Computer Science 226 Algorithms and Data Structures Fall 2007

Instructors:
Bob Sedgewick Kevin Wayne

Course Overview

- outline
- why study algorithms?
- usual suspects
- coursework
- resources (web)
- resources (books)

COS 226 course overview

What is COS 226?

- Intermediate-level survey course.
- Programming and problem solving with applications.
- Algorithm: method for solving a problem.
- Data structure: method to store information.

Topic	Data Structures and Algorithms
data types	stack, queue, list, union-find, priority queue
sorting	quicksort, mergesort, heapsort, radix sorts
searching	hash table, BST, red-black tree, B-tree
graphs	BFS, DFS, Prim, Kruskal, Dijkstra
strings	KMP, Rabin-Karp, TST, Huffman, LZW
geometry	Graham scan, k-d tree, Voronoi diagram

Why study algorithms?

Their impact is broad and far-reaching

Internet. Web search, packet routing, distributed file sharing.
Biology. Human genome project, protein folding.
Computers. Circuit layout, file system, compilers.
Computer graphics. Movies, video games, virtual reality.
Security. Cell phones, e-commerce, voting machines.
Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV.
Transportation. Airline crew scheduling, map routing.
Physics. N-body simulation, particle collision simulation.

Why study algorithms?

Old roots, new opportunities

Study of algorithms dates at least to Euclid

Some important algorithms were discovered by undergraduates!

Why study algorithms?

To be able solve problems that could not otherwise be addressed
Example: Network connectivity
[stay tuned]

Why study algorithms?

For intellectual stimulation

For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing. - Francis Sullivan

An algorithm must be seen to be believed. - D. E. Knuth

Why study algorithms?

They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models in scientific enquiry

$$
\begin{gathered}
E=m c^{2} \\
F=m a \quad F=\frac{G m_{1} m_{2}}{r^{2}} \\
{\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r)\right] \Psi(r)=E \Psi(r)} \\
\begin{array}{c}
\text { 20th century science } \\
\text { (formula based) }
\end{array}
\end{gathered}
$$

```
for (double t = 0.0; true; t = t + dt)
    for (int i = 0; i < N; i++)
    { bodies[i].resetForce();
        for (int j = 0; j < N; j++)
            if (i != j)
                bodies[i].addForce (bodies[j]);
    }
```

21st century science
(algorithm based)

Algorithms: a common language for nature, human, and computer.

- Avi Wigderson

Why study algorithms?

For fun and profit

MorganStanley

Mferosoil

YAHOO!

P I X A R

Why study algorithms?

- Their impact is broad and far-reaching
- Old roots, new opportunities
- To be able to solve problems that could not otherwise be addressed
- For intellectual stimulation
- They may unlock the secrets of life and of the universe
- For fun and profit

Why study anything else?

The Usual Suspects

Lectures: Bob Sedgewick

- TTh 11-12:20, Bowen 222
- Office hours T 3-5 at Cafe Viv in Frist

Course management (everything else): Kevin Wayne
Precepts: Kevin Wayne

- Thursdays.

1: 12:30 Friend 110
2: 3:30 Friend 109

- Discuss programming assignments, exercises, lecture material.
- First precept meets Thursday 9/20
- Kevin's office hours TBA

Need a precept time? Need to change precepts?

- email Donna O'Leary (CS ugrad coordinator)
doleary@cs.princeton.edu

Check course web page for up-to-date info

Coursework and Grading

7-8 programming assignments. 45\%

- Due 11:55pm, starting Monday 9/24.
- Available via course website.

Weekly written exercises. 15\%

- Due at beginning of Wednesday lecture, starting 9/24.
- Available via course website.

Exams.

- Closed-book with cheatsheet.
- Midterm. 15\%
- Final. 25%

Staff discretion. Adjust borderline cases.

- Participation in lecture and precepts
- Everyone needs to meet us both at office hours!

Challenge for the bored. Determine importance of 45-15-15-25 weights

Resources (web)

Course content.
http://www.princeton.edu/~cos226

- syllabus
- exercises

Princeton University $\quad \begin{gathered}\text { Computer Science } 226 \\ \text { Algorithms and Data Structur }\end{gathered}$ Algorithms and Data Structures Spring 2007 Spring 2007

Course Information | A ssignmens | Exercises | Lestures

COURSE INFORMATION

Description. This counce sumceys the noxt important algorithms and data scructures in use on computers oday. Parkcular emphassis is given wo alpogithms for soring, searching, and sting

- lecture slides
- programming assignments (description, code, test data, checklists)

Course administration.
https://moodle.cs.princeton.edu/course/view.php?id=24

- programming assignment submission.
- grades.

Booksites.
http://www.cs.princeton.edu/Introcs
http://www.cs.princeton.edu/IntroAlgsDS

- brief summary of content.
- code.
- links to web content.

Resources (books)

Algorithms in Java, $3^{\text {rd }}$ edition

- Parts 1-4. [sorting, searching]
- Part 5. [graph algorithms]

Introduction to Programming in Java

- basic programming model
- elementary Aof A and data structures

Algorithms in Pascal(!)/C/C++, $2^{\text {nd }}$ edition

- strings
- elementary geometric algorithms

Algorithms, $4^{\text {th }}$ edition
(in preparation)

Union-Find

Union-Find Algorithms

- network connectivity
- quick find
- quick union
- improvements
- applications

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Define the problem.
- Find an algorithm to solve it.
- Fast enough?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java
> network connectivity
quick find
quick union

- improvements
- applications

Network connectivity

Basic abstractions

- set of objects
- union command: connect two objects
- find query: is there a path connecting one object to another?

Objects

Union-find applications involve manipulating objects of all types.

- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Variable name aliases.
- Pixels in a digital photo.
- Metallic sites in a composite system.

When programming, convenient to name them 0 to $\mathrm{N}-1$.

- Hide details not relevant to union-find.
- Integers allow quick access to object-related info.
- Could use symbol table to translate from object names

Union-find abstractions

Simple model captures the essential nature of connectivity.

- Objects.

$$
\begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { grid points }
\end{array}
$$

- Disjoint sets of objects.

```
0 1 {2 3 9 } { 5 6 } 7 { 4 8 } subsets of connected grid points
```

- Find query: are objects 2 and 9 in the same set?

```
0 1 {2 3 9 } { 5-6 } 7 { 4-8 } are two grid points connected?
```

- Union command: merge sets containing 3 and 8.

```
0 1 {2 3 4 8 9 } { 5-6 }
```

add a connection between two grid points

Connected components

Connected component: set of mutually connected vertices

Each union command reduces by 1 the number of components

Network connectivity: larger example
find (u, v) ?

Network connectivity: larger example

Union-find abstractions

- Objects.
- Disjoint sets of objects.
- Find queries: are two objects in the same set?
- Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

- Find queries and union commands may be intermixed.
- Number of operations M can be huge.
- Number of objects N can be huge.

Dnetwork connectivity
> quick find
quick union
improvements
D applications

Quick-find [eager approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: p and q are connected if they have the same id.

$$
\begin{array}{ccccccccccc}
\text { i } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
i d[i] & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 8 & 9
\end{array}
$$

5 and 6 are connected
2,3,4, and 9 are connected

Quick-find [eager approach]

Data structure.

- Integer array id[] of size n.
- Interpretation: p and q are connected if they have the same id.

$$
\begin{array}{ccccccccccc}
\text { i } & 0 & 1 & 2 & 3 & \mathbf{4} & \mathbf{5} & 6 & \mathbf{7} & \mathbf{8} & 9 \\
\text { id[i] } & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 8 & 9
\end{array}
$$

5 and 6 are connected
2,3,4, and 9 are connected

Find. Check if p and q have the same id.

Union. To merge components containing p and q , change all entries with id[p] to id[q].

union of 3 and 6
$2,3,4,5,6$, and 9 are connected

Quick-find example

$$
\begin{array}{llllllllllll}
3-4 & 0 & 1 & 2 & 4 & 4 & 5 & 6 & 7 & 8 & 9 \\
4-9 & 0 & 1 & 2 & 9 & 9 & 5 & 6 & 7 & 8 & 9 \\
8-0 & 0 & 1 & 2 & 9 & 9 & 5 & 6 & 7 & 0 & 9 \\
2-3 & 0 & 1 & 9 & 9 & 9 & 5 & 6 & 7 & 0 & 9 \\
\hline 5-6 & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 0 & 9 \\
& & 0 & 1 & 9 & 9 & 9 & 9 & 9 & 7 & 0 & 9 \\
5-9 & 0 & 1 & 9 & 9 & 9 & 9 & 9 & 9 & 0 & 9 \\
7-3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
4-8 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

Quick-find: Java implementation

```
public class QuickFind
{
    private int[] id;
    public QuickFind(int N)
    {
        id = new int[N];
        for (int i = 0; i < N; i++)
            id[i] = i;
    }
    public boolean find(int p, int q)
    {
        return id[p] == id[q];
    }
    public void unite(int p, int q)
    {
        int pid = id[p];
        for (int i = 0; i < id.length; i++)
        if (id[i] == pid) id[i] = id[q];
    }
}
```

set id of each object to itself

1 operation

Noperations

Quick-find is too slow
Quick-find algorithm may take ~MN steps
to process M union commands on N objects
Rough standard (for now).

- 10^{9} operations per second.
- 10^{9} words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10^{10} edges connecting 10^{9} nodes.
- Quick-find takes more than 10^{19} operations.
- 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be $10 x$ as fast.
- But, has $10 x$ as much memory so problem may be $10 x$ bigger.
- With quadratic algorithm, takes $10 x$ as long!
network connectivity quick find
quick union
improvements
applications

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

i	0	1	2	3	4	5	6	7	8	9
id [i]	0	1	9	4	9	6	6	7	8	9

3's root is 9; 5's root is 6

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]....]].

$$
\begin{array}{ccccccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
i d[i] & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 8 & 9
\end{array}
$$

3's root is 9; 5's root is 6
Union. Set the id of q 's root to the id of p s root.

Find. Check if p and q have the same root.

Quick-union example

```
3-4}0
4-9 0
8-0 0
2-3 }0
5-6 0
5-9 0
7-3 0
4-8 0
6-1
```


Quick-union: Java implementation

```
public class QuickUnion
{
    private int[] id;
    public QuickUnion(int N)
    {
        id = new int[N]
        for (int i = 0; i < N; i++) id[i] = i;
    }
    private int root(int i)
    {
        while (i != id[i]) i = id[i];
        return i;
    }
    public boolean find(int p, int q)
    {
        return root (p) == root(q);
    }
    public void unite(int p, int q)
    {
        int i = root(p);
        int j = root(q);
        id[i] = j;
    }
}
```

time proportional to depth of i
time proportional to depth of p and q
time proportional to depth of p and q

Quick-union is also too slow
Quick-find defect.

- Union too expensive (N steps).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N steps)
- Need to do find to do union

algorithm	union	find
Quick-find	N	1
Quick-union	N^{*}	N
* includes cost of find		

> network connectivity \downarrow quick find quick union

> improvements

> applications

Improvement 1: Weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each component.
- Balance by linking small tree below large one.

Ex. Union of 5 and 3.

- Quick union: link 9 to 6.
- Weighted quick union: link 6 to 9 .
size

Weighted quick-union example

```
3-4}0
```



```
2-3
5-6
5-9
7-3 8
4-8
6-1 
(0) (1) (2) (3) (5) (6) (7) (8) (5)
(0) (1) (2) (4) (3) (5) (5) (7) (8)
    (8) (1) (2) (4) (3) (5) (5) (7)
    (8) (1) (2) (4) (9) (5) (5) (7)
        (8)(1) (2) (4) (9) (5) (7)
        (8)(1) (2) (4) (5) (5) (7)
        (8) (1)
        (8)(2)(4)(5) (7)(9)
no problem: trees stay flat
\longrightarrow
(8)(1)(2) (4) (5) (7)(9)
```

Weighted quick-union: Java implementation
Java implementation.

- Almost identical to quick-union.
- Maintain extra array sz[] to count number of elements in the tree rooted at i.

Find. Identical to quick-union.
Union. Modify quick-union to

- merge smaller tree into larger tree
- update the sz[] array.

```
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else sz[i] < sz[j] { id[j] = i; sz[i] += sz[j]; }
```

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.
- Fact: depth is at most $\lg \mathrm{N}$. [needs proof]

Data Structure	Union	Find
Quick-find	N	1
Quick-union	$N *$	N
Weighted QU	$\lg N *$	$\lg N$
	$*$ includes cost of find	

Stop at guaranteed acceptable performance? No, easy to improve further.

Improvement 2: Path compression

Path compression. Just after computing the root of i, set the id of each examined node to root(i).

Weighted quick-union with path compression

Path compression.

- Standard implementation: add second loop to root () to set the id of each examined node to the root.
- Simpler one-pass variant: make every other node in path point to its grandparent.

```
public int root(int i)
{
    while (i != id[i])
    {
        id[i] = id[id[i]];
    only one extra line of code!
```

In practice. No reason not to! Keeps tree almost completely flat.

Weighted quick-union with path compression

```
3-4}0
4-9
8-0 8
\[
\text { (1) (1) (2) (4) }{ }^{3} \text { (9) © (8) (7) (8) }
\]
2-3
\[
\text { (8) (1) (2) © } \text { ¢ }^{3} \text { (9) (5) (6) (7) }
\]
5-6
\[
\text { (9) }^{(1)} \text { (2) }^{3} \text { (4) (5) © (ㄷ) }
\]
5-9 8
\[
\text { ®(1) (1) } \left._{(4)}^{8}\right)^{(3)}{ }^{(3)}
\]
7-3 
```

```
4-8
6-1}48%3\mp@code{3
(1) (1) (2) (3) (5) © ( ) (3) (9)
```



```
no problem: trees stay VERY flat \(\longrightarrow\) (8-(1)(2) (4) (5) (6) (7) (9)
```


WQUPC performance

Theorem. Starting from an empty data structure, any sequence of M union and find operations on N objects takes $O(N+M \lg * N)$ time.

- Proof is very difficult.
- But the algorithm is still simple!
number of times needed to take
the \lg of a number until reaching 1

Linear algorithm?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

N	$l^{*} N$
1	0
2	1
4	2
16	3
65536	4
265536	5

Amazing fact:

- In theory, no linear linking strategy exists

Summary

Algorithm	Worst-case time
Quick-find	$M N$
Quick-union	$M N$
Weighted QU	$N+M \log N$
Path compression	$N+M \log N$
Weighted + path	$(M+N) \lg *$
M union-find ops on a set of N objects	

Ex. Huge practical problem.

