

 public final int x;
 public final int y;

 public Point(int x, int y)
 { this.x = x; this.y = y; }

 public double distanceTo(Point q)
 { return Math.hypot(this.x - q.x, this.y - q.y); }

 public static int ccw(Point a, Point b, Point c)
 {
 double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
 if else (area2 < 0) return -1;
 else if (area2 > 0) return +1;
 else if (area2 > 0 return 0;
 }

 public static boolean collinear(Point a, Point b, Point c)
 {
 return ccw(a, b, c) == 0;
 }
}

11

Intersect: Given two line segments, do they intersect?

• Idea 1: find intersection point using algebra and check.

• Idea 2: check if the endpoints of one line segment are on different

"sides" of the other line segment.

• 4 ccw computations.

Sample ccw client: Line intersection

not handled

public static boolean intersect(Line l1, Line l2)
{
 int test1, test2;
 test1 = Point.ccw(l1.p1, l1.p2, l2.p1)
 * Point.ccw(l1.p1, l1.p2, l2.p2);
 test2 = Point.ccw(l2.p1, l2.p2, l1.p1)
 * Point.ccw(l2.p1, l2.p2, l1.p2);
 return (test1 <= 0) && (test2 <= 0);
}

l1.p1

p2

l2.p1

p2

12

primitive operations
convex hull
closest pair
voronoi diagram

13

Convex Hull

A set of points is convex if for any two points p and q in the set,

the line segment pq is completely in the set.

Convex hull. Smallest convex set containing all the points.

Properties.

• "Simplest" shape that approximates set of points.

• Shortest (perimeter) fence surrounding the points.

• Smallest (area) convex polygon enclosing the points.

convex not convex

convex hull

p

q

p

q

14

Mechanical Solution

Mechanical algorithm. Hammer nails perpendicular to plane;

stretch elastic rubber band around points.

http://www.dfanning.com/math_tips/convexhull_1.gif

15

Brute-force algorithm

Observation 1.

Edges of convex hull of P connect pairs of points in P.

Observation 2.

 p-q is on convex hull if all other points are counterclockwise of pq.

O(N3) algorithm.

For all pairs of points p and q in P

• compute ccw(p, q, x) for all other x in P

• p-q is on hull if all values positive

p

q

16

Package Wrap (Jarvis March)

Package wrap.

• Start with point with smallest y-coordinate.

• Rotate sweep line around current point in ccw direction.

• First point hit is on the hull.

• Repeat.

17

Package Wrap (Jarvis March)

Implementation.

• Compute angle between current point and all remaining points.

• Pick smallest angle larger than current angle.

• (N) per iteration.

18

How Many Points on the Hull?

Parameters.

• N = number of points.

• h = number of points on the hull.

Package wrap running time. (N h) per iteration.

How many points on hull?

• Worst case: h = N.

• Average case: difficult problems in stochastic geometry.

in a disc: h = N1/3.

in a convex polygon with O(1) edges: h = log N.

19

Graham Scan: Example

Graham scan.

• Choose point p with smallest y-coordinate.

• Sort points by polar angle with p to get simple polygon.

• Consider points in order, and discard those that

would create a clockwise turn.

p

20

Graham Scan: Example

Implementation.

• Input: p[1], p[2], …, p[N] are points.

• Output: M and rearrangement so that p[1],...,p[M] is convex hull.

Running time. O(N log N) for sort and O(N) for rest.

// preprocess so that p[1] has smallest y-coordinate
// sort by angle with p[1]

points[0] = points[N]; // sentinel
int M = 2;
for (int i = 3; i <= N; i++)
{
 while (Point.ccw(p[M-1], p[M], p[i]) <= 0) M--;
 M++;
 swap(points, M, i);
}

why?

discard points that would create clockwise turn

add i to putative hull

21

Quick Elimination

Quick elimination.

• Choose a quadrilateral Q or rectangle R with 4 points as corners.

• Any point inside cannot be on hull

4 ccw tests for quadrilateral

4 comparisons for rectangle

Three-phase algorithm

• Pass through all points to compute R.

• Eliminate points inside R.

• Find convex hull of remaining points.

In practice

 can eliminate almost all points in linear time.

Q

these
points
eliminated

R

22

Convex Hull Algorithms Costs Summary

t assumes "reasonable" point distribution

Package wrap

algorithm

Graham scan

Sweep line

Quick elimination

N h

growth of

running time

N log N

N log N

N t

Quickhull N log N

Best in theory N log h

Mergehull N log N

Asymptotic cost to find h-point hull in N-point set

output sensitive

23

Convex Hull: Lower Bound

Models of computation.

• Comparison based: compare coordinates.

(impossible to compute convex hull in this model of computation)

• Quadratic decision tree model: compute any quadratic function

of the coordinates and compare against 0.

Theorem. [Andy Yao, 1981] In quadratic decision tree model,

any convex hull algorithm requires (N log N) ops.

higher degree polynomial tests
don't help either [Ben-Or, 1983]

even if hull points are not required to be
output in counterclockwise order

(a.x < b.x) || ((a.x == b.x) && (a.y < b.y)))

(a.x*b.y - a.y*b.x + a.y*c.x - a.x*c.y + b.x*c.y - c.x*b.y) < 0

24

primitive operations
convex hull
closest pair
voronoi diagram

25

Closest pair problem

Given: N points in the plane

Goal: Find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

• Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

• Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force.

Check all pairs of points p and q with (N2) distance calculations.

1-D version. O(N log N) easy if points are on a line.

Degeneracies complicate solutions.

 [assumption for lecture: no two points have same x coordinate]

as usual for geometric algs

fast closest pair inspired fast algorithms for these problems

26

Closest Pair of Points

Algorithm.

• Divide: draw vertical line L so that roughly N points on each side.

L

27

Closest Pair of Points

Algorithm.

• Divide: draw vertical line L so that roughly N points on each side.

• Conquer: find closest pair in each side recursively.

12

21

L

28

Closest Pair of Points

Algorithm.

• Divide: draw vertical line L so that roughly N points on each side.

• Conquer: find closest pair in each side recursively.

• Combine: find closest pair with one point in each side.

• Return best of 3 solutions.

12

21
8

L

seems like (N2)

29

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L

30

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

• Observation: only need to consider points within of line L.

12

21

L

 = min(12, 21)

31

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

• Observation: only need to consider points within of line L.

• Sort points in 2 -strip by their y coordinate.

12

21

1

2

3

4
5

6

7
L

 = min(12, 21)

32

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

• Observation: only need to consider points within of line L.

• Sort points in 2 -strip by their y coordinate.

• Only check distances of those within 11 positions in sorted list!

12

21

1

2

3

4
5

6

7
L

 = min(12, 21)

33

Closest Pair of Points

Def. Let si be the point in the 2 -strip, with

the ith smallest y-coordinate.

Claim. If |i – j| 12, then the

distance between si and sj is at least .

Pf.

• No two points lie in same -by- box.

• Two points at least 2 rows apart

have distance 2().

Fact. Still true if we replace 12 with 7. 27

29
30

31

28

26

25

 2 rows

39

i

j

34

Closest Pair Algorithm

Closest-Pair(p1, …, pn)

{
 Compute separation line L such that half the points
 are on one side and half on the other side.

 1 = Closest-Pair(left half)

 2 = Closest-Pair(right half)

 = min(1, 2)

 Delete all points further than from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between
 each point and next 11 neighbors. If any of these
 distances is less than , update .

 return .
}

O(N log N)

2T(N / 2)

O(N)

O(N log N)

O(N)

35

Closest Pair of Points: Analysis

Algorithm gives upper bound on running time

Recurrence

Solution

Upper bound. Can be improved to O(N log N).

Lower bound. In quadratic decision tree model, any algorithm for

closest pair requires (N log N) steps.

avoid sorting by y-coordinate from scratch

T(N) 2T(N/2) + O(N log N)

T(N) = O(N (log N)2)

36

primitive operations
convex hull
closest pair
voronoi diagrams

37

1854 Cholera Outbreak, Golden Square, London

http://content.answers.com/main/content/wp/en/c/c7/Snow-cholera-map.jpg

Life-or-death question:

 Given a new cholera patient p, which water pump is closest to p’s home?

38

Nearest-neighbor problem

Input.

N Euclidean points.

Nearest neighbor problem.

Given a query point p, which one of original N points is closest to p?

Brute

Algorithm

Goal

1

Preprocess

N log N

N

Query

log N

39

Voronoi Diagram

Voronoi region. Set of all points closest to a given point.

Voronoi diagram. Planar subdivision delineating Voronoi regions.

Fact. Voronoi edges are perpendicular bisector segments.

Voronoi of 2 points
(perpendicular bisector)

Voronoi of 3 points
(passes through circumcenter)

40

Voronoi Diagram

Voronoi region. Set of all points closest to a given point.

Voronoi diagram. Planar subdivision delineating Voronoi regions.

Fact. Voronoi edges are perpendicular bisector segments.

Quintessential nearest neighbor data structure.

41

Voronoi Diagram: Applications

Toxic waste dump problem. N homes in a region. Where to locate

nuclear power plant so that it is far away from any home as possible?

Path planning. Circular robot must navigate through environment with

N obstacle points. How to minimize risk of bumping into a obstacle?

Reference: J. O'Rourke. Computational Geometry.

looking for largest empty circle
(center must lie on Voronoi diagram)

robot should stay on Voronoi diagram of obstacles

42

Voronoi Diagram: More Applications

Anthropology. Identify influence of clans and chiefdoms on geographic regions.

Astronomy. Identify clusters of stars and clusters of galaxies.

Biology, Ecology, Forestry. Model and analyze plant competition.

Cartography. Piece together satellite photographs into large "mosaic" maps.

Crystallography. Study Wigner-Setiz regions of metallic sodium.

Data visualization. Nearest neighbor interpolation of 2D data.

Finite elements. Generating finite element meshes which avoid small angles.

Fluid dynamics. Vortex methods for inviscid incompressible 2D fluid flow.

Geology. Estimation of ore reserves in a deposit using info from bore holes.

Geo-scientific modeling. Reconstruct 3D geometric figures from points.

Marketing. Model market of US metro area at individual retail store level.

Metallurgy. Modeling "grain growth" in metal films.

Physiology. Analysis of capillary distribution in cross-sections of muscle tissue.

Robotics. Path planning for robot to minimize risk of collision.

Typography. Character recognition, beveled and carved lettering.

Zoology. Model and analyze the territories of animals.

References: http://voronoi.com, http://www.ics.uci.edu/~eppstein/geom.html

43

Scientific Rediscoveries

1644

Year

1850

Descartes

Discoverer

Dirichlet

Astronomy

Discipline

Math

"Heavens"

Name

Dirichlet tesselation

1908

1909

Voronoi

Boldyrev

Math

Geology

Voronoi diagram

area of influence polygons

1911

1927

Thiessen

Niggli

Meteorology

Crystallography

Thiessen polygons

domains of action

1933

1958

Wigner-Seitz

Frank-Casper

Physics

Physics

Wigner-Seitz regions

atom domains

1965

1966

Brown

Mead

Ecology

Ecology

area of potentially available

plant polygons

1985 Hoofd et al. Anatomy capillary domains

Reference: Kenneth E. Hoff III

44

Adding a Point to Voronoi Diagram

Challenge. Compute Voronoi.

Basis for incremental algorithms: region containing point gives points

to check to compute new Voronoi region boundaries.

How to represent the Voronoi diagram?

Use multilist associating each point with its Voronoi neighbors

How to find region containing point?

Use Voronoi itself (possible, but not easy!)

45

Randomized Incremental Voronoi Algorithm

Add points (in random order).

• Find region containing point.

• Update neighbor regions, create region for new point.

• Running time: O(N log N) on average.

using Voronoi itself

Not an elementary algortihm

46

Sweep-line Voronoi algorithm

Presort points on x-coordinate

Eliminates point location problem

47

Fortune's Algorithm

Industrial-strength Voronoi implementation.

• Sweep-line algorithm

• O(N log N) time

• properly handles degeneracies

• properly handles floating-point computations

Try it yourself!

Interface between numeric and combinatorial computing

• exact calculations impossible (using floating point)

• exact calculations required!

• one solution: randomly jiggle the points

Brute

Algorithm

Goal

1

Preprocess

N log N

N

Query

log N

http://www.diku.dk/hjemmesider/studerende/duff/Fortune/ best animation on the web
student Java project
“lost” the source
decompiled source available

Fortune’s algorithm in action

48

http://www.diku.dk/hjemmesider/studerende/duff/Fortune/

Fortune’s algorithm in action

49

Fortune’s algorithm in action

50

Fortune’s algorithm in action

51

Fortune’s algorithm in action

52

Geometric-algorithm challenge

Problem: Draw a Voronoi diagram

Goals: lecture slide, book diagram

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

53

Geometric-algorithm challenge

Problem: Draw a Voronoi diagram

Goals: lecture slide, book diagram

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

54

surprise!

55

Discretized Voronoi diagram

Observation: to draw a Voronoi diagram, only need an approximation

Ex: Assign a color to each pixel corresponding to its nearest neighbor

An effective approximate solution to the nearest neighbor problem

Brute

Algorithm

Fortune

1

Preprocess

N log N

N

Query

log N

Discretized N P 1

P pixels

complicated alg (stay tuned)

56

public class Voronoi implements DrawListener
{
 private int SIZE = 512;
 private Point[][] nearest = new Point[SIZE][SIZE];
 private InteractiveDraw draw;
 public Voronoi()
 {
 draw = new InteractiveDraw(SIZE, SIZE);
 draw.setScale(0, 0, SIZE, SIZE);
 draw.addListener(this);
 draw.show();
 }

 public void keyTyped(char c) { }
 public void mouseDragged (double x, double y) { }
 public void mouseReleased(double x, double y) { }
 public void mousePressed
 { /* See next slide */ }

}

Discretized Voronoi: Java Implementation

InteractiveDraw. Version of StdDraw that supports user interaction.

DrawListener. Interface to support InteractiveDraw callbacks.

send callbacks to Voronoi

http://www.cs.princeton.edu/introcs/35inheritance/Voronoi.java

57

Discretized Voronoi: Java Implementation

public void mousePressed(double x, double y)
{
 Point p = new Point(x, y);
 draw.setColorRandom();
 for (int i = 0; i < SIZE; i++)
 for (int j = 0; j < SIZE; j++)
 {
 Point q = new Point(i, j);
 if ((nearest[i][j] == null) ||
 (q.distanceTo(p) < q.distanceTo(nearest[i][j])))
 {
 nearest[i][j] = p;
 draw.moveTo(i, j);
 draw.spot();
 }
 }
 draw.setColor(StdDraw.BLACK);
 draw.moveTo(x, y);
 draw.spot(4);
 draw.show();
}

user clicks (x, y)

check every other point q to see if p
became its nearest neighbor

58

Hoff's algorithm. Align apex of a right circular cone with sites.

• Minimum envelope of cone intersections projected onto plane is

the Voronoi diagram.

• View cones in different colors render Voronoi.

Implementation. Draw cones using standard graphics hardware!

Voronoi alternative 2: Hoff's algorithm

http://www.cs.unc.edu/~geom/voronoi/siggraph_paper/voronoi.pdf

59

Delaunay Triangulation

Delaunay triangulation. Triangulation of N points such that no point

is inside circumcircle of any other triangle.

Fact 0. It exists and is unique (assuming no degeneracy).

Fact 1. Dual of Voronoi (connect adjacent points in Voronoi diagram).

Fact 2. No edges cross O(N) edges.

Fact 3. Maximizes the minimum angle for all triangular elements.

Fact 4. Boundary of Delaunay triangulation is convex hull.

Fact 5. Shortest Delaunay edge connects closest pair of points.

Delaunay

Voronoi

60

Euclidean MST

Euclidean MST. Given N points in the plane, find MST connecting them.

• Distances between point pairs are Euclidean distances.

Brute force. Compute N2 / 2 distances and run Prim's algorithm.

Ingenuity.

• MST is subgraph of Delauney triagulation

• Delauney has O(N) edges

• Compute Delauney, then use Prim or Kruskal to get MST in O(N log N) !

Ingenuity in algorithm design can enable solution

of large instances for numerous fundamental geometric problems.

61

asymptotic time to solve a 2D problem with N points

convex hull

Problem

closest pair

N2

Brute

N2

Voronoi ?

N log N

Cleverness

N log N

N log N

Delaunay triangulation N4 N log N

Euclidean MST N2 N log N

Summary

Note: 3D and higher dimensions test limits of our ingenuity

Geometric algorithms summary: Algorithms of the day

62

convex hull N2 N log N

closest pair N2 N log N

Voronoi/Delauney N4 N log N

Euclidean MST N2 N log N

asymptotic time to solve a
2D problem with N points

brute ingenuity

1

Geometric Algorithms

range search
quad and kd trees
intersection search
VLSI rules check

References:

 Algorithms in C (2nd edition), Chapters 26-27
 http://www.cs.princeton.edu/introalgsds/73range

 http://www.cs.princeton.edu/introalgsds/74intersection

2

Overview

Types of data. Points, lines, planes, polygons, circles, ...

This lecture. Sets of N objects.

Geometric problems extend to higher dimensions.

• Good algorithms also extend to higher dimensions.

• Curse of dimensionality.

Basic problems.

• Range searching.

• Nearest neighbor.

• Finding intersections of geometric objects.

3

range search
quad and kd trees
intersection search
VLSI rules check

4

1D Range Search

Extension to symbol-table ADT with comparable keys.

• Insert key-value pair.

• Search for key k.

• How many records have keys between k1 and k2?

• Iterate over all records with keys between k1 and k2.

Application: database queries.

Geometric intuition.

• Keys are point on a line.

• How many points in a given interval?

insert B B

insert D B D

insert A A B D

insert I A B D I

insert H A B D H I

insert F A B D F H I

insert P A B D F H I P

count G to K 2

search G to K H I

5

1D Range search: implementations

Range search. How many records have keys between k1 and k2?

Ordered array. Slow insert, binary search for k1 and k2 to find range.

Hash table. No reasonable algorithm (key order lost in hash).

BST. In each node x, maintain number of nodes in tree rooted at x.

Search for smallest element k1 and largest element k2.

log N

N

log N

countinsert range

ordered array N R + log N

hash table 1 N

BST log N R + log N

nodes examined

within interval

not touched

N = # records
R = # records that match

6

2D Orthogonal Range Search

Extension to symbol-table ADT with 2D keys.

• Insert a 2D key.

• Search for a 2D key.

• Range search: find all keys that lie in a 2D range?

• Range count: how many keys lie in a 2D range?

Applications: networking, circuit design, databases.

Geometric interpretation.

• Keys are point in the plane

• Find all points in a given h-v rectangle

7

2D Orthogonal range Search: Grid implementation

Grid implementation. [Sedgewick 3.18]

• Divide space into M-by-M grid of squares.

• Create linked list for each square.

• Use 2D array to directly access relevant square.

• Insert: insert (x, y) into corresponding grid square.

• Range search: examine only those grid squares that could have

points in the rectangle.

LB

RT

8

2D Orthogonal Range Search: Grid Implementation Costs

Space-time tradeoff.

• Space: M2 + N.

• Time: 1 + N / M2 per grid cell examined on average.

Choose grid square size to tune performance.

• Too small: wastes space.

• Too large: too many points per grid square.

• Rule of thumb: N by N grid.

Running time. [if points are evenly distributed]

• Initialize: O(N).

• Insert: O(1).

• Range: O(1) per point in range.

LB

RTM N

9

Clustering

Grid implementation. Fast, simple solution for well-distributed points.

Problem. Clustering is a well-known phenomenon in geometric data.

Ex: USA map data.

 13,000 points, 1000 grid squares.

Lists are too long, even though average length is short.

Need data structure that gracefully adapts to data.

half the squares are empty half the points are
in 10% of the squares

10

range search
quad and kd trees
intersection search
VLSI rules check

11

Space Partitioning Trees

Use a tree to represent a recursive subdivision of d-dimensional space.

BSP tree. Recursively divide space into two regions.

Quadtree. Recursively divide plane into four quadrants.

Octree. Recursively divide 3D space into eight octants.

kD tree. Recursively divide k-dimensional space into two half-spaces.
 [possible but much more complicated to define Voronoi-based structures]

Applications.

• Ray tracing.

• Flight simulators.

• N-body simulation.

• Collision detection.

• Astronomical databases.

• Adaptive mesh generation.

• Accelerate rendering in Doom.

• Hidden surface removal and shadow casting.

Grid

Quadtree

kD tree

BSP tree

12

Quadtree

Recursively partition plane into 4 quadrants.

Implementation: 4-way tree.

Primary reason to choose quad trees over grid methods:

 good performance in the presence of clustering

a

b

c

e

f

g h

d

a h

d ge

b c

f

public class QuadTree
{
 private Quad quad;
 private Value value;
 private QuadTree NW, NE, SW, SE;
}

actually a trie
partitioning on bits of coordinates

(01..., 00...)

(0..., 1...)

13

Curse of Dimensionality

Range search / nearest neighbor in k dimensions?

Main application. Multi-dimensional databases.

3D space. Octrees: recursively divide 3D space into 8 octants.

100D space. Centrees: recursively divide into 2100 centrants???

Raytracing with octrees

http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html

14

2D Trees

Recursively partition plane into 2 halfplanes.

Implementation: BST, but alternate using x and y coordinates as key.

• Search gives rectangle containing point.

• Insert further subdivides the plane.

even levels

q

p

points

left of p

points

right of p

points

below q

points

above q
odd levels

p

q

15

Near Neighbor Search

Useful extension to symbol-table ADT for records with metric keys.

• Insert a k dimensional point.

• Near neighbor search: given a point p, which point in data structure

is nearest to p?

Need concept of distance, not just ordering.

kD trees provide fast, elegant solution.

• Recursively search subtrees that could

have near neighbor (may search both).

• O(log N) ?

Yes, in practice
(but not proven)

16

kD Trees

kD tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation: BST, but cycle through dimensions ala 2D trees.

Efficient, simple data structure for processing k-dimensional data.

• adapts well to clustered data.

• adapts well to high dimensional data.

• widely used.

• discovered by an undergrad in an algorithms class!

level i (mod k)

points

whose ith

coordinate

is less than p’s

points

whose ith

coordinate

is greater than p’s

p

17

Summary

Basis of many geometric algorithms: search in a planar subdivision.

grid 2D tree Voronoi diagram
intersecting

lines

basis N h-v lines N points N points N lines

representation
2D array
of N lists

N-node BST
N-node
multilist

~N-node BST

cells ~N squares N rectangles N polygons ~N triangles

search cost 1 log N log N log N

extend to kD? too many cells easy
cells too

complicated
use (k-1)D
hyperplane

18

range search
quad and kd trees
intersection search
VLSI rules check

19

Search for intersections

Problem. Find all intersecting pairs among set of N geometric objects.

Applications. CAD, games, movies, virtual reality.

Simple version: 2D, all objects are horizontal or vertical line segments.

Brute force. Test all (N2) pairs of line segments for intersection.

Sweep line. Efficient solution extends to 3D and general objects.

Sweep vertical line from left to right.

• x-coordinates define events.

• left endpoint of h-segment: insert y coordinate into ST.

• right endpoint of h-segment: remove y coordinate from ST.

• v-segment: range search for interval of y endpoints.

20

Orthogonal segment intersection search: Sweep-line algorithm

range searchinsert y

delete y

21

Orthogonal segment intersection: Sweep-line algorithm

Reduces 2D orthogonal segment intersection search to 1D range search!

Running time of sweep line algorithm.

• Put x-coordinates on a PQ (or sort). O(N log N)

• Insert y-coordinate into SET. O(N log N)

• Delete y-coordinate from SET. O(N log N)

• Range search. O(R + N log N)

Efficiency relies on judicious use of data structures.

N = # line segments
R = # intersections

22

Immutable H-V segment ADT

public final class SegmentHV implements Comparable<SegmentHV>
{
 public final int x1, y1;
 public final int x2, y2;

 public SegmentHV(int x1, int y1, int x2, int y2)
 { ... }
 public boolean isHorizontal()
 { ... }
 public boolean isVertical()
 { ... }
 public int compareTo(SegmentHV b)
 { ... }
 public String toString()
 { ... }
}

compare by x-coordinate;
break ties by y-coordinate

(x1, y) (x2, y)

horizontal segment vertical segment

(x, y1)

(x, y2)

23

Sweep-line event

public class Event implements Comparable<Event>
{
 private int time;
 private SegmentHV segment;

 public Event(int time, SegmentHV segment)
 {
 this.time = time;
 this.segment = segment;
 }

 public int compareTo(Event b)
 {
 return a.time - b.time;
 }
}

initialize
PQ

vertical
segment

24

Sweep-line algorithm: Initialize events

MinPQ<Event> pq = new MinPQ<Event>();

for (int i = 0; i < N; i++)
{
 if (segments[i].isVertical())
 {
 Event e = new Event(segments[i].x1, segments[i]);
 pq.insert(e);
 }
 else if (segments[i].isHorizontal())
 {
 Event e1 = new Event(segments[i].x1, segments[i]);
 Event e2 = new Event(segments[i].x2, segments[i]);
 pq.insert(e1);
 pq.insert(e2);
 }
}

horizontal
segment

25

Sweep-line algorithm: Simulate the sweep line

int INF = Integer.MAX_VALUE;

SET<SegmentHV> set = new SET<SegmentHV>();

while (!pq.isEmpty())
{
 Event e = pq.delMin();
 int sweep = e.time;
 SegmentHV segment = e.segment;

 if (segment.isVertical())
 {
 SegmentHV seg1, seg2;
 seg1 = new SegmentHV(-INF, segment.y1, -INF, segment.y1);
 seg2 = new SegmentHV(+INF, segment.y2, +INF, segment.y2);
 for (SegmentHV seg : set.range(seg1, seg2))
 System.out.println(segment + " intersects " + seg);
 }

 else if (sweep == segment.x1) set.add(segment);
 else if (sweep == segment.x2) set.remove(segment);
}

26

General line segment intersection search

Extend sweep-line algorithm

• Maintain order of segments that intersect sweep line by y-coordinate.