- 10^{10} edges connecting 10^{9} nodes.
- WQUPC reduces time from 3,000 years to 1 minute.
- Supercomputer won'† help much.
- Good algorithm makes solution possible.

Bottom line.
WQUPC makes it possible to solve problems that could not otherwise be addressed
> network connectivity quick find
quick union
improvements
> applications

Union-find applications

\checkmark Network connectivity.

- Percolation.
- Image processing.
- Least common ancestor.
- Equivalence of finite state automata.
- Hinley-Milner polymorphic type inference.
- Kruskal's minimum spanning tree algorithm.
- Games (Go, Hex)
- Compiling equivalence statements in Fortran.

Percolation

A model for many physical systems

- N-by-N grid.
- Each square is vacant or occupied.
- Grid percolates if top and bottom are connected by vacant squares.

model	system	vacant site	occupied site	percolates
electricity	material	conductor	insulated	conducts
fluid flow	material	empty	blocked	porous
social interaction	population	person	empty	communicates

Percolation phase transition

Likelihood of percolation depends on site vacancy probability p

phigh: percolates

Experiments show a threshold p^{*}

- $p>p^{*}$: almost certainly percolates
- $p<p^{\star}$: almost certainly does not percolate

UF solution to find percolation threshold

- Initialize whole grid to be "not vacant"
- Implement "make site vacant" operation
that does union() with adjacent sites
- Make all sites on top and bottom rows vacant
- Make random sites vacant until find(top, bottom)
- Vacancy percentage estimates p*
top

0	0	0	0	0	0	0	0	0	0	0	0
2	3	4	5	6	7	8	9	10	11	12	0
14	15	16	16	16	16	20	21	22	23	24	0
14	14	28	29	30	31	32	33	34	35	36	0
14	39	40	1	42	43	32	45	46	1	1	49
50	1	52	1	54	55	56	57	58	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

vacant
bottom

Percolation

Q. What is percolation threshold p^{*} ?
A. about 0.592746 for large square lattices.
\uparrow
percolation constant known
only via simulation

percolates

does not percolate
Q. Why is UF solution better than solution in IntroProgramming 2.4?

Hex

Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

- Two players alternate in picking a cell in a hex grid.
- Black: make a black path from upper left to lower right.
- White: make a white path from lower left to upper right.

Reference: http://mathworld.wolfram.com/GameofHex.html

Union-find application. Algorithm to detect when a player has won.

Subtext of today's lecture (and this course)

Steps to developing an usable algorithm.

- Define the problem.
- Find an algorithm to solve it.
- Fast enough?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java

Collaboration policy

Programs: Do not use someone else's code unless specifically authorized

Exceptions

- Code from course materials OK [cite source]
- Coding with partner OK after first assignment [stay tuned]

Where to get help

- Email (but no code in email)
- Office hours
- Lab TAs in Friend 008/009
- Bounce ideas (but not code) off classmates

Note: Programming in groups except as above is a serious violation.

Exercises: Write up your own solutions (no copying)

- working with classmates is encouraged
- checking solutions is OK

Stacks and Queues

- stacks
dynamic resizing
- queues
generics
- applications

Stacks and Queues

Fundamental data types.

- Values: sets of objects
- Operations: insert, remove, test if empty.
- Intent is clear when we insert.
- Which item do we remove?

Stack.

- Remove the item most recently added.
- Analogy: cafeteria trays, Web surfing.

Queue.
FIFO = "first in first out"

- Remove the item least recently added.
- Analogy: Registrar's line.

Client, Implementation, Interface

Separate interface and implementation so as to:

- Build layers of abstraction.
- Reuse software.
- Ex: stack, queue, symbol table.

Interface: description of data type, basic operations. Client: program using operations defined in interface. Implementation: actual code implementing operations.

Client, Implementation, Interface

Benefits.

- Client can't know details of implementation \Rightarrow client has many implementation from which to choose.
- Implementation can't know details of client needs \Rightarrow many clients can re-use the same implementation.
- Design: creates modular, re-usable libraries.
- Performance: use optimized implementation where it matters.

Interface: description of data type, basic operations. Client: program using operations defined in interface. Implementation: actual code implementing operations.

Stacks

Stack operations.

- push() Insert a new item onto stack.
- pop () Remove and return the item most recently added.
- isEmpty () Is the stack empty?


```
public static void main(String[] args)
{
    StackOfStrings stack = new StackOfStrings();
    while(!StdIn.isEmpty())
    {
        String s = StdIn.readString();
        stack.push(s);
    }
    while(!stack.isEmpty())
    {
        String s = stack.pop();
        StdOut.println(s);
    }
}

\section*{Stack pop: Linked-list implementation}


\section*{Stack push: Linked-list implementation}

```

second = first;

```
```

first = new Node();

```
```

first.item = item;
first.next = second;

```

\section*{Stack: Linked-list implementation}
```

public class StackOfStrings
{
private Node first = null;
private class Node
{
String item; « "inner class"
Node next;
}
public boolean isEmpty()
{ return first == null; }
public void push(String item)
{
Node second = first;
first = new Node();
first.item = item;
first.next = second;
}
public String pop()
{
String item = first.item;
first = first.next;
return item;
}
}

```

\section*{Error conditions?}

Example: pop() an empty stack

COS 217: bulletproof the code
COS 226: first find the code we want to use

\section*{Stack: Array implementation}

Array implementation of a stack.
- Use array s[] to store \(\mathbf{n}\) items on stack.
- push() add new item at \(s[\mathrm{~N}]\).
- pop() remove item from s[N-1].


\section*{Stack: Array implementation}
```

public class StackOfStrings
{
private String[] s;
private int N = 0;
public StringStack(int capacity)
{ s = new String[capacity]; }
public boolean isEmpty()
{ return N == 0; }
public void push(String item)
{ s[N++] = item; }
public String pop()
{
String item = s[N-1];
s[N-1] = null;
N--;
return item;
}
}

```
```

avoid loitering

```
avoid loitering
(garbage collector only reclaims memory
(garbage collector only reclaims memory
if no outstanding references)
```

if no outstanding references)

```

\section*{stacks}
dynamic resizing
queues
> generics
, applications

Stack array implementation: Dynamic resizing
Q. How to grow array when capacity reached?
Q. How to shrink array (else it stays big even when stack is small)?

First try:
- push(): increase size of \(s[]\) by 1
- pop() : decrease size of \(s[]\) by 1

Too expensive
- Need to copy all of the elements to a new array.
- Inserting \(N\) elements: time proportional to \(1+2+\ldots+N \approx N^{2} / 2\).
infeasible for large \(N\)

Need to guarantee that array resizing happens infrequently

Stack array implementation: Dynamic resizing
Q. How to grow array?
A. Use repeated doubling:
if array is full, create a new array of twice the size, and copy items
no-argument constructor
create new array copy items to it
```

public StackOfStrings()
{ this(8); }
public void push(String item)
{
if (N >= s.length) resize();
s[N++] = item;
}
private void resize(int max)
{
String[] dup = new String[max];
for (int i = 0; i < N; i++)
dup[i] = s[i];
s = dup;
}

```

Consequence. Inserting \(N\) items takes time proportional to \(N\left(\operatorname{not} N^{2}\right)\).

Stack array implementation: Dynamic resizing
Q. How (and when) to shrink array?

How: create a new array of half the size, and copy items.
When (first try): array is half full?
No, causes thrashing
(push-pop-push-pop-... sequence: time proportional to \(N\) for each op)
When (solution): array is \(1 / 4\) full (then new array is half full).
```

public String pop(String item)
{
String item = s[--N]; Nota.length/2
sa[N] = null; to avoid thrashing
if (N == s.length/4)
resize(s.length/2);
return item;
}

```

Consequences.
- any sequence of \(N\) ops takes time proportional to \(N\)
- array is always between \(25 \%\) and \(100 \%\) full

\section*{Stack Implementations: Array vs. Linked List}

Stack implementation tradeoffs. Can implement with either array or linked list, and client can use interchangeably. Which is better?

Array.
- Most operations take constant time.
- Expensive doubling operation every once in a while.
- Any sequence of \(N\) operations (starting from empty stack) takes time proportional to N .
"amortized" bound
Linked list.
- Grows and shrinks gracefully.
- Every operation takes constant time.
- Every operation uses extra space and time to deal with references.

Bottom line: tossup for stacks
but differences are significant when other operations are added

Stack implementations: Array vs. Linked list

Which implementation is more convenient?
array? linked list?
return count of elements in stack
remove the kth most recently added
sample a random element
> stacks
dynamic resizing
- queues
generics
D applications

\section*{Queues}

Queue operations.
- enqueue () Insert a new item onto queue.
- dequeue () Delete and return the item least recently added.
- isEmpty () Is the queue empty?
```

public static void main(String[] args)
{
QueueOfStrings q = new QueueOfStrings();
q.enqueue("Vertigo");
q.enqueue("Just Lose It");
q.enqueue("Pieces of Me");
q.enqueue("Pieces of Me");
System.out.println(q.dequeue());
q.enqueue("Drop It Like It's Hot");
while(!q.isEmpty()
System.out.println(q.dequeue());
}

```


Dequeue: Linked List Implementation


Aside:
dequeue (pronounced "DQ") means "remove from a queue" deque (pronounced "deck") is a data structure (see PA 1)

\section*{Enqueue: Linked List Implementation}

\[
\begin{aligned}
& \mathbf{x}=\text { new Node (); } \\
& \mathbf{x . i t e m ~}=\text { item; } \\
& \mathbf{x . n e x t ~}=\text { null; }
\end{aligned}
\]
\[
\text { last. next }=\mathbf{x} \text {; }
\]
\[
\text { last }=\mathbf{x} \text {; }
\]

Queue: Linked List Implementation
```

public class QueueOfStrings
{
private Node first;
private Node last;
private class Node
{ String item; Node next; }
public boolean isEmpty()
{ return first == null; }
public void enqueue(String item)
{
Node x = new Node();
x.item = item;
x.next = null;
if (isEmpty()) { first = x; last = x; }
else { last.next = x; last = x; }
}
public String dequeue()
{
String item = first.item;
first = first.next;
return item;
}
}

```

Queue: Array implementation

Array implementation of a queue.
- Use array q[] to store items on queue.
- enqueue (): add new object at q[tail].
- dequeue (): remove object from q[head].
- Update head and tail modulo the capacity.

[details: good exercise or exam question]

\section*{> stacks}
dynamic resizing queues

\section*{generics}
> applications

\section*{Generics (parameterized data types)}

We implemented: StackOfStrings, QueueOfStrings.

We also want: StackOfURLs, QueueOfCustomers, etc?

Attempt 1. Implement a separate stack class for each type.
- Rewriting code is tedious and error-prone.
- Maintaining cut-and-pasted code is tedious and error-prone.
@\#\$*! most reasonable approach until Java 1.5 [hence, used in AlgsJava]

\section*{Stack of Objects}

We implemented: StackOfStrings, QueueOfStrings.
We also want: StackOfURLs, QueueOfCustomers, etc?

Attempt 2. Implement a stack with items of type object.
- Casting is required in client.
- Casting is error-prone: run-time error if types mismatch.
```

Stack s = new Stack();
Apple a = new Apple();
Orange b = new Orange();
s.push(a);
s.push(b);
a = (Apple) (s.pop());

Generics

Generics. Parameterize stack by a single type.

- Avoid casting in both client and implementation.
- Discover type mismatch errors at compile-time instead of run-time.

no cast needed in client

Guiding principles.

- Welcome compile-time errors
- Avoid run-time errors

Why?

Generic Stack: Linked List Implementation

```
public class StackOfStrings
{
    private Node first = null;
    private class Node
    {
        String item;
        Node next;
    }
    public boolean isEmpty()
    { return first == null; }
    public void push(String item)
    {
        Node second = first;
        first = new Node();
        first.item = item;
        first.next = second;
    }
    public String pop()
    {
        String item = first.item;
        first = first.next;
        return item;
    }
}
```

```
public class Stack<Item>
{
    private Node first = hull;
    private class Node
    {
        Item〈i\tauem;
        Node next;
    }
    public boolean isEmpty()
    { return first == n/all; }
    public void push/ftem item)
    {
        Node second/= first;
        first = new Node();
        first.iterm = item;
        first.nezt = second;
    }
    public Ftem pop()
    {
        Item item = first.item;
        first = first.next;
        return item;
    }
}
```

Generic stack: array implementation
The way it should be.

```
public class Stack<Item>
{
    private Item[] s;
    private int N = 0;
    public Stack(int cap)
    { s = new Item[cap]; }
    public boolean isEmpty()
    { return N == 0;}
    public void push(Item item)
    { s[N++] = item;
    public String pop()
    {
        Item item = s[N-1];
        s[N-1] = null;
        N--;
        return item;
    }
}
```

```
public class StackOfStrings
```

public class StackOfStrings
{
{
private String[] s;
private String[] s;
private int N = 0;
private int N = 0;
public StackOfStrings(int cap)
public StackOfStrings(int cap)
{ s = new String[cap]; }
{ s = new String[cap]; }
public boolean isEmpty()
public boolean isEmpty()
{ return N == 0; }
{ return N == 0; }
public void push(String item)
public void push(String item)
{ s[N++] = item; }
{ s[N++] = item; }
public String pop()
public String pop()
{
{
String item = s[N-1];
String item = s[N-1];
s[N-1] = null;
s[N-1] = null;
N--;
N--;
return item;
return item;
}
}
}
}
@\#\$*! generic array creation not allowed in Java

```

Generic stack: array implementation
The way it is: an ugly cast in the implementation.
```

public class Stack<Item>
{
private Item[] s;
private int N = 0;
public Stack(int cap)
{ s = (Item[]) new Object[cap]; } }\longleftarrow< the ugly cas
public boolean isEmpty()
{ return N == 0; }
public void push(Item item)
{ s[N++] = item; }
public String pop()
{
Item item = s[N-1];
s[N-1] = null;
N--;
return item;
}
}

```

Number of casts in good code: 0

\section*{Generic data types: autoboxing}

Generic stack implementation is object-based.

What to do about primitive types?

Wrapper type.
- Each primitive type has a wrapper object type.
- Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.
Syntactic sugar. Behind-the-scenes casting.
```

Stack<Integer> s = new Stack<Integer>();
s.push(17); // s.push(new Integer(17));
int a = s.pop(); // int a = ((int) s.pop()).intValue();

```

Bottom line: Client code can use generic stack for any type of data
> stacks
dynamic resizing
queues
generics
> applications

\section*{Stack Applications}

Real world applications.
- Parsing in a compiler.
- Java virtual machine.
- Undo in a word processor.
- Back button in a Web browser.
- PostScript language for printers.
- Implementing function calls in a compiler.

\section*{Function Calls}

How a compiler implements functions.
- Function call: push local environment and return address.
- Return: pop return address and local environment.

Recursive function. Function that calls itself. Note. Can always use an explicit stack to remove recursion.


\section*{Arithmetic Expression Evaluation}

Goal. Evaluate infix expressions.
\[
(1+(\underbrace{2}_{\text {operand }}+3) *(4 \underbrace{* 5)}_{\text {operator }})
\]

Two-stack algorithm. [E. W. Dijkstra]
- Value: push onto the value stack.
- Operator: push onto the operator stack.
- Left parens: ignore.
- Right parens: pop operator and two values; push the result of applying that operator to those values onto the operand stack.

Context. An interpreter!

\section*{Arithmetic Expression Evaluation}
```

public class Evaluate {
public static void main(String[] args) {
Stack<String> ops = new Stack<String>();
Stack<Double> vals = new Stack<Double>();
while (!StdIn.isEmpty()) {
String s = StdIn.readString();
if (s.equals("(")) ;
else if (s.equals("+")) ops.push(s);
else if (s.equals("*")) ops.push(s);
else if (s.equals(")")) {
String op = ops.pop();
if (op.equals("+")) vals.push(vals.pop() + vals.pop());
else if (op.equals("*")) vals.push(vals.pop() * vals.pop());
}
else vals.push(Double.parseDouble(s));
}
StdOut.println(vals.pop());
}
}

```
```

% java Evaluate

```
% java Evaluate
(1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
(1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
101.0
```

101.0

```

Note: Old books have two-pass algorithm because generics were not available!

\section*{Correctness}

\section*{Why correct?}

When algorithm encounters an operator surrounded by two values within parentheses, it leaves the result on the value stack.
\[
(1+((2+3) *(4 * 5)))
\]
as if the original input were:
\[
(1+(5 *(4 * 5)))
\]

Repeating the argument:
\[
\begin{aligned}
& (1+(5 * 20)) \\
& (1+100) \\
& 101
\end{aligned}
\]

Extensions. More ops, precedence order, associativity.
\[
1+(2-3-4) * 5 * \operatorname{sqrt}(6+7)
\]

\section*{Stack-based programming languages}

\section*{Observation 1.}

Remarkably, the 2-stack algorithm computes the same value if the operator occurs after the two values.
```

(1 ((2 3 +) (45*) *) +)

```

Observation 2.
All of the parentheses are redundant!
\[
123+45 * *+
\]

Jan Lukasiewicz

Bottom line. Postfix or "reverse Polish" notation.

Applications. Postscript, Forth, calculators, Java virtual machine, ...

\section*{Stack-based programming languages: PostScrip†}

Page description language
- explicit stack
- full computational model
- graphics engine

\section*{Basics}
- \%!: "I am a PostScript program"
- literal: "push me on the stack"
- function calls take args from stack
- turtle graphics built in


\section*{Stack-based programming languages: PostScrip†}

\section*{Data types}
- basic: integer, floating point, boolean, ...
- graphics: font, path, ....
- full set of built-in operators

Text and strings
like System.out.print()
- full font support
- show (display a string, using current font)
- cvs (convert anything to a string)
```

%!
/Helvetica-Bold findfont 16 scalefont setfont
72 }168\mathrm{ moveto
(Square root of 2:) show
72 }144\mathrm{ moveto
2 sqrt 10 string cvs show

```

\section*{Stack-based programming languages: PostScrip†}

Variables (and functions)
- identifiers start with /
- def operator associates id with value
- braces
- args on stack



\section*{Stack-based programming languages: PostScrip†}
for loop
- "from, increment, to" on stack
- loop body in braces
- for operator

1120
\{ 19 mul dup 2 add moveto 72 box \}
for
if-else
- boolean on stack

- alternatives in braces
- if operator
... (hundreds of operators)

\section*{Stack-based programming languages: PostScrip†}

An application: all figures in Algorithms in Java
```

%!
7272 translate
/kochR
{
2 copy ge { dup 0 rlineto }
{
3 div
2 copy kochR }60\mathrm{ rotate
2 copy kochR -120 rotate
2 copy kochR }60\mathrm{ rotate
2 copy kochR
} ifelse
pop pop
} def
0 0 moveto }81243\mathrm{ kochR
0 81 moveto 27 243 kochR
0 162 moveto }9243\mathrm{ kochR
0 243 moveto 1 243 kochR
stroke

```


See page 218


\section*{Queue applications}

Familiar applications.
- iTunes playlist.
- Data buffers (iPod, TiVo).
- Asynchronous data transfer (file IO, pipes, sockets).
- Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.
- Traffic analysis.
- Waiting times of customers at call center.
- Determining number of cashiers to have at a supermarket.

\section*{M/D/1 queuing model}

M/D/1 queue.
- Customers are serviced at fixed rate of \(\mu\) per minute.
- Customers arrive according to Poisson process at rate of \(\lambda\) per minute.
inter-arrival time has exponential distribution
\[
\operatorname{Pr}[X \leq x]=1-e^{-\lambda x}
\]

Arrival rate \(\lambda\) \(\qquad\)


Infinite queue
 Departure rate \(\mu\)

Server
Q. What is average wait time W of a customer?
Q. What is average number of customers \(L\) in system?

\section*{M/D/1 queuing model: example}


\section*{M/D/1 queuing model: experiments and analysis}

Observation.
As service rate \(\mu\) approaches arrival rate \(\lambda\), service goes to \(h^{* * *}\).
\% java MD1Queue . 167 . 25

```

\% java MD1Queue . 167 . 22

```


Little's Law
Queueing theory (see ORFE 309). \(\quad W=\frac{\lambda}{2 \mu(\mu-\lambda)}+\frac{1}{\mu}, \quad L=\downarrow{ }^{\downarrow} W\)

\section*{M/D/1 queuing model: event-based simulation}
```

public class MD1Queue
{
public static void main(String[] args)
{
double lambda = Double.parseDouble(args[0]); // arrival rate
double mu = Double.parseDouble(args[1]); // service rate
Histogram hist = new Histogram(60);
Queue<Double> q = new Queue<Double>();
double nextArrival = StdRandom.exp(lambda);
double nextService = 1/mu;
while (true)
{
while (nextArrival < nextService)
{
q.enqueue (nextArrival);
nextArrival += StdRandom.exp(lambda);
}
double wait = nextService - q.dequeue();
hist.addDataPoint (Math.min(60, (int) (wait)));
if (!q.isEmpty())
nextService = nextArrival + 1/mu;
else
nextService = nextService + 1/mu;
}
}
}

```

\title{
Analysis of Algorithms
}
- overview
- experiments
- models
case study
- hypotheses

Updated from:
Algorithms in Java, Chapter 2
Intro to Programming in Java, Section 4.1

Running time

As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time? - Charles Babbage


Charles Babbage (1864)


Analytic Engine
how many times do you have to turn the crank?

Reasons to analyze algorithms


Primary practical reason: avoid performance bugs


Client gets poor performance because programmer did not understand performance characteristics


\section*{Overview}

Scientific analysis of algorithms:
framework for predicting performance and comparing algorithms.
Scientific method.
- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.
- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Universe = computer itself.

\section*{overview}
> experiments
models
> case study
> hypotheses

\section*{Experimental algorithmics}

Every time you run a program you are doing an experiment!

First step:
Debug your program!


Second step:
Decide on model for experiments on large inputs.

Third step:
Run the program for problems of increasing size.

\section*{Experimental evidence: measuring time}
- Manual:
- Automatic: Stopwatch.java
client code
```

Stopwatch sw = new Stopwatch();
// Run algorithm
double time = sw.elapsedTime();
StdOut.println("Running time: " + time + " seconds");

```
implementation
```

public class Stopwatch
{
private final long start;
public Stopwatch()
{ start = System.currentTimeMillis(); }
public double elapsedTime()
{
long now = System.currentTimeMillis();
return (now - start) / 1000.0;
}
}

```

\section*{Experimental algorithmics}

Many obvious factors affect running time.
- machine
- compiler
- algorithm
- input data

More factors (not so obvious):
- caching
- garbage collection
- just-in-time compilation
- CPU use by other applications

Bad news: it is often difficult to get precise measurements Good news: we can run a huge number of experiments [stay tuned]

Approach 1: Settle for affordable approximate results Approach 2: Count abstract operations (machine independent)

\section*{Models for the analysis of algorithms}

Total running time: sum of cost \(\times\) frequency for all operations.
- Need to analyze program to determine set of operations
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.
\begin{tabular}{|c|c|c|}
\hline minctuctwer &  &  \\
\hline The Art of & The Art of & The Art of \\
\hline Computer & Computer & Computer \\
\hline \begin{tabular}{l}
Programming volume I Fundamen \\
Agorithm
\end{tabular} & \begin{tabular}{l}
Programming
\(\qquad\) Seminume \\
Third Edition
\end{tabular} & Programming
\(\qquad\) sccond Edition \\
\hline Donald e knuth & Donald e knuth & Donald e knuth \\
\hline & & \\
\hline
\end{tabular}

In principle, accurate mathematical models are available

Developing models for algorithm performance

In principle, accurate mathematical models are available [Knuth]
In practice,
- formulas can be complicated
- advanced mathematics might be required

Ex.

> costs (depend on machine, compiler)
 where
\[
\begin{aligned}
& A_{N}=2(\mathrm{~N}+1) / 3 \\
& \mathrm{~B}_{\mathrm{N}}=(\mathrm{N}+1)\left(2 \mathrm{H}_{\mathrm{N}+1}-2 \mathrm{H}_{3}-1\right) / 6+1 / 2 \\
& C_{N}=(\mathrm{N}+1)\left(2 \mathrm{H}_{\mathrm{N}+1}-2 \mathrm{H}_{3}+1\right) \\
& \mathrm{D}_{\mathrm{N}}=(\mathrm{N}+1)\left(1-2 \mathrm{H}_{3} / 3\right) \\
& \mathrm{S}_{\mathrm{N}}=(\mathrm{N}+1) / 5-1
\end{aligned}
\]


Exact models best left for experts


Bottom line: We use approximate models in this course: \(T_{N} \sim c N \log N\)

Commonly used notations to model running time
\begin{tabular}{cccc} 
notation & provides & example & shorthand for
\end{tabular}\(\quad\) used to

\section*{Predictions and guarantees}

Theory of algorithms: The running time of an algorithm is \(O(f(N))\)

worst case implied
advantages
- describes guaranteed performance
- O-notation absorbs input model

\section*{challenges}
- cannot use to predict performance
- cannot use to compare algorithms

input size

Predictions and guarantees (continued)

This course: The running time of algorithm is \(\sim c f(N)\)
```

understanding of alg's dependence on input implied

```
advantages
- can use to predict performance
- can use to compare algorithms

\section*{challenges}
- need to develop accurate input model
- may not provide guarantees

> overview
experiment
models
\(>\) case study
hypotheses

Case study [stay tuned for numerous algorithms and applications]

Sorting problem: rearrange N given items into ascending order
\begin{tabular}{|c|c|}
\hline\(\ldots\) & \(\ldots\) \\
Hauser & \\
Hong & \\
Hsu & Haskell \\
Hayes & Hauser \\
Haskell & Hoyes \\
Hornet & Hornet \\
\(\ldots\). & Hsu \\
\hline
\end{tabular}

Basic operations: compares and exchanges
```

compare public static void less(double x, double y)
{ return x < y; }
exchange public static void exch(double[] a, int i, int j)
{
double t = a[i];
a[i] = a[j];
a[j] = t;
}

```

Selection sort: an elementary sorting algorithm

Algorithm invariants
- \(\uparrow\) scans from left to right.
- Elements to the left of \(\uparrow\) are fixed and in ascending order.
- No element to left of \(\uparrow\) is larger than any element to its right.


\section*{Selection sort inner loop}
- move the pointer to the right
\[
i++;
\]
- identify index of minimum item on right.
```

int min = i;
for (int j = i+1; j < N; j++)
if (less(a[j], a[min]))
min = j;

```

- Exchange into position.
```

 exch(a, i, min);
    ```


Selection sort: Java implementation


Selection sort: initial observations

Observe, tabulate and plot operation counts for various values of N .
- study most frequently performed operation (compares)
- input model: \(N\) random numbers between 0 and 1
add counter to less()
\begin{tabular}{|cc|}
\hline N & compares \\
\hline 2,000 & 2.1 million \\
4,000 & 7.9 million \\
8,000 & 32.1 million \\
16,000 & 125.9 million \\
32,000 & 514.7 million \\
\hline
\end{tabular}


\section*{Selection sort: experimental hypothesis}

Data analysis. Plot \# compares vs. input size on log-log scale.
\begin{tabular}{|cc|}
\hline\(N\) & compares \\
\hline 2,000 & 2.1 million \\
4,000 & 7.9 million \\
8,000 & 32.1 million \\
16,000 & 125.9 million \\
32,000 & 514.7 million \\
\hline
\end{tabular}

normal scale
\[
C=a N^{b}
\]
log-log scale
\(\lg C=\lg a+b \lg N\)
power law

Regression. Fit straight line through data points \(\approx a N^{b}\).
slope
Hypothesis. \# compares is \(\sim N^{2} / 2\)

Selection sort: theoretical model


Hypothesis: number of compares is \(\mathrm{N}+(\mathrm{N}-1)+\ldots+2+1 \sim \mathrm{~N}^{2} / 2\)
\[
\begin{aligned}
& =N(N+1) / 2 \\
& =N^{2} / 2+N / 2 \\
& \sim N^{2} / 2
\end{aligned}
\]

\section*{Selection sort: Prediction and verification}

Hypothesis (experimental and theoretical). \# compares is \(\sim N^{2} / 2\).

Prediction. 800 million compares for \(N=40,000\).

Observations.
\begin{tabular}{|c|c|}
\hline N & compares \\
\hline 40,000 & 801.3 million \\
40,000 & 799.7 million \\
40,000 & 801.6 million \\
40,000 & 800.8 million \\
\hline
\end{tabular}

Verifies.

Prediction. 20 billion compares for \(\mathrm{N}=200,000\).

Observation.


Verifies.

\section*{Selection sort: validation}

Implicit assumptions
- constant cost per compare
- cost of compares dominates running time

Hypothesis: Running time is \(\sim c N^{2}\) Validation: Observe actual running time.
\begin{tabular}{|ccc|}
\hline N & observed time & \(.23 \times 10^{-7} \mathrm{~N}^{2}\) \\
\hline 2,000 & 0.1 seconds & 0.1 \\
4,000 & 0.4 seconds & 0.4 \\
8,000 & 1.5 seconds & 1.5 \\
16,000 & 5.6 seconds & 5.9 \\
32,000 & 23.2 seconds & 23.5 \\
\hline
\end{tabular}

Regression fit validates hypothesis.
A scientific connection between program and natural world.