• Intersections can only occur between adjacent segments.

• Add/delete line segment one new pair of adjacent segments.

• Intersection swap adjacent segments.

order of segments

A

C

B

ABC ACB

D

ACD CADA AB

insert segment

delete segment

intersectionACBD CA A

27

Line Segment Intersection: Implementation

Efficient implementation of sweep line algorithm.

• Maintain PQ of important x-coordinates: endpoints and intersections.

• Maintain SET of segments intersecting sweep line, sorted by y.

• O(R log N + N log N).

Implementation issues.

• Degeneracy.

• Floating point precision.

• Use PQ, not presort (intersection events are unknown ahead of time).

to support "next largest"
and "next smallest" queries

28

range search
quad and kd trees
intersection search
VLSI rules check

29

Algorithms and Moore's Law

Rectangle intersection search. Find all intersections among h-v rectangles.

Application. Design-rule checking in VLSI circuits.

30

Algorithms and Moore's Law

Early 1970s: microprocessor design became a geometric problem.

• Very Large Scale Integration (VLSI).

• Computer-Aided Design (CAD).

Design-rule checking:

• certain wires cannot intersect

• certain spacing needed between

different types of wires

• debugging = rectangle intersection search

31

Algorithms and Moore's Law

"Moore’s Law." Processing power doubles every 18 months.

• 197x: need to check N rectangles.

• 197(x+1.5): need to check 2N rectangles on a 2x-faster computer.

Bootstrapping: we get to use the faster computer for bigger circuits

But bootstrapping is not enough if using a quadratic algorithm

• 197x: takes M days.

• 197(x+1.5): takes (4M)/2 = 2M days. (!)

 O(N log N) CAD algorithms are necessary to sustain Moore’s Law.

2x-faster
computer

quadratic
algorithm

32

Rectangle intersection search

Move a vertical "sweep line" from left to right.

• Sweep line: sort rectangles by x-coordinate and process in this order,

stopping on left and right endpoints.

• Maintain set of intervals intersecting sweep line.

• Key operation: given a new interval, does it intersect one in the set?

33

Support following operations.

• Insert an interval (lo, hi).

• Delete the interval (lo, hi).

• Search for an interval that intersects (lo, hi).

Non-degeneracy assumption. No intervals have the same x-coordinate.

Interval Search Trees

(7, 10)

(5, 11)

(4, 8) (15, 18)

(17, 19)

(20, 22)

34

Interval Search Trees

Interval tree implementation with BST.

• Each BST node stores one interval.

• use lo endpoint as BST key.

(4, 8)

(17, 19)

(5, 11) (20, 22)

(15, 18)

(7, 10)

(7, 10)

(5, 11)

(4, 8) (15, 18)

(17, 19)

(20, 22)

35

Interval Search Trees

Interval tree implementation with BST.

• Each BST node stores one interval.

• BST nodes sorted on lo endpoint.

• Additional info: store and maintain

max endpoint in subtree rooted at node.

(4, 8)

(17, 19)

(5, 11) (20, 22)

(15, 18)

(7, 10)

22

18 22

18

10

8

(7, 10)

(5, 11)

(4, 8) (15, 18)

(17, 19)

(20, 22)

36

Finding an intersecting interval

Search for an interval that intersects (lo, hi).

Case 1. If search goes right, then either

• there is an intersection in right subtree

• there are no intersections in either subtree.

Pf. Suppose no intersection in right.

• (x.left == null) trivial.

• (x.left.max < lo) for any interval (a, b) in left subtree of x,

we have b max < lo.

Node x = root;
while (x != null)
{
 if (x.interval.intersects(lo, hi)) return x.interval;
 else if (x.left == null) x = x.right;
 else if (x.left.max < lo) x = x.right;
 else x = x.left;
}
return null;

left subtree of x

(lo,hi)

max

(a, b)

defn of max
reason for
going right

37

Finding an intersecting interval

Search for an interval that intersects (lo, hi).

Case 2. If search goes left, then either

• there is an intersection in left subtree

• there are no intersections in either subtree.

Pf. Suppose no intersection in left. Then for any interval (a, b)

in right subtree, a c > hi no intersection in right.

left subtree of x

max

(lo,hi) (a, b)

right subtree of x

(c,max)
intervals sorted
by left endpoint

no intersection
in left subtree

Node x = root;
while (x != null)
{
 if (x.interval.intersects(lo, hi)) return x.interval;
 else if (x.left == null) x = x.right;
 else if (x.left.max < lo) x = x.right;
 else x = x.left;
}
return null;

38

Interval Search Tree: Analysis

Implementation. Use a red-black tree to guarantee performance.

insert interval

Operation

delete interval

log N

Worst case

log N

find an interval that intersects (lo, hi) log N

find all intervals that intersect (lo, hi) R log N

can maintain auxiliary information
using log N extra work per op

N = # intervals
R = # intersections

39

Rectangle intersection sweep-line algorithm: Review

Move a vertical "sweep line" from left to right.

• Sweep line: sort rectangles by x-coordinates and process in this order.

• Store set of rectangles that intersect the sweep line in an interval

search tree (using y-interval of rectangle).

• Left side: interval search for y-interval of rectangle, insert y-interval.

• Right side: delete y-interval.

40

VLSI Rules checking: Sweep-line algorithm (summary)

Reduces 2D orthogonal rectangle intersection search to 1D interval search!

Running time of sweep line algorithm.

• Sort by x-coordinate. O(N log N)

• Insert y-interval into ST. O(N log N)

• Delete y-interval from ST. O(N log N)

• Interval search. O(R log N)

Efficiency relies on judicious extension of BST.

Bottom line.

Linearithmic algorithm enables design-rules checking for huge problems

N = # line segments
R = # intersections

Geometric search summary: Algorithms of the day

41

1D range search BST

kD range search kD tree

1D interval

intersection search
interval tree

2D orthogonal line

intersection search

sweep line reduces to

1D range search

2D orthogonal rectangle

intersection search

sweep line reduces to

1D interval intersection search

1

Radix Sorts

key-indexed counting
LSD radix sort
MSD radix sort
3-way radix quicksort
application: LRS

References:

 Algorithms in Java, Chapter 10
 http://www.cs.princeton.edu/introalgsds/61sort

Review: summary of the performance of sorting algorithms

Frequency of execution of instructions in the inner loop:

lower bound: N lg N -1.44 N compares are required by any algorithm

Q: Can we do better (despite the lower bound)?

2

algorithm guarantee average
extra
space

operations
on keys

insertion sort N2 /2 N2 /4 no compareTo()

selection sort N2 /2 N2 /2 no compareTo()

mergesort N lg N N lg N N compareTo()

quicksort 1.39 N lg N 1.39 N lg N c lg N compareTo()

Digital keys

Many commonly-use key types are inherently digital

(sequences of fixed-length characters)

Examples

• Strings

• 64-bit integers

This lecture:

• refer to fixed-length vs. variable-length strings

• R different characters for some fixed value R.

• assume key type implements charAt() and length() methods

• code works for String

Widely used in practice

• low-level bit-based sorts

• string sorts

3

example interface

interface Digital

{

 public int charAt(int k);

 public int length(int);

}

4

key-indexed counting
LSD radix sort
MSD radix sort
3-way radix quicksort
application: LRS

Key-indexed counting: assumptions about keys

Assume that keys are integers between 0 and R-1

Implication: Can use key as an array index

Examples:

• char (R = 256)

• short with fixed R, enforced by client

• int with fixed R, enforced by client

Reminder: equal keys are not uncommon in sort applications

Applications:

• sort phone numbers by area code

• sort classlist by precept

• Requirement: sort must be stable

• Ex: Full sort on primary key, then stable radix sort on secondary key

5

copy back

6

Key-indexed counting

Task: sort an array a[] of N integers between 0 and R-1

Plan: produce sorted result in array temp[]

1. Count frequencies of each letter using key as index

2. Compute frequency cumulates

3. Access cumulates using key as index to find record positions.

4. Copy back into original array a[]

int N = a.length;
int[] count = new int[R];

for (int i = 0; i < N; i++)
 count[a[i]+1]++;

for (int k = 1; k < 256; k++)
 count[k] += count[k-1];

for (int i = 0; i < N; i++)
 temp[count[a[i]++]] = a[i]

for (int i = 0; i < N; i++)
 a[i] = temp[i];

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

temp[]

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

count[]

a 2

b 5

c 6

d 8

e 9

f 12

count
frequencies

compute
cumulates

move
records

Review: summary of the performance of sorting algorithms

Frequency of execution of instructions in the inner loop:

Q: Can we do better (despite the lower bound)?

A: Yes, if we do not depend on comparisons
7

algorithm guarantee average
extra
space

operations
on keys

insertion sort N2 /2 N2 /4 no compareTo()

selection sort N2 /2 N2 /2 no compareTo()

mergesort N lg N N lg N N compareTo()

quicksort 1.39 N lg N 1.39 N lg N c lg N compareTo()

key-indexed counting N + R N + R N + R
use as

array index

inplace version is possible and practical

8

key-indexed counting
LSD radix sort
MSD radix sort
3-way radix quicksort
application: LRS

Least-significant-digit-first radix sort

LSD radix sort.

• Consider characters d from right to left

• Stably sort using dth character as the key via key-indexed counting.

9

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 d a b

1 c a b

2 e b b

3 a d d

4 f a d

5 b a d

6 d a d

7 f e d

8 b e d

9 f e e

10 b e e

11 a c e

sort must be stable
arrows do not cross

sort key

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key sort key

10

LSD radix sort: Why does it work?

Pf 1. [thinking about the past]

• If two strings differ on first character,

key-indexed sort puts them in proper relative order.

• If two strings agree on first character,

stability keeps them in proper relative order.

Pf 2. [thinking about the future]

• If the characters not yet examined differ,

it doesn't matter what we do now.

• If the characters not yet examined agree,

stability ensures later pass won't affect order.

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key

in order
by previous

passes

11
Assumes fixed-length keys (length = W)

LSD radix sort implementation

public static void lsd(String[] a)

{

 int N = a.length;

 int W = a[0].length;

 for (int d = W-1; d >= 0; d--)

 {

 int[] count = new int[R];

 for (int i = 0; i < N; i++)

 count[a[i].charAt(d) + 1]++;

 for (int k = 1; k < 256; k++)

 count[k] += count[k-1];

 for (int i = 0; i < N; i++)

 temp[count[a[i].charAt(d)]++] = a[i];

 for (int i = 0; i < N; i++)

 a[i] = temp[i];

 }

}

key-indexed
counting

copy back

count
frequencies

compute
cumulates

move
records

Use k-indexed counting on characters, moving right to left

Review: summary of the performance of sorting algorithms

Frequency of execution of instructions in the inner loop:

12

algorithm guarantee average
extra
space

assumptions
on keys

insertion sort N2 /2 N2 /4 no Comparable

selection sort N2 /2 N2 /2 no Comparable

mergesort N lg N N lg N N Comparable

quicksort 1.39 N lg N 1.39 N lg N c lg N Comparable

LSD radix sort WN WN N + R digital

13

Sorting Challenge

Problem: sort a huge commercial database on a fixed-length key field

Ex: account number, date, SS number

Which sorting method to use?

1. insertion sort

2. mergesort

3. quicksort

4. LSD radix sort

B14-99-8765

756-12-AD46

CX6-92-0112

332-WX-9877

375-99-QWAX

CV2-59-0221

387-SS-0321

KJ-00-12388

715-YT-013C

MJ0-PP-983F

908-KK-33TY

BBN-63-23RE

48G-BM-912D

982-ER-9P1B

WBL-37-PB81

810-F4-J87Q

LE9-N8-XX76

908-KK-33TY

B14-99-8765

CX6-92-0112

CV2-59-0221

332-WX-23SQ

332-6A-9877

14

Sorting Challenge

Problem: sort huge files of random 128-bit numbers

Ex: supercomputer sort, internet router

Which sorting method to use?

1. insertion sort

2. mergesort

3. quicksort

4. LSD radix sort

LSD radix sort: a moment in history (1960s)

Lysergic Acid Diethylamide

15

“Lucy in the Sky with Diamonds”

LSD radix sort actually predates computers

card punch punched cards card reader mainframe line printer

card sorter

To sort a card deck
1. start on right column
2. put cards into hopper
3. machine distributes into bins
4. pick up cards (stable)
5. move left one column
6. continue until sorted

LSD not related to sorting

16

key-indexed counting
LSD radix sort
MSD radix sort
3-way radix quicksort
application: LRS

17

Most-significant-digit-first radix sort.

• Partition file into R pieces according to first character

(use key-indexed counting)

• Recursively sort all strings that start with each character

(key-indexed counts delineate files to sort)

MSD Radix Sort

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort these
independently

(recursive)

sort key

count[]

a 0

b 2

c 5

d 6

e 8

f 9

18

MSD radix sort implementation

public static void msd(String[] a)

{ msd(a, 0, a.length, 0); }

private static void msd(String[] a, int lo, int hi, int d)

{

 if (hi <= lo + 1) return;

 int[] count = new int[256+1];

 for (int i = 0; i < N; i++)

 count[a[i].charAt(d) + 1]++;

 for (int k = 1; k < 256; k++)

 count[k] += count[k-1];

 for (int i = 0; i < N; i++)

 temp[count[a[i].charAt(d)]++] = a[i];

 for (int i = 0; i < N; i++)

 a[i] = temp[i];

 for (int i = 0; i < 255; i++)

 msd(a, l + count[i], l + count[i+1], d+1);

}

key-indexed
counting

copy back

count
frequencies

compute
cumulates

move
records

Use key-indexed counting on first character, recursively sort subfiles

19

 MSD radix sort: potential for disastrous performance

Observation 1: Much too slow for small files

• all counts must be initialized to zero

• ASCII (256 counts): 100x slower than copy pass for N = 2.

• Unicode (65536 counts): 30,000x slower for N = 2

Observation 2: Huge number of small files because of recursion.

• keys all different: up to N/2 files of size 2

• ASCII: 100x slower than copy pass for all N.

• Unicode: 30,000x slower for all N

Solution. Switch to insertion sort for small N.

a[]

0 b

1 a

count[]

temp[]

0 a

1 b

switch to Unicode might be a big surprise!

MSD radix sort bonuses

Bonus 1: May not have to examine all of the keys.

Bonus 2: Works for variable-length keys (String values)

Implication: sublinear sorts (!)
20

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

0 a c e t o n e \0

1 a d d i t i o n \0

2 b a d g e \0

3 b e d a z z l e d \0

4 b e e h i v e \0

5 c a b i n e t r y \0

6 d a b b l e \0

7 d a d \0

19/24 80% of the characters examined

19/64 30% of the characters examined

21

MSD string sort implementation

public static void msd(String[] a)

{ msd(a. 0. a.length, 0);

private static void msd(String[] a, int l, int r, int d)

{

 if (r <= l + 1) return;

 int[] count = new int[256];

 for (int i = 0; i < N; i++)

 count[a[i].charAt(d) + 1]++;

 for (int k = 1; k < 256; k++)

 count[k] += count[k-1];

 for (int i = 0; i < N; i++)

 temp[count[a[i].charAt(d)]++] = a[i];

 for (int i = 0; i < N; i++)

 a[i] = temp[i];

 for (int i = 1; i < 255; i++)

 msd(a, l + count[i], l + count[i+1], d+1);

}

Use key-indexed counting on first character, recursively sort subfiles

don’t sort strings that start with ‘\0’ (end of string char)

key-indexed
counting

22

Sorting Challenge (revisited)

Problem: sort huge files of random 128-bit numbers

Ex: supercomputer sort, internet router

Which sorting method to use?

1. insertion sort

2. mergesort

3. quicksort

4. LSD radix sort on MSDs

216 = 65536 counters

divide each word into 16-bit “chars”

sort on leading 32 bits in 2 passes

finish with insertion sort

examines only ~25% of the data

23

MSD radix sort versus quicksort for strings

Disadvantages of MSD radix sort.

• Accesses memory "randomly" (cache inefficient)

• Inner loop has a lot of instructions.

• Extra space for counters.

• Extra space for temp (or complicated inplace key-indexed counting).

Disadvantage of quicksort.

• N lg N, not linear.

• Has to rescan long keys for compares

• [but stay tuned]

24

key-indexed counting
LSD radix sort
MSD radix sort
3-way radix quicksort
application: LRS

25

partition 0th
char on b

3-Way radix quicksort (Bentley and Sedgewick, 1997)

Idea. Do 3-way partitioning on the dth character.

• cheaper than R-way partitioning of MSD radix sort

• need not examine again chars equal to the partitioning char

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 a c e

10 e b b

11 b e d

0 b e e

1 b a d

2 a c e

3 a d d

4 f e e

5 f a d

6 d a d

7 c a b

8 f e d

9 d a b

10 e b b

11 b e d

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 f a d

6 d a d

7 c a b

8 f e d

9 d a b

10 e b b

11 f e e

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 f a d

6 d a d

7 c a b

8 f e d

9 d a b

10 e b b

11 f e e

swap b‘s to ends as
in 3-way quicksort

3-way partition on b

qsortX(0, 12, 0)
qsortX(0, 2, 0)

qsortX(2, 5, 1)

qsortX(5, 12, 0)

26

Recursive structure: MSD radix sort vs. 3-Way radix quicksort

3-way radix quicksort collapses empty links in MSD recursion tree.

MSD radix sort recursion tree
(1035 null links, not shown)

3-way radix quicksort recursion tree
(155 null links)

27

private static void quicksortX(String a[], int lo, int hi, int d)
{
 if (hi - lo <= 0) return;
 int i = lo-1, j = hi;
 int p = lo-1, q = hi;
 char v = a[hi].charAt(d);
 while (i < j)
 {
 while (a[++i].charAt(d) < v) if (i == hi) break;
 while (v < a[--j].charAt(d)) if (j == lo) break;
 if (i > j) break;
 exch(a, i, j);
 if (a[i].charAt(d) == v) exch(a, ++p, i);
 if (a[j].charAt(d) == v) exch(a, j, --q);
 }

 if (p == q)
 {
 if (v != '\0') quicksortX(a, lo, hi, d+1);
 return;
 }

 if (a[i].charAt(d) < v) i++;
 for (int k = lo; k <= p; k++) exch(a, k, j--);
 for (int k = hi; k >= q; k--) exch(a, k, i++);

 quicksortX(a, lo, j, d);
 if ((i == hi) && (a[i].charAt(d) == v)) i++;
 if (v != '\0') quicksortX(a, j+1, i-1, d+1);
 quicksortX(a, i, hi, d);
}

swap equals
back to middle

3-Way radix quicksort

sort 3 pieces
recursively

special case for
all equals

4-way partition
with equals

at ends

28

3-Way Radix quicksort vs. standard quicksort

standard quicksort.

• uses 2N ln N string comparisons on average.

• uses costly compares for long keys that differ only at the end,

and this is a common case!

3-way radix quicksort.

• avoids re-comparing initial parts of the string.

• adapts to data: uses just "enough" characters to resolve order.

• uses 2 N ln N character comparisons on average for random strings.

• is sub-linear when strings are long

Theorem. Quicksort with 3-way partitioning is OPTIMAL.

 No sorting algorithm can examine fewer chars on any input

Pf. Ties cost to entropy. Beyond scope of 226.
asymptotically

to within a
constant factor

29

3-Way Radix quicksort vs. MSD radix sort

MSD radix sort

• has a long inner loop

• is cache-inefficient

• repeatedly initializes counters for long stretches of equal chars,

and this is a common case!

3-way radix quicksort

• uses one compare for equal chars.

• is cache-friendly

• adapts to data: uses just "enough" characters to resolve order.

3-way radix quicksort is the method of choice for sorting strings

Ex. Library call numbers

WUS-------10706-----7---10
WUS-------12692-----4---27
WLSOC------2542----30
LTK--6015-P-63-1988
LDS---361-H-4
 ...

30

key-indexed counting
LSD radix sort
MSD radix sort
3-way radix quicksort
application: LRS

31

Longest repeated substring

Given a string of N characters, find the longest repeated substring.

Ex:

a a c a a g t t t a c a a g c a t g a t g c t g t a c t a

g g a g a g t t a t a c t g g t c g t c a a a c c t g a a

c c t a a t c c t t g t g t g t a c a c a c a c t a c t a

c t g t c g t c g t c a t a t a t c g a g a t c a t c g a

a c c g g a a g g c c g g a c a a g g c g g g g g g t a t

a g a t a g a t a g a c c c c t a g a t a c a c a t a c a

t a g a t c t a g c t a g c t a g c t c a t c g a t a c a

c a c t c t c a c a c t c a a g a g t t a t a c t g g t c

a a c a c a c t a c t a c g a c a g a c g a c c a a c c a

g a c a g a a a a a a a a c t c t a t a t c t a t a a a a

32

Longest repeated substring

Given a string of N characters, find the longest repeated substring.

Ex:

a a c a a g t t t a c a a g c a t g a t g c t g t a c t a

g g a g a g t t a t a c t g g t c g t c a a a c c t g a a

c c t a a t c c t t g t g t g t a c a c a c a c t a c t a

c t g t c g t c g t c a t a t a t c g a g a t c a t c g a

a c c g g a a g g c c g g a c a a g g c g g g g g g t a t

a g a t a g a t a g a c c c c t a g a t a c a c a t a c a

t a g a t c t a g c t a g c t a g c t c a t c g a t a c a

c a c t c t c a c a c t c a a g a g t t a t a c t g g t c

a a c a c a c t a c t a c g a c a g a c g a c c a a c c a

g a c a g a a a a a a a a c t c t a t a t c t a t a a a a

33

String processing

String. Sequence of characters.

Important fundamental abstraction

Natural languages, Java programs, genomic sequences, …

The digital information that underlies biochemistry, cell

biology, and development can be represented by a simple

string of G's, A's, T's and C's. This string is the root

data structure of an organism's biology. -M. V. Olson

34

Using Strings in Java

String concatenation: append one string to end of another string.

Substring: extract a contiguous list of characters from a string.

s t r i n g s

0 1 2 3 4 5 6

String s = "strings"; // s = "strings"
char c = s.charAt(2); // c = 'r'
String t = s.substring(2, 6); // t = "ring"
String u = s + t; // u = "stringsring"

35

Implementing Strings In Java

Memory. 40 + 2N bytes for a virgin string!

could use byte array instead of String to save space

java.lang.String

public final class String implements Comparable<String>

{

 private char[] value; // characters

 private int offset; // index of first char into array

 private int count; // length of string

 private int hash; // cache of hashCode()

 private String(int offset, int count, char[] value)

 {

 this.offset = offset;

 this.count = count;

 this.value = value;

 }

 public String substring(int from, int to)

 {

 return new String(offset + from, to - from, value); }

 …

}

36

String vs. StringBuilder

String. [immutable] Fast substring, slow concatenation.

StringBuilder. [mutable] Slow substring, fast (amortized) append.

Ex. Reverse a string

quadratic time

linear time

public static String reverse(String s)

{

 String rev = "";

 for (int i = s.length() - 1; i >= 0; i--)

 rev += s.charAt(i);

 return rev;

}

public static String reverse(String s)

{

 StringBuilder rev = new StringBuilder();

 for (int i = s.length() - 1; i >= 0; i--)

 rev.append(s.charAt(i));

 return rev.toString();

}

Given two strings, find the longest substring that is a prefix of both

Would be quadratic with StringBuilder

Lesson: cost depends on implementation

This lecture: need constant-time substring(), use String
37

Warmup: longest common prefix

p r e f i x

0 1 2 3 4 5 6

p r e f e t c

7

h

public static String lcp(String s, String t)
{
 int n = Math.min(s.length(), t.length());
 for (int i = 0; i < n; i++)
 {
 if (s.charAt(i) != t.charAt(i))
 return s.substring(0, i);
 }
 return s.substring(0, n);
}

linear time

38

Longest repeated substring

Given a string of N characters, find the longest repeated substring.

Classic string-processing problem.

Ex: a a c a a g t t t a c a a g c

Applications

• bioinformatics.

• cryptanalysis.

Brute force.

• Try all indices i and j for start of possible match, and check.