\section*{Insertion sort: another elementary sorting algorithm}

Algorithm invariants
- \(\uparrow\) scans from left to right.
- Elements to the left of \(\uparrow\) are in ascending order.


Insertion sort inner loop
- move the pointer to the right
```

i++;

```

- moving from right to left, exchange \(a[i]\) with each larger element to its left
```

for (int j = i; j > 0; j--)
if (less(a[j], a[j-1]))
exch(a, j, j-1);
else break;

```


\section*{Insertion sort: Java implementation}
```

public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
for (int j = i; j > 0; j--)
if (less(a[j], a[j-1]))
exch(a, j, j-1);
else break;
}

```

Insertion sort: theoretical model


> insertions are halfway back, on the average

Hypothesis: number of compares is \((1+2+\ldots+(N-1)+N) / 2 \sim N^{2} / 4\) on the average, for randomly ordered input

Experimental comparison of insertion sort and selection sort

Plot both running times on \(\log\) log scale
- slopes are the same (both 2)
- both are quadratic

Compute ratio of running times
\% java SortCompare Insertion Selection 4000
For 4000 random double values
Insertion is 1.7 times faster than selection

Need detailed analysis
to prefer one over the other


Neither is useful for huge randomly-ordered files

Would Be Nice (if analysis of algorithms were always this easy), But
Mathematics might be difficult
Ex. It is known that properties of singularities of functions
in the complex plane play a role in analysis of many algorithms

Leading term might not be good enough
Ex. Selection sort could be linear-time if cost of exchanges is huge
assumption that compares dominate may be invalid
Actual data might not match model
Ex. Insertion sort could be linear-time if keys are roughly in order \(\uparrow\)
assumption that input is randomly ordered may be invalid
Timing may be flawed
- different results on different computers
- different results on same computer at different times
> overview
) experiment
models
case study
- hypotheses

Practical approach to developing hypotheses

First step: determine asymptotic growth rate for chosen model
- approach 1: run experiments, regression
- approach 2: do the math
- best: do both

Good news: the relatively small set of functions
\[
1, \log N, N, N \log N, N^{2}, N^{3}, \text { and } 2^{N}
\]
suffices to describe asymptotic growth rate of typical algorithms

After determining growth rate
- use doubling hypothesis (to predict performance)
- use ratio hypothesis (to compare algorithms)

Common asymptotic-growth hypotheses (summary)
\begin{tabular}{|c|c|c|c|c|}
\hline growth rate & name & typical code framework & description & example \\
\hline 1 & constant & \(\mathrm{a}=\mathrm{b}+\mathrm{c} ;\) & statement & add two numbers \\
\hline \(\log N\) & logarithmic & \[
\begin{aligned}
& \text { while ( } \mathrm{N}>1 \text { ) } \\
& \{\quad \mathrm{N}=\mathrm{N} / 2 ; \quad \ldots
\end{aligned}
\] & divide in half & binary search \\
\hline N & linear & \[
\begin{aligned}
& \text { for (int i }=0 \text {; } i<N ; i++) \\
& \{\ldots
\end{aligned}
\] & loop & find the maximum \\
\hline \(N \log N\) & linearithmic & [see next lecture] & divide and conquer & sort an array \\
\hline \(\mathrm{N}^{2}\) & quadratic & \[
\begin{aligned}
& \text { for (int } i=0 ; i<N ; i++ \text { ) } \\
& \quad \text { for (int } j=0 ; j<N ; j++)
\end{aligned}
\] & double loop & check all pairs \\
\hline \(\mathrm{N}^{3}\) & cubic & ```
for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
        for (int k = 0; k < N; k++)
        { ... }
``` & triple loop & check all triples \\
\hline \(2^{N}\) & exponential & [see lecture 24] & exhaustive search & check all possibilities \\
\hline
\end{tabular}

Aside: practical implications of asymptotic growth

For back-of-envelope calculations, assume
\begin{tabular}{ccc}
decade & \begin{tabular}{c}
processor \\
speed
\end{tabular} & \begin{tabular}{c}
instructions \\
per second
\end{tabular} \\
\hline 1970s & 1 M Hz & \(10^{6}\) \\
1980s & 10 M Hz & \(10^{7}\) \\
1990s & 100 M Hz & \(10^{8}\) \\
2000 s & \(1 G \mathrm{~Hz}\) & \(10^{9}\) \\
& &
\end{tabular}

How long to process millions of inputs?
Ex. Population of NYC was "millions" in 1970s; still is

How many inputs can be processed in minutes?
\begin{tabular}{|c|c|}
\hline seconds & equivalent \\
\hline 1 & \begin{tabular}{c}
1 second \\
10 seconds
\end{tabular} \\
\hline 10 & \begin{tabular}{c}
1.7 minutes \\
\hline \(10^{2}\)
\end{tabular} \\
\hline \(10^{3}\) & 17 minutes \\
\hline \(10^{4}\) & 2.8 hours \\
\hline \(10^{5}\) & 1.1 days \\
\hline \(10^{6}\) & \begin{tabular}{c}
1.6 weeks \\
3.8 months \\
\hline \(10^{7}\)
\end{tabular} \\
\hline \(10^{8}\) & \begin{tabular}{c}
3.1 years \\
3.1 decades
\end{tabular} \\
\hline \(10^{9}\) & \begin{tabular}{c}
3.1 centuries \\
forever \\
age of \\
universe
\end{tabular} \\
\hline \(10^{10}\) & \(\ldots\)
\end{tabular}

Ex. Customers lost patience waiting "minutes" in 1970s; still do

Aside: practical implications of asymptotic growth
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{growth rate} & \multicolumn{4}{|c|}{problem size solvable in minutes} & \multicolumn{4}{|l|}{time to process millions of inputs} \\
\hline & 1970 s & 1980s & 1990s & 2000s & 1970s & 1980s & 1990s & 2000s \\
\hline 1 & any & any & any & any & instant & instant & instant & instant \\
\hline \(\log N\) & any & any & any & any & instant & instant & instant & instant \\
\hline N & millions & tens of millions & hundreds of millions & billions & minutes & seconds & second & instant \\
\hline \(N \log N\) & hundreds of thousands & millions & millions & hundreds of millions & hour & minutes & tens of seconds & seconds \\
\hline \(N^{2}\) & hundreds & thousand & thousands & tens of thousands & decades & years & months & weeks \\
\hline \(\mathrm{N}^{3}\) & hundred & hundreds & thousand & thousands & never & never & never & millenia \\
\hline
\end{tabular}

Practical implications of asymptotic-growth: another view
\begin{tabular}{|c|c|c|c|c|}
\hline growth rate & name & description & \multicolumn{2}{|l|}{effect on a program that runs for a few seconds} \\
\hline 1 & constant & independent of input size & a few seconds & same \\
\hline \(\log N\) & logarithmic & nearly independent of input size & a few seconds & same \\
\hline \(N\) & linear & optimal for N inputs & a few minutes & 100x \\
\hline \(N \log N\) & linearithmic & nearly optimal for N inputs & a few minutes & 100x \\
\hline \(N^{2}\) & quadratic & not practical for large problems & several hours & 10x \\
\hline \(\mathrm{N}^{3}\) & cubic & not practical for large problems & several weeks & \(4-5 x\) \\
\hline \(2^{N}\) & exponential & useful only for tiny problems & forever & \(1 \times\) \\
\hline
\end{tabular}

Developing asymptotic order of growth hypotheses with doubling
To formulate hypothesis for asymptotic growth rate:
- compute \(T(2 N) / T(N)\) as accurately (and for \(N\) as large) as is affordable
- use this table

Example revisited: methods for timing sort algorithms
```

Compute time to sort a [] with alg
public static double time(String alg, Double[] a)
{
Stopwatch sw = new Stopwatch();
if (alg.equals("Insertion")) Insertion.sort(a);
if (alg.equals("Selection")) Selection.sort(a);
if (alg.equals("Shell")) Shell.sort(a);
if (alg.equals("Merge")) Merge.sort(a);
if (alg.equals("Quick")) Quick.sort(a);
return sw.elapsedTime();
}

```

Compute total time to to sort trials arrays of N random doubles with alg
public static double timetrials(String alg, int \(N\), int trials)
\{
 double total \(=0.0\);
 Double[] a = new Double[N];
 for (int \(t=0 ; t<t r i a l s ; ~ t++\))
 \{
 for (int \(i=0 ; i<N ; i++)\)
 a[i] = StdRandom.uniform();
 total += time (alg, a);
 \}
 return total;
\}

Developing asymptotic order of growth hypotheses with doubling
```

public class SortGrowth
{
public static void main(String[] args)
{
String alg = args[0];
int N = 1000;
if (args.length > 1)
N = Integer.parseInt(args[1]);
int trials = 100;
if (args.length > 2)
trials = Integer.parseInt(args[2]);
double ratio = timetrials(alg, 2*N, trials);
/ timetrials(alg, N, trials);
StdOut.printf("Ratio is %f\n", ratio);
if (ratio > 1.8 \&\& ratio < 2.2)
StdOut.printf(" %s is linear or linearithmic\n", alg);
if (ratio > 3.8 \&\& ratio < 4.2)
StdOut.printf(" %s is quadratic\n", alg);
}
}
% java SortGrowth Selection
Ratio is 4.1
Selection is quadratic

```
```

% java SortGrowth Insertion

```
% java SortGrowth Insertion
Ratio is 3.645756
Ratio is 3.645756
% java SortGrowth Insertion 4000 1000
% java SortGrowth Insertion 4000 1000
Ratio is 3.969934
Ratio is 3.969934
 Insertion is quadratic
```

    Insertion is quadratic
    ```

Predicting performance with doubling hypotheses

A practical approach to predict running time:
- analyze algorithm and run experiments to develop hypothesis that asymptotic growth rate of running time is ~c \(T(N)\)
- run algorithm for some value of \(N\), measure running time
- prediction: increasing input size by a factor of 2
increases running time by a factor of \(T(2 N) / T(N)\)
\begin{tabular}{ccc}
\begin{tabular}{c}
growth \\
rate
\end{tabular} & name & \(\frac{T(2 N)}{T(N)}\) \\
1 & constant & 1 \\
\(\log N\) & logarithmic & \(\sim 1\) \\
\(N\) & linear & 2 \\
\(N \log N\) & linearithmic & \(\sim 2\) \\
\(N^{2}\) & quadratic & 4 \\
\(N^{3}\) & cubic & 9
\end{tabular}

Use algorithm itself to implicitly compute leading-term constant

Predicting performance with doubling hypotheses
```

public class SortPredict
{
public static void main(String[] args)
{

```
 String alg = args[0];
 int trials = 100;
 if (args.length > 1) trials = Integer.parseInt (args[1]);
 StdOut.printf("Seconds for \%d trials\n", trials);
 StdOut.printf(" predicted actual\n 1000 ");
 double old = Double.POSITIVE_INFINITY;
 for (int \(N=1000 ;\) true; \(N=2 * N\))
 \{
 total = timeTrials(alg, \(N\), trials);
 double guess \(=\) (total/old)*total;
 StdOut.printf(" \%7.1f\n \%5d \%7.1f", total, 2*N, guess);
 old = total;
 \}
 \}
\}

Note: SortGrowth is not needed! [This code works for any power law.]
\begin{tabular}{ccc}
\% java SortPredict Selection \\
Seconds & for 100 trials \\
& predicted & actual \\
1000 & & 0.9 \\
2000 & 0.0 & 3.5 \\
4000 & 13.9 & 14.4 \\
8000 & 58.8 & 58.9 \\
16000 & 240.9 & 239.2 \\
32000 & 971.6 &
\end{tabular}

\section*{Comparing algorithms with ratio hypotheses}

A practical way to compare algorithms \(A\) and \(B\) with the same growth rate
- hypothesize that running times are \(\sim c_{A} f(N)\) and \(\sim c_{B} f(N)\)
- run algorithms for some value of \(N\), measure running times
- Prediction: Algorithm \(A\) is a factor of \(c_{A} / C_{B}\) faster than Algorithm \(B\)

To compare algorithms with different growth rates
- hypothesize that the one with the smaller rate is faster
- validate hypothesis for inputs of interest [values of constants may be significant]

To determine whether growth rates are the same or different
- compute ratios of running times as input size doubles
- [growth rates are the same if ratios do not change]

Use algorithms themselves to compute complex leading-term constants

\section*{Comparing algorithms with ratio hypothesis}
```

public class SortCompare
{
public static void main(String[] args)
{
String alg1 = args[0];
String alg2 = args[1];
int N = Integer.parseInt(args[2]);
int trials = 100;
if (args.length > 3) trials = Integer.parseInt(args[3]);
double time1 = 0.0;
double time2 = 0.0;
Double[] a1 = new Double[N];
Double[] a2 = new Double[N];
for (int t = 0; t < trials; t++)
{
for (int i = O; i < N; i++)
{ a1[i] = Math.random(); a2[i] = a1[i]; }
time1 += time(alg1, a1);
time2 += time(alg2, a2);

```

```

                best to test algs on same input
            }
            StdOut.printf("For %d random Double values\n %s is", N, alg1);
            StdOut.printf(" %.1f times faster than %s\n", time2/time1, alg2);
    ```
 \}
\}
```

% java SortCompare Insertion Selection 4000
For 4000 random Double values
Insertion is 1.7 times faster than Selection

```

\section*{Summary: turning the crank}

Yes, analysis of algorithms might be challenging, BUT

Mathematics might be difficult?
- only a few functions seem to turn up
- doubling, ratio tests cancel complicated constants

Leading term might not be good enough?
- debugging tools are available to identify bottlenecks
- typical programs have short inner loops

Actual data might not match model?
- need to understand input to effectively process it
- approach 1: design for the worst case
- approach 2: randomize, depend on probabilistic guarantee

Timing may be flawed?
- limits on experiments insignificant compared to other sciences
- different computers are different!

\section*{Sorting Algorithms}

\section*{- rules of the game \\ - shellsort \\ - mergesort \\ - quicksort \\ - animations}

Reference:
Algorithms in Java, Chapters 6-8

\section*{Classic sorting algorithms}

Critical components in the world's computational infrastructure.
- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of \(20^{\text {th }}\) century in science and engineering.

\section*{Shellsort.}
- Warmup: easy way to break the \(N^{2}\) barrier.
- Embedded systems.

Mergesort.
- Java sort for objects.
- Perl, Python stable sort.

\section*{Quicksort.}
- Java sort for primitive types.
- C qsort, Unix, 9++, Visual C++, Python.
> rules of the game
shellsort
mergesort
quicksort
- animations

Basic terms

Ex: student record in a University.
file \(\Rightarrow\)\begin{tabular}{|c|c|c|c|c|}
\hline Fox & 1 & A & \(243-456-9091\) & 101 Brown \\
\hline Quilici & 1 & C & \(343-987-5642\) & 32 McCosh \\
\hline Chen & 2 & A & \(884-232-5341\) & 11 Dickinson \\
\hline Furia & 3 & A & \(766-093-9873\) & 22 Brown \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 343 Forbes \\
\hline Andrews & 3 & A & \(874-088-1212\) & 121 Whitman \\
\hline Rohde & 3 & A & \(232-343-5555\) & 115 Holder \\
\hline Battle & 4 & C & \(991-878-4944\) & 308 Blair \\
\hline Aaron & 4 & A & \(664-480-0023\) & 097 Little \\
\hline Gazsi & 4 & B & \(665-303-0266\) & 113 Walker \\
\hline
\end{tabular}

Sort: rearrange sequence of objects into ascending order.
\begin{tabular}{|c|c|c|c|c|}
\hline Aaron & 4 & A & \(664-480-0023\) & 097 Little \\
\hline Andrews & 3 & A & \(874-088-1212\) & 121 Whitman \\
\hline Battle & 4 & C & \(991-878-4944\) & 308 Blair \\
\hline Chen & 2 & A & \(884-232-5341\) & 11 Dickinson \\
\hline Fox & 1 & A & \(243-456-9091\) & 101 Brown \\
\hline Furia & 3 & A & \(766-093-9873\) & 22 Brown \\
\hline Gazsi & 4 & B & \(665-303-0266\) & 113 Walker \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 343 Forbes \\
\hline Rohde & 3 & A & \(232-343-5555\) & 115 Holder \\
\hline Quilici & 1 & C & \(343-987-5642\) & 32 McCosh \\
\hline
\end{tabular}

\section*{Sample sort client}

\section*{Goal: Sort any type of data}

Example. List the files in the current directory, sorted by file name.
```

import java.io.File;
public class Files
{
public static void main(String[] args)
{
File directory = new File(args[O]);
File[] files = directory.listFiles();
Insertion.sort(files);
for (int i = 0; i < files.length; i++)
System.out.println(files[i]);
}
}

```

Next: How does sort compare file names?
\% java Files . Insertion.class Insertion.java InsertionX.class InsertionX.java Selection.class Selection.java Shell.class Shell.java ShellX.class Shellx.java index.html

\section*{Callbacks}

Goal. Write robust sorting library method that can sort any type of data using the data type's natural order.

Callbacks.
- Client passes array of objects to sorting routine.
- Sorting routine calls back object's comparison function as needed.

Implementing callbacks.
- Java: interfaces.

C: function pointers.
C++: functors.

\section*{Callbacks}

\section*{Callbacks}
```

Goal. Write robust sorting library that can sort any type of data
into sorted order using the data type's natural order.
Callbacks.

- Client passes array of objects to sorting routine.
- Sorting routine calls back object's comparison function as needed.
Implementing callbacks.
- Java: interfaces.
C: function pointers.
C++: functors.

```

Plus: Code reuse for all types of data
Minus: Significant overhead in inner loop

This course:
- enables focus on algorithm implementation
- use same code for experiments, real-world data

\section*{Interface specification for sorting}

Comparable interface.
Must implement method compareтo() so that v.compareTo (w) returns:
- a negative integer if \(v\) is less than \(w\)
- a positive integer if \(v\) is greater than w
- zero if \(v\) is equal to \(w\)

Consistency.
Implementation must ensure a total order.
- if \((a<b)\) and \((b<c)\), then \((a<c)\).
- either \((a<b)\) or \((b<a)\) or \((a=b)\).

Built-in comparable types. String, Double, Integer, Date, File. User-defined comparable types. Implement the comparable interface.

Implementing the Comparable interface: example 1
Date data type (simplified version of built-in Java code)
```

public class Date implements Comparable<Date>
{
private int month, day, year;
only compare dates
to other dates
public Date(int m, int d, int y)
{
month = m;
day = d;
year = y;
}
public int compareTo(Date b)
{
Date a = this;
if (a.year < b.year ) return -1;
if (a.year > b.year ) return +1;
if (a.month < b.month) return -1;
if (a.month > b.month) return +1;
if (a.day < b.day ) return -1;
if (a.day > b.day ) return +1;
return 0;
}
}

```

Implementing the Comparable interface: example 2

\section*{Domain names}
- Subdomain: bolle.cs.princeton.edu.
- Reverse subdomain: edu.princeton.cs.bolle.
- Sort by reverse subdomain to group by category.

\section*{unsorted}
```

public class Domain implements Comparable<Domain>
{
private String[] fields;
private int N;
public Domain(String name)
{
fields = name.split("<br>.");
N = fields.length;
}
public int compareTo(Domain b)
{
Domain a = this;
for (int i = 0; i < Math.min(a.N, b.N); i++)
{
int c = a.fields[i].compareTo(b.fields[i]);
if (c < 0) return -1;
else if (c > 0) return +1;
}
return a.N - b.N;
}
}

```

\section*{\}}
return a.N - b.N;
\(\}\)
ee.princeton.edu cs.princeton.edu princeton.edu cnn.com
google.com
apple.com
www.cs.princeton.edu bolle.cs.princeton.edu

\section*{sorted}
com.apple
com.cnn
com.google edu.princeton edu.princeton.cs edu.princeton. cs.bolle edu.princeton. cs.www edu.princeton.ee

\section*{Sample sort clients}

\section*{File names}
```

import java.io.File;
public class Files
{
public static void main(String[] args)
{
File directory = new File(args[0]);
File[] files = directory.listFiles()
Insertion.sort(files);
for (int i = 0; i < files.length; i++)
System.out.println(files[i]);
}
}

```
\% java Files .

\section*{Random numbers}
```

public class Experiment
{
public static void main(String[] args)
{
int N = Integer.parseInt(args[0]);
Double[] a = new Double[N];
for (int i = O; i < N; i++)
a[i] = Math.random();
Selection.sort (a);
for (int i = 0; i < N; i++)
System.out.println(a[i]);
}
}

```
\% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686

Insertion.class
Insertion.java
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell. java

Several Java library data types implement Comparable
You can implement Comparable for your own types

Two useful abstractions

Helper functions. Refer to data only through two operations.
- less. Is \(\mathbf{v}\) less than \(\mathbf{w}\) ?
```

private static boolean less(Comparable v, Comparable w)
{
return (v.compareTo(w) < 0);
}

```
- exchange. Swap object in array at index \(\mathbf{i}\) with the one at index j .
```

private static void exch(Comparable[] a, int i, int j)
{
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}

```

\section*{Sample sort implementations}
```

selection sort
public class Selection
{
public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
{
int min = i;
for (int j = i+1; j < N; j++)
if (less(a, j, min)) min = j;
exch(a, i, min);
}
}
}
insertion sort
public class Insertion
{
public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 1; i < N; i++)
for (int j = i; j > 0; j--)
if (less(a[j], a[j-1]))
exch(a, j, j-1);
else break;
}
}

```

\section*{Why use less () and exch () ?}

Switch to faster implementation for primitive types
```

private static boolean less(double v, double w)

```
\{
 return \(v<w ;\)
\}

Instrument for experimentation and animation
```

private static boolean less(double v, double
{
cnt++;
return v < w;

```

Translate to other languages
```

for (int i = 1; i < a.length; i++) }\longleftarrow\mathrm{ Good code in C, C++,
if (less(a[i], a[i-1]))
return false;
return true;}

```

Properties of elementary sorts (review)

Selection sort

Running time: Quadratic (~c N2)
Exception: expensive exchanges (could be linear)

\section*{Insertion sort}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{11}{|c|}{a[i]} \\
\hline i & j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
\hline & & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline 1 & 0 & \[
0
\] & S & R & T & E & X & A & M & P & 工 & E \\
\hline 2 & 1 & O & R & S & T & E & X & A & M & P & L & E \\
\hline 3 & 3 & \(\bigcirc\) & R & S & (T) & E & X & A & M & P & 工 & E \\
\hline 4 & 0 & E & 0 & R & S & T & X & A & M & P & L & E \\
\hline 5 & 5 & - & 0 & R & S & T & (x) & A & M & P & \(\pm\) & E \\
\hline 6 & 0 & (A) & E & 0 & R & S & T & X & M & P & I & E \\
\hline 7 & 2 & A & E & \[
M
\] & 0 & R & S & T & X & P & L & E \\
\hline 8 & 4 & A & E & M & 0 & P & R & S & T & X & L & E \\
\hline 9 & 2 & A & E & (L) & M & 0 & P & R & S & T & X & E \\
\hline 10 & 2 & A & E & \[
\mathrm{E}
\] & L & M & 0 & P & R & S & T & X \\
\hline
\end{tabular}
\(\begin{array}{lllllllllll}\mathbf{A} & \mathbf{E} & \mathbf{E} & \mathrm{L} & \mathbf{M} & \mathbf{O} & \mathbf{P} & \mathbf{R} & \mathbf{S} & \mathbf{T} & \mathbf{X}\end{array}\)

Running time: Quadratic (~c N2)
Exception: input nearly in order (could be linear)

Bottom line: both are quadratic (too slow) for large randomly ordered files
>rules of the game
> shellsort
mergesort
> quicksort
> animations

Visual representation of insertion sort

Reason it is slow: data movement

\section*{Shellsort}

Idea: move elements more than one position at a time by \(h\)-sorting the file for a decreasing sequence of values of \(h\)

\section*{Shellsort}

Idea: move elements more than one position at a time by \(h\)-sorting the file for a decreasing sequence of values of \(h\)

Use insertion sort, modified to h-sort

Visual representation of shellsort

Bottom line: substantially faster!

\section*{Analysis of shellsort}

Model has not yet been discovered (!)
\begin{tabular}{|c|cc|c|}
\hline N & comparisons & \(\mathrm{N}^{1.289}\) & \(2.5 \mathrm{~N} \lg \mathrm{~N}\) \\
\hline 5,000 & 93 & 58 & 106 \\
10,000 & 209 & 143 & 230 \\
20,000 & 467 & 349 & 495 \\
40,000 & 1022 & 855 & 1059 \\
80,000 & 2266 & 2089 & 2257 \\
& & & \\
\hline
\end{tabular}

Why are we interested in shellsort?
Example of simple idea leading to substantial performance gains
Useful in practice
- fast unless file size is huge
- tiny, fixed footprint for code (used in embedded systems)
- hardware sort prototype

Simple algorithm, nontrivial performance, interesting questions
- asymptotic growth rate?
- best sequence of increments?
- average case performance?

Your first open problem in algorithmics (see Section 6.8):
Find a better increment sequence mail rs@cs.princeton.edu

Lesson: some good algorithms are still waiting discovery
rules of the game
shelisort
> mergesort
quicksort
D animations

\section*{Mergesort (von Neumann, 1945(!))}

Basic plan:
- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.
plan
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline M & E & R & G & E & S & \(\bigcirc\) & R & T & E & x & A & M & P & & \\
\hline E & E & G & M & \(\bigcirc\) & R & R & S & T & E & & A & M & & & \\
\hline & E & & M & 0 & R & R & S & A & E & & L & M & P & T & \\
\hline A & E & E & E & E & G & L & M & M & \(\bigcirc\) & P & R & & & & \\
\hline
\end{tabular} trace
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{10} & \multicolumn{17}{|c|}{a[i]} \\
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline & & M & E & R & G & E & S & 0 & R & T & E & x & A & M & P & L & E \\
\hline 0 & 1 & E & M & R & G & E & S & 0 & R & T & E & x & A & M & P & L & E \\
\hline 2 & 3 & E & M & G & R & E & S & 0 & R & T & Ei & x & A & M & P & 工 & E \\
\hline 0 & 3 & E & G & M & R & E & S & \(\bigcirc\) & R & T & E & x & A & M & P & L & E \\
\hline 4 & 5 & E & G & M & R & E & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline 6 & 7 & E & G & M & R & E & S & 0 & R & T & E & x & A & M & P & L. & E \\
\hline 4 & 7 & E & G & M & R & E & 0 & R & S & T & E & X & A & M & P & L & E \\
\hline 0 & 7 & E & E & G & M & 0 & R & R & S & T & E & x & A & M & P & L & E \\
\hline 8 & 9 & E & E & G & M & \(\bigcirc\) & R & R & S & E & T & X & A & M & P & L & E \\
\hline 10 & 11 & E & E & G & N & 0 & R & R & S & E & T & A & x & M & P & L & E \\
\hline 8 & 11 & E & E & G & M & \(\bigcirc\) & R & R & S & A & E & T & x & M & P & L & E \\
\hline 12 & 13 & E & E & G & M & \(\bigcirc\) & R & R & S & A & E & T & X & M & P & 工 & E \\
\hline 14 & 15 & E & E & G & M & \(\bigcirc\) & R & R & S & A & E & T & x & M & P & E & L \\
\hline 12 & 15 & E & E & G & N & 0 & R & R & S & A & \(\mathrm{E}_{1}\) & T & X & E & L & M & P \\
\hline 8 & 15 & E & E & G & M & 0 & R & R & S & A & E & E & L & M & P & T & x \\
\hline 0 & 15 & A & E & E & E & E & G & L & M & M & 0 & P & R & R & S & T & X \\
\hline
\end{tabular}

\section*{Merging}

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

Mergesort: Java implementation of recursive sort
```