• Time proportional to M N2 , where M is length of longest match.

a a c a a g t t t a c a a g c

j

k k

i

91

39

Longest repeated substring

a a c a a g t t t a c a a g c

a c a a g t t t a c a a g c

c a a g t t t a c a a g c

a a g t t t a c a a g c

a g t t t a c a a g c

g t t t a c a a g c

t t t a c a a g c

t t a c a a g c

t a c a a g c

a c a a g c

c a a g c

a a g c

a g c

g c

c

a a c a a g t t t a c a a g c

a c a a g t t t a c a a g c

c a a g t t t a c a a g c

a a g t t t a c a a g c

a g t t t a c a a g c

g t t t a c a a g c

t t t a c a a g c

t t a c a a g c

t a c a a g c

a c a a g c

c a a g c

a a g c

a g c

g c

c

suffixes sorted suffixes

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

11

3

9

1

12

4

14

10

2

13

5

8

7

6

Suffix sort solution.

form N suffixes of original string.

sort to bring longest repeated substrings together.

check LCP of adjacent substrings to find longest match

40

Suffix Sorting: Java Implementation

% java LRS < mobydick.txt

,- Such a funny, sporty, gamy, jesty, joky, hoky-poky lad, is the Ocean, oh! Th

read input

create suffixes
(linear time)

sort suffixes

find LCP

public class LRS {

 public static void main(String[] args) {

 String s = StdIn.readAll();

 int N = s.length();

 String[] suffixes = new String[N];

 for (int i = 0; i < N; i++)

 suffixes[i] = s.substring(i, N);

 Arrays.sort(suffixes);

 String lrs = "";

 for (int i = 0; i < N - 1; i++) {

 String x = lcp(suffixes[i], suffixes[i+1]);

 if (x.length() > lrs.length()) lrs = x;

 }

 System.out.println(lrs);

 }

}

41

Sorting Challenge

Problem: suffix sort a long string

Ex. Moby Dick ~1.2 million chars

Which sorting method to use?

1. insertion sort

2. mergesort

3. quicksort

4. LSD radix sort

5. MSD radix sort

6. 3-way radix quicksort

only if LRS is not long (!)

42

Suffix sort experimental results

algorithm
time to suffix-
sort Moby Dick

(seconds)

brute-force 36.000 (est.)

quicksort 9.5

LSD not fixed-length

MSD 395

MSD with cutoff 6.8

3-way radix quicksort 2.8

Longest match not long:

• hard to beat 3-way radix quicksort.

Longest match very long:

• radix sorts are quadratic

in the length of the longest match

• Ex: two copies of Moby Dick.

Can we do better? linearithmic? linear?

Observation. Must find longest repeated

substring while suffix sorting to beat N2.

43

Suffix Sorting: Worst-case input

Input: "abcdeghiabcdefghi"

 abcdefghi
 abcdefghiabcdefghi
 bcdefghi
 bcdefghiabcdefghi
 cdefghi
 cdefghiabcdefgh
 defghi
 efghiabcdefghi
 efghi
 fghiabcdefghi
 fghi
 ghiabcdefghi
 fhi
 hiabcdefghi
 hi
 iabcdefghi
 i

44

Fast suffix sorting

Manber's MSD algorithm

• phase 0: sort on first character using key-indexed sort.

• phase i: given list of suffixes sorted on first 2i-1 characters,

create list of suffixes sorted on first 2i characters

Running time

• finishes after lg N phases

• obvious upper bound on growth of total time: O(N (lg N)2)

• actual growth of total time (proof omitted): ~N lg N.

Best algorithm in theory is linear (but more complicated to implement).

not many subfiles if not much repetition

3-way quicksort handles equal keys if repetition

45

Linearithmic suffix sort example: phase 0

 0 babaaaabcbabaaaaa0

 1 abaaaabcbabaaaaa0

 2 baaaabcbabaaaaa0

 3 aaaabcbabaaaaa0

 4 aaabcbabaaaaa0

 5 aabcbabaaaaa0

 6 abcbabaaaaa0

 7 bcbabaaaaa0

 8 cbabaaaaa0

 9 babaaaaa0

10 abaaaaa0

11 baaaaa0

12 aaaaa0

13 aaaa0

14 aaa0

15 aa0

16 a0

17 0

17 0

 1 abaaaabcbabaaaaa0

16 a0

 3 aaaabcbabaaaaa0

 4 aaabcbabaaaaa0

 5 aabcbabaaaaa0

 6 abcbabaaaaa0

15 aa0

14 aaa0

13 aaaa0

12 aaaaa0

10 abaaaaa0

 0 babaaaabcbabaaaaa0

 9 babaaaaa0

11 baaaaa0

 7 bcbabaaaaa0

 2 baaaabcbabaaaaa0

 8 cbabaaaaa0

sorted

0 12

1 1

2 16

3 3

4 4

5 5

6 6

7 15

8 17

9 13

10 11

11 14

12 10

13 9

14 8

15 7

16 2

17 0

inverseindex
sort

46

Linearithmic suffix sort example: phase 1

 0 babaaaabcbabaaaaa0

 1 abaaaabcbabaaaaa0

 2 baaaabcbabaaaaa0

 3 aaaabcbabaaaaa0

 4 aaabcbabaaaaa0

 5 aabcbabaaaaa0

 6 abcbabaaaaa0

 7 bcbabaaaaa0

 8 cbabaaaaa0

 9 babaaaaa0

10 abaaaaa0

11 baaaaa0

12 aaaaa0

13 aaaa0

14 aaa0

15 aa0

16 a0

17 0

17 0

16 a0

12 aaaaa0

 3 aaaabcbabaaaaa0

 4 aaabcbabaaaaa0

 5 aabcbabaaaaa0

13 aaaa0

15 aa0

14 aaa0

 6 abcbabaaaaa0

 1 abaaaabcbabaaaaa0

10 abaaaaa0

 0 babaaaabcbabaaaaa0

 9 babaaaaa0

11 baaaaa0

 2 baaaabcbabaaaaa0

 7 bcbabaaaaa0

 8 cbabaaaaa0

sorted

0 12

1 10

2 15

3 3

4 4

5 5

6 9

7 16

8 17

9 13

10 11

11 14

12 2

13 6

14 8

15 7

16 1

17 0

inverseindex
sort

47

Linearithmic suffix sort example: phase 2

 0 babaaaabcbabaaaaa0

 1 abaaaabcbabaaaaa0

 2 baaaabcbabaaaaa0

 3 aaaabcbabaaaaa0

 4 aaabcbabaaaaa0

 5 aabcbabaaaaa0

 6 abcbabaaaaa0

 7 bcbabaaaaa0

 8 cbabaaaaa0

 9 babaaaaa0

10 abaaaaa0

11 baaaaa0

12 aaaaa0

13 aaaa0

14 aaa0

15 aa0

16 a0

17 0

sorted

0 14

1 9

2 12

3 4

4 7

5 8

6 11

7 16

8 17

9 15

10 10

11 13

12 5

13 6

14 3

15 2

16 1

17 0

inverseindex
sort

17 0

16 a0

15 aa0

14 aaa0

 3 aaaabcbabaaaaa0

12 aaaaa0

13 aaaa0

 4 aaabcbabaaaaa0

 5 aabcbabaaaaa0

 1 abaaaabcbabaaaaa0

10 abaaaaa0

 6 abcbabaaaaa0

 2 baaaabcbabaaaaa0

11 baaaaa0

 0 babaaaabcbabaaaaa0

 9 babaaaaa0

 7 bcbabaaaaa0

 8 cbabaaaaa0

48

Linearithmic suffix sort example: phase 3

 0 babaaaabcbabaaaaa0

 1 abaaaabcbabaaaaa0

 2 baaaabcbabaaaaa0

 3 aaaabcbabaaaaa0

 4 aaabcbabaaaaa0

 5 aabcbabaaaaa0

 6 abcbabaaaaa0

 7 bcbabaaaaa0

 8 cbabaaaaa0

 9 babaaaaa0

10 abaaaaa0

11 baaaaa0

12 aaaaa0

13 aaaa0

14 aaa0

15 aa0

16 a0

17 0

17 0

16 a0

15 aa0

14 aaa0

 3 aaaabcbabaaaaa0

13 aaaa0

12 aaaaa0

 4 aaabcbabaaaaa0

 5 aabcbabaaaaa0

10 abaaaaa0

 1 abaaaabcbabaaaaa0

 6 abcbabaaaaa0

11 baaaaa0

 2 baaaabcbabaaaaa0

 9 babaaaaa0

 0 babaaaabcbabaaaaa0

 7 bcbabaaaaa0

 8 cbabaaaaa0

sorted

0 15

1 10

2 13

3 4

4 7

5 8

6 11

7 16

8 17

9 14

10 9

11 12

12 6

13 5

14 3

15 2

16 1

17 0

FINISHED! (no equal keys)

inverseindex
sort

49

Linearithmic suffix sort: key idea

0 + 4 = 4

9 + 4 = 13

0 14

1 9

2 12

3 4

4 7

5 8

6 11

7 16

8 17

9 15

10 10

11 13

12 5

13 6

14 3

15 2

16 1

17 0

Achieve constant-time string compare by indexing into inverse

inverseindex
sort

 0 babaaaabcbabaaaaa0

 1 abaaaabcbabaaaaa0

 2 baaaabcbabaaaaa0

 3 aaaabcbabaaaaa0

 4 aaabcbabaaaaa0

 5 aabcbabaaaaa0

 6 abcbabaaaaa0

 7 bcbabaaaaa0

 8 cbabaaaaa0

 9 babaaaaa0

10 abaaaaa0

11 baaaaa0

12 aaaaa0

13 aaaa0

14 aaa0

15 aa0

16 a0

17 0

17 0

16 a0

15 aa0

14 aaa0

 3 aaaabcbabaaaaa0

12 aaaaa0

13 aaaa0

 4 aaabcbabaaaaa0

 5 aabcbabaaaaa0

 1 abaaaabcbabaaaaa0

10 abaaaaa0

 6 abcbabaaaaa0

 2 baaaabcbabaaaaa0

11 baaaaa0

 0 babaaaabcbabaaaaa0

 9 babaaaaa0

 7 bcbabaaaaa0

 8 cbabaaaaa0

13 < 4 (because 6 < 7) so 9 < 0

50

Suffix sort experimental results

algorithm
time to suffix-
sort Moby Dick

(seconds)

time to suffix-
sort

AesopAesop
(seconds)

brute-force 36.000 (est.) 4000 (est.)

quicksort 9.5 167

MSD 395 out of memory

MSD with cutoff 6.8 162

3-way radix quicksort 2.8 400

Manber MSD 17 8.5

counters in
deep recursion

only 2 keys in
subfiles with long

matches

Radix sort summary

We can develop linear-time sorts.

• comparisons not necessary for some types of keys

• use keys to index an array

We can develop sub-linear-time sorts.

• should measure amount of data in keys, not number of keys

• not all of the data has to be examined

No algorithm can examine fewer bits than 3-way radix quicksort

• 1.39 N lg N bits for random data

Long strings are rarely random in practice.

• goal is often to learn the structure!

• may need specialized algorithms

51

lecture acronym cheatsheet

LSD least significant digit

MSD most significant digit

LCP longest common prefix

LRS longest repeated substring

1

Tries

review
tries
TSTs
applications

References:

 Algorithms in Java, Chapter 15
 http://www.cs.princeton.edu/introalgsds/62search

2

rules of the game
tries
TSTs
applications

Review: summary of the performance of searching (symbol-table) algorithms

Frequency of execution of instructions in the inner loop:

Q: Can we do better?

3

implementation
guarantee average case ordered

iteration?
operations

on keys
search insert delete search insert delete

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N yes compareTo()

hashing 1* 1* 1* 1* 1* 1* no
equals()
hashcode()

* assumes random hash code

4

Review

Symbol tables.

• Associate a value with a key.

• Search for value given key.

Balanced trees

• use between lg N and 2 lg N key comparisons

• support ordered iteration and other operations

Hash tables

• typically use 1-2 probes

• require good hash function for each key type

Radix sorting

• some keys are inherently digital

• digital keys give linear and sublinear sorts

This lecture. Symbol tables for digital keys.

Digital keys (review)

Many commonly-use key types are inherently digital

(sequences of fixed-length characters)

Examples

• Strings

• 64-bit integers

This lecture:

• refer to fixed-length vs. variable-length strings

• R different characters for some fixed value R.

• key type implements charAt() and length() methods

• code works for String and for key types that implement Digital.

Widely used in practice

• low-level bit-based keys

• string keys

5

interface

interface Digital

{

 public int charAt(int k);

 public int length(int);

}

6

Digital keys in applications

Key = sequence of "digits."

• DNA: sequence of a, c, g, t.

• IPv6 address: sequence of 128 bits.

• English words: sequence of lowercase letters.

• Protein: sequence of amino acids A, C, ..., Y.

• Credit card number: sequence of 16 decimal digits.

• International words: sequence of Unicode characters.

• Library call numbers: sequence of letters, numbers, periods.

This lecture. Key = string over ASCII alphabet.

String set. Unordered collection of distinct strings.

Typical client: Dedup (remove duplicate strings from input)

This lecture: focus on StringSET implementation

Same ideas improve STs with wider API
7

String Set API

StringSET set = new StringSET();

while (!StdIn.isEmpty())

{

 String key = StdIn.readString();

 if (!set.contains(key))

 {

 set.add(key);

 System.out.println(key);

 }

}

public class StringSET

StringSET() create a set of strings

void add(String key) add string to set

boolean contains(String key) is key in the set?

8

StringSET implementation cost summary

Challenge. Efficient performance for long keys (large L).

N = number of strings

L = length of string

C = number of characters in input

R = radix

red-black

implementation

hashing

L + log N

Search hit

L

log N

Insert

L

typical case

C

Space

C

1.40

moby

0.76

97.4

actors

40.6

dedup

input * L L L 0.26 15.1

 * only reads in data

file megabytes words distinct

moby 1.2 210 K 32 K

actors 82 11.4 M 900 K

9

rules of the game
tries
TSTs
applications

10

Tries. [from retrieval, but pronounced "try"]

Store characters in internal nodes, not keys.

Store records in external nodes.

Use the characters of the key to guide the search.

Ex. sells sea shells by the sea

Tries

by

sea

sells

shells

the

11

Tries. [from retrieval, but pronounced "try"]

Store characters in internal nodes, not keys.

Store records in external nodes.

Use the characters of the key to guide the search.

Ex. sells sea shells by the sea shore

Tries

by

sea

sells

shells

the

shore

12

Q. How to handle case when one key is a prefix of another?

A1. Append sentinel character '\0' to every key so it never happens.

A2. Store extra bit to denote which nodes correspond to keys.

Ex. she sells sea shells by the sea shore

Tries

by

sea

sells

shells

the

shore

she

13

Branching in tries

Q. How to branch to next level?

A. One link for each possible character

Ex. sells sea shells by the sea shore R-way trie

R empty links on leaves

14

R-Way Trie: Java implementation

R-way existence trie: a node.

Node: references to R nodes.

root

8-way trie that represents {a, f, h}

dcba hgfe

private class Node
{
 Node[] next = new Node[R];
 boolean end;
}

15

R-way trie implementation of StringSET

ASCII

current digit

empty trie

public class StringSET
{
 private static final int R = 128;
 private Node root = new Node();

 private class Node
 {
 Node[] next = new Node[R];
 boolean end;
 }

 public boolean contains(String s)
 { return contains(root, s, 0); }

 private boolean contains(Node x, String s, int i)
 {
 if (x == null) return false;
 if (i == s.length()) return x.end;
 char c = s.charAt(i);
 return contains(x.next[c], s, i+1);
 }

 public void add(String s)
 // see next slide
}

16

R-way trie implementation of StringSET (continued)

 public void add(String s)
 {
 root = add(root, s, 0);
 }

 private Node add(Node x, String s, int i)
 {
 if (x == null) x = new Node();
 if (i == s.length()) x.end = true;
 else
 {
 char c = s.charAt(i);
 x.next[c] = add(x.next[c], s, i+1);
 }
 return x;
 }

R-way trie performance characteristics

Time

• examine one character to move down one level in the trie

• trie has ~logR N levels (not many!)

• need to check whole string for search hit (equality)

• search miss only involves examining a few characters

Space

• R empty links at each leaf

• 65536-way branching for Unicode impractical

Bottom line.

• method of choice for small R

• you use tries every day

• stay tuned for ways to address space waste

17

Sublinear search with tries

Tries enable user to present string keys one char at a time

Search hit

• can present possible matches after a few digits

• need to examine all L digits for equality

Search miss

• could have mismatch on first character

• typical case: mismatch on first few characters

Bottom line: sublinear search cost (only a few characters)

Further help for Java String keys

• object equality test

• cached hash values

18

19

StringSET implementation cost summary

R-way trie

• faster than hashing for small R

• too much memory if R not small

65536-way trie for Unicode??

Challenge. Use less memory!

N = number of strings

L = size of string

C = number of characters in input

R = radix

red-black

implementation

hashing

L + log N

Search hit

L

log N

Insert

L

typical case

C

Space

C

1.40

moby

0.76

97.4

actors

40.6

dedup

input * L L L 0.26 15.1

R-way trie L << L RN + C 1.12 out of memory

file megabytes words distinct

moby 1.2 210 K 32 K

actors 82 11.4 M 900 K

20

Digression: Out of memory?

"640 K ought to be enough for anybody."

 - attributed to Bill Gates, 1981

(commenting on the amount of RAM in personal computers)

"64 MB of RAM may limit performance of some Windows XP

features; therefore, 128 MB or higher is recommended for

best performance." - Windows XP manual, 2002

"64 bit is coming to desktops, there is no doubt about that. But apart from

Photoshop, I can't think of desktop applications where you would need more

than 4GB of physical memory, which is what you have to have in order to

benefit from this technology. Right now, it is costly." - Bill Gates, 2003

Digression: Out of memory?

A short (approximate) history

21

address
bits

addressable
memory

typical actual
memory

cost

PDP-8 1960s 12 6K 6K $16K

PDP-10 1970s 18 256K 256K $1M

IBM S/360 1970s 24 4M 512K $1M

VAX 1980s 32 4G 1M $1M

Pentium 1990s 32 4G 1 GB $1K

Xeon 2000s 64 enough 4 GB $100

?? future 128+ enough enough $1

A modest proposal

Number of atoms in the universe: < 2266 (estimated)

Age of universe (estimated): 20 billion years ~ 250 secs < 280 nanoseconds

How many bits address every atom that ever existed ?

A modest proposal: use a unique 512-bit address for every object

512 bits is enough:

current plan:

Use trie to map to current location. 64 8-bit chars

• wastes 255/256 actual memory

• need better use of memory

22

place time cushion for whatever
266 bits 80 bits 174 bits

place (ipv6)
128 bits 64 bits

place (machine)

 maybe OK for Bill Gates
or if memory is tiny

23

rules of the game
tries
TSTs
applications

24

Ternary Search Tries (TSTs)

Ternary search tries. [Bentley-Sedgewick, 1997]

• Store characters in internal nodes, records in external nodes.

• Use the characters of the key to guide the search

• Each node has three children

• Left (smaller), middle (equal), right (larger).

25

Ternary Search Tries (TSTs)

Ternary search tries. [Bentley-Sedgewick, 1997]

• Store characters in internal nodes, records in external nodes.

• Use the characters of the key to guide the search

• Each node has three children:

 left (smaller), middle (equal), right (larger).

Ex. sells sea shells by the sea shore

Observation. Only three null links in leaves!

26

26-Way Trie vs. TST

TST. Collapses empty links in 26-way trie.

26-way trie (1035 null links, not shown)

TST (155 null links)

now
for
tip
ilk
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
owl
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

A TST string set is a TST node.

A TST node is five fields:

• a character c.

• a reference to a left TST. [smaller]

• a reference to a middle TST. [equal]

• a reference to a right TST. [larger]

• a bit to indicate whether this

node is the last character in some key.

27

TST representation

root

h

ia

sd

had is

i

p

hip

private class Node
{
 char c;
 Node l, m, r;
 boolean end;
}

c

k

hack

hi

Recursive code practically writes itself!

28

TST implementation of contains() for StringSET

public boolean contains(String s)
{
 if (s.length() == 0) return false;
 return contains(root, s, 0);
}

private boolean contains(Node x, String s, int i)
{
 if (x == null) return false;
 char c = s.charAt(i);
 if (c < x.c) return contains(x.l, s, i);
 else if (c > x.c) return contains(x.r, s, i);
 else if (i < s.length()-1) return contains(x.m, s, i+1);
 else return x.end;
}

29

TST implementation of add() for StringSET

public void add(String s)
{
 root = add(root, s, 0);
}

private Node add(Node x, String s, int i)
{
 char c = s.charAt(i);
 if (x == null) x = new Node(c);
 if (c < x.c) x.l = add(x.l, s, i);
 else if (c > x.c) x.r = add(x.r, s, i);
 else if (i < s.length()-1) x.m = add(x.m, s, i+1);
 else x.end = true;
 return x;
}

30

StringSET implementation cost summary

TST

• faster than hashing

• space usage independent of R

• supports extended APIs (stay tuned)

• Unicode no problem

Space-efficient trie: challenge met.

N = number of strings

L = size of string

C = number of characters in input

R = radix

red-black

implementation

hashing

L + log N

Search hit

L

log N

Insert

L

typical case

C

Space

C

1.40

moby

0.76

97.4

actors

40.6

dedup

input * L L L 0.26 15.1

R-way trie L L RN + C 1.12 out of memory

TST L L 3C 0.72 38.7

31

TST With R2 Branching At Root

Hybrid of R-way and TST.

• Do R-way or R2-way branching at root.

• Each of R2 root nodes points to a TST.

Note. Need special test for one-letter words.

TST

aa

TST

ab

TST

ac

TST

zz

TST

zy

array of R2 roots

…

32

StringSET implementation cost summary

TST performance even better with nonuniform keys

red-black

implementation

hashing

L + log N

Search hit

L

log N

Insert

L

typical case

C

Space

C

1.40

moby

0.76

97.4

actors

40.6

dedup

input * L L L 0.26 15.1

R-way trie L L RN + C 1.12 out of memory

TST L L 3C .72 38.7

TST with R2 L L 3C + R2 .51 32.7

Ex. Library call numbers

WUS-------10706-----7---10
WUS-------12692-----4---27
WLSOC------2542----30
LTK--6015-P-63-1988
LDS---361-H-4
 ...

TSTs 5 times faster than hashing

33

TST summary

Hashing.

• need to examine entire key

• hits and misses cost about the same.

• need good hash function for every key type

• no help for ordered-key APIs

TSTs.

• need to examine just enough key characters

• search miss may only involve a few characters

• works only for keys types that implement charAt()

• can handle ordered-key APIs

Bottom line:

TSTs are faster than hashing and more flexible than LL RB trees

34

rules of the game
tries
TSTs
applications

35

Extending the StringSET API

Add. Insert a key.

Contains. Check if given key in the set.

Delete. Delete key from the set.

Sort. Iterate over keys in ascending order.

Select. Find the kth largest key.

Range search. Find all elements between k1 and k2.

Longest prefix match. Find longest prefix match.

Wildcard match. Allow wildcard characters.

Near neighbor search. Find strings that differ in P chars.

compareTo()

charAt()

equals()

36

Longest Prefix Match

Find string in set with longest prefix matching given key.

Ex. Search IP database for longest prefix matching destination IP,

and route packets accordingly.

"128"

"128.112"

"128.112.136"

"128.112.055"

"128.112.055.15"

"128.112.155.11"

"128.112.155.13"

"128.222"

"128.222.136"

prefix("128.112.136.11") = "128.112.136"

prefix("128.166.123.45") = "128"

37

R-way trie implementation of longest prefix match operation

Find string in set with longest prefix matching a given key.

public String prefix(String s)
{
 int length = prefix(root, s, 0);
 return s.substring(0, length);
}

private int prefix(Node x, String s, int i)
{
 if (x == null) return 0;
 int length = 0;
 if (x.end) length = i;
 if (i == s.length()) return length;
 char c = s.charAt(i);
 return Math.max(length, prefix(x.next[c], s, i+1));
}

38

Wildcard Match

Wildcard match. Use wildcard . to match any character.

coalizer

coberger

codifier

cofaster

cofather

cognizer

cohelper

colander

coleader

...

compiler

...

composer

computer

cowkeper

acresce
acroach
acuracy
octarch
science
scranch
scratch
scrauch
screich
scrinch
scritch
scrunch
scudick
scutock

co....er

.c...c.

39

TST implementation of wildcard match operation

Wildcard match. Use wildcard . to match any character.

• Search as usual if query character is not a period.

• Go down all three branches if query character is a period.

public void wildcard(String s)
{ wildcard(root, s, 0, ""); }

private void wildcard(Node x, String s, int i, String prefix)
{
 if (x == null) return;
 char c = s.charAt(i);
 if (c == '.' || c < x.c) wildcard(x.left, s, i, prefix);
 if (c == '.' || c == x.c)
 {
 if (i < s.length() - 1)
 wildcard(x.mid, s, i+1, prefix + x.c);
 else if (x.end)
 System.out.println(prefix + x.c);
 }
 if (c == '.' || c > x.c) wildcard(x.right, s, i, prefix);
}

for printing out matches
(use StringBuilder for long keys)

40

T9 Texting

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key until the

desired letter appears.

T9 text input. ["A much faster and more fun way to enter text."]

• Find all words that correspond to given sequence of numbers.

• Press 0 to see all completion options.

Ex: hello

• Multi-tap: 4 4 3 3 5 5 5 5 5 5 6 6 6

• T9: 4 3 5 5 6

www.t9.com

41

A Letter to t9.com

To: info@t9support.com
Date: Tue, 25 Oct 2005 14:27:21 -0400 (EDT)

Dear T9 texting folks,

I enjoyed learning about the T9 text system
from your webpage, and used it as an example
in my data structures and algorithms class.
However, one of my students noticed a bug
in your phone keypad

 http://www.t9.com/images/how.gif

Somehow, it is missing the letter s. (!)