public class Merge
{
private static void sort(Comparable[] a,
Comparable[] aux, int lo, int hi)
{
if (hi <= lo + 1) return;
int m = lo + (hi - lo) / 2;
sort(a, aux, lo, m);
sort(a, aux, m, hi);
merge(a, aux, lo, m, hi);
}
public static void sort(Comparable[] a)
{
Comparable[] aux = new Comparable[a.length];
sort(a, aux, 0, a.length);
}
}

```


\section*{Mergesort analysis: Memory}
Q. How much memory does mergesort require?
A. Too much!
- Original input array \(=\mathrm{N}\).
- Auxiliary array for merging \(=\mathrm{N}\).
- Local variables: constant.
- Function call stack: \(\log _{2} N\) [stay tuned].
- Total \(=2 \mathrm{~N}+O(\log \mathrm{~N})\).
cannot "fill the memory and sort"
Q. How much memory do other sorting algorithms require?
- N + O(1) for insertion sort and selection sort.
- In-place \(=N+O(\log N)\).

Challenge for the bored. In-place merge. [Kronrud, 1969]

\section*{Mergesort analysis}

Def. \(T(N) \equiv\) number of array stores to mergesort an input of size \(N\)
\[
=\underset{\substack{\uparrow \\ \text { left half }}}{T(N / 2)}+\underset{\substack{\text { right half }}}{T(N / 2)}+\underset{\substack{\text { merge }}}{N}
\]

Mergesort recurrence \(\quad T(N)=2 T(N / 2)+N\)
\[
\text { for } N>1 \text {, with } T(1)=0
\]
- not quite right for odd \(N\)
- same recurrence holds for many algorithms
- same for any input of size N
- comparison count slightly smaller because of array ends

Solution of Mergesort recurrence \(T(N) \sim N \lg N\)
- true for all \(N\)
- easy to prove when \(N\) is a power of 2

Mergesort recurrence: Proof 1 (by recursion tree)
\[
\begin{aligned}
T(N)=2 T(N / 2)+ & N \\
& \text { for } N>1 \text {, with } T(1)=0
\end{aligned}
\]

\section*{Mergesort recurrence: Proof 2 (by telescoping)}
\[
T(N)=2 T(N / 2)+N \text { for } N>1 \text {, with } T(1)=0
\]

Pf.
\[
\begin{aligned}
T(N) & =2 T(N / 2)+N & & \text { given } \\
T(N) / N & =2 T(N / 2) / N+1 & & \text { divide both sides by } N \\
& =T(N / 2) /(N / 2)+1 & & \text { algebra } \\
& =T(N / 4) /(N / 4)+1+1 & & \text { telescope (apply to first term) } \\
& =T(N / 8) /(N / 8)+1+1+1 & & \text { telescope again } \\
& \ldots & & \\
& =T(N / N) /(N / N)+1+1+\ldots+1 & & \text { stop telescoping, } T(1)=0 \\
& =\lg N & &
\end{aligned}
\]
\[
T(N)=N \lg N
\]

Mergesort recurrence: Proof 3 (by induction)
\[
\begin{aligned}
T(N)=2 T(N / 2)+ & N \\
& \text { for } N>1 \text {, with } T(1)=0
\end{aligned}
\]

Claim. If \(T(N)\) satisfies this recurrence, then \(T(N)=N \lg N\).
Pf. [by induction on \(N\)]
- Base case: \(N=1\).
- Inductive hypothesis: \(T(N)=N \lg N\)
- Goal: show that \(T(2 N)+2 N \lg (2 N)\).
\[
\begin{aligned}
\mathrm{T}(2 \mathrm{~N}) & =2 \mathrm{~T}(N)+2 N & & \text { given } \\
& =2 N \lg N+2 N & & \text { inductive hypothesis } \\
& =2 N(\lg (2 N)-1)+2 N & & \text { algebra } \\
& =2 N \lg (2 N) & & \text { QED }
\end{aligned}
\]

Ex. (for COS 340). Extend to show that \(T(N) \sim N \lg N\) for general \(N\)

\section*{Bottom-up mergesort}

\section*{Basic plan:}
- Pass through file, merging to double size of sorted subarrays.
- Do so for subarray sizes \(1,2,4,8, \ldots, N / 2, N\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{17}{|c|}{a[i]} \\
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline & & M & E & R & G & E & S & 0 & R & T & E & x & A & M & P & L & E \\
\hline 0 & 1 & E & M & R & G & E & S & \(\bigcirc\) & R & T & E & X & A & M & P & L & E \\
\hline 2 & 3 & E & M & G & R & E & S & \(\bigcirc\) & R & T & E & x & A & M & P & I & E \\
\hline 4 & 5 & E & M & G & R & E & S & 0 & R & T & E & x & A & M & P & I & \(\underline{\text { F }}\) \\
\hline 6 & 7 & E & M & G & R & E & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline 8 & 9 & E & M & G & R & E & S & \(\bigcirc\) & R & E & T & X & A & M & P & I & E \\
\hline 10 & 11 & E & M & G & R & E & S & \(\bigcirc\) & R & E & T & A & x & M & P & I & F \\
\hline 12 & 13 & E & M & G & R & E & S & \(\bigcirc\) & R & E & T & A & X & M & P & L & E \\
\hline 14 & 15 & E & M & G & R & E & S & \(\bigcirc\) & R & E & T & A & x & M & P & E & I \\
\hline 0 & 3 & E & G & M & R & E & S & \(\bigcirc\) & R & を & T & A & X & M & P & E & \\
\hline 4 & 7 & E & G & M & R & E & 0 & R & S & E & T & A & \% & M & P & E & I \\
\hline 8 & 11 & E & E & G & M & 0 & R & R & S & A & E & T & x & M & \(P\) & E & I \\
\hline 12 & 15 & E & E & G & M & 0 & R & R & S & A & E & T & X & E & L & M & P \\
\hline 0 & 7 & E & E & G & M & 0 & R & R & S & A & E & T & X & E & L & M & \\
\hline 8 & 15 & E & E & G & M & \(\bigcirc\) & R & R & S & A & E & E & L & M & P & T & X \\
\hline 0 & 15 & A & E & E & E & E & G & L & M & M & 0 & P & R & R & S & T & X \\
\hline
\end{tabular}

No recursion needed!

\section*{Bottom-up Mergesort: Java implementation}
```

public class Merge
{
private static void merge (Comparable[] a, Comparable[] aux,
int l, int m, int r)
{
for (int i = l; i < m; i++) aux[i] = a[i];
for (int j = m; j < r; j++) aux[j] = a[m + r - j - 1];
int i = l, j = r - 1;
for (int k = l; k < r; k++)
if (less(aux[j], aux[i])) a[k] = aux[j--];
else a[k] = aux[i++];
}
public static void sort(Comparable[] a)
{
int N = a.length;
Comparable[] aux = new Comparable[N];
for (int m = 1; m < N; m = m+m)
for (int i = 0; i < N-m; i += m+m)
merge(a, aux, i, i+m, Math.min(i+m+m, N));
}
}

```

\section*{Mergesort: Practical Improvements}

\section*{Use sentinel.}
- Two statements in inner loop are array-bounds checking.
- Reverse one subarray so that largest element is sentinel (Program 8.2)

Use insertion sort on small subarrays.
- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for \(\approx 7\) elements.

\section*{Stop if already sorted.}
- Is biggest element in first half \(\leq\) smallest element in second half?
- Helps for nearly ordered lists.

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

See Program 8.4 (or Java system sort)

\section*{Sorting Analysis Summary}

Running time estimates:
- Home pc executes \(10^{8}\) comparisons/second.
- Supercomputer executes \(10^{12}\) comparisons/second.
\begin{tabular}{c|c|c|c|ccc|c|}
\multicolumn{4}{c}{ Insertion Sort \(\left(N^{2}\right)\)} & \multicolumn{4}{c|}{ Mergesort (\(N \log N)\)} \\
\hline computer & thousand & million & billion & & thousand & million & billion \\
\hline home & instant & 2.8 hours & 317 years & instant & 1 sec & 18 min \\
super & instant & 1 second & 1.6 weeks & & instant & instant & instant
\end{tabular}

Lesson. Good algorithms are better than supercomputers.

Good enough?

18 minutes might be too long for some applications

\title{
> rules of the game \\ \(\rangle\) shellsort \\ mergesort
}
, quicksort
> animations

Quicksort (Hoare, 1959)

Basic plan.
- Shuffle the array.
- Partition so that, for some i element a[i] is in place no larger element to the left of \(i\) no smaller element to the right of \(i\)

- Sort each piece recursively.

Sir Charles Antony Richard Hoare 1980 Turing Award

Quicksort: Java code for recursive sort
```

public class Quick
{
public static void sort(Comparable[] a)
{
StdRandom.shuffle(a);
sort(a, 0, a.length - 1);
}
private static void sort(Comparable[] a, int l, int r)
{
if (r <= l) return;
int m = partition(a, l, r);
sort(a, l, m-1);
sort(a,m+1, r);
}
}

```

\section*{Quicksort trace}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & a [& & & & & & & & & & \\
\hline input & \(1 \quad r\) & i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline & & & Q & U & I & C & K & S & 0 & R & T & E & x & A & M & P & 1 & E \\
\hline randomize & & & E & R & A & T & E & S & L & P & U & I & M & 2 & C & x & 0 & K \\
\hline partition \(\longrightarrow\) & 015 & 5 & E & c & A & 1 & E & K & L & P & U & T & M & Q & R & X & 0 & S \\
\hline & 04 & 2 & A & C & (E) & I & E & K & L & P & U & T & M & 2 & R & X & \(\bigcirc\) & S \\
\hline & 01 & 1 & A & (C) & E & I & E & K & L & F & U & T & M & 2 & R & X & 0 & S \\
\hline & 00 & & A & C & E & I & E & K & L & P & U & T & M & Q & R & X & 0 & S \\
\hline 4 & 34 & 3 & A & c & E & (E) & I & K & L & P & U & T & M & Q & R & X & 0 & S \\
\hline 4 & 44 & & A & c & E & E & I & K & L & P & U & T & M & Q & R & X & \(\bigcirc\) & S \\
\hline 16 & 615 & 12 & A & C & E & E & I & K & L & P & 0 & R & M & 2 & (S) & X & U & T \\
\hline 66 & 611 & 10 & A & C: & E & E & I & K & \(L\) & P & 0 & M & (Q) & R & S & X & U & T \\
\hline 1 & 69 & 7 & A & c & E & E & I & K & L & M & 0 & P & \(Q\) & R & S & X & U & T \\
\hline no partition for \(\longrightarrow\) & 66 & & A & C & E & E & I & K & L & M & 0 & \(P\) & 2 & R & S & X & U & T \\
\hline subfiles of size \(1 \sim 8\) & 89 & 9 & A & C: & E & E & I & K & L & M & 0 & P & 2 & R & S & X & U & T \\
\hline & 88 & & A & C & E & E & I & K & I & M & \(\bigcirc\) & P & \(Q\) & R & S & X & U & T \\
\hline 11 & 1111 & & A & C & E & E & I & K & L & M & 0 & P & \(\bigcirc\) & R & S & X & U & T \\
\hline 13 & 315 & 13 & A & C & E & E & I & K & د & M & O) & P & \(\bigcirc\) & R & S & (T) & U & X \\
\hline 14 & 415 & 15 & A & c & E & E & I & K & L & M & \(\bigcirc\) & P & Q & R & S & T & U & (x) \\
\hline & 414 & & A & C & E & E & I & K & L & M & 0 & P & \(\bigcirc\) & R & S & T & U & X \\
\hline & & & A & C & E & E & I & K & L & M & 0 & P & Q & R & S & T & U & x \\
\hline
\end{tabular}
array contents after each recursive sort

\section*{Quicksort partitioning}

\section*{Basic plan:}
- scan from left for an item that belongs on the right
- scan from right for item item that belongs on the left
- exchange
- continue until pointers cross

Quicksort: Java code for partitioning
```

private static int partition(Comparable[] a, int l, int r)
{
int i = 1 - 1;
int j = r;
while(true)
{
while (less(a[++i], a[r])) find item on left to swap
if (i == r) break;
while (less(a[r], a[--j])) find item on right to swap
if (j == l) break;
if (i >= j) break; check if pointers cross
exch(a, i, j); swap
}
exch(a,i, r); swap with partitioning item
return i;
}

```
swap with partitioning item
return index of item now known to be in place

\section*{Quicksort Implementation details}

Partitioning in-place. Using a spare array makes partitioning easier, but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The (i==r) test is redundant, but the (\(\mathrm{j}==\mathrm{l}\)) test is not.

Preserving randomness. Shuffling is key for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) best to stop on elements equal to partitioning element.

\section*{Quicksort: Average-case analysis}

Theorem. The average number of comparisons \(C_{N}\) to quicksort a random file of N elements is about \(2 \mathrm{~N} \ln \mathrm{~N}\).
- The precise recurrence satisfies \(C_{0}=C_{1}=0\) and for \(N \geq 2\) :
\[
\begin{aligned}
& \left.C_{\mathrm{N}}=\underset{\substack{\uparrow \\
\text { partition }}}{\mathrm{N}}+\underset{\substack{\uparrow \\
\text { left }}}{\substack{\uparrow \\
\text { right }}}\left(\left(C_{0}+C_{\mathrm{N}-1}\right)+\ldots+\underset{\substack{\text { partitioning } \\
\text { probability }}}{\left(C_{\mathrm{k}-1}\right.}+\underset{\mathrm{N}-\mathrm{k}}{C_{\mathrm{N}}}\right)+\ldots+\left(C_{\mathrm{N}-1}+C_{1}\right)\right) / \underset{\sim}{N} \\
& =N+1+2\left(C_{0} \ldots+C_{k-1}+\ldots+C_{N-1}\right) / N
\end{aligned}
\]
- Multiply both sides by N
\[
N C_{N}=N(N+1)+2\left(C_{0} \ldots+C_{k-1}+\ldots+C_{N-1}\right)
\]
- Subtract the same formula for \(\mathrm{N}-1\) :
\[
N C_{N}-(N-1) C_{N-1}=N(N+1)-(N-1) N+2 C_{N-1}
\]
- Simplify:
\[
N C_{N}=(N+1) C_{N-1}+2 N
\]

Quicksort: Average Case
\[
N C_{N}=(N+1) C_{N-1}+2 N
\]
- Divide both sides by \(N(N+1)\) to get a telescoping sum:
\[
\begin{aligned}
C_{N} /(N+1) & =C_{N-1} / N+2 /(N+1) \\
& =C_{N-2} /(N-1)+2 / N+2 /(N+1) \\
& =C_{N-3} /(N-2)+2 /(N-1)+2 / N+2 /(N+1) \\
& =2(1+1 / 2+1 / 3+\ldots+1 / N+1 /(N+1))
\end{aligned}
\]
- Approximate the exact answer by an integral:
\[
\begin{aligned}
C_{N} & \approx 2(N+1)(1+1 / 2+1 / 3+\ldots+1 / N) \\
& =2(N+1) H_{N} \approx 2(N+1) \int_{1}^{N} d x / x
\end{aligned}
\]
- Finally, the desired result:
\[
C_{N} \approx 2(N+1) \ln N \approx 1.39 N \lg N
\]

\section*{Quicksort: Summary of performance characteristics}

Worst case. Number of comparisons is quadratic.
- \(\mathrm{N}+(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+1 \approx \mathrm{~N}^{2} / 2\).
- More likely that your computer is struck by lightning.

Average case. Number of comparisons is \(\sim 1.39 \mathrm{Nlg} \mathrm{N}\).
- \(39 \%\) more comparisons than mergesort.
- but faster than mergesort in practice because of lower cost of other high-frequency operations.

\section*{Random shuffle}
- probabilistic guarantee against worst case
- basis for math model that can be validated with experiments

Caveat emptor. Many textbook implementations go quadratic if input:
- Is sorted.
- Is reverse sorted.
- Has many duplicates (even if randomized)! [stay tuned]

\section*{Sorting analysis summary}

\section*{Running time estimates:}
- Home pc executes \(10^{8}\) comparisons/second.
- Supercomputer executes \(10^{12}\) comparisons/second.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Insertion Sort \(\left(N^{2}\right)\)} \\
\hline computer & thousand & million & billion \\
\hline home & instant & 2.8 hours & 317 years \\
super & instant & 1 second & 1.6 weeks \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Mergesort \((N \log N)\)} \\
\hline thousand & million & billion \\
\hline instant & 1 sec & 18 min \\
instant & instant & instant \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\multicolumn{3}{|c|}{ Quicksort \((N \log N)\)} \\
\hline thousand & million & billion \\
\hline instant & 0.3 sec & 6 min \\
instant & instant & instant \\
\hline
\end{tabular}

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

Quicksort: Practical improvements
Median of sample.
- Best choice of pivot element = median.
- But how to compute the median?
- Estimate true median by taking median of sample.

Insertion sort small files.
- Even quicksort has too much overhead for tiny files.
- Can delay insertion sort until end.

Optimize parameters.
- Median-of-3 random elements.
- Cutoff to insertion sort for \(\approx 10\) elements.

Non-recursive version.
- Use explicit stack.
- Always sort smaller half first.

\title{
> rules of the game \\ > shellsort \\ mergesort \\ quicksort \\ - animations
}

Quicksort animation

\title{
Advanced Topics in Sorting
}
- complexity
- system sorts
- duplicate keys
- comparators
> complexity
system sorts
duplicate keys
>comparators

\section*{Complexity of sorting}

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem \(X\).

Machine model. Focus on fundamental operations.

Upper bound. Cost guarantee provided by some algorithm for \(X\).
Lower bound. Proven limit on cost guarantee of any algorithm for \(X\).
Optimal algorithm. Algorithm with best cost guarantee for \(X\).

Example: sorting.
- Machine model = \# comparisons
- Upper bound = \(\mathrm{N} \lg \mathrm{N}\) from mergesort.
- Lower bound?

\section*{Decision Tree}

\section*{Comparison-based lower bound for sorting}

Theorem. Any comparison based sorting algorithm must use more than \(N \lg N-1.44 \mathrm{~N}\) comparisons in the worst-case.

\section*{Pf.}
- Assume input consists of \(N\) distinct values \(a_{1}\) through \(a_{N}\).
- Worst case dictated by tree height \(h\).
- N! different orderings.
- (At least) one leaf corresponds to each ordering.
- Binary tree with \(N\) ! leaves cannot have height less than \(\lg (N!)\)
\[
\begin{aligned}
h & \geq \lg N! \\
& \geq \lg (N / e)^{N} \longleftarrow \text { Stirling's formula } \\
& =N \lg N-N \lg e \\
& \geq N \lg N-1.44 N
\end{aligned}
\]

Complexity of sorting

Upper bound. Cost guarantee provided by some algorithm for \(X\).
Lower bound. Proven limit on cost guarantee of any algorithm for \(X\).
Optimal algorithm. Algorithm with best cost guarantee for X .
Example: sorting.
- Machine model = \# comparisons
- Upper bound \(=N \lg N\) (mergesort)
- Lower bound \(=N \lg N-1.44 N\)

Mergesort is optimal (to within a small additive factor)
lower bound \(\approx\) upper bound

First goal of algorithm design: optimal algorithms

\section*{Complexity results in context}

Mergesort is optimal (to within a small additive factor)

Other operations?
- statement is only about number of compares
- quicksort is faster than mergesort (lower use of other operations)

\section*{Space?}
- mergesort is not optimal with respect to space usage
- insertion sort, selection sort, shellsort, quicksort are space-optimal
- is there an algorithm that is both time- and space-optimal?

Nonoptimal algorithms may be better in practice
- statement is only about guaranteed worst-case performance
- quicksort's probabilistic guarantee is just as good in practice

Lessons
- use theory as a guide
- know your algorithms

\section*{Example: Selection}

Find the \(\mathrm{k}^{\text {th }}\) largest element.
- Min: k=1.
- Max: \(\mathrm{k}=\mathrm{N}\).
- Median: \(k=N / 2\).

Applications.
- Order statistics.
- Find the "top k"

Use theory as a guide
- easy \(O(N \log N)\) upper bound: sort, return \(a[k]\)
- easy \(O(N)\) upper bound for some k: min, max
- easy \(\Omega(N)\) lower bound: must examine every element

Which is true?
- \(\Omega(N \log N)\) lower bound? [is selection as hard as sorting?]
- \(O(\mathrm{~N})\) upper bound? [linear algorithm for all k]

Complexity results in context (continued)

Lower bound may not hold if the algorithm has information about
- the key values
- their initial arrangement

Partially ordered arrays. Depending on the initial order of the input, we may not need \(N \lg N\) compares.
\(\nwarrow\) insertion sort requires \(O(N)\) compares on an already sorted array
Duplicate keys. Depending on the input distribution of duplicates, we may not need \(N \lg N\) compares.
stay tuned for 3-way quicksort
Digital properties of keys. We can use digit/character comparisons instead of key comparisons for numbers and strings.
stay tuned for radix sorts

Selection: quick-select algorithm
Partition array so that:
- element a[m] is in place
- no larger element to the left of \(m\)

Finished when \(m=k \leftarrow a[k]\) is in place, no larger element to the left, no smaller element to the right
```

public static void select(Comparable[] a, int k)
{
StdRandom.shuffle(a);
int l = 0;
int r = a.length - 1;
while (r > l)
{
int i = partition(a, l, r);
if (m > k) r = m - 1;
else if (m < k) l = m + 1;
else return;
}
}

```
 Inc|l|
|l|l|u|l|l|l|l|l|l|l|l|l|l|l|l|
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
| IIIIIIIIIIII
....1. .|.|||||||||||III|
........|||||||||||||||

\section*{Quick-select analysis}

Theorem. Quick-select takes linear time on average.
Pf.
- Intuitively, each partitioning step roughly splits array in half.
- \(\mathrm{N}+\mathrm{N} / 2+\mathrm{N} / 4+\ldots+1 \approx 2 \mathrm{~N}\) comparisons.
- Formal analysis similar to quicksort analysis:
\[
C_{N}=2 N+k \ln (N / k)+(N-k) \ln (N /(N-k))
\]

Note. Might use \(\sim N^{2} / 2\) comparisons, but as with quicksort, the random shuffle provides a probabilistic guarantee.

Theorem. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a selection algorithm that take linear time in the worst case. Note. Algorithm is far too complicated to be useful in practice.

\section*{Use theory as a guide}
- still worthwhile to seek practical linear-time (worst-case) algorithm
- until one is discovered, use quick-select if you don't need a full sort

\section*{complexity}
- system sorts
duplicate keys
〉comparators

\section*{Sorting Challenge 1}

Problem: sort a file of huge records with tiny keys.
Ex: reorganizing your MP3 files.

Which sorting method to use?
1. mergesort
2. insertion sort
3. selection sort
file \(\Rightarrow\)\begin{tabular}{|c|c|c|c|c|}
\hline Fox & 1 & A & \(243-456-9091\) & 101 Brown \\
\hline Quilici & 1 & C & \(343-987-5642\) & 32 McCosh \\
\hline Chen & 2 & A & \(884-232-5341\) & 11 Dickinson \\
\hline Furia & 3 & A & \(766-093-9873\) & 22 Brown \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 343 Forbes \\
\hline Andrews & 3 & A & \(874-088-1212\) & 121 Whitman \\
\hline Rohde & 3 & A & \(232-343-5555\) & 115 Holder \\
\hline Battle & 4 & C & \(991-878-4944\) & 308 Blair \\
\hline Aaron & 4 & A & \(664-480-0023\) & 097 Little \\
\hline Gazsi & 4 & B & \(665-303-0266\) & 113 Walker \\
\hline
\end{tabular}

\section*{Sorting Challenge 1}

Problem: sort a file of huge records with tiny keys.
Ex: reorganizing your MP3 files.

Which sorting method to use?
1. mergesort probably no, selection sort simpler and faster
2. insertion sort no, too many exchanges
3. selection sort YES, linear time under reasonable assumptions

Ex: 5,000 records, each 2 million bytes with 100-byte keys.
- Cost of comparisons: \(100 \times 5000^{2} / 2=1.25\) billion
- Cost of exchanges: \(2,000,000 \times 5,000=10\) trillion
- Mergesort might be a factor of log (5000) slower.

\section*{Sorting Challenge 2}

Problem: sort a huge randomly-ordered file of small records.
Ex: process transaction records for a phone company.

Which sorting method to use?
1. quicksort
2. insertion sort
3. selection sort
file \(\Rightarrow\)\begin{tabular}{|c|c|c|c|c|}
\hline Fox & 1 & A & \(243-456-9091\) & 101 Brown \\
\hline Quilici & 1 & C & \(343-987-5642\) & 32 Mccosh \\
\hline Chen & 2 & A & \(884-232-5341\) & 11 Dickinson \\
\hline Furia & 3 & A & \(766-093-9873\) & 22 Brown \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 343 Forbes \\
\hline Andrews & 3 & A & \(874-088-1212\) & 121 Whitman \\
\hline Rohde & 3 & A & \(232-343-5555\) & 115 Holder \\
\hline Battle & 4 & C & \(991-878-4944\) & 308 Blair \\
\hline Karon & 4 & A & \(664-480-0023\) & 097 Little \\
\hline Gazsi & 4 & B & \(665-303-0266\) & 113 Walker \\
\hline
\end{tabular}

Sorting Challenge 2

Problem: sort a huge randomly-ordered file of small records.
Ex: process transaction records for a phone company.

Which sorting method to use?
1. quicksort YES, it's designed for this problem
2. insertion sort no, quadratic time for randomly-ordered files
3. selection sort no, always takes quadratic time

\section*{Sorting Challenge 3}

Problem: sort a huge number of tiny files (each file is independent) Ex: daily customer transaction records.

Which sorting method to use?
1. quicksort
2. insertion sort
3. selection sort
file \(\Rightarrow\)\begin{tabular}{|c|c|c|c|c|}
\hline Fox & 1 & A & \(243-456-9091\) & 101 Brown \\
\hline Quilici & 1 & C & \(343-987-5642\) & 32 McCosh \\
\hline Chen & 2 & A & \(884-232-5341\) & 11 Dickinson \\
\hline Furia & 3 & A & \(766-093-9873\) & 22 Brown \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 343 Forbes \\
\hline Andrews & 3 & A & \(874-088-1212\) & 121 Whitman \\
\hline Rohde & 3 & A & \(232-343-5555\) & 115 Holder \\
\hline Battle & 4 & C & \(991-878-4944\) & 308 Blair \\
\hline Aaron & 4 & A & \(664-480-0023\) & 097 Little \\
\hline Gazsi & 4 & B & \(665-303-0266\) & 113 Walker \\
\hline
\end{tabular}

\section*{Sorting Challenge 3}

Problem: sort a huge number of tiny files (each file is independent)
Ex: daily customer transaction records.

Which sorting method to use?
1. quicksort no, too much overhead
2. insertion sort YES, much less overhead than system sort
3. selection sort YES, much less overhead than system sort

Ex: 4 record file.
- \(4 N \log N+35=70\)
- \(2 N^{2}=32\)

Sorting Challenge 4
Problem: sort a huge file that is already almost in order.
Ex: re-sort a huge database after a few changes.

Which sorting method to use?
1. quicksort
2. insertion sort
3. selection sort
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{\[
\text { file } \Rightarrow
\]} & Fox & 1 & A & 243-456-9091 & 101 Brown \\
\hline & Quilici & 1 & c & 343-987-5642 & 32 McCosh \\
\hline & Chen & 2 & A & 884-232-5341 & 11 Dickinson \\
\hline & Furia & 3 & A & 766-093-9873 & 22 Brown \\
\hline & Kanaga & 3 & B & 898-122-9643 & 343 Forbes \\
\hline \multirow[t]{3}{*}{record \(\square\)} & Andrews & 3 & A & 874-088-1212 & 121 Whitman \\
\hline & Rohde & 3 & A & 232-343-5555 & 115 Holder \\
\hline & Battle & 4 & c & 991-878-4944 & 308 Blair \\
\hline \multirow[t]{2}{*}{\[
\text { key } \Rightarrow
\]} & Aaron & 4 & A & 664-480-0023 & 097 Little \\
\hline & Gazsi & 4 & B & 665-303-0266 & 113 Walker \\
\hline
\end{tabular}

\section*{Sorting Challenge 4}

Problem: sort a huge file that is already almost in order.
Ex: re-sort a huge database after a few changes.

Which sorting method to use?
1. quicksort probably no, insertion simpler and faster
2. insertion sort YES, linear time for most definitions of "in order"
3. selection sort no, always takes quadratic time

Ex:

- zabctefghtuklmnopqrstuvwxy

\section*{Sorting Applications}

Sorting algorithms are essential in a broad variety of applications
- Sort a list of names.
- Organize an MP3 library. obvious applications
- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
problems become easy once
items are in sorted order
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
- Load balancing on a parallel computer.

Every system needs (and has) a system sort!

\section*{System sort: Which algorithm to use?}

Many sorting algorithms to choose from
internal sorts.
- Insertion sort, selection sort, bubblesort, shaker sort.
- Quicksort, mergesort, heapsort, samplesort, shellsort.
- Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...
external sorts. Poly-phase mergesort, cascade-merge, oscillating sort.
radix sorts.
- Distribution, MSD, LSD.
- 3-way radix quicksort.
parallel sorts.
- Bitonic sort, Batcher even-odd sort.
- Smooth sort, cube sort, column sort.
- GPUsort.

\section*{System sort: Which algorithm to use?}

\section*{Applications have diverse attributes}
- Stable?
- Multiple keys?
- Deterministic?
- Keys all distinct?
- Multiple key types?
- Linked list or arrays?
- Large or small records?
- Is your file randomly ordered?
- Need guaranteed performance?

many more combinations of attributes than algorithms

Elementary sort may be method of choice for some combination. Cannot cover all combinations of attributes.
Q. Is the system sort good enough?
A. Maybe (no matter which algorithm it uses).
complexity
> system sorts
duplicate keys
comparators

\section*{Duplicate keys}

Often, purpose of sort is to bring records with duplicate keys together.
- Sort population by age.
- Finding collinear points.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.
- Huge file.
- Small number of key values.

Mergesort with duplicate keys: always \(\sim N \lg N\) compares
Quicksort with duplicate keys
- algorithm goes quadratic unless partitioning stops on equal keys!
- [many textbook and system implementations have this problem]
- 1990s Unix user found this problem in qsort()

Duplicate keys: the problem
Assume all keys are equal.
Recursive code guarantees that case will predominate!

Mistake: Put all keys equal to the partitioning element on one side
- easy to code
- guarantees \(N^{2}\) running time when all keys equal
BAABABCCBCB

Recommended: Stop scans on keys equal to the partitioning element
- easy to code
- guarantees \(N \lg N\) compares when all keys equal
B A A B A B C \(\mathbf{C} \mathbf{C} \mathbf{B}\)
A A A A A A A A A A A

Desirable: Put all keys equal to the partitioning element in place
A A A B B B B B C C C
A A A A A A A A A A A

Common wisdom to 1990s: not worth adding code to inner loop

\section*{3-Way Partitioning}

3-way partitioning. Partition elements into 3 parts:
- Elements between \(i\) and \(j\) equal to partition element \(v\).
- No larger elements to left of i.
- No smaller elements to right of \(j\).

Dutch national flag problem.
- not done in practical sorts before mid-1990s.
- new approach discovered when fixing mistake in Unix qsort()
- now incorporated into Java system sort

Solution to Dutch national flag problem.

3-way partitioning (Bentley-McIlroy).
- Partition elements into 4 parts: no larger elements to left of i no smaller elements to right of \(j\) equal elements to left of \(p\) equal elements to right of \(q\)
- Afterwards, swap equal keys into center.

All the right properties.
- in-place.
- not much code.
- linear if keys are all equal.
- small overhead if no equal keys.

3-way Quicksort: Java Implementation
```