Just wanted to bring this information to
your attention and thank you for your website.

Regards,

Kevin

where’s the “s” ??

42

A world without “s” ??

To: "'Kevin Wayne'" <wayne@CS.Princeton.EDU>
Date: Tue, 25 Oct 2005 12:44:42 -0700

Thank you Kevin.

I am glad that you find T9 o valuable for your
cla. I had not noticed thi before. Thank for
writing in and letting u know.

Take care,

Brooke nyder
OEM Dev upport
AOL/Tegic Communication
1000 Dexter Ave N. uite 300
eattle, WA 98109

ALL INFORMATION CONTAINED IN THIS EMAIL IS CONIDERED
CONFIDENTIAL AND PROPERTY OF AOL/TEGIC COMMUNICATION

43

TST: Collapsing 1-Way Branches

Collapsing 1-way branches at bottom.

• internal node stores char; external node stores full key.

• append sentinel character '\0' to every key

• search hit ends at leaf with given key.

• search miss ends at null link or leaf with different key.

Collapsing interior 1-way branches

• keep char position in nodes

• need full compare at leaf s

hby the

e shells

l

sea sells

44

TST: Collapsing 1-Way Branches

Collapsing 1-way branches at bottom.

• internal node stores char; external node stores full key.

• append sentinel character '\0' to every key

• search hit ends at leaf with given key.

• search miss ends at null link or leaf with different key.

Collapsing interior 1-way branches

• keep char position in nodes

• need full compare at leaf s

hby the

e

shells

e

shorel

sea sells

45

StringSET implementation cost summary

Challenge met.

• Efficient performance for arbitrarily long keys.

• Search time is independent of key length!

red-black

implementation

hashing

L + log N

Search hit

L

log N

Insert

L

C

Space

C

input * L L L

R-way trie L L RN + C

TST L L 3C

TST with R2 L L 3C + R2

R-way with no 1-way logR N logR N RN + C

TST with no 1-way log N log N C

46

A classic algorithm

Patricia tries. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]

• Collapse one-way branches in binary trie.

• Thread trie to eliminate multiple node types.

Applications.

• Database search.

• P2P network search.

• IP routing tables: find longest prefix match.

• Compressed quad-tree for N-body simulation.

• Efficiently storing and querying XML documents.

(Just slightly) beyond the scope of COS 226 (see Program 15.7)

47

Suffix Tree

Suffix tree.

Threaded trie with collapsed 1-way branching for string suffixes.

Applications.

• Longest common substring, longest repeated substring.

• Computational biology databases (BLAST, FASTA).

• Search for music by melody.

• ...

(Just slightly) beyond the scope of COS 226.

48

Symbol tables summary

A success story in algorithm design and analysis.

Implementations are a critical part of our computational infrastructure.

Binary search trees. Randomized, red-black.

• performance guarantee: log N compares

• supports extensions to API based on key order

Hash tables. Separate chaining, linear probing.

• performance guarantee: N/M probes

• requires good hash function for key type

• no support for API extensions

• enjoys systems support (ex: cached value for String)

Tries. R-way, TST.

• performance guarantee: log N characters accessed

• supports extensions to API based on partial keys

Bottom line: you can get at anything by examining 50-100 bits (!!!)

1

Data Compression

introduction
basic coding schemes
an application
entropy
LZW codes

References:

 Algorithms 2nd edition, Chapter 22
 http://www.cs.princeton.edu/introalgsds/65compression

2

introduction
basic coding schemes
an application
entropy
LZW codes

3

Data Compression

Compression reduces the size of a file:

• To save space when storing it.

• To save time when transmitting it.

• Most files have lots of redundancy.

Who needs compression?

• Moore's law: # transistors on a chip doubles every 18-24 months.

• Parkinson's law: data expands to fill space available.

• Text, images, sound, video, …

Basic concepts ancient (1950s), best technology recently developed.

All of the books in the world contain no more information than is

broadcast as video in a single large American city in a single year.

Not all bits have equal value. -Carl Sagan

4

Applications

Generic file compression.

• Files: GZIP, BZIP, BOA.

• Archivers: PKZIP.

• File systems: NTFS.

Multimedia.

• Images: GIF, JPEG.

• Sound: MP3.

• Video: MPEG, DivX™, HDTV.

Communication.

• ITU-T T4 Group 3 Fax.

• V.42bis modem.

Databases. Google.

5

Encoding and decoding

Message. Binary data M we want to compress.

Encode. Generate a "compressed" representation C(M).

Decode. Reconstruct original message or some approximation M'.

Compression ratio. Bits in C(M) / bits in M.

Lossless. M = M', 50-75% or lower.

Ex. Natural language, source code, executables.

Lossy. M M', 10% or lower.

Ex. Images, sound, video.

EncoderM DecoderC(M) M'

uses fewer bits (you hope)

this lecture

"Poetry is the art of lossy data compression."

6

Food for thought

Data compression has been omnipresent since antiquity,

• Number systems.

• Natural languages.

• Mathematical notation.

has played a central role in communications technology,

• Braille.

• Morse code.

• Telephone system.

and is part of modern life.

• zip.

• MP3.

• MPEG.

What role will it play in the future?

Ex: If memory is to be cheap and ubiquitous, why are we
 doing lossy compression for music and movies??

7

introduction
basic coding schemes
an application
entropy
LZW codes

8

Fixed length encoding

• Use same number of bits for each symbol.

• k-bit code supports 2k different symbols

Ex. 7-bit ASCII

char decimal code

NUL 0 0

... ...

a 97 1100001

b 98 1100010

c 99 1100011

d 100 1100100

... ...

~ 126 1111110

127 1111111

a b r a c a d a b r a !

1100001 1100010 1110010 1100001 1100011 1100001 1100100 1100001 1100010 1110010 1100001 1111111

12 symbols 7 bits per symbol = 84 bits in code

this lecture:
special code for
end-of-message

9

Fixed length encoding

• Use same number of bits for each symbol.

• k-bit code supports 2k different symbols

Ex. 3-bit custom code

Important detail: decoder needs to know the code!

char code

a X000

b X001

c X010

d X011

r X100

! X111

a b r a c a d a b r a !

X000 X001 X100 X000 X010 X000 X011 X000 X001 X100 X000 X111

12 symbols 3 bits
 36 bits in code

10

Fixed length encoding: general scheme

• count number of different symbols.

• lg M bits suffice to support M different symbols

Ex. genomic sequences

• 4 different codons

• 2 bits suffice

• Amazing but true: initial databases in 1990s did not use such a code!

Decoder needs to know the code

• can amortize over large number of files with the same code

• in general, can encode an N-char file with N lg M + 16 lg M bits

char code

a X00

c X01

t X10

g X11

a c t a c a g a t g a

X00X X01X 10 X00X X01X X00X 11 X00X 10 11 X00X

2N bits to encode
genome with N codons

11

Variable-length encoding

Use different number of bits to encode different characters.

Ex. Morse code.

Issue: ambiguity.

• • • • • •

SOS ?

IAMIE ?

EEWNI ?

V7O ?

12

Variable-length encoding

Use different number of bits to encode different characters.

Q. How do we avoid ambiguity?

A1. Append special stop symbol to each codeword.

A2. Ensure that no encoding is a prefix of another.

Ex. custom prefix-free code

Note 1: fixed-length codes are prefix-free

Note 2: can amortize cost of including the code over similar messages

char code

a 0

b 111

c 1010

d 100

r 110

! 1011

S • • •

E •

I ••

V •••-

prefix of V

prefix of I, S

prefix of S

a b r a c a d a b r a !

0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 1

28 bits in code

13

How to represent? Use a binary trie.

• Symbols are stored in leaves.

• Encoding is path to leaf.

Encoding.

• Method 1: start at leaf; follow path up

to the root, and print bits in reverse order.

• Method 2: create ST of symbol-encoding pairs.

Decoding.

• Start at root of tree.

• Go left if bit is 0; go right if 1.

• If leaf node, print symbol and return to root.

Prefix-free code: Encoding and Decoding

char encoding

a 0

b 111

c 1010

d 100

r 110

! 1011

a

d

0

c !

r b

1

0 1

0 1 0 1

0 1

14

Providing the code

How to transmit the trie?

• send preorder traversal of trie.

we use * as sentinel for internal nodes

[what if no sentinel is available?]

• send number of characters to decode.

• send bits (packed 8 to the byte).

If message is long, overhead of transmitting trie is small.

*a**d*c!*rb
12
0111110010100100011111001011

preorder traversal

chars to decode

the message bits

char encoding

a 0

b 111

c 1010

d 100

r 110

! 1011

a

d

0

c !

r b

1

0 1

0 1 0 1

0 1

a b r a c a d a b r a !

0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 1

15

Prefix-free decoding implementation

public class PrefixFreeDecoder
{
 private Node root = new Node();
 private class Node
 {
 char ch;
 Node left, right;
 Node()
 {
 ch = StdIn.readChar();
 if (ch == '*')
 {
 left = new Node();
 right = new Node();
 }
 }

 boolean isInternal() { }

 }

 public void decode()
 { /* See next slide. */ }

}

*a**d*c!*rb

build tree from
preorder traversal

a

d

0

c !

r b

1

0 1

0 1 0 1

0 1

16

Prefix-free decoding iImplementation

public void decode()
{
 int N = StdIn.readInt();
 for (int i = 0; i < N; i++)
 {
 Node x = root;
 while (x.isInternal())
 {
 char bit = StdIn.readChar();
 if (bit == '0') x = x.left;
 else if (bit == '1') x = x.right;
 }
 System.out.print(x.ch);
 }
}

use bits, not chars
in actual applications

a

d

0

c !

r b

1

0 1

0 1 0 1

0 1

more code.txt

12

0111110010100100011111001011

% java PrefixFreeDecoder < code.txt

abacadabra!

Introduction to compression: summary

Variable-length codes can provide better compression than fixed-length

Every trie defines a variable-length code

Q. What is the best variable length code for a given message?

17

a b r a c a d a b r a !

1100001 1100010 1110010 1100001 1100011 1100001 1100100 1100001 1100010 1110010 1100001 1111111

a b r a c a d a b r a !

X000 X001 X100 X000 X010 X000 X011 X000 X001 X100 X000 X111

a b r a c a d a b r a !

0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 1

18

Huffman coding

Q. What is the best variable length code for a given message?

A. Huffman code. [David Huffman, 1950]

To compute Huffman code:

• count frequency ps for each symbol s in message.

• start with one node corresponding to each symbol s (with weight ps).

• repeat until single trie formed:

select two tries with min weight p1 and p2

merge into single trie with weight p1 + p2

Applications. JPEG, MP3, MPEG, PKZIP, GZIP, …

David Huffman

Huffman coding example

19

ac d r!

2 51 11

b

2

ad r

2 51

b

2

c !

1 1

2

a

d

r

2 5

1

b

2

c !

1 1

2

3

a

d

5

1

c !

1 1

2

3

r b

2 2

4

a

d

5

1

c !

1 1

2

3

r b

2 2

4

7

a

d

5

1

c !

1 1

2

3

r b

2 2

4

7

12

a b r a c a d a b r a !

20

Huffman trie construction code

int[] freq = new int[128];

for (int i = 0; i < input.length(); i++)

{ freq[input.charAt(i)]++; }

MinPQ<Node> pq = new MinPQ<Node>();

for (int i = 0; i < 128; i++)

 if (freq[i] > 0)

 pq.insert(new Node((char) i, freq[i], null, null));

while (pq.size() > 1)
{

 Node x = pq.delMin();

 Node y = pq.delMin();

 Node parent = new Node('*', x.freq + y.freq, x, y);

 pq.insert(parent);

}

root = pq.delMin();

internal node
marker

total
frequency

two subtrees

tabulate
frequencies

initialize
PQ

merge
trees

Theorem. Huffman coding is an optimal prefix-free code.

Implementation.

• pass 1: tabulate symbol frequencies and build trie

• pass 2: encode file by traversing trie or lookup table.

Running time. Use binary heap O(M + N log N).

Can we do better? [stay tuned]

21

Huffman encoding summary

no prefix-free code uses fewer bits

output
bits

distinct
symbols

22

introduction
basic coding schemes
an application
entropy
LZW codes

An application: compress a bitmap

Typical black-and-white-scanned image

300 pixels/inch

8.5 by 11 inches

300*8.5*300*11 = 8.415 million bits

Bits are mostly white

Typical amount of text on a page:

 40 lines * 75 chars per line = 3000 chars

23

24

Natural encoding of a bitmap

one bit per pixel

 000000000000000000000000000011111111111111000000000
 000000000000000000000000001111111111111111110000000

 000000000000000000000001111111111111111111111110000

 000000000000000000000011111111111111111111111111000

 000000000000000000001111111111111111111111111111110

 000000000000000000011111110000000000000000001111111

 000000000000000000011111000000000000000000000011111

 000000000000000000011100000000000000000000000000111

 000000000000000000011100000000000000000000000000111

 000000000000000000011100000000000000000000000000111

 000000000000000000011100000000000000000000000000111

 000000000000000000001111000000000000000000000001110

 000000000000000000000011100000000000000000000111000

 011

 011

 011

 011

 011

 0110011

19-by-51 raster of letter 'q' lying on its side

25

Run-length encoding of a bitmap

natural encoding. (19 51) + 6 = 975 bits.

run-length encoding. (63 6) + 6 = 384 bits.

51
28 14 9
26 18 7

23 24 4

22 26 3

20 30 1

19 7 18 7

19 5 22 5

19 3 26 3

19 3 26 3

19 3 26 3

19 3 26 3

20 4 23 3 1

22 3 20 3 3

1 50

1 50

1 50

1 50

1 50

1 2 46 2

 000000000000000000000000000011111111111111000000000
 000000000000000000000000001111111111111111110000000

 000000000000000000000001111111111111111111111110000

 000000000000000000000011111111111111111111111111000

 000000000000000000001111111111111111111111111111110

 000000000000000000011111110000000000000000001111111

 000000000000000000011111000000000000000000000011111

 000000000000000000011100000000000000000000000000111

 000000000000000000011100000000000000000000000000111

 000000000000000000011100000000000000000000000000111

 000000000000000000011100000000000000000000000000111

 000000000000000000001111000000000000000000000001110

 000000000000000000000011100000000000000000000111000

 011

 011

 011

 011

 011

 0110011

RLE19-by-51 raster of letter 'q' lying on its side

63 6-bit run lengths

to encode number of bits per line

26

Run-length encoding

• Exploit long runs of repeated characters.

• Bitmaps: runs alternate between 0 and 1; just output run lengths.

• Issue: how to encode run lengths (!)

• Does not compress when runs are short.

Runs are long in typical applications (such as black-and-white bitmaps).

 001001001001001 2121212121 10011001100110011001

15 bits 20 bits

10: 2
01: 1

27

Run-length encoding and Huffman codes in the wild

ITU-T T4 Group 3 Fax for black-and-white bitmap images (~1980)

• up to 1728 pixels per line

• typically mostly white.

Step 1. Use run-length encoding.

Step 2. Encode run lengths using two Huffman codes.

194

3W 1B 2W 2B 194W

1000 010 0111 11 010111 0111

192 + 2

…

…

…

one for white and one for black

00110101 0000110111

white black

0

run

000111 0101

0111 112

1000 103

… ……

00110100 00000110011163

11011 0000001111 64+

10010 000011001000 128+

… ……

010011011 0000001100101 1728+Huffman codes built from
frequencies in huge sample

BW bitmap compression: another approach

Fax machine (~1980)

• slow scanner produces lines in sequential order

• compress to save time (reduce number of bits to send)

Electronic documents (~2000)

• high-resolution scanners produce huge files

• compress to save space (reduce number of bits to save)

Idea:

• use OCR to get back to ASCII (!)

• use Huffman on ASCII string (!)

Ex. Typical page

• 40 lines, 75 chars/line ~ 3000 chars

• compress to ~ 2000 chars with Huffman code

• reduce file size by a factor of 500 (! ?)

Bottom line: Any extra information about file can yield dramatic gains
28

29

introduction
basic coding schemes
an application
entropy
LZW codes

30

What data can be compressed?

US Patent 5,533,051 on "Methods for Data Compression", which is

capable of compression all files.

Slashdot reports of the Zero Space Tuner™ and BinaryAccelerator™.

 "ZeoSync has announced a breakthrough in data compression that

allows for 100:1 lossless compression of random data. If this is true,

our bandwidth problems just got a lot smaller.…"

31

Perpetual Motion Machines

Universal data compression algorithms are the analog of perpetual

motion machines.

Closed-cycle mill by Robert Fludd, 1618 Gravity engine by Bob Schadewald

Reference: Museum of Unworkable Devices by Donald E. Simanek
http://www.lhup.edu/~dsimanek/museum/unwork.htm

32

What data can be compressed?

Theorem. Impossible to losslessly compress all files.

Pf 1.

• consider all 1,000 bit messages.

• 21000 possible messages.

• only 2999 + 2998 + … + 1 can be encoded with 999 bits.

• only 1 in 2499 can be encoded with 500 bits!

Pf 2 (by contradiction).

• given a file M, compress it to get a smaller file M1.

• compress that file to get a still smaller file M2.

• continue until reaching file size 0.

• implication: all files can be compressed with 0 bits!

Practical test for any compression algorithm:

• given a file M, compress it to get a (smaller, you hope) file M1

• compress that file to get a still smaller file M2.

• continue until file size does not decrease

33

A difficult file to compress

fclkkacifobjofmkgdcoiicnfmcpcjfccabckjamolnihkbgobcjbngjiceeelpfgcjiihppenefllhglfemdemgahlbpi
ggmllmnefnhjelmgjncjcidlhkglhceninidmmgnobkeglpnadanfbecoonbiehglmpnhkkamdffpacjmgojmcaabpcjce
cplfbgamlidceklhfkkmioljdnoaagiheiapaimlcnlljniggpeanbmojgkccogpmkmoifioeikefjidbadgdcepnhdpfj
aeeapdjeofklpdeghidbgcaiemajllhnndigeihbebifemacfadnknhlbgincpmimdogimgeeomgeljfjgklkdgnhafoho
npjbmlkapddhmepdnckeajebmeknmeejnmenbmnnfefdbhpmigbbjknjmobimamjjaaaffhlhiggaljbaijnebidpaeigd
goghcihodnlhahllhhoojdfacnhadhgkfahmeaebccacgeojgikcoapknlomfignanedmajinlompjoaifiaejbcjcdibp
kofcbmjiobbpdhfilfajkhfmppcngdneeinpnfafaeladbhhifechinknpdnplamackphekokigpddmmjnbngklhibohdf
eaggmclllmdhafkldmimdbplggbbejkcmhlkjocjjlcngckfpfakmnpiaanffdjdlleiniilaenbnikgfnjfcophbgkhdg
mfpoehfmkbpiaignphogbkelphobonmfghpdgmkfedkfkchceeldkcofaldinljjcgafimaanelmfkokcjekefkbmegcgj
ifjcpjppnabldjoaafpbdafifgcoibbcmoffbbgigmngefpkmbhbghlbdjngenldhgnfbdlcmjdmoflhcogfjoldfjpaok
epndejmnbiealkaofifekdjkgedgdlgbioacflfjlafbcaemgpjlagbdgilhcfdcamhfmppfgohjphlmhegjechgdpkklj
pndphfcnnganmbmnggpphnckbieknjhilafkegboilajdppcodpeoddldjfcpialoalfeomjbphkmhnpdmcpgkgeaohfdm
cnegmibjkajcdcpjcpgjminhhakihfgiiachfepffnilcooiciepoapmdjniimfbolchkibkbmhbkgconimkdchahcnhap
fdkiapikencegcjapkjkfljgdlmgncpbakhjidapbldcgeekkjaoihbnbigmhboengpmedliofgioofdcphelapijcegej
gcldcfodikalehbccpbbcfakkblmoobdmdgdkafbbkjnidoikfakjclbchambcpaepfeinmenmpoodadoecbgbmfkkeabi
laoeoggghoekamaibhjibefmoppbhfbhffapjnodlofeihmjahmeipejlfhloefgmjhjnlomapjakhhjpncomippeanbik
khekpcfgbgkmklipfbiikdkdcbolofhelipbkbjmjfoempccneaebklibmcaddlmjdcajpmhhaeedbbfpjafcndianlfcj
mmbfncpdcccodeldhmnbdjmeajmboclkggojghlohlbhgjkhkmclohkgjamfmcchkchmiadjgjhjehflcbklfifackbecg
joggpbkhlcmfhipflhmnmifpjmcoldbeghpcekhgmnahijpabnomnokldjcpppbcpgcjofngmbdcpeeeiiiclmbbmfjkhl
anckidhmbeanmlabncnccpbhoafajjicnfeenppoekmlddholnbdjapbfcajblbooiaepfmmeoafedflmdcbaodgeahimc
gpcammjljoebpfmghogfckgmomecdipmodbcempidfnlcggpgbffoncajpncomalgoiikeolmigliikjkolgolfkdgiijj
iooiokdihjbbofiooibakadjnedlodeeiijkliicnioimablfdpjiafcfineecbafaamheiipegegibioocmlmhjekfikf
effmddhoakllnifdhckmbonbchfhhclecjamjildonjjdpifngbojianpljahpkindkdoanlldcbmlmhjfomifhmncikol
jjhebidjdphpdepibfgdonjljfgifimniipogockpidamnkcpipglafmlmoacjibognbplejnikdoefccdpfkomkimffgj
gielocdemnblimfmbkfbhkelkpfoheokfofochbmifleecbglmnfbnfncjmefnihdcoeiefllemnohlfdcmbdfebdmbeeb
balggfbajdamplphdgiimehglpikbipnkkecekhilchhhfaeafbbfdmcjojfhpponglkfdmhjpcieofcnjgkpibcbiblfp
njlejkcppbhopohdghljlcokhdoahfmlglbdkliajbmnkkfcoklhlelhjhoiginaimgcabcfebmjdnbfhohkjphnklcbhc
jpgbadakoecbkjcaebbanhnfhpnfkfbfpohmnkligpgfkjadomdjjnhlnfailfpcmnololdjekeolhdkebiffebajjpclg
hllmemegncknmkkeoogilijmmkomllbkkabelmodcohdhppdakbelmlejdnmbfmcjdebefnjihnejmnogeeafldabjcgfo
aehldcmkbnbafpciefhlopicifadbppgmfngecjhefnkbjmliodhelhicnfoongngemddepchkokdjafegnpgledakmbcp
cmkckhbffeihpkajginfhdolfnlgnadefamlfocdibhfkiaofeegppcjilndepleihkpkkgkphbnkggjiaolnolbjpobjd
cehglelckbhjilafccfipgebpc....

One million pseudo-random characters (a – p)

34

A difficult file to compress

% javac Rand.java

% java Rand > temp.txt

% compress –c temp.txt > temp.Z

% gzip –c temp.txt > temp.gz

% bzip2 –c temp.txt > temp.bz2

% ls –l

 231 Rand.java

1000000 temp.txt

 576861 temp.Z

 570872 temp.gz

 499329 temp.bz2

resulting file sizes (bytes)

public class Rand
{
 public static void main(String[] args)
 {
 for (int i = 0; i < 1000000; i++)
 {
 char c = 'a';
 c += (char) (Math.random() * 16);
 System.out.print(c);
 }
 }
}

231 bytes, but output is hard to compress
(assume random seed is fixed)

35

Information theory

Intrinsic difficulty of compression.

• Short program generates large data file.

• Optimal compression algorithm has to discover program!

• Undecidable problem.

Q. How do we know if our algorithm is doing well?

A. Want lower bound on # bits required by any compression scheme.

36

Language model

Q. How do compression algorithms work?

A. They exploit statistical biases of input messages.

• ex: white patches occur in typical images.

• ex: ord Princeton occurs more frequently than Yale.

Basis of compression: probability.

• Formulate probabilistic model to predict symbols.

simple: character counts, repeated strings

complex: models of a human face

• Use model to encode message.

• Use same model to decode message.

Ex. Order 0 Markov model

• R symbols generated independently at random

• probability of occurrence of i th symbol: pi (fixed).

A measure of information. [Shannon, 1948]

• information content of symbol s is proportional to 1/lg2 p(s).

• weighted average of information content over all symbols.

• interface between coding and model.

37

Entropy

p0

1/2

p1

1/2

H(M)

1

0.900 0.100 0.469

0.990 0.010 0.0808

1

1

2

3

4 0 0

p(1)

1/6

p(2)

1/6

p(3)

1/6

p(4)

1/6

p(5)

1/6

p(6) H(M)

2.585

Claude Shannon

Ex. 4 binary models (R = 2)

Ex. fair die (R = 6)

1/6

H(M) = p0/lg p0 + p1/lg p1 + p2/lg p2 + ... + pR-1/lg pR-1

38

Entropy and compression

Theorem. [Shannon, 1948] If data source is an order 0 Markov model,

any compression scheme must use H(M) bits per symbol on average.

• Cornerstone result of information theory.

• Ex: to transmit results of fair die, need 2.58 bits per roll.

Theorem. [Huffman, 1952] If data source is an order 0 Markov model,

Huffman code uses H(M) + 1 bits per symbol on average.

Q. Is there any hope of doing better than Huffman coding?

A1. Yes. Huffman wastes up to 1 bit per symbol.

if H(M) is close to 0, this difference matters

can do better with "arithmetic coding"

A2. Yes. Source may not be order 0 Markov model.

39

Entropy of the English Language

Q. How much redundancy is in the English language?

A. Quite a bit.

"... randomising letters in the middle of words [has] little or no effect on the

ability of skilled readers to understand the text. This is easy to

denmtrasote. In a pubiltacion of New Scnieitst you could ramdinose all the

letetrs, keipeng the first two and last two the same, and reibadailty would

hadrly be aftcfeed. My ansaylis did not come to much beucase the thoery at

the time was for shape and senqeuce retigcionon. Saberi's work sugsegts we

may have some pofrweul palrlael prsooscers at work. The resaon for this is

suerly that idnetiyfing coentnt by paarllel prseocsing speeds up regnicoiton.

We only need the first and last two letetrs to spot chganes in meniang."

40

Entropy of the English Language

Q. How much information is in each character of the English language?

Q. How can we measure it?

A. [Shannon's 1951 experiment]

• Asked subjects to predict next character given previous text.

• The number of guesses required for right answer:

• Shannon's estimate: about 1 bit per char [0.6 - 1.3].

Compression less than 1 bit/char for English ? If not, keep trying!

1

0.79Fraction

of guesses 2

0.08

3

0.03

4

0.02

 5

0.02

 6

0.05

model = English text

41

introduction
basic coding schemes
an application
entropy
LZW codes

42

Statistical Methods

Static model. Same model for all texts.

• Fast.

• Not optimal: different texts have different statistical properties.

• Ex: ASCII, Morse code.

Dynamic model. Generate model based on text.

• Preliminary pass needed to generate model.

• Must transmit the model.

• Ex: Huffman code.

Adaptive model. Progressively learn and update model as you read text.

• More accurate modeling produces better compression.

• Decoding must start from beginning.

• Ex: LZW.

43

LZW Algorithm

Lempel-Ziv-Welch. [variant of LZ78]

• Create ST associating a fixed-length codeword with some

previous substring.

• When input matches string in ST, output associated codeword.

• length of strings in ST grows, hence compression.

To send (encode) M.

• Find longest string s in ST that is a prefix of unsent part of M

• Send codeword associated with s.

• Add s x to ST, where x is next char in M.

Ex. ST: a, aa, ab, aba, abb, abaa, abaab, abaaa,

• unsent part of M: abaababbb…

• s = abaab, x = a.

• Output integer associated with s; insert abaaba into ST.

LZW encoding example

44

input code add to ST

a 97 ab

b 98 br

r 114 ra

a 97 ac

c 99 ca

a 97 ad

d 100 da

a

b 128 abr

r

a 130 rac

c

a 132 cad

d it_

a 134 dab

b

r 129 bra

a 97

STOP 255

key value

0

...

a 97

b 98

c 99

d 100

 ...

r 114

...

127

key value

ab 128

br 129

ra 130

ac 131

ca 132

ad 133

da 134

abr 135

rac 136

cad 137

dab 138

bra 139

...

STOP 255

To send (encode) M.
Find longest string s in ST that is a prefix of unsent part of M
Send integer associated with s.
Add s x to ST, where x is next char in M.

input: 7-bit ASCII
output: 8-bit codewords

ASCII ST

LZW encoding example

45

input code

a 97

b 98

r 114

a 97

c 99

a 97

d 100

a

b 128

r

a 130

c

a 132

d

a 134

b

r 129

a 97

STOP 255

input: 7-bit ASCII
 19 chars
 133 bits

output: 8-bit codewords
 14 chars
 112 bits

Key point: no need to send ST (!)

46

LZW encode ST implementation

Q. How to do longest prefix match?

A. Use a trie for the ST

Encode.

• lookup string suffix in trie.

• output ST index at bottom.

• add new node to bottom of trie.

Note that all substrings are in ST

a d

139

c rb

b r ac ad a

r cd ba

137 138 136135

131 133128 129 132 134 130

98 99 100 11497

key value

0

...

a 97

b 98

c 99

d 100

 ...

r 114

...

127

key value

ab 128

br 129

ra 130

ac 131

ca 132

ad 133

da 134

abr 135

rac 136

cad 137

dab 138

bra 139

...

STOP 255

ASCII ST

Use specialized TST

• initialized with ASCII chars and codes

• getput() method returns code of longest prefix s

 and adds s + next char to symbol table

Need input stream with backup [stay tuned]

input stream
with lookahead

specialized
TST

47

LZW encoder: Java implementation

postprocess
to encode in

binary

encode text
and build

TST

public class LZWEncoder

{

 public static void main(String[] args)

 {

 LookAheadIn in = new LookAheadIn();

 LZWst st = new LZWst();

 while (!in.isEmpty())

 {

 int codeword = st.getput(in);

 StdOut.println(codeword);

 }

 }

}

initialize
with ASCII

48

LZW encoder: Java implementation (TST scaffolding)

public class LZWst
{
 private int i;
 private int codeword;
 private Node[] roots;

 public LZWst()
 {
 roots = new Node[128];
 for (i = 0; i < 128; i++)
 roots[i] = new Node((char) i, i);
 }

 private class Node
 {
 Node(char c, int codeword)
 { this.c = c; this.codeword = codeword; }
 char c;
 Node left, mid, right;
 int codeword;
 }

 public int getput(LookAheadIn in)
 // See next slide.

}

next codeword to assign

codeword to return

array of TSTs

standard
node code

49

LZW encoder: Java implementation (TST search/insert)

 public int getput(LookAheadIn in)
 {
 char c = in.readChar();
 if (c == '!') return 255;
 roots[c] = getput(c, roots[c], in);
 in.backup();
 return codeword;
 }

 public Node getput(char c, Node x, LookAheadIn in)
 {
 if (x == null)
 { x = new Node(c, i++); return x; }

 if (c < x.c) x.left = getput(c, x.left, in);
 else if (c > x.c) x.right = getput(c, x.right, in);
 else
 {
 char next = in.readChar();
 codeword = x.codeword;
 x.mid = getput(next, x.mid, in);
 }
 return x;
 }

longest prefix
codeword

recursive
search and

insert

caution:
tricky

recursive
code

check for codeword overflow omitted

50

LZW encoder: Java implementation (input stream with lookahead)

public class LookAheadIn
{
 In in = new In();
 char last;
 boolean backup = false;

 public void backup()
 { backup = true; }

 public char readChar()
 {
 if (!backup)
 { last = in.readChar(); }
 backup = false;
 return last;
 }

 public boolean isEmpty()
 { return !backup && in.isEmpty(); }
}

Provides input stream with one-character lookahead.

backup() call means that last readChar() call was lookahead.

51

LZW Algorithm

Lempel-Ziv-Welch. [variant of LZ78]

• Create ST and associate an integer with each useful string.

• When input matches string in ST, output associated integer.

• length of strings in ST grows, hence compression.

• decode by rebuilding ST from code

To send (encode) M.

• Find longest string s in ST that is a prefix of unsent part of M

• Send integer associated with s.

• Add s x to ST, where x is next char in M.

To decode received message to M.

• Let s be ST entry associated with received integer

• Add s to M.

• Add p x to ST, where x is first char in s, p is previous value of s.

LZW decoding example

52

codeword output add to ST

97 a

98 b ab

114 r br

97 a ra

99 c ac

97 a ca

100 d ad

128 a

 b da

130 r

 a abr

132 c

 a rac

134 d it_

 a cad

129 b

r dab

97 a bra

255 STOP

To decode received message to M.

Let s be ST entry associated with received integer

Add s to M.

Add p x to ST, where x is first char in s, p is previous value of s.

key value

0

...

97 a

98 b

99 c

100 d

...

114 r

...

127

key value

128 ab

129 br

130 ra

131 ac

132 ca

133 ad

134 da

135 abr

136 rac

137 cad

138 dab

139 bra

...

255

role of keys and values switched

Use an array
to implement ST

initialize
ST with
ASCII

decode text
and build ST

53

LZW decoder: Java implementation

public class LZWDecoder
{
 public static void main(String[] args)
 {
 String[] st = new String[256];
 int i;
 for (i = 0; i < 128; i++)
 { st[i] = Character.toString((char) i); }
 st[255] = "!";

 String prev = "";
 while (!StdIn.isEmpty())
 {
 int codeword = StdIn.readInt();
 String s;
 if (codeword == i) // Tricky situation!
 s = prev + prev.charAt(0);
 else s = st[codeword];
 StdOut.print(s);
 if (prev.length() > 0)
 { st[i++] = prev + s.charAt(0); }
 prev = s;
 }
 StdOut.println();
 }
}

preprocess
to decode

from binary

Ex: ababababab

LZW decoding example (tricky situation)

54

codeword output add to ST

97 a

98 b ab

128 a

b ba

130 a

b

a aba

98 b

255 STOP

key value

128 ab

129 ba

130 aba

131 abab

...

255

input code add to ST

a 97 ab

b 98 ba

a

b 128 aba

a

b

a 130 abab

b

STOP 255

To send (encode) M.
Find longest prefix
Send integer associated with s.
Add s x to ST, where
 x is next char in M.

To decode received message to M.

Let s be ST entry for integer

Add s to M.

Add p x to ST where

 x is first char in s

 p is previous value of s.

needed before
added to ST!

55

LZW implementation details

How big to make ST?

• how long is message?

• whole message similar model?

• ...

• [many variations have been developed]

What to do when ST fills up?

• throw away and start over. GIF

• throw away when not effective. Unix compress

• ...

• [many other variations]

Why not put longer substrings in ST?

• ...

• [many variations have been developed]

56

LZW in the real world

Lempel-Ziv and friends.

• LZ77.

• LZ78.

• LZW.

• Deflate = LZ77 variant + Huffman.

PNG: LZ77.

Winzip, gzip, jar: deflate.

Unix compress: LZW.

Pkzip: LZW + Shannon-Fano.

GIF, TIFF, V.42bis modem: LZW.

Google: zlib which is based on deflate.

never expands a file

LZ77 not patented widely used in open source

LZW patent #4,558,302 expired in US on June 20, 2003

some versions copyrighted

57

Lossless compression ratio benchmarks

ASCII

Scheme

Huffman

LZ77

LZMW

LZH

7.00

Bits / char

4.70

3.94

3.32

3.30

Char by char

Entropy

8 chars at a time

Asymptotic

4.5

Bits/char

2.4

1.3

Move-to-front

Gzip

PPMC

SAKDC

PPM

3.24

2.71

2.48

2.47

2.34

1967

Year

1950

1977

1984

1987

1987

1987

1988

1988

1994

Burrows-Wheeler

BOA

2.29

1.99

1995

1997

RK 1.891999

LZB 3.181987

next assignment

Calgary corpus: standard data compression benchmark

58

Data compression summary

Lossless compression.

• Represent fixed length symbols with variable length codes. [Huffman]

• Represent variable length symbols with fixed length codes. [LZW]

Lossy compression. [not covered in this course]

• JPEG, MPEG, MP3.

• FFT, wavelets, fractals, SVD, …

Limits on compression. Shannon entropy.

Theoretical limits closely match what we can achieve in practice.

Practical compression: Use extra knowledge whenever possible.

 Butch: I don’t mean to be a sore loser, but when it’s done, if I’m dead, kill him.

Sundance: Love to.

 Butch: No, no, not yet. Not until me and Harvey get the rules straightened out.

 Harvey: Rules? In a knife fight? No rules.

 Butch: Well, if there ain’t going to be any rules, let’s get the fight started...

1

Pattern Matching

exact pattern matching
Knuth-Morris-Pratt
RE pattern matching
grep

References:

 Algorithms in C (2nd edition), Chapter 19
 http://www.cs.princeton.edu/introalgsds/63long
 http://www.cs.princeton.edu/introalgsds/72regular

2

exact pattern matching
Knuth-Morris-Pratt
RE pattern matching
grep

3

Exact pattern matching

Problem:

 Find first match of a pattern of length M in a text stream of length N.

Applications.

• parsers.

• spam filters.

• digital libraries.

• screen scrapers.

• word processors.

• web search engines.

• natural language processing.

• computational molecular biology.

• feature detection in digitized images.

. . .

N = 21

typically N >> M

M = 6n e e d l e

i n a h a y s t a c k a n e e d l e i n a

pattern

text

4

Brute-force exact pattern match

h a y n e e d s a n n e e d l e x

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

Check for pattern starting at each text position.

public static int search(String pattern, String text)
{
 int M = pattern.length();
 int N = text.length();

 for (int i = 0; i < N - M; i++)
 {
 int j;
 for (j = 0; j < M; j++)
 if (text.charAt(i+j) != pattern.charAt(j))
 break;
 if (j == M) return i;
 }
 return -1;
}

pattern start index in text

not found

5

Brute-force exact pattern match: worst case

a a a a a a a a a a a a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

Brute-force algorithm can be slow if text and pattern are repetitive

but this situation is rare in typical applications

Hence, the indexOf() method in Java’s String class uses brute-force

MN char compares

text length N

pattern length M

6

Exact pattern matching in Java

Exact pattern matching is implemented in Java’s String class

 s.indexOf(t, i): index of first occurrence of pattern t

 in string s, starting at offset i.

Ex: Screen scraping. Exact match to extract info from website

public class StockQuote

{

 public static void main(String[] args)

 {

 String name = "http://finance.yahoo.com/q?s=";

 In in = new In(name + args[0]);

 String input = in.readAll();

 int start = input.indexOf("Last Trade:", 0);

 int from = input.indexOf("", start);

 int to = input.indexOf("", from);

 String price = input.substring(from + 3, to);

 System.out.println(price);

 }

}

...

<tr>

<td class= "yfnc_tablehead1"

width= "48%">

Last Trade:

</td>

<td class= "yfnc_tabledata1">

<big>688.04</big>

</td></tr>

<td class= "yfnc_tablehead1"

width= "48%">

Trade Time:

</td>

<td class= "yfnc_tabledata1">

http://finance.yahoo.com/q?s=goog

7

Algorithmic challenges in pattern matching

Brute-force is not good enough for all applications

Theoretical challenge: Linear-time guarantee.

Practical challenge: Avoid backup in text stream.

Now is the time for all people to come to the aid of their party. Now is the time for all
good people to come to the aid of their party. Now is the time for many good people to
come to the aid of their party. Now is the time for all good people to come to the aid of
their party. Now is the time for a lot of good people to come to the aid of their party.
Now is the time for all of the good people to come to the aid of their party. Now is the
time for all good people to come to the aid of their party. Now is the time for each good
person to come to the aid of their party. Now is the time for all good people to come to
the aid of their party. Now is the time for all good Republicans to come to the aid of
their party. Now is the time for all good people to come to the aid of their party. Now
is the time for many or all good people to come to the aid of their party. Now is the
time for all good people to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party. Now is the time for all people to come to
the aid of their party. Now is the time for all good people to come to the aid of their
party. Now is the time for many good people to come to the aid of their party. Now is the
time for all good people to come to the aid of their party. Now is the time for a lot of
good people to come to the aid of their party. Now is the time for all of the good people
to come to the aid of their party. Now is the time for all good people to come to the aid
of their attack at dawn party. Now is the time for each person to come to the aid of
their party. Now is the time for all good people to come to the aid of their party. Now
is the time for all good Republicans to come to the aid of their party. Now is the time
for all good people to come to the aid of their party. Now is the time for many or all
good people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for all good Democrats to come to the aid
of their party.

often no room or time to save text

fundamental algorithmic problem

8

exact pattern matching
Knuth-Morris-Pratt
RE pattern matching
grep

Knuth-Morris-Pratt (KMP) exact pattern-matching algorithm

Classic algorithm that meets both challenges

• linear-time guarantee

• no backup in text stream

Basic plan (for binary alphabet)

• build DFA from pattern

• simulate DFA with text as input

No backup in a DFA

Linear-time because each step is just a state change

9

Don Knuth Vaughan PrattJim Morris

a a a b a a b a a a b

accept pattern in text

reject
pattern NOT

in text

DFA

for

pattern

a a b a a a

text

Knuth-Morris-Pratt DFA example

10

0
b

a

b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

DFA

for

pattern

a a b a a a

How to construct? Stay tuned

One state for each pattern character

• Match input character: move from i to i+1

• Mismatch: move to previous state

Knuth-Morris-Pratt DFA simulation

11

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

0

1

2

2

3

Knuth-Morris-Pratt DFA simulation

12

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

4

5

3

4

5

accept!

13

Knuth-Morris-Pratt DFA simulation

When in state i:

• have found match in i previous input chars

• that is the longest such match

Ex. End in state 4 iff text ends in aaba.

Ex. End in state 2 iff text ends in aa (but not aabaa or aabaaa).

0 a a a b a a b a a a b
1 a a a b a a b a a a b
2 a a a b a a b a a a b
2 a a a b a a b a a a b
3 a a a b a a b a a a b
4 a a a b a a b a a a b
5 a a a b a a b a a a b
3 a a a b a a b a a a b
4 a a a b a a b a a a b
5 a a a b a a b a a a b
 a a a b a a b a a a b

0
b

a

b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

14

KMP implementation

DFA representation: a single state-indexed array next[]

• Upon character match in state j, go forward to state j+1.

• Upon character mismatch in state j, go back to state next[j].

b 0

a 1

0 1 2 3 4 5

0

2

3

2

0

4

0

5

3

6

next 0 0 2 0 0 3
only need to

store mismatches

0
b

a

b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

DFA

for

pattern

a a b a a a

15

KMP implementation

Two key differences from brute-force implementation:

• Text pointer i never decrements

• Need to precompute next[] table (DFA) from pattern.

int j = 0;
for (int i = 0; i < N; i++)
{
 if (t.charAt(i) == p.charAt(j)) j++; // match
 else j = next[j]; // mismatch
 if (j == M) return i - M + 1; // found
}
return -1; // not found

Simulation of KMP DFA

16

Knuth-Morris-Pratt: Iterative DFA construction

DFA for first i states contains the information needed to build state i+1

Ex: given DFA for pattern aabaaa.

 how to compute DFA for pattern aabaaab ?

Key idea

• on mismatch at 7th char, need to simulate 6-char backup

• previous 6 chars are known (abaaaa in example)

• 6-state DFA (known) determines next state!

Keep track of DFA state for start at 2nd char of pattern

• compare char at that position with next pattern char

• match/mismatch provides all needed info

0 a b a a a a
1 a b a a a a
0 a b a a a a
1 a b a a a a
2 a b a a a a
2 a b a a a a
2 a b a a a a

0
b

a

b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

KMP iterative DFA construction: two cases

Let X be the next state in the simulation and j the next state to build.

If p[X] and p[j] match, copy and increment

 next[j] = next[X];
 X = X+1

If p[X] and p[j] mismatch, do the opposite

 next[j] = X+1;
 X = next[X];

17

 0 1 2 3 4 5 6
 p[] a a b a a a b
next[] 0 0 2 0 0 3 2

0
b

a

b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a

b
6

DFA for
a a b a a a b

0
b

a

b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

b

a
6

j

DFA for
a a b a a a a

 0 1 2 3 4 5 6
 p[] a a b a a a a
next[] 0 0 2 0 0 3 3

X j

X

state for a b a a a b

state for a b a a a a

Knuth-Morris-Pratt DFA construction

18

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

0
b

a
b

a
2

a

b
b

a
b

a
1 3 4 5

0
b

a
b

a
2

a

b
b

a
1 3 4

0
b

a
b

a
2

a

b
1 3

0
b

a
b

a
21

0
b

a
1

0

0
a
0

0 1
a a
0 0

0 1 2
a a b
0 0 2

0 1 2 3
a a b a
0 0 2 0

0 1 2 3 4
a a b a a
0 0 2 0 0

0 1 2 3 4 5
a a b a a a
0 0 2 0 0 3

DFA X: current state in simulation
compare p[j] with p[X]

match: copy and increment
 next[j] = next[X];

 X = X + 1;

mismatch: do the opposite
 next[j] = X + 1;
 X = next[X]; 0

a 1

a b 0

a b a 1

a b a a 2

p[1..j-1] X
match

match

match

mismatch

mismatch

X j

Knuth-Morris-Pratt DFA construction examples

19

0
a
0

0 1
a a
0 0

0 1 2
a a b
0 0 2

0 1 2 3
a a b a
0 0 2 0

0 1 2 3 4
a a b a a
0 0 2 0 0

0 1 2 3 4 5
a a b a a a
0 0 2 0 0 3

0 1 2 3 4 5 6
a a b a a a b
0 0 2 0 0 3 2

X: current state in simulation
compare p[j] with p[X]

match: copy and increment
 next[j] = next[X];

 X = X + 1;

mismatch: do the opposite
 next[j] = X + 1;
 X = next[X];

match

match

match

mismatch

mismatch

X j

match

ex: a a b a a a b

0
a
0

0 1
a b
0 1

0 1 2
a b b
0 1 1

0 1 2 3
a b b a
0 1 1 0

0 1 2 3 4
a b b a b
0 1 1 0 1

0 1 2 3 4 5
a b b a b b
0 1 1 0 1 1

0 1 2 3 4 5 6
a b b a b b b
0 1 1 0 1 1 4

match

match

mismatch

X j

ex: a b b a b b b

mismatch

match

mismatch

next[]

20

DFA construction for KMP: Java implementation

Takes time and space proportional to pattern length.

int X = 0;
int[] next = new int[M];
for (int j = 1; j < M; j++)
{
 if (p.charAt(X) == p.charAt(j))
 { // match
 next[j] = next[X];
 X = X + 1;
 }
 else
 { // mismatch
 next[j] = X + 1;
 X = next[X];
 }
}

DFA Construction for KMP (assumes binary alphabet)

21

Optimized KMP implementation

Ultimate search program for any given pattern:

• one statement comparing each pattern character to next

• match: proceed to next statement

• mismatch: go back as dictated by DFA

• translates to machine language (three instructions per pattern char)

Lesson: Your computer is a DFA!

int kmpsearch(char t[])
{
 int i = 0;
 s0: if (t[i++] != 'a') goto s0;
 s1: if (t[i++] != 'a') goto s0;
 s2: if (t[i++] != 'b') goto s2;
 s3: if (t[i++] != 'a') goto s0;
 s4: if (t[i++] != 'a') goto s0;
 s5: if (t[i++] != 'a') goto s3;
 s6: if (t[i++] != 'b') goto s2;
 s7: if (t[i++] != 'b') goto s4;
 return i - 8;
} next[]

assumes pattern is in text
(o/w use sentinel)

pattern[]

22

KMP summary

General alphabet

• more difficult

• easy with next[][] indexed by mismatch position, character

• KMP paper has ingenious solution that is not difficult to implement

[build NFA, then prove that it finishes in 2N steps]

Bottom line: linear-time pattern matching is possible (and practical)

Short history:

• inspired by esoteric theorem of Cook

[linear time 2-way pushdown automata simulation is possible]

• discovered in 1976 independently by two theoreticians and a hacker

Knuth: discovered linear time algorithm

Pratt: made running time independent of alphabet

Morris: trying to build a text editor.

• theory meets practice

Exact pattern matching: other approaches

Rabin-Karp: make a digital signature of the pattern

• hashing without the table

• linear-time probabilistic guarantee

• plus: extends to 2D patterns

• minus: arithmetic ops much slower than char comparisons

Boyer-Moore: scan from right to left in pattern

• main idea: can skip M text chars when finding one not in the pattern

• needs additional KMP-like heuristic

• plus: possibility of sublinear-time performance (~ N/M)

• used in Unix, emacs

23

s y z y g y

a a a b b a a b a b a a a b b a a a b a a

pattern

text

s y z y g yy

s y z y g yy

s y z y g yy

24

Exact pattern match cost summary

† assumes appropriate model

‡ randomized

Cost of searching for M-character pattern in N-character text

algorithm typical worst-case

brute-force

Karp-Rabin

KMP

Boyer-Moore

1.1 N char compares † M N char compares

3N arithmetic ops 3N arithmetic ops ‡

1.1 N char compares † 2N char compares

~ N/M char compares † 3N char compares

25

exact pattern matching
Knuth-Morris-Pratt
RE pattern matching
grep

26

Regular-expression pattern matching

Exact pattern matching:

 Search for occurrences of a single pattern in a text file.

Regular expression (RE) pattern matching:

 Search for occurrences of one of multiple patterns in a text file.

Ex. (genomics)

• Fragile X syndrome is a common cause of mental retardation.

• human genome contains triplet repeats of cgg or agg

bracketed by gcg at the beginning and ctg at the end

• number of repeats is variable, and correlated with syndrome

• use regular expression to specify pattern: gcg(cgg|agg)*ctg

• do RE pattern match on person’s genome to detect Fragile X

gcg(cgg|agg)*ctg

gcggcgtgtgtgcgagagagtgggtttaaagctggcgcggaggcggctggcgcggaggctg

pattern (RE)

text

27

RE pattern matching: applications

Test if a string matches some pattern.

• Process natural language.

• Scan for virus signatures.

• Search for information using Google.

• Access information in digital libraries.

• Retrieve information from Lexis/Nexis.

• Search-and-replace in a word processors.

• Filter text (spam, NetNanny, Carnivore, malware).

• Validate data-entry fields (dates, email, URL, credit card).

• Search for markers in human genome using PROSITE patterns.

Parse text files.

• Compile a Java program.

• Crawl and index the Web.

• Read in data stored in ad hoc input file format.

• Automatically create Java documentation from Javadoc comments.

28

Regular expression examples

A regular expression is a notation to specify a set of strings.

every other stringaabaabaabaabconcatenation

every other string
aaaab
abaab

a(a|b)aab

parentheses

(ab)*a

ab*a

aa | baab

.u.u.u.

example RE

aa
abbba

a
ababababa

ab
ababa

aa
abbba

closure

union

wildcard

operation

every other string
aa
baab

succubus
tumultuous

cumulus
jugulum

not in setin set

29

Regular expression examples (continued)

Notation is surprisingly expressive

and plays a well-understood role in the theory of computation

b
bb
baabbbaa

bbb
aaa
bbbaababbaa

a* | (a*ba*ba*ba*)*

number of b’s is a multiple of 3

111111111
403982772

1000234
98701234

.*0....

fifth to last digit is 0

subspace
subspecies

raspberry
crispbread

.*spb.*

contains the trigraph spb

gcgcgg
cggcggcggctg
gcgcaggctg

gcgctg
gcgcggctg
gcgcggaggctg

gcg(cgg|agg)*ctg

fragile X syndrome indicator

regular expression not in setin set

30

Generalized regular expressions

Additional operations are often added

• Ex: [a-e]+ is shorthand for (a|b|c|d|e)(a|b|c|d|e)*

• for convenience only

• need to be alert for non-regular additions (Ex: Java /)

111111111
166-54-111

08540-1321
19072-5541

[0-9]{5}-[0-9]{4}exactly k

decaderhythm[^aeiou]{6}negations

camelCase
4illegal

word
Capitalized

[A-Za-z][a-z]*character classes

ade
bcde

abcde
abcbcde

a(bc)+deone or more

exampleoperation not in setin set

31

Regular expressions in Java

RE pattern matching is implemented in Java’s String class

• basic: match() method

• various other methods also available (stay tuned)

Ex: Validity checking. Is input in the set described by the re?

public class Validate

{

 public static void main(String[] args)

 {

 String re = args[0];

 String input = args[1];

 System.out.println(input.matches(re));

 }
}

% java Validate "..oo..oo." bloodroot
true

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" ident123
true

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu
true

% java Validate "[0-9]{3}-[0-9]{2}-[0-9]{4}" 166-11-4433
true

legal Java identifier

valid email address
(simplified)

Social Security number

need help solving
crosswords?

32

Regular expressions in other languages

Broadly applicable programmer's tool.

• originated in UNIX in the 1970s

• many languages support extended regular expressions

• built into grep, awk, emacs, Perl, PHP, Python, JavaScript

PERL. Practical Extraction and Report Language.

print all lines containing NEWLINE which
occurs in any file with a .java extension

grep NEWLINE */*.java

egrep '^[qwertyuiop]*[zxcvbnm]*$' dict.txt | egrep '...........'

replace all occurrences of from
with to in the file input.txt

perl -p -i -e 's|from|to|g' input.txt

perl -n -e 'print if /^[A-Za-z][a-z]*$/' dict.txt

do for each line

33

Regular expression caveat

Writing a RE is like writing a program.

• need to understand programming model

• can be easier to write than read

• can be difficult to debug

"Sometimes you have a programming problem

and it seems like the best solution is to use

regular expressions; now you have two problems."

34

Can the average web surfer learn to use REs?

Google. Supports * for full word wildcard and | for union.

35

Can the average TV viewer learn to use REs?

TiVo. WishList has very limited pattern matching.

Reference: page 76, Hughes DirectTV TiVo manual

36

Can the average programmer learn to use REs?

Reference: http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.htmlPerl RE for Valid RFC822 Email Addresses

(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:
\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(
?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0
31]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)
?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\
r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
 \t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)
?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t]
)*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
 \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*
)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)
:(?:(?:\r\n)?[\t]))?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:
\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t
]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031
]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?
:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?
:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>
@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?
:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;
:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\"
.\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\]

37 more lines

“Implementing validation
with regular expressions
somewhat pushes the limits
of what it is sensible to do
with regular expressions,
although Perl copes well.”

37

exact pattern matching
Knuth-Morris-Pratt
RE pattern matching
grep

GREP implementation: basic plan

Overview is the same as for KMP !

• linear-time guarantee

• no backup in text stream

Basic plan for GREP

• build DFA from RE

• simulate DFA with text as input

No backup in a DFA

Linear-time because each step is just a state change

38

accept pattern in text

reject
pattern NOT

in text

DFA

for

pattern

gcg(cgg|agg)*ctg

text

actgtgcaggaggcggcgcggcggaggaggctggcga

Ken Thompson

39

Deterministic finite-state automata

DFA review.

int pc = 0;
while (!tape.isEmpty())
{
 boolean bit = tape.read();
 if (pc == 0) { if (!bit) pc = 0; else pc = 1; }
 else if (pc == 1) { if (!bit) pc = 1; else pc = 2; }
 else if (pc == 2) { if (!bit) pc = 2; else pc = 0; }
}
if (pc == 0) System.out.println("accepted");
else System.out.println("rejected");

40

RE. Concise way to describe a set of strings.

DFA. Machine to recognize whether a given string is in a given set.

Kleene's theorem.

• for any DFA, there exists a RE that describes the same set of strings

• for any RE, there exists a DFA that recognizes the same set of strings

Good news: The basic plan works

 (build DFA from RE and run with text as input)

Bad news : The DFA can be exponentially large (can’t afford to build it).

Consequence: We need a smaller abstract machine.

Duality

0* | (0*10*10*10*)*

Ex: set of strings whose number of 1's is a multiple of 3

RE

DFA

41

Nondeterministic finite-state automata

NFA.

• may have 0, 1, or more transitions for each input symbol

• may have -transitions (move to another state without reading input)

• accept if any sequence of transitions leads to accept state

Implication of proof of Kleene’s theorem: RE -> NFA -> DFA

Basic plan for GREP (revised)

• build NFA from RE

• simulate NFA with text as input

• give up on linear-time guarantee

in set: 111, 00011, 101001011

not in set: 110, 00011011, 00110

convention:
unlabelled arrows
areε- transitions

Ex: set of strings that do not contain 110

42

Simulating an NFA

How to simulate an NFA? Maintain set of all possible states that NFA

could be in after reading in the first i symbols.

43

NFA Simulation

44

NFA Representation

NFA representation. Maintain several digraphs, one for each symbol in

the alphabet, plus one for .

-graph 0-graph 1-graph

45

NFA: Java Implementation

public class NFA
{
 private int START = 0; // start state
 private int ACCEPT = 1; // accept state
 private int N = 2; // number of states
 private String ALPHABET = "01"; // RE alphabet
 private int EPS = ALPHABET.length(); // symbols in alphabet
 private Digraph[] G;

 public NFA(String re)
 {
 G = new Digraph[EPS + 1];
 for (int i = 0; i <= EPS; i++)
 G[i] = new Digraph();
 build(0, 1, re);
 }

 private void build(int from, int to, String re) { }
 public boolean simulate(Tape tape) { }
}

46

NFA Simulation

How to simulate an NFA?

• Maintain a SET of all possible states that NFA could be in after

reading in the first i symbols.

• Use Digraph adjacency and reachability ops to update.

states reachable
from next in G[]

next = neighbors
of pc in G[c]

pc updated pc

47

NFA Simulation: Java Implementation

states reachable from
start by -transitions

all possible states after
reading character c from tape

follow -transitions

check whether
in accept state at end

public boolean simulate(Tape tape)
{

 SET<Integer> pc = G[EPS].reachable(START);

 while (!tape.isEmpty())
 { // Simulate NFA taking input from tape.

 char c = tape.read();
 int i = ALPHABET.indexOf(c);
 SET<Integer> next = G[i].neighbors(pc);

 pc = G[EPS].reachable(next);
 }

 for (int state : pc)
 if (state == ACCEPT) return true;
 return false;

}

48

Converting from an RE to an NFA: basic transformations

from toR

start

from

to

c R

from

to

R

c

from

to

R | S

from

to

R S

from

to

c* S

to

S

from

c

Use generalized NFA with full RE on trasitions arrows

• start with one transition having given RE

• remove operators with transformations given below

• goal: standard NFA (all single-character or epsilon-transitions)

union

concatenation closure

49

Converting from an RE to an NFA example: ab* | ab*

0

1

ab* | a*b

0

1

ab*

0

1

a*b2

b*

a

a*b

0

1

a*b

2

3

a

0

1

2

3

a

b b

0

1

2

3

a

b

4

a*

5

4

a

b

private void build(int from, int to, String re)

{
 int or = re.indexOf('|');

 if (re.length() == 0) G[EPSILON].addEdge(from, to);

 else if (re.length() == 1)

 {
 char c = re.charAt(0);

 for (int i = 0; i < EPSILON; i++)
 if (c == ALPHABET.charAt(i) || c == '.')

 G[i].addEdge(from, to);
 }

 else if (or != -1)

 {
 build(from, to, re.substring(0, or));

 build(from, to, re.substring(or + 1));
 }

 else if (re.charAt(1) == '*')

 {
 G[EPSILON].addEdge(from, N);

 build(N, N, re.substring(0, 1));
 build(N++, to, re.substring(2));

 }

 else
 {

 build(from, N, re.substring(0, 1));
 build(N++, to, re.substring(1));

 }
}

50

NFA Construction: Java Implementation

single char

union

closure

concatenation

from

R | S R S

from

to to

union

R | S

re.charAt(or)

c* S

re.charAt(1)

51

Grep running time

Input. Text with N characters, RE with M characters.

Claim. The number of edges in the NFA is at most 2M.

• Single character: consumes 1 symbol, creates 1 edge.

• Wildcard character: consumes 1 symbol, creates 2 edges.

• Concatenation: consumes 1 symbols, creates 0 edges.

• Union: consumes 1 symbol, creates 1 edges.

• Closure: consumes one symbol, creates 2 edges.

NFA simulation. O(MN) since NFA has 2M transitions

• bottleneck: 1 graph reachability per input character

• can be substantially faster in practice if few -transitions

NFA construction. Ours is O(M2) but not hard to make O(M).

Surprising bottom line:

 Worst-case cost for grep is the same as for elementary exact match!

52

Industrial-strength grep implementation

To complete the implementation,

• Deal with parentheses.

• Extend the alphabet.

• Add character classes.

• Add capturing capabilities.

• Deal with meta characters.

• Extend the closure operator.

• Error checking and recovery.

• Greedy vs. reluctant matching.

53

Regular expressions in Java (revisited)

RE pattern matching is implemented in Java’s Pattern and Matcher classes

harvest links
from website

harvest patterns
from DNA

import java.util.regex.Pattern;

import java.util.regex.Matcher;

public class Harvester
{

 public static void main(String[] args)
 {

 String re = args[0];
 In in = new In(args[1]);

 String input = in.readAll();
 Pattern pattern = Pattern.compile(re);

 Matcher matcher = pattern.matcher(input);
 while (matcher.find())

 System.out.println(matcher.group());
 }

}

% java Harvester "gcg(cgg|agg)*ctg" chromosomeX.txt
gcgcggcggcggcggcggctg
gcgctg
gcgctg
gcgcggcggcggaggcggaggcggctg

% java Harvester "http://(\\w+\\.)*(\\w+)" http://www.cs.princeton.edu
http://www.princeton.edu
http://www.google.com

Ex: Harvesting. Print substrings of input that match re

compile() creates a
Pattern (NFA) from RE

matcher() creates a
Matcher (NFA simulator)

from NFA and text

find() looks for
the next match

group() returns
the substring most

recently found by find()

54

Typical application: Parsing a data file

Example. NCBI genome file, …

String regexp = "[]*[0-9]+([actg]*).*";

Pattern pattern = Pattern.compile(regexp);

In in = new In(filename);

while (!in.isEmpty())

{

 String line = in.readLine();

 Matcher matcher = pattern.matcher(line);

 if (matcher.find())

 {

 String s = matcher.group(1).replaceAll(" ", "");

 // Do something with s.

 }

}

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846
KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.
SOURCE Ornithorhynchus anatinus (platypus)
ORIGIN
 1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac
 61 gtgattctgt ttgttttatg ctgccgaata gctgctcgat gaatctctgc atagacagct // a comment
 121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttcttcataa
 ...
128101 ggaaatgcga cccccacgct aatgtacagc ttctttagat tg

replace this RE with this string

the part of the match delimited
by the first group of parentheses

55

Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performance!

SpamAssassin regular expression.

• Takes exponential time.

• Spammer can use a pathological email address to DOS a mail server.

java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 1.6 seconds

java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 3.7 seconds

java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 9.7 seconds

java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 23.2 seconds

java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 62.2 seconds

java Validate "(a|aa)*b" aac 161.6 seconds

java RE "[a-z]+@[a-z]+([a-z\.]+\.)+[a-z]+" spammer@x......................

grep, Java, Perl

56

Not-so-regular expressions

Back-references.

• \1 notation matches sub-expression that was matched earlier.

• Supported by typical RE implementations.

Some non-regular languages.

• set of strings of the form ww for some string w: beriberi.

• set of bitstrings with an equal number of 0s and 1s: 01110100.

• set of Watson-Crick complemented palindromes: atttcggaaat.

Remark. Pattern matching with back-references is intractable.

java Harvester "\b(.+)\1\b" dictionary.txt
beriberi
couscous word boundary

57

Context

Abstract machines, languages, and nondeterminism.

• basis of the theory of computation

• intensively studied since the 1930s

• basis of programming languages

Compiler. A program that translates a program to machine code.

• KMP string DFA.

• grep RE NFA.

• javac Java language Java byte code.

KMP grep Java

pattern

parser

compiler output

simulator

string RE program

unnecessary check if legal check if legal

DFA NFA byte code

DFA simulator NFA simulator JVM

58

Summary of pattern-matching algorithms

Programmer:

• Implement exact pattern matching by DFA simulation (KMP).

• REs are a powerful pattern matching tool.

• Implement RE pattern matching by NFA simulation (grep).

Theoretician:

• RE is a compact description of a set of strings.

• NFA is an abstract machine equivalent in power to RE.

• DFAs and REs have limitations.

You: Practical application of core CS principles.

Example of essential paradigm in computer science.

• Build intermediate abstractions.

• Pick the right ones!

• Solve important practical problems.

1

Linear Programming

brewer’s problem
simplex algorithm
implementation
linear programming

References:

 The Allocation of Resources by Linear Programming,

 Scientific American, by Bob Bland

 Algs in Java, Part 5

Overview: introduction to advanced topics

Main topics

• linear programming: the ultimate practical problem-solving model

• reduction: design algorithms, prove limits, classify problems

• NP: the ultimate theoretical problem-solving model

• combinatorial search: coping with intractability

Shifting gears

• from linear/quadratic to polynomial/exponential scale

• from individual problems to problem-solving models

• from details of implementation to conceptual framework

Goals

• place algorithms we’ve studied in a larger context

• introduce you to important and essential ideas

• inspire you to learn more about algorithms!

2

3

Linear Programming

What is it?

• Quintessential tool for optimal allocation of scarce resources, among

a number of competing activities.

• Powerful and general problem-solving method that encompasses:

shortest path, network flow, MST, matching, assignment...

Ax = b, 2-person zero sum games

Why significant?

• Widely applicable problem-solving model

• Dominates world of industry.

• Fast commercial solvers available: CPLEX, OSL.

• Powerful modeling languages available: AMPL, GAMS.

• Ranked among most important scientific advances of 20th century.

see ORF 307

Ex: Delta claims that LP
saves $100 million per year.

4

Applications

Agriculture. Diet problem.

Computer science. Compiler register allocation, data mining.

Electrical engineering. VLSI design, optimal clocking.

Energy. Blending petroleum products.

Economics. Equilibrium theory, two-person zero-sum games.

Environment. Water quality management.

Finance. Portfolio optimization.

Logistics. Supply-chain management.

Management. Hotel yield management.

Marketing. Direct mail advertising.

Manufacturing. Production line balancing, cutting stock.

Medicine. Radioactive seed placement in cancer treatment.

Operations research. Airline crew assignment, vehicle routing.

Physics. Ground states of 3-D Ising spin glasses.

Plasma physics. Optimal stellarator design.

Telecommunication. Network design, Internet routing.

Sports. Scheduling ACC basketball, handicapping horse races.

5

brewer’s problem
simplex algorithm
implementation
linear programming

6

Toy LP example: Brewer’s problem

Small brewery produces ale and beer.

• Production limited by scarce resources: corn, hops, barley malt.

• Recipes for ale and beer require different proportions of resources.

Brewer’s problem: choose product mix to maximize profits.

corn (lbs) hops (oz) malt (lbs) profit ($)

available 480 160 1190

ale (1 barrel) 5 4 35 13

beer (1 barrel) 15 4 20 23

all ale
 (34 barrels)

179 136 1190 442

all beer
(32 barrels)

480 128 640 736

20 barrels ale
20 barrels beer

400 160 1100 720

12 barrels ale
28 barrels beer

480 160 980 800

more profitable
product mix?

? ? ? >800 ?

34 barrels times 35 lbs malt
per barrel is 1190 lbs

[amount of available malt]

7

Brewer’s problem: mathematical formulation

ale beer

maximize 13A + 23B profit

subject
to the

constraints

5A + 15B 480 corn

4A + 4B 160 hops

35A + 20B 1190 malt

A 0

B 0

Small brewery produces ale and beer.

• Production limited by scarce resources:

corn, hops, barley malt.

• Recipes for ale and beer require

different proportions of resources.

Mathematical formulation

• let A be the number of barrels of beer

• and B be the number of barrels of ale

8

Brewer’s problem: Feasible region

Ale

Beer

(34, 0)

(0, 32)

Corn
5A + 15B 480

Hops
4A + 4B 160

Malt
35A + 20B 1190

(12, 28)

(26, 14)

(0, 0)

9

Brewer’s problem: Objective function

13A + 23B = $800

13A + 23B = $1600

13A + 23B = $442

Profit

Ale

Beer

7

(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)

10

Brewer’s problem: Geometry

Brewer’s problem observation. Regardless of objective function

coefficients, an optimal solution occurs at an extreme point.

extreme point

Ale

Beer

7

(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)

11

Standard form linear program

Input: real numbers aij, cj, bi.

Output: real numbers xj.

n = # nonnegative variables, m = # constraints.

Maximize linear objective function subject to linear equations.

“Linear” No x2, xy, arccos(x), etc.

“Programming” “ Planning” (term predates computer programming).

maximize c1 x1 + c2 x2 + . . . + cn xn

subject to the
constraints

a11 x1 + a12 x2 + . . . + a1n xn = b1

a21 x1 + a22 x2 + . . . + a2n xn = b2

...

am1 x1 + am2 x2 + . . . + amn xn = bm

x1 , x2 ,... , xn 0

n variables

m
 e

qu
at

io
ns

maximize cT
 x

subject to the
constraints

A x = b

x 0

matrix version

12

Converting the brewer’s problem to the standard form

Original formulation

Standard form

• add variable Z and equation corresponding to objective function

• add slack variable to convert each inequality to an equality.

• now a 5-dimensional problem.

maximize 13A + 23B

subject
to the

constraints

5A + 15B 480

4A + 4B 160

35A + 20B 1190

A, B 0

maximize Z

subject
to the

constraints

13A + 23B Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A, B, SC, SH, SM 0

13

A few principles from geometry:

• inequality: halfplane (2D), hyperplane (kD).

• bounded feasible region: convex polygon (2D), convex polytope (kD).

Convex set. If two points a and b are in the set, then so is (a + b).

Extreme point. A point in the set that can't be written as (a + b),

where a and b are two distinct points in the set.

Geometry

convex not convex

extreme
point

14

Geometry (continued)

Extreme point property. If there exists an optimal solution to (P),

then there exists one that is an extreme point.

Good news. Only need to consider finitely many possible solutions.

Bad news. Number of extreme points can be exponential !

Greedy property. Extreme point is optimal

iff no neighboring extreme point is better.

local optima are global optima

Ex: n-dimensional hypercube

15

brewer’s problem
simplex algorithm
implementation
linear programming

16

Simplex Algorithm

Simplex algorithm. [George Dantzig, 1947]

• Developed shortly after WWII in response to logistical problems,

including Berlin airlift.

• One of greatest and most successful algorithms of all time.

Generic algorithm.

• Start at some extreme point.

• Pivot from one extreme point to a neighboring one.

• Repeat until optimal.

How to implement? Linear algebra.

never decreasing objective function

17

Simplex Algorithm: Basis

Basis. Subset of m of the n variables.

Basic feasible solution (BFS).

• Set n - m nonbasic variables to 0, solve for remaining m variables.

• Solve m equations in m unknowns.

• If unique and feasible solution BFS.

• BFS extreme point.

Ale

Beer

Basis
{A, B, SM }

(12, 28)

{A, B, SC }

(26, 14)

{B, SH, SM }

(0, 32)

{SH, SM, SC }

(0, 0)

{A, SH, SC }

(34, 0)

Infeasible
{A, B, SH }

(19.41, 25.53)

maximize Z

subject
to the

constraints

13A + 23B Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A, B, SC, SH, SM 0

18

Simplex Algorithm: Initialization

basis = {SC, SH, SM}

A = B = 0
Z = 0

SC = 480

SH = 160

SM = 1190

maximize Z

subject
to the

constraints

13A + 23B Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A, B, SC, SH, SM 0

Start with slack variables as the basis.

Initial basic feasible solution (BFS).

• set non-basis variables A = 0, B = 0 (and Z = 0).

• 3 equations in 3 unknowns give SC = 480, SC = 160, SC = 1190 (immediate).

• extreme point on simplex: origin

basis = {SC, SH, SM}

A = B = 0
Z = 0

SC = 480

SH = 160

SM = 1190

maximize Z

subject
to the

constraints

13A + 23B Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A, B, SC, SH, SM 0

19

Simplex Algorithm: Pivot 1

Substitution B = (1/15)(480 – 5A – SC) puts B into the basis

 (rewrite 2nd equation, eliminate B in 1st, 3rd, and 4th equations)

basis = {B, SH, SM}

A = SC = 0

Z = 736
B = 32
SH = 32

SM = 550

maximize Z

subject
to the

constraints

(16/3)A - (23/15) SC Z = -736

(1/3) A + B + (1/15) SC = 32

(8/3) A - (4/15) SC + SH = 32

(85/3) A - (4/3) SC
+ SM = 550

A, B, SC, SH, SM 0

which variable
does it replace?

20

Simplex Algorithm: Pivot 1

Why pivot on B?

• Its objective function coefficient is positive

(each unit increase in B from 0 increases objective value by $23)

• Pivoting on column 1 also OK.

Why pivot on row 2?

• Preserves feasibility by ensuring RHS 0.

• Minimum ratio rule: min { 480/15, 160/4, 1190/20 }.

basis = {SC, SH, SM}

A = B = 0
Z = 0

SC = 480

SH = 160

SM = 1190

maximize Z

subject
to the

constraints

13A + 23B Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A, B, SC, SH, SM 0

basis = {B, SH, SM}

A = SC = 0

Z = 736
B = 32
SH = 32

SM = 550

maximize Z

subject
to the

constraints

(16/3)A - (23/15) SC Z = -736

(1/3) A + B + (1/15) SC = 32

(8/3) A - (4/15) SC + SH = 32

(85/3) A - (4/3) SC + SM = 550

A, B, SC, SH, SM 0

21

Simplex Algorithm: Pivot 2

basis = {A, B, SM}

SC = SH = 0

Z = 800
B = 28
A = 12

SM = 110

maximize Z

subject
to the

constraints

- SC - 2SH Z = -800

 B + (1/10) SC + (1/8) SH = 28

 A - (1/10) SC + (3/8) SH = 12

 - (25/6) SC - (85/8) SH + SM = 110

A, B, SC, SH, SM 0

Substitution A = (3/8)(32 + (4/15) SC – SH) puts A into the basis

 (rewrite 3nd equation, eliminate A in 1st, 2rd, and 4th equations)

22

Simplex algorithm: Optimality

Q. When to stop pivoting?

A. When all coefficients in top row are non-positive.

Q. Why is resulting solution optimal?

A. Any feasible solution satisfies system of equations in tableaux.

• In particular: Z = 800 – SC – 2 SH

• Thus, optimal objective value Z* 800 since SC, SH 0.

• Current BFS has value 800 optimal.

basis = {A, B, SM}

SC = SH = 0

Z = 800
B = 28
A = 12

SM = 110

maximize Z

subject
to the

constraints

- SC - 2SH Z = -800

 B + (1/10) SC + (1/8) SH = 28

 A - (1/10) SC + (3/8) SH = 12

 - (25/6) SC - (85/8) SH + SM = 110

A, B, SC, SH, SM 0

23

brewer’s problem
simplex algorithm
implementation
linear programming

Encode standard form LP in a single Java 2D array

Simplex tableau

24

A

c

bI

0 0

m

1

n m 1

maximize Z

subject
to the

constraints

13A + 23B Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A, B, SC, SH, SM 0

5 15 1 0 0 480

4 4 0 1 0 160

35 20 0 0 1 1190

13 23 0 0 0 0

Encode standard form LP in a single Java 2D array (solution)

Simplex algorithm transforms initial array into solution

Simplex tableau

25

A

c

bI

0 0

m

1

n m 1

0 1 1/10 1/8 0 28

1 0 1/10 3/8 0 12

0 0 25/6 85/8 1 110

0 0 -1 -2 0 -800

maximize Z

subject
to the

constraints

- SC - 2SH Z = -800

 B + (1/10) SC + (1/8) SH = 28

 A - (1/10) SC + (3/8) SH = 12

 - (25/6) SC - (85/8) SH + SM = 110

A, B, SC, SH, SM 0

26

Simplex algorithm: Bare-bones implementation

Construct the simplex tableau.

A

c

bI

0 0

public class Simplex
{
 private double[][] a; // simplex tableaux
 private int M, N;

 public Simplex(double[][] A, double[] b, double[] c)
 {
 M = b.length;
 N = c.length;
 a = new double[M+1][M+N+1];
 for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 a[i][j] = A[i][j];
 for (int j = N; j < M + N; j++) a[j-N][j] = 1.0;
 for (int j = 0; j < N; j++) a[M][j] = c[j];
 for (int i = 0; i < M; i++) a[i][M+N] = b[i];
 }

m

1

n m 1

put A[][] into tableau

put I[] into tableau
put c[] into tableau
put b[] into tableau

constructor

27

Simplex algorithm: Bare-bones Implementation

Pivot on element (p, q).

public void pivot(int p, int q)
{
 for (int i = 0; i <= M; i++)
 for (int j = 0; j <= M + N; j++)
 if (i != p && j != q)
 a[i][j] -= a[p][j] * a[i][q] / a[p][q];

 for (int i = 0; i <= M; i++)
 if (i != p) a[i][q] = 0.0;

 for (int j = 0; j <= M + N; j++)
 if (j != q) a[p][j] /= a[p][q];
 a[p][q] = 1.0;
}

p

q

scale all elements but
row p and column q

zero out column q

scale row p

28

Simplex Algorithm: Bare Bones Implementation

Simplex algorithm.

find entering variable q
(positive objective function coefficient)

find row p according
to min ratio rule

+p

q

+

+

public void solve()
{
 while (true)
 {
 int p, q;
 for (q = 0; q < M + N; q++)
 if (a[M][q] > 0) break;
 if (q >= M + N) break;

 for (p = 0; p < M; p++)
 if (a[p][q] > 0) break;
 for (int i = p+1; i < M; i++)
 if (a[i][q] > 0)
 if (a[i][M+N] / a[i][q]
 < a[p][M+N] / a[p][q])
 p = i;

 pivot(p, q);
 }
}

min ratio test

29

Simplex Algorithm: Running Time

Remarkable property. In practice, simplex algorithm typically

terminates after at most 2(m+n) pivots.

• No pivot rule that is guaranteed to be polynomial is known.

• Most pivot rules known to be exponential (or worse) in worst-case.

Pivoting rules. Carefully balance the cost of finding an entering

variable with the number of pivots needed.

30

Simplex algorithm: Degeneracy

Degeneracy. New basis, same extreme point.

Cycling. Get stuck by cycling through different bases that all

correspond to same extreme point.

• Doesn't occur in the wild.

• Bland's least index rule guarantees finite # of pivots.

"stalling" is common in practice

To improve the bare-bones implementation

• Avoid stalling.

• Choose the pivot wisely.

• Watch for numerical stability.

• Maintain sparsity.

• Detect infeasiblity

• Detect unboundedness.

• Preprocess to reduce problem size.

Basic implementations available in many programming environments.

Commercial solvers routinely solve LPs with millions of variables.

requires fancy data structures

31

Simplex Algorithm: Implementation Issues

Ex. 1: OR-Objects Java library

Ex. 2: MS Excel (!)
32

import drasys.or.mp.*;

import drasys.or.mp.lp.*;

public class LPDemo

{

 public static void main(String[] args) throws Exception

 {

 Problem prob = new Problem(3, 2);

 prob.getMetadata().put("lp.isMaximize", "true");

 prob.newVariable("x1").setObjectiveCoefficient(13.0);

 prob.newVariable("x2").setObjectiveCoefficient(23.0);

 prob.newConstraint("corn").setRightHandSide(480.0);

 prob.newConstraint("hops").setRightHandSide(160.0);

 prob.newConstraint("malt").setRightHandSide(1190.0);

 prob.setCoefficientAt("corn", "x1", 5.0);

 prob.setCoefficientAt("corn", "x2", 15.0);

 prob.setCoefficientAt("hops", "x1", 4.0);

 prob.setCoefficientAt("hops", "x2", 4.0);

 prob.setCoefficientAt("malt", "x1", 35.0);

 prob.setCoefficientAt("malt", "x2", 20.0);

 DenseSimplex lp = new DenseSimplex(prob);

 System.out.println(lp.solve());

 System.out.println(lp.getSolution());

 }

}

LP solvers: basic implementations

33

set PROD := beer ale;
set INGR := corn hops malt;

param: profit :=
ale 13
beer 23;

param: supply :=
corn 480
hops 160
malt 1190;

param amt: ale beer :=
corn 5 15
hops 4 4
malt 35 20;

LP solvers: commercial strength

AMPL. [Fourer, Gay, Kernighan] An algebraic modeling language.

CPLEX solver. Industrial strength solver.

set INGR;
set PROD;
param profit {PROD};
param supply {INGR};
param amt {INGR, PROD};
var x {PROD} >= 0;

maximize total_profit:
 sum {j in PROD} x[j] * profit[j];

subject to constraints {i in INGR}:
 sum {j in PROD} amt[i,j] * x[j] <= supply[i];

beer.dat

beer.mod

separate data from model

ale beer

maximize 13A + 23B profit

subject
to the

constraints

5A + 15B 480 corn

4A + 4B 160 hops

35A + 20B 1190 malt

A 0

B 0

34

History

1939. Production, planning. [Kantorovich]

1947. Simplex algorithm. [Dantzig]

1950. Applications in many fields.

1979. Ellipsoid algorithm. [Khachian]

1984. Projective scaling algorithm. [Karmarkar]

1990. Interior point methods.

• Interior point faster when polyhedron smooth like disco ball.

• Simplex faster when polyhedron spiky like quartz crystal.

200x. Approximation algorithms, large scale optimization.

35

brewer’s problem
simplex algorithm
implementation
linear programming

Linear programming

Linear “programming”

• process of formulating an LP model for a problem

• solution to LP for a specific problem gives solution to the problem

1. Identify variables

2. Define constraints (inequalities and equations)

3. Define objective function

Examples:

• shortest paths

• maxflow

• bipartite matching

• .

• .

• .

• [a very long list]

36

easy part [omitted]:
convert to standard form

stay tuned [this lecture]

37

Single-source shortest-paths problem (revisited)

Given. Weighted digraph, single source s.

Distance from s to v: length of the shortest path from s to v .

Goal. Find distance (and shortest path) from s to every other vertex.

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

LP formulation of single-source shortest-paths problem

38

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

minimize xt

subject
to the

constraints

xs + 9 x2

xs + 14 x6

xs + 15 x7

x2 + 24 x3

x3 + 2 x5

x3 + 19 xt

x4 + 6 x3

x4 + 6 xt

x5 + 11 x4

x5 + 16 xt

x6 + 18 x3

x6 + 30 x5

x6 + 5 x7

x7 + 20 x5

x7 + 44 xt

xs = 0

x2 , ... , xt 0

One variable per vertex, one inequality per edge.

LP formulation of single-source shortest-paths problem

39

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15 50

34

45

minimize xt

subject
to the

constraints

xs + 9 x2

xs + 14 x6

xs + 15 x7

x2 + 24 x3

x3 + 2 x5

x3 + 19 xt

x4 + 6 x3

x4 + 6 xt

x5 + 11 x4

x5 + 16 xt

x6 + 18 x3

x6 + 30 x5

x6 + 5 x7

x7 + 20 x5

x7 + 44 xt

xs = 0

x2 , ... , xt 0

xs = 0

x2 = 9

x3 = 32

x4 = 45

x5 = 34

x6 = 14

x7 = 15

xt = 50

solution

One variable per vertex, one inequality per edge.

3

3

40

Maxflow problem

Given: Weighted digraph, source s, destination t.

Interpret edge weights as capacities

• Models material flowing through network

• Ex: oil flowing through pipes

• Ex: goods in trucks on roads

• [many other examples]

Flow: A different set of edge weights

• flow does not exceed capacity in any edge

• flow at every vertex satisfies equilibrium

[flow in equals flow out]

Goal: Find maximum flow from s to t

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

flow out of s is 3

flow in to t is 3

1 2

10

1 1

2 1

flow capacity
in every edge

flow in
equals

flow out
at each
vertex

LP formulation of maxflow problem

41

maximize xts

subject
to the

constraints

xs1 2

xs2 3

x13 3

x14 1

x23 1

x24 1

x3t 2

x4t 3

xts = xs1 + xs2

xs1 = x13 + x14

xs2 = x23 + x24

x13 + x23 = x3t

x14 + x24 = x4t

x3t + x4t = xts

all xij 0

One variable per edge.

One inequality per edge, one equality per vertex.

3

3

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

add dummy
edge from

t to s

equilibrium
constraints

capacity
constraints

1

2 2

11

1

2 2

LP formulation of maxflow problem

42

maximize xts

subject
to the

constraints

xs1 2

xs2 3

x13 3

x14 1

x23 1

x24 1

x3t 2

x4t 3

xts = xs1 + xs2

xs1 = x13 + x14

xs2 = x23 + x24

x13 + x23 = x3t

x14 + x24 = x4t

x3t + x4t = xts

all xij 0

xs1 = 2

xs2 = 2

x13 = 1

x14 = 1

x23 = 1

x24 = 1

x3t = 2

x4t = 2

xts = 4

solution

One variable per edge.

One inequality per edge, one equality per vertex.

3

3

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

add dummy
edge from

t to s

maxflow value

equilibrium
constraints

capacity
constraints

Maximum cardinality bipartite matching problem

Given: Two sets of vertices, set of edges

 (each connecting one vertex in each set)

Matching: set of edges

 with no vertex appearing twice

Interpretation: mutual preference constraints

• Ex: people to jobs

• Ex: medical students to residence positions

• Ex: students to writing seminars

• [many other examples]

Goal: find a maximum cardinality matching

43

A B C D E F

0 1 2 3 4 5

Alice

 Adobe, Apple, Google

Bob

 Adobe, Apple, Yahoo

Carol

 Google, IBM, Sun

Dave

 Adobe, Apple

Eliza

 IBM, Sun, Yahoo

Frank

 Google, Sun, Yahoo

Example: Job offers

Adobe

 Alice, Bob, Dave

Apple

 Alice, Bob, Dave

Google

 Alice, Carol, Frank

IBM

 Carol, Eliza

Sun

 Carol, Eliza, Frank

Yahoo

 Bob, Eliza, Frank

A B C D E F

0 1 2 3 4 5

LP formulation of maximum cardinality bipartite matching problem

44

maximize
xA0 + xA1 + xA2 + xB0 + xB1 + xB5

+ xC2 + xC3 + xC4 + xD0 + xD1

+ xE3 + xE4 + xE5 + xF2 + xF4 + xF5

subject
to the

constraints

xA0 + xA1 + xA2 = 1

xB0 + xB1 + xB5 = 1

xC2 + xC3 + xC4 = 1

xD0 + xD1 = 1

xE3 + xE4 + xE5 = 1

xF2 + xF4 + xF5 = 1

xA0 + xB0 + xD0 = 1

xA1 + xB1 + xD1 = 1

xA2 + xC2 + xF2 = 1

xC3 + xE3 = 1

xC4 + xE4 + xF4 = 1

xB5 + xE5 + xF5 = 1

all xij 0

One variable per edge, one equality per vertex.

constraints on
top vertices

A B C D E F

0 1 2 3 4 5

Theorem. [Birkhoff 1946, von Neumann 1953]

All extreme points of the above polyhedron have integer (0 or 1) coordinates

Corollary. Can solve bipartite matching problem by solving LP

constraints on
bottom vertices

Crucial point:
 not always so lucky!

LP formulation of maximum cardinality bipartite matching problem

45

maximize
xA0 + xA1 + xA2 + xB0 + xB1 + xB5

+ xC2 + xC3 + xC4 + xD0 + xD1

+ xE3 + xE4 + xE5 + xF2 + xF4 + xF5

subject
to the

constraints

xA0 + xA1 + xA2 = 1

xB0 + xB1 + xB5 = 1

xC2 + xC3 + xC4 = 1

xD0 + xD1 = 1

xE3 + xE4 + xE5 = 1

xF2 + xF4 + xF5 = 1

xA0 + xB0 + xD0 = 1

xA1 + xB1 + xD1 = 1

xA2 + xC2 + xF2 = 1

xC3 + xE3 = 1

xC4 + xE4 + xF4 = 1

xB5 + xE5 + xF5 = 1

all xij 0

One variable per edge, one equality per vertex. A B C D E F

0 1 2 3 4 5

A B C D E F

0 1 2 3 4 5

xA1 = 1

xB5 = 1

xC2 = 1

xD0 = 1

xE3 = 1

xF4 = 1

all other xij = 0

solution

Linear programming perspective

Got an optimization problem?

 ex: shortest paths, maxflow, matching, . . . [many, many, more]

Approach 1: Use a specialized algorithm to solve it

• Algs in Java

• vast literature on complexity

• performance on real problems not always well-understood

Approach 2: Use linear programming

• a direct mathematical representation of the problem often works

• immediate solution to the problem at hand is often available

• might miss specialized solution, but might not care

Got an LP solver? Learn to use it!

46

LP: the ultimate problem-solving model (in practice)

Fact 1: Many practical problems are easily formulated as LPs

Fact 2: Commercial solvers can solve those LPs quickly

More constraints on the problem?

• specialized algorithm may be hard to fix

• can just add more inequalities to LP

New problem?

• may not be difficult to formulate LP

• may be very difficult to develop specialized algorithm

Today’s problem?

• similar to yesterday’s

• edit tableau, run solver

Too slow?

• could happen

• doesn’t happen
47

Ex. Airline scheduling
[similar to vast number of other business processes]

Ex. Mincost maxflow and
other generalized versions

Want to learn more?
ORFE 307

48

Is there an ultimate problem-solving model?

• Shortest paths

• Maximum flow

• Bipartite matching

• . . .

• Linear programming

• .

• .

• .

• NP-complete problems

• .

• .

• .

Does P = NP? No universal problem-solving model exists unless P = NP.

tractable

Ultimate problem-solving model (in theory)

[see next lecture]

intractable ?

Want to learn more?
COS 423

49

LP perspective

LP is near the deep waters of intractability.

Good news:

• LP has been widely used for large practical problems for 50+ years

• Existence of guaranteed poly-time algorithm known for 25+ years.

Bad news:

• Integer linear programming is NP-complete

• (existence of guaranteed poly-time algorithm is highly unlikely).

• [stay tuned]

An unsuspecting MBA student transitions to
the world of intractability with a single mouse click.

constrain variables to have integer values

1

Reductions

designing algorithms
proving limits
classifying problems
NP-completeness

2

Bird’s-eye view

Desiderata.

Classify problems according to their computational requirements.

Frustrating news.

Huge number of fundamental problems have defied classification

Desiderata'.

Suppose we could (couldn't) solve problem X efficiently.

What else could (couldn't) we solve efficiently?

Give me a lever long enough and a fulcrum on which to

place it, and I shall move the world. -Archimedes

3

Reduction

Def. Problem X reduces to problem Y

if you can use an algorithm that solves Y to help solve X

Ex. Euclidean MST reduces to Voronoi.

To solve Euclidean MST on N points

• solve Voronoi for those points

• construct graph with linear number of edges

• use Prim/Kruskal to find MST in time proportional to N log N

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

4

Reduction

Def. Problem X reduces to problem Y

if you can use an algorithm that solves Y to help solve X

Cost of solving X = M*(cost of solving Y) + cost of reduction.

Applications

• designing algorithms: given algorithm for Y, can also solve X.

• proving limits: if X is hard, then so is Y.

• classifying problems: establish relative difficulty of problems.

number of times Y is used

5

designing algorithms
proving limits
classifying problems
NP-completeness

number of times Y is used

6

Reductions for algorithm design

Def. Problem X reduces to problem Y

if you can use an algorithm that solves Y to help solve X

Cost of solving X = M*(cost of solving Y) + cost of reduction.

Applications.

• designing algorithms: given algorithm for Y, can also solve X.

• proving limits: if X is hard, then so is Y.

• classifying problems: establish relative difficulty of problems.

Mentality: Since I know how to solve Y, can I use that algorithm to solve X?

Programmer’s version: I have code for Y. Can I use it for X?

7

Reductions for algorithm design: convex hull

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points

of the convex hull (in counter-clockwise order).

Claim. Convex hull reduces to sorting.

Pf. Graham scan algorithm.

convex hull

1251432

2861534

3988818

4190745

13546464

89885444

sorting

linearithmic linear

Cost of convex hull = cost of sort + cost of reduction

Reductions for algorithm design: shortest paths

Claim. Shortest paths reduces to path search in graphs (PFS)

Pf. Dijkstra’s algorithm

8

linear length of path

Cost of shortest paths = cost of search + cost of reduction

s

w

vS

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

Reductions for algorithm design: maxflow

Claim: Maxflow reduces to PFS (!)

A forward edge is an edge in the same direction of the flow

An backward edge is an edge in the opposite direction of the flow

An augmenting path is along which we can increase flow by adding

flow on a forward edge or decreasing flow on a backward edge

Theorem [Ford-Fulkerson] To find maxflow:

• increase flow along any augmenting path

• continue until no augmenting path can be found

Reduction is not linear because it requires multiple calls to PFS

9

Reductions for algorithm design: maxflow (continued)

Two augmenting-path sequences

10

s

1

3 4

2

t

2

s

4

2

linear linear

Cost of maxflow = M*(cost of PFS) + cost of reduction

3

s

1

4

2

s

1

3 4

2

t

s

2

t

3

t

depends on path choice!

t

s

1

4

t

s

1 2

3

t

4

1

3 4

back edge
(remove flow)

1

3

Reductions for algorithm design: bipartite matching

Bipartite matching reduces to maxflow

Proof:

• construct new vertices s and t

• add edges from s to each vertex in one set

• add edges from each vertex in other set to t

• set all edge weights to 1

• find maxflow in resulting network

• matching is edges between two sets

Note: Need to establish that maxflow solution

 has all integer (0-1) values.

11

A B C D E F

0 1 2 3 4 5

A B C D E F

0 1 2 3 4 5

s

t

Bipartite matching reduces to maxflow

Proof:

• construct new vertices s and t

• add edges from s to each vertex in one set

• add edges from each vertex in other set to t

• set all edge weights to 1

• find maxflow in resulting network

• matching is edges between two sets

Note: Need to establish that maxflow solution

 has all integer (0-1) values.

Reductions for algorithm design: bipartite matching

12

A B C D E F

0 1 2 3 4 5

A B C D E F

0 1 2 3 4 5

A B C D E F

0 1 2 3 4 5

s

t

linear

Cost of matching = cost of maxflow + cost of reduction

Reductions for algorithm design: summary

13

LP

element

distinctness
sorting

shortest

paths

bipartite

matching

maxflow

PFS

Some reductions we have seen so far:

LP (standard form)

convex hullmedian

finding

arbitrage

shortest paths

(neg weights)

Voronoi

closest

pair

Euclidean

MST

Reductions for algorithm design: a caveat

PRIME. Given an integer x (represented in binary), is x prime?

COMPOSITE. Given an integer x, does x have a nontrivial factor?

A possible real-world scenario:

• System designer specs the interfaces for project.

• Programmer A implements isComposite() using isPrime().

• Programmer B implements isPrime() using isComposite().

• Infinite reduction loop!
14

public static boolean isComposite(BigInteger x)
{
 if (isPrime(x)) return false;
 else return true;
}

public static boolean isPrime(BigInteger x)
{
 if (isComposite(x)) return false;
 else return true;
}

PRIME reduces to COMPOSITE

COMPOSITE reduces to PRIME

COMPOSITE

PRIME

whose fault?

15

designing algorithms
proving limits
classifying problems
polynomial-time reductions
NP-completeness

16

Linear-time reductions to prove limits

Def. Problem X linear reduces to problem Y if X can be solved with:

• linear number of standard computational steps for reduction

• one call to subroutine for Y.

Applications.

• designing algorithms: given algorithm for Y, can also solve X.

• proving limits: if X is hard, then so is Y.

• classifying problems: establish relative difficulty of problems.

Mentality:

If I could easily solve Y, then I could easily solve X

I can’t easily solve X.

Therefore, I can’t easily solve Y

Purpose of reduction is to establish that Y is hard

NOT intended for use
as an algorithm

17

Proving limits on convex-hull algorithms

Lower bound on sorting: Sorting N integers requires (N log N) steps.

Claim. SORTING reduces to CONVEX HULL [see next slide].

Consequence.

Any ccw-based convex hull algorithm requires (N log N) steps.

need “quadratic decision tree” model of
computation that allows tests of the form
 xi < xj or (xj - xi) (yk - yi) - (yj - yi) (xk - xi) < 0

convex hull

1251432

2861534

3988818

4190745

13546464

89885444

sorting

Sorting instance.

Convex hull instance.

Observation. Region {x : x2 x} is convex all points are on hull.

Consequence. Starting at point with most negative x,

counter-clockwise order of hull points yields items in ascending order.

To sort X, find the convex hull of P.

18

Sorting linear-reduces to convex hull

X = { x1, x2, ... , xN }

P = { (x1 , x1
2), (x2, x2

2), ... , (xN , xN
2) }

f(x) = x2

(x1 , x1
2)

(x2 , x2
2)

19

3-SUM reduces to 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,

are there 3 that all lie on the same line?

Claim. 3-SUM reduces to 3-COLLINEAR.

Conjecture. Any algorithm for 3-SUM requires (N2) time.

Consequence. Sub-quadratic algorithm for 3-COLLINEAR unlikely.

recall Assignment 2

your N2 log N algorithm from Assignment 2 was pretty good

see next two slides

20

3-SUM reduces to 3-COLLINEAR (continued)

Claim. 3-SUM L 3-COLLINEAR.

• 3-SUM instance:

• 3-COLLINEAR instance:

(1, 1)

(2, 8)

(-3, -27)

-3 + 2 + 1 = 0

x1, x2, ... , xN

(x1 , x1
3), (x2, x2

3), ... , (xN , xN
3)

f(x) = x3

Lemma. If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), (c, c3) are collinear.

Pf. [see next slide]

21

3-SUM reduces to 3-COLLINEAR (continued)

Lemma. If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), (c, c3) are collinear.

Pf. Three points (a, a3), (b, b3), (c, c3) are collinear iff:

 (a3 - b3) / (a - b) = (b3 - c3) / (b - c)

(a - b)(a2 + ab + b2) / (a - b) = (b - c)(b2 + bc + c2) / (b - c)

 (a2 + ab + b2) = (b2 + bc + c2)

 a2 + ab - bc - c2 = 0

 (a - c)(a + b + c) = 0

 a + b + c = 0

slopes are equal

factor numerators

a-b and b-c are nonzero

collect terms

factor

a-c is nonzero

Reductions for proving limits: summary

22

Want to be convinced that no linear-time convex hull alg exists?
Hard way: long futile search for a linear-time algorithm
Easy way: reduction from sorting

Want to be convinced that no subquadratic 3-COLLINEAR alg exists?
Hard way: long futile search for a subquadratic algorithm
Easy way: reduction from 3-SUM

sorting

convex hull

3-SUM

3-COLLINEAR

Establishing limits through reduction is an important tool

 in guiding algorithm design efforts

23

designing algorithms
proving limits
classifying problems
NP-completeness

24

Reductions to classify problems

Def. Problem X linear reduces to problem Y if X can be solved with:

• Linear number of standard computational steps.

• One call to subroutine for Y.

Applications.

• Design algorithms: given algorithm for Y, can also solve X.

• Establish intractability: if X is hard, then so is Y.

• Classify problems: establish relative difficulty between two problems.

Ex: Sorting linear-reduces to convex hull.

 Convex hull linear-reduces to sorting.

 Thus, sorting and convex hull are equivalent

Most often used to classify problems as either

• tractable (solvable in polynomial time)

• intractable (exponential time seems to be required)

convex hull

sorting
not a loop

because this
reduction is
not intended

to give a
sorting

algorithm

25

Polynomial-time reductions

Def. Problem X polynomial reduces to problem Y if arbitrary instances

of problem X can be solved using:

• Polynomial number of standard computational steps for reduction

• One call to subroutine for Y.

Notation. X P Y.

Ex. Any linear reduction is a polynomial reduction.

Ex. All algorithms for which we know poly-time algorithms

 poly-time reduce to one another.

Poly-time reduction of X to Y makes sense

only when X or Y is not known to have a poly-time algorithm

critical detail (not obvious why)

26

Polynomial-time reductions for classifying problems

Goal. Classify and separate problems according to relative difficulty.

• tractable problems: can be solved in polynomial time.

• intractable problems: seem to require exponential time.

Establish tractability. If X P Y and Y is tractable then so is X.

• Solve Y in polynomial time.

• Use reduction to solve X.

Establish intractability. If Y P X and Y is intractable, then so is X.

• Suppose X can be solved in polynomial time.

• Then so could Y (through reduction).

• Contradiction. Therefore X is intractable.

Transitivity. If X P Y and Y P Z then X P Z.

Ex: all problems that reduce to LP are tractable

27

Literal: A Boolean variable or its negation.

Clause. A disjunction of 3 distinct literals.

Conjunctive normal form. A propositional

formula that is the conjunction of clauses.

3-SAT. Given a CNF formula consisting of k clauses over n literals,

does it have a satisfying truth assignment?

Applications: Circuit design, program correctness, [many others]

3-satisfiability

(¬x1 x2 x3) (x1 ¬x2 x3) (¬x1 ¬x2 ¬x3) (¬x1 ¬ x2 x4) (¬x2 x3 x4)

(¬T T F) (T ¬T F) (¬T ¬T ¬F) (¬T ¬T T) (¬T F T)
x1 x2 x3 x4

T T F T

xi or ¬xi

Cj = (x1 ¬x2 x3)

CNF = (C1 C2 C3 C4)

yes instance

(¬x1 x2 x3) (x1 ¬x2 x3) (¬x1 ¬x2 ¬x3) (¬x1 ¬ x2 ¬ x4) (¬x2 x3 x4)

no instance

3-satisfiability is intractable

Good news: easy algorithm to solve 3-SAT

 [check all possible solutions]

Bad news: running time is exponential in input size.

 [there are 2n possible solutions]

Worse news:

 no algorithm that guarantees subexponential running time is known

Implication:

• suppose 3-SAT poly-reduces to a problem A

• poly-time algorithm for A would imply poly-time 3-SAT algorithm

• we suspect that no poly-time algorithm exists for A!

Want to be convinced that a new problem is intractable?

Hard way: long futile search for an efficient algorithm (as for 3-SAT)

Easy way: reduction from a known intractable problem (such as 3-SAT)

28

hence, intricate reductions are common

29

Graph 3-colorability

3-COLOR. Given a graph, is there a way to color the vertices

red, green, and blue so that no adjacent vertices have the same color?

yes instance

30

Graph 3-colorability

3-COLOR. Given a graph, is there a way to color the vertices

red, green, and blue so that no adjacent vertices have the same color?

yes instance

3-COLOR. Given a graph, is there a way to color the vertices

red, green, and blue so that no adjacent vertices have the same color?

31

Graph 3-colorability

no instance

32

3-satisfiability reduces to graph 3-colorability

Claim. 3-SAT P 3-COLOR.

Pf. Given 3-SAT instance , we construct an instance of 3-COLOR

that is 3-colorable if and only if is satisfiable.

Construction.

(i) Create one vertex for each literal and 3 vertices

(ii) Connect in a triangle and connect each literal to B.

(iii) Connect each literal to its negation.

(iv) For each clause, attach a 6-vertex gadget [details to follow].

F T B

F T B

B

x1 ¬x1 x2 ¬x2 x3 ¬x3 xn ¬xn. . .

F

B

truefalse

base

T

33

3-satisfiability reduces to graph 3-colorability

Claim. If graph is 3-colorable then is satisfiable..

Pf.

• Consider assignment where corresponds to false and to true .

• (ii) [triangle] ensures each literal is true or false.

F

B

truefalse

base

x1 ¬x1 x2 ¬x2 x3 ¬x3 xn ¬xn. . .

T

F T

34

3-satisfiability reduces to graph 3-colorability

Claim. If graph is 3-colorable then is satisfiable..

Pf. Suppose graph is 3-colorable.

• Consider assignment where corresponds to false and to true .

• (ii) [triangle] ensures each literal is true or false.

• (iii) ensures a literal and its negation are opposites.

x1 ¬x1 x2 ¬x2 x3 ¬x3 xn ¬xn. . .

F

B

truefalse

base

T

F T

35

3-satisfiability reduces to graph 3-colorability

Claim. If graph is 3-colorable then is satisfiable.

Pf.

• Consider assignment where corresponds to false and to true .

• (ii) [triangle] ensures each literal is true or false.

• (iii) ensures a literal and its negation are opposites.

• (iv) [gadget] ensures at least one literal in each clause is true.

T F

B

6-node gadget

true false

(x1 ¬x2 x3)

x1 ¬x2 x3

F T

stay tuned

36

3-satisfiability reduces to graph 3-colorability

Claim. If graph is 3-colorable then is satisfiable.

Pf.

• Consider assignment where corresponds to false and to true .

• (ii) [triangle] ensures each literal is true or false.

• (iii) ensures a literal and its negation are opposites.

• (iv) [gadget] ensures at least one literal in each clause is true.

Therefore, is satisfiable.

T F

B

6-node gadget

true false

x1 ¬x2 x3

??

F F

(x1 ¬x2 x3)

37

3-satisfiability reduces to graph 3-colorability

Claim. If is satisfiable then graph is 3-colorable.

Pf.

• Color nodes corresponding to false literals T and to true literals F .

x1 ¬x2 x3

(x1 ¬x2 x3)

at least one
in each clause

38

3-satisfiability reduces to graph 3-colorability

Claim. If is satisfiable then graph is 3-colorable.

Pf.

• Color nodes corresponding to false literals T and to true literals F .

• Color vertex below one T vertex F , and vertex below that B .

T

x1 ¬x2 x3

39

3-satisfiability reduces to graph 3-colorability

Claim. If is satisfiable then graph is 3-colorable.

Pf.

• Color nodes corresponding to false literals T and to true literals F .

• Color vertex below one T vertex F , and vertex below that B .

• Color remaining middle row vertices B .

T

x1 ¬x2 x3

(x1 ¬x2 x3)

40

3-satisfiability reduces to graph 3-colorability

Claim. If is satisfiable then graph is 3-colorable.

Pf.

• Color nodes corresponding to false literals T and to true literals F .

• Color vertex below one T vertex F , and vertex below that B .

• Color remaining middle row vertices B .

• Color remaining bottom vertices T or F as forced.

Works for all gadgets, so graph is 3-colorable.

x1 ¬x2 x3

(x1 ¬x2 x3)

41

3-satisfiability reduces to graph 3-colorability

Claim. 3-SAT P 3-COLOR.

Pf. Given 3-SAT instance , we construct an instance of 3-COLOR

that is 3-colorable if and only if is satisfiable.

Construction.

(i) Create one vertex for each literal.

(ii) Create 3 new vertices T, F, and B; connect them in a triangle,

and connect each literal to B.

(iii) Connect each literal to its negation.

(iv) For each clause, attach a gadget of 6 vertices and 13 edges

Conjecture: No polynomial-time algorithm for 3-SAT

Implication: No polynomial-time algorithm for 3-COLOR.

Reminder

 Construction is not intended for use, just to prove 3-COLOR difficult

42

designing algorithms
proving limits
classifying problems
polynomial-time reductions
NP-completeness

43

More Poly-Time Reductions

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

Dick Karp
'85 Turing award

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING
Conjecture: no poly-time algorithm for 3-SAT.

(and hence none of these problems)

44

Cook’s Theorem

NP: set of problems solvable in polynomial time

 by a nondeterministic Turing machine

THM. Any problem in NP P 3-SAT.

Pf sketch.

Each problem P in NP corresponds to a TM M that accepts or rejects

any input in time polynomial in its size

Given M and a problem instance I, construct an instance of 3-SAT

that is satisfiable iff the machine accepts I.

Construction.

• Variables for every tape cell, head position, and state at every step.

• Clauses corresponding to each transition.

• [many details omitted]

45

Implications of Cook’s theorem

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems (any many more)
polynomial reduce to 3-SAT.

Stephen Cook
'82 Turing award

46

Implications of Karp + Cook

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING
Conjecture: no poly-time algorithm for 3-SAT.

(and hence none of these problems)

3-COLOR

reduces to 3-SAT

All of these problems poly-reduce to one another!

47

Poly-Time Reductions: Implications

48

Poly-Time Reductions: Implications

49

Poly-Time Reductions: Implications

50

Summary

Reductions are important in theory to:

• Establish tractability.

• Establish intractability.

• Classify problems according to their computational requirements.

Reductions are important in practice to:

• Design algorithms.

• Design reusable software modules.

stack, queue, sorting, priority queue, symbol table, set, graph

shortest path, regular expressions, linear programming

• Determine difficulty of your problem and choose the right tool.

use exact algorithm for tractable problems

use heuristics for intractable problems

1

Combinatorial Search

permutations
backtracking
counting
subsets
paths in a graph

2

Overview

Exhaustive search. Iterate through all elements of a search space.

Backtracking. Systematic method for examining feasible solutions

to a problem, by systematically eliminating infeasible solutions.

Applicability. Huge range of problems (include NP-hard ones).

Caveat. Search space is typically exponential in size

effectiveness may be limited to relatively small instances.

Caveat to the caveat. Backtracking may prune search space to

reasonable size, even for relatively large instances

1 1 1 0

1 1 0 0

1 0 0 0

0 0 0 0

3

Warmup: enumerate N-bit strings

Problem: process all 2N N-bit strings (stay tuned for applications).

Equivalent to counting in binary from 0 to 2N - 1.

• maintain a[i] where a[i] represents bit i

• initialize all bits to 0

• simple recursive method does the job

(call enumerate(0))

Invariant (prove by induction);

 Enumerates all (N-k)-bit strings and cleans up after itself.

private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
} clean up

starts with all 0s

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

example showing
cleanups that

zero out digits

ends with all 0s

4

Warmup: enumerate N-bit strings (full implementation)

Equivalent to counting in binary from 0 to 2N - 1.

public class Counter
{
 private int N; // number of bits
 private int[] a; // bits (0 or 1)

 public Counter(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = 0;
 enumerate(0);
 }

 private void enumerate(int k)
 {
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
 }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Counter c = new Counter(N);
 }
}

all the programs
in this lecture
are variations
on this theme

private void process()

{

 for (int i = 0; i < N; i++)

 StdOut.print(a[i]);

 StdOut.println();

}

optional
(in this case)

5

permutations
backtracking
counting
subsets
paths in a graph

6

N-rooks Problem

How many ways are there to place

 N rooks on an N-by-N board so that no rook can attack any other?

No two in the same row, so represent solution with an array

 a[i] = column of rook in row i.

No two in the same column, so array entries are all different

 a[] is a permutation (rearrangement of 0, 1, ... N-1)

Answer: There are N! non mutually-attacking placements.

Challenge: Enumerate them all.

int[] a = { 1, 2, 0, 3, 6, 7, 4, 5 };

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

original problem: N = 8

7

Enumerating permutations

Recursive algorithm to enumerate all N! permutations of size N:

• Start with 0 1 2 ... N-1.

• For each value of i
- swap i into position 0

- enumerate all (N-1)! arrangements of a[1..N-1]
- clean up (swap i and 0 back into position)

3 1 2 0
3 1 0 2
3 2 1 0
3 2 0 1
3 0 2 1
3 0 1 2

1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 2 0
1 3 0 2
1 3 2 0
1 0 2 3
0 1 2 3

2 1 0 3
2 1 3 0
2 0 1 3
2 0 3 1
2 3 0 1
2 3 1 0

3 followed by

perms of 1 2 0

0 followed by

perms of 1 2 3

1 followed by

perms of 0 2 3

2 followed by

perms of 1 0 3

0 1 2
0 2 1
1 0 2
1 2 0
2 1 0
2 0 1

0 1
1 0

0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 2 1
0 3 1 2

example showing cleanup swaps
that bring perm back to original

public class Rooks
{
 private int N;
 private int[] a;

 public Rooks(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = i;
 enumerate(0);
 }

 private void enumerate(int k)
 { /* See next slide. */ }

 private void exch(int i, int j)
 { int t = a[i]; a[i] = a[j]; a[j] = t; }

 private void process()
 {
 for (int i = 0; i < N; i++)
 StdOut.print(a[i] + " ");
 StdOut.println();
 }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Rooks t = new Rooks(N);
 t.enumerate(0);
 }
} 8

N-rooks problem (enumerating all permutations): scaffolding

initialize a[0..N-1] to 0..N-1

private void enumerate(int k)

{

 if (k == N)

 {

 process();

 return;

 }

 for (int i = k; i < N; i++)

 {

 exch(a, k, i);

 enumerate(k+1);

 exch(a, k, i);

 }

}

N-rooks problem (enumerating all permutations): recursive enumeration

9

clean up

Recursive algorithm to enumerate all N! permutations of size N:

• Start with 0 1 2 ... N-1.

• For each value of i
- swap i into position 0

- enumerate all (N-1)! arrangements of a[1..N-1]
- clean up (swap i and 0 back into position)

10

4-Rooks search tree

solutions

. . .

N-rooks problem: back-of-envelope running time estimate

[Studying slow way to compute N! but good warmup for calculations.]

11

% java Rooks 10

3628800 solutions

% java Rooks 11

39916800 solutions

% java Rooks 12

479001600 solutions

instant

about 2 seconds

about 24 seconds (checks with N! hypothesis)

Hypothesis: Running time is about 2(N! / 11!) seconds.

% java Rooks 25
millions of centuries

12

permutations
backtracking
counting
subsets
paths in a graph

How many ways are there to place

 N queens on an N-by-N board so that no queen can attack any other?

Representation. Same as for rooks:

 represent solution as a permutation: a[i] = column of queen in row i.

Additional constraint: no diagonal attack is possible

Challenge: Enumerate (or even count) the solutions
13

N-Queens problem

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

original problem: N = 8

int[] a = { 4, 6, 0, 2, 7, 5, 3, 1 };

14

4-Queens search tree

solutions

15

Iterate through elements of search space.

• when there are N possible choices, make one choice and recur.

• if the choice is a dead end, backtrack to previous choice,

and make next available choice.

Identifying dead ends allows us to prune the search tree

For N queens:

• dead end: a diagonal conflict

• pruning: backtrack and try next row when diagonal conflict found

In general, improvements are possible:

• try to make an “intelligent” choice

• try to reduce cost of choosing/backtracking

N Queens: Backtracking solution

16

4-Queens Search Tree (pruned)

Backtrack on diagonal conflicts

solutions

17

N-Queens: Backtracking solution

private boolean backtrack(int k)

{

 for (int i = 0; i < k; i++)

 {

 if ((a[i] - a[k]) == (k - i)) return true;

 if ((a[k] - a[i]) == (k - i)) return true;

 }

 return false;

}

private void enumerate(int k)

{

 if (k == N)

 {

 process();

 return;

 }

 for (int i = k; i < N; i++)

 {

 exch(a, k, i);

 if (! backtrack(k)) enumerate(k+1);

 exch(a, k, i);

 }

}

N-Queens: Effectiveness of backtracking

Pruning the search tree leads to enormous time savings

18

N

Q(N)

N!

2 3 4 5 6 7 8 9 10 11 12

0 0 2 10 4 40 92 352 724 2,680 14,200

2 6 24 120 720 5,040 40,320 362,880 3,628,800 39,916,800 479,001,600

N

Q(N)

N!

13 14 15 16

73,712 365,596 2,279,184 14,772,512

6,227,020,800 87,178,291,200 1 ,307,674,368,000 20, 922,789,888,000

 savings: factor of more than 1-million

N-Queens: How many solutions?

Answer to original question easy to obtain:

• add an instance variable to count solutions (initialized to 0)

• change process() to increment the counter

• add a method to return its value

19

N

Q(N)

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 2 10 4 40 92 352 724 2,680 14,200 73,712 365,596 2,279,184

N

Q(N)

16 17 18 19 25

14,772,512 95,815,104 666,090,624 4,968,057,848 . . . 2, 207,893,435,808,350

took 53 years of CPU time (2005)

Source: On-line encyclopedia of integer sequences, N. J. Sloane [sequence A000170]

N-queens problem: back-of-envelope running time estimate

Hypothesis ??

20

% java Queens 13

73712 solutions

% java Queens 14

365596 solutions

% java Queens 15

2279184 solutions

% java Queens 16

14772512 solutions

about a second

about 7 seconds

about 49 seconds

Hypothesis: Running time is about (N/2) ! seconds.

% java Queens 25
about 54 years

about 360 seconds

ratio

6.32

6.73

7.38

21

permutations
backtracking
counting
subsets
paths in a graph

22

Counting: Java Implementation

private static void enumerate(int k)
{
 if (k == N)
 { process(); return; }

 for (int n = 0; n < R; n++)
 {
 a[k] = n;
 enumerate(k + 1);
 }
 a[k] = 0;
}

Problem: enumerate all N-digit base-R numbers

Solution: generalize binary counter in lecture warmup

0 0 0
0 0 1
0 0 2
0 1 0
0 1 1
0 1 2
0 2 0
0 2 1
0 2 2

1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 1 2
1 2 0
1 2 1
1 2 2

2 0 0
2 0 1
2 0 2
2 1 0
2 1 1
2 1 2
2 2 0
2 2 1
2 2 2

private void enumerate(int k)

{

 if (k == N)

 { process(); return; }

 enumerate(k+1);

 a[k] = 1;

 enumerate(k+1);

 a[k] = 0;

} clean up

0 2 0
0 0 0

example showing
cleanups that

zero out digits

enumerate binary numbers (from warmup)enumerate N-digit base-R numbers

clean up not needed: Why?

23

8

5

2 1

3

4

3 8

1

2 6

9

9 6

7

4

5

7

Problem:

 Fill 9-by-9 grid so that every row, column, and box

 contains each of the digits 1 through 9.

Remark: Natural generalization is NP-hard.

Counting application: Sudoku

2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

24

Problem:

 Fill 9-by-9 grid so that every row, column, and box

 contains each of the digits 1 through 9.

Solution: Enumerate all 81-digit base-9 numbers (with backtracking).

Counting application: Sudoku

2 1

7 8

5

3

4

3 8

1

2 6

9

9 6

7

4

5

2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

using digits 1 to 9 8 67 1 3 4 5 3 8 … 80

2 60 1 3 4 5 7 8 80

25

Iterate through elements of search space.

• For each empty cell, there are 9 possible choices.

• Make one choice and recur.

• If you find a conflict in row, column, or box, then backtrack.

Improvements are possible.

• try to make an “intelligent” choice

• try to reduce cost of choosing/backtracking

Sudoku: Backtracking solution

5

2 1

3 8

1

2 6

9

6

7

4

5

2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

4

9

7 8 3

26

Sudoku: Java implementation

private static void solve(int cell)
{

 if (cell == 81)
 { show(board); return; }

 if (board[cell] != 0)
 { solve(cell + 1); return; }

 for (int n = 1; n <= 9; n++)
 {
 if (! backtrack(cell, n))
 {
 board[cell] = n;
 solve(cell + 1);
 }
 }

 board[cell] = 0;
}

clean up

try all 9 possibilities

unless a Sudoku
constraint is violated

(see booksite for code)

Works remarkably well (plenty of constraints). Try it!

already filled in

27

permutations
backtracking
counting
subsets
paths in a graph

28

Enumerating subsets: natural binary encoding

Given n items, enumerate all 2n subsets.

• count in binary from 0 to 2n - 1.

• bit i represents item i

• if 0, in subset; if 1, not in subset

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

empty
1
2
2 1
3
3 1
3 2
3 2 1
4
4 1
4 2
4 2 1
4 3
4 3 1
4 3 2

 4 3 2 1

4 3 2 1
4 3 2
4 3 1
4 3
4 2 1
4 2
4 1
4

3 2 1
3 2
3 1
3
2 1
2
1

empty

i binary subset complement

29

Enumerating subsets: natural binary encoding

Given N items, enumerate all 2N subsets.

• count in binary from 0 to 2N - 1.

• maintain a[i] where a[i] represents item i

• if 0, a[i] in subset; if 1, a[i] not in subset

Binary counter from warmup does the job

private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
}

30

Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit

one at a time, such that each subset of actors appears exactly once.

ruler function

31

Binary reflected gray code

The n-bit binary reflected Gray code is:

• the (n-1) bit code with a 0 prepended to each word, followed by

• the (n-1) bit code in reverse order, with a 1 prepended to each word.

32

Beckett: Java implementation

public static void moves(int n, boolean enter)
{
 if (n == 0) return;
 moves(n-1, true);
 if (enter) System.out.println("enter " + n);
 else System.out.println("exit " + n);
 moves(n-1, false);
}

% java Beckett 4

enter 1

enter 2

exit 1

enter 3

enter 1

exit 2

exit 1

enter 4

enter 1

enter 2

exit 1

exit 3

enter 1

exit 2

exit 1

stage directions
for 3-actor play
moves(3, true)

reverse stage directions
for 3-actor play
moves(3, false)

33

More Applications of Gray Codes

3-bit rotary encoder

Chinese ring puzzle

8-bit rotary encoder

Towers of Hanoi

34

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:

• flip a[k] instead of setting it to 1

• eliminate cleanup

Advantage (same as Beckett): only one item changes subsets

private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}

private void enumerate(int k)

{

 if (k == N)

 { process(); return; }

 enumerate(k+1);

 a[k] = 1;

 enumerate(k+1);

 a[k] = 0;

} clean up

standard binary (from warmup)Gray code enumeration

35

Scheduling

Scheduling (set partitioning). Given n jobs of varying length, divide

among two machines to minimize the time the last job finishes.

Remark: NP-hard.

1.41

1.73

2.00

2.23

0

0

2

3

lengthjob
or, equivalently, difference

between finish times

 public double[] finish(int[] a)
 {
 double[] time = new double[2];
 time[0] = 0.0; time[1] = 0.0;
 for (int i = 0; i < N; i++)
 time[a[i]] += jobs[i];
 return time;
 }

 private double cost(int[] a)
 {
 double[] time = finish(a);
 return Math.abs(time[0] - time[1]);
 }

2

1

3

0

3

1 2

machine 0

machine 1

machine 0

machine 1

cost

1

i a[] time[0] time[1]

 0 1 1 0 1.41 0
0 0 1 1 0 1.41 0
1 0 1 1 0 1.41 1.73
2 0 1 1 0 1.41 3.73
3 0 1 1 0 3.64 3.73
 3.64 3.73

 cost: .09

36

Scheduling (full implementation)

public class Scheduler
{
 int N; // Number of jobs.
 int[] a; // Subset assignments.
 int[] b; // Best assignment.
 double[] jobs; // Job lengths.

 public Scheduler(double[] jobs)
 {
 this.N = jobs.length;;
 this.jobs = jobs;
 a = new int[N];
 b = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = 0;
 for (int i = 0; i < N; i++)
 b[i] = a[i];
 enumerate(0);
 }

 public int[] best()
 { return b; }

 private void enumerate(int k)
 { /* Gray code enumeration. */ }

 private void process()
 {
 if (cost(a) < cost(b))
 for (int i = 0; i < N; i++)
 b[i] = a[i];
 }

 public static void main(String[] args)
 { /* Create Scheduler, print result. */ }
}

% java Scheduler 4 < jobs.txt

a[] finish times cost

trace of

Large number of subsets leads to remarkably low cost

Scheduling (larger example)

37

 java SchedulerEZ 24 < jobs.txt

 MACHINE 0 MACHINE 1

 1.4142135624

 1.7320508076

 2.0000000000

 2.2360679775

 2.4494897428

 2.6457513111

 2.8284271247

 3.0000000000

 3.1622776602

 3.3166247904

 3.4641016151

 3.6055512755

 3.7416573868

 3.8729833462

 4.0000000000

 4.1231056256

 4.2426406871

 4.3588989435

 4.4721359550

 4.5825756950

 4.6904157598

 4.7958315233

 4.8989794856

 5.0000000000

 42.3168901295 42.3168901457

Scheduling: improvements

Many opportunities (details omitted)

• fix last job on machine 0 (quick factor-of-two improvement)

• backtrack when partial schedule cannot beat best known

(check total against goal: half of total job times)

• process all 2k subsets of last k jobs, keep results in memory,

(reduces time to 2N-k when 2k memory available).

38

private void enumerate(int k)
{
 if (k == N-1)
 { process(); return; }
 if (backtrack(k)) return;
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}

Backtracking summary

N-Queens : permutations with backtracking

Soduko : counting with backtracking

Scheduling: subsets with backtracking

39

40

permutations
backtracking
counting
subsets
paths in a graph

41

Hamilton Path

Hamilton path. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.

visit every edge
exactly once

42

Knight's Tour

Knight's tour. Find a sequence of moves for a knight so that, starting

from any square, it visits every square on a chessboard exactly once.

Solution. Find a Hamilton path in knight's graph.

legal knight moves a knight's tour

43

Hamilton Path: Backtracking Solution

Backtracking solution. To find Hamilton path starting at v:

• Add v to current path.

• For each vertex w adjacent to v

find a simple path starting at w using all remaining vertices

• Remove v from current path.

How to implement?

 Add cleanup to DFS (!!)

44

Hamilton Path: Java implementation

public class HamiltonPath
{
 private boolean[] marked;
 private int count;

 public HamiltonPath(Graph G)
 {
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 dfs(G, v, 1);
 count = 0;
 }

 private void dfs(Graph G, int v, int depth)
 {
 marked[v] = true;

 if (depth == G.V()) count++;

 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w, depth+1);

 marked[v] = false;
 }
}

also need code to

count solutions

(path length = V)

clean up

Easy exercise: Modify this code to find and print the longest path

45

The Longest Path

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988 while a student at Johns Hopkins during a difficult algorithms final.

	00overview.key
	01UnionFind.key
	02StackQueue.key
	03Analysis.key
	04Sorting.key
	05AdvTopicsSorting.key
	06PriorityQueues.key
	07SymbolTables.key
	08BinarySearchTrees.key
	09BalancedTrees.key
	10Hashing.key
	11UndirectedGraphs.key
	13DirectedGraphs.key
	14MST.key
	15ShortestPaths.key
	16Geometric.key
	17GeometricSearch.key
	18RadixSort.key
	19Tries.key
	20Compression.key
	21PatternMatching.key
	22LinearProgramming.key
	23Reductions.key
	24CombinatorialSearch.key