private static void sort(Comparable[] a, int l, int r)
{
if (r <= l) return;
int i = l-1, j = r;
int p = l-1, q = r;
while(true) 4-way partitioning
{
while (less(a[++i], a[r])) ;
while (less(a[r], a[--j])) if (j == l) break;
if (i >= j) break;
exch(a, i, j);
if (eq(a[i], a[r])) exch(a, ++p, i); swap equal keys to left or right
if (eq(a[j], a[r])) exch(a, --q, j);
}
exch(a, i, r);
j = i - 1; swap equal keys back to middle
i = i + 1;
for (int k = l ; k <= p; k++) exch(a, k, j--);
for (int k = r-1; k >= q; k--) exch(a, k, i++);
sort(a, l, j);
sort(a, i, r);
}

```

Duplicate keys: lower bound
Theorem. [Sedgewick-Bentley] Quicksort with 3-way partitioning is optimal for random keys with duplicates.

Proof (beyond scope of 226).
- generalize decision tree
- tie cost to entropy
- note: cost is linear when number of key values is \(O(1)\)

Bottom line: Randomized Quicksort with 3-way partitioning reduces cost from linearithmic to linear (!) in broad class of applications

3-way partitioning animation

> complexity
system sorts
duplicate keys
comparators

\section*{Generalized compare}

Comparable interface: sort uses type's compareTo () function:
```

public class Date implements Comparable<Date>
{
private int month, day, year;
public Date(int m, int d, int Y)
{
month = m;
day = d;
year = y;
}
public int compareTo(Date b)
{
Date a = this;
if (a.year < b.year ) return -1;
if (a.year > b.year ) return +1;
if (a.month < b.month) return -1;
if (a.month > b.month) return +1;
if (a.day < b.day ) return -1;
if (a.day > b.day ) return +1;
return 0;
}
}

```

\section*{Generalized compare}

Comparable interface: sort uses type's compareTo () function:

Problem 1: Not type-safe
Problem 2: May want to use a different order.
Problem 3: Some types may have no "natural" order.

Ex. Sort strings by:
- Natural order.
- Case insensitive.
- French.
- Spanish.
```

Now is the time
is Now the time
real réal rico
café cuidado champiñón dulce

```
 ch and rr are single letters
```

String[] a;
Arrays.sort(a);
Arrays.sort (a, String.CASE_INSENSITIVE_ORDER);
Arrays.sort (a, Collator.getInstance (Locale.FRENCH));
Arrays.sort(a, Collator.getInstance(Locale.SPANISH));

```

\section*{Generalized compare}

Comparable interface: sort uses type's compareTo() function:

Problem 1: Not type-safe
Problem 2: May want to use a different order.
Problem 3: Some types may have no "natural" order.

A bad client
```

    public class BadClient
    {
        public static void main(String[] args)
        {
            int N = Integer.parseInt(args[0]);
            Comparable[] a = new Comparable[N];
                    \longrightarrow
                            a[i] = 1;
                            Insertion.sort(a);
    }
    }
    ```
autoboxed to Integer
autoboxed to Double \(\longrightarrow a[j]=2.0\);

Exception ... java.lang.ClassCastException: java.lang.Double at java.lang.Integer. compareTo (Integer.java: 35)

\section*{Generalized compare}

Comparable interface: sort uses type's compareTo() function:

Problem 1: Not type-safe
Problem 2: May want to use a different order.
Problem 3: Some types may have no "natural" order.

Fix: generics
```

public class Insertion
{
public static <Key extends Comparable<Key>>
void sort(Key[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
for (int j = i; j > 0; j--)
if (less(a[j], a[j-1])) exch(a, j, j-1);
else break;
}
}

```

Client can sort array of any Comparable type: Double [], File [], Date [], ...

Necessary in system library code; not in this course (for brevity)

\section*{Generalized compare}

Comparable interface: sort uses type's compareTo() function:

Problem 1: Not type-safe
Problem 2: May want to use a different order.
Problem 3: Some types may have no "natural" order.

Solution: Use Comparator interface

Comparator interface. Require a method compare() so that compare (\(\mathrm{v}, \mathrm{w}\)) is a total order that behaves like compareто().

Advantage. Separates the definition of the data type from definition of what it means to compare two objects of that type.
- add any number of new orders to a data type.
- add an order to a library data type with no natural order.

\section*{Generalized compare}

Comparable interface: sort uses type's compareTo() function:

Problem 2: May want to use a different order.
Problem 3: Some types may have no "natural" order.

Solution: Use Comparator interface

Example:
```

public class ReverseOrder implements Comparator<String>
{
public int compare(String a, String b)
{ return -a.compareTo (b); }
}
reverse sense of comparison

```
 Arrays.sort (a, new ReverseOrder());
 -••

\section*{Generalized compare}

Easy modification to support comparators in our sort implementations
- pass comparator to sort (), less ()
- use it in less ()

Example: (insertion sort)
```

public static void sort(Object[] a, Comparator comparator)
{
int N = a.length;
for (int i = 0; i < N; i++)
for (int j = i; j > 0; j--)
if (less(comparator, a[j], a[j-1]))
exch(a, j, j-1);
else break;
}
private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }
private static void exch(Object[] a, int i, int j)
{ Object t = a[i]; a[i] = a[j]; a[j] = t; }

```

\section*{Generalized compare}

Comparators enable multiple sorts of single file (different keys)

Example. Enable sorting students by name or by section.
```

Arrays.sort(students, Student.BY_NAME);
Arrays.sort(students, Student.BY_SECT);

```
sort by name
\begin{tabular}{c|c|c|c|c|}
\hline \\
Andrews & 3 & A & \(664-480-0023\) & 097 Little \\
\hline Battle & 4 & C & \(874-088-1212\) & 121 Whitman \\
\hline Chen & 2 & A & \(991-878-4944\) & 308 Blair \\
\hline Fox & 1 & A & \(884-232-5341\) & 11 Dickinson \\
\hline Furia & 3 & A & \(766-093-9873\) & 101 Brown \\
\hline Gazsi & 4 & B & \(665-303-0266\) & 22 Brown \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 22 Brown \\
\hline Rohde & 3 & A & \(232-343-5555\) & 343 Forbes \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ then sort by section } \\
\hline \multicolumn{7}{|c|}{\(\downarrow\)} & \\
\hline Fox & 1 & A & \(884-232-5341\) & 11 Dickinson \\
\hline Chen & 2 & A & \(991-878-4944\) & 308 Blair \\
\hline Andrews & 3 & A & \(664-480-0023\) & 097 Little \\
\hline Furia & 3 & A & \(766-093-9873\) & 101 Brown \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 22 Brown \\
\hline Rohde & 3 & A & \(232-343-5555\) & 343 Forbes \\
\hline Battle & 4 & C & \(874-088-1212\) & 121 Whitman \\
\hline Gazsi & 4 & B & \(665-303-0266\) & 22 Brown \\
\hline
\end{tabular}

\section*{Generalized compare}

\section*{Comparators enable multiple sorts of single file (different keys)}

Example. Enable sorting students by name or by section.
```

public class Student
{
public static final Comparator<Student> BY_NAME = new ByName();
public static final Comparator<Student> BY_SECT = new BySect();
private String name;
private int section;
private static class ByName implements Comparator<Student>
{
public int compare(Student a, Student b)
{ return a.name.compareTo(b.name); }
}
private static class BySect implements Comparator<Student>
{
public int compare(Student a, Student b)
{ return a.section - b.section; }
}
}
only use this trick if no danger of overflow

```

\section*{Generalized compare problem}

A typical application
- first, sort by name
- then, sort by section

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Arrays.sort (students, Student.BY_SECT) ; } \\
\hline & \(\downarrow\) & & & \\
\hline Fox & 1 & A & \(884-232-5341\) & 11 Dickinson \\
\hline Chen & 2 & A & \(991-878-4944\) & 308 Blair \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 22 Brown \\
\hline Andrews & 3 & A & \(664-480-0023\) & 097 Little \\
\hline Furia & 3 & A & \(766-093-9873\) & 101 Brown \\
\hline Rohde & 3 & A & \(232-343-5555\) & 343 Forbes \\
\hline Battle & 4 & C & \(874-088-1212\) & 121 Whitman \\
\hline Gazsi & 4 & B & \(665-303-0266\) & 22 Brown \\
\hline
\end{tabular}
@\#\%\&@!! Students in section 3 no longer in order by name.

A stable sort preserves the relative order of records with equal keys.
Is the system sort stable?

\section*{Stability}
Q. Which sorts are stable?
- Selection sort?
- Insertion sort?
- Shellsort?
- Quicksort?
- Mergesort?
A. Careful look at code required.

Annoying fact. Many useful sorting algorithms are unstable.

\section*{Easy solutions.}
- add an integer rank to the key
- careful implementation of mergesort

Open: Stable, inplace, optimal, practical sort??

\section*{Java system sorts}

Use theory as a guide: Java uses both mergesort and quicksort.
- Can sort array of type comparable or any primitive type.
- Uses quicksort for primitive types.
- Uses mergesort for objects.
```

import java.util.Arrays;
public class IntegerSort
{
public static void main(String[] args)
{
int N = Integer.parseInt(args[0]);
int[] a = new int[N];
for (int i = 0; i < N; i++)
a[i] = StdIn.readInt();
Arrays.sort (a);
for (int i = 0; i < N; i++)
System.out.println(a[i]);
}
}

```
Q. Why use two different sorts?
A. Use of primitive types indicates time and space are critical
A. Use of objects indicates time and space not so critical

Arrays.sort () for primitive types

\section*{Bentley-McIlroy. [Engineeering a Sort Function]}
- Original motivation: improve qsort () function in C.
- Basic algorithm = 3-way quicksort with cutoff to insertion sort.
- Partition on Tukey's ninther: median-of-3 elements, each of which is a median-of-3 elements.

nine evenly spaced elements

Why use ninther?
- better partitioning than sampling
- quick and easy to implement with macros
- less costly than random \(\longleftarrow\) Good idea? Stay tuned.

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Based on all this research, Java's system sort is solid, right?

McIlroy's devious idea. [A Killer Adversary for Quicksort]
- Construct malicious input while running system quicksort, in response to elements compared.
- If \(p\) is pivot, commit to \((x<p)\) and (\(y<p\)), but don't commit to \((x<y)\) or \((x>y)\) until \(x\) and \(y\) are compared.

Consequences.
- Confirms theoretical possibility.
- Algorithmic complexity attack: you enter linear amount of data; server performs quadratic amount of work.

\section*{Achilles heel in Bentley-McIlroy implementation (Java system sort)}

A killer input:
- blows function call stack in Java and crashes program
- would take quadratic time if it didn't crash first
```

% more 250000.txt
O
218750
222662
11
166672
247070
83339
156253

```
```

% java IntegerSort < 250000.txt
Exception in thread "main" java.lang.StackOverflowError
at java.util.Arrays.sort1(Arrays.java:562)
at java.util.Arrays.sort1 (Arrays.java:606)
at java.util.Arrays.sort1 (Arrays.java: 608)
at java.util.Arrays.sort1 (Arrays.java: 608)
at java.util.Arrays.sort1 (Arrays.java: 608)

```
250,000 integers between
Java's sorting library crashes, even if
you give it as much stack space as Windows allows.

Attack is not effective if file is randomly ordered before sort

\section*{System sort: Which algorithm to use?}

\section*{Applications have diverse attributes}
- Stable?
- Multiple keys?
- Deterministic?
- Keys all distinct?
- Multiple key types?
- Linked list or arrays?
- Large or small records?
- Is your file randomly ordered?
- Need guaranteed performance?

many more combinations of attributes than algorithms

Elementary sort may be method of choice for some combination. Cannot cover all combinations of attributes.
Q. Is the system sort good enough?
A. Maybe (no matter which algorithm it uses).

\section*{Priority Queues}
- API
- elementary implementations
binary heaps
- heapsort
- event-driven simulation

\section*{References:}

Algorithms in Java, Chapter 9
http://www.cs.princeton.edu/introalgsds/34pq
elementary implementations
binary heaps
> heapsort
> event-drive simulation

\section*{Priority Queues}

Data. Items that can be compared.

Basic operations.
- Insert.
- Remove largest. defining ops
- Copy.
- Create.
- Destroy.
generic ops
- Test if empty.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
insert \(E \Rightarrow\) \\
insert \(X \Rightarrow\)
\end{tabular}} & E & & & & \\
\hline & E & \(x\) & & & \\
\hline \multirow[t]{2}{*}{insert \(A \Rightarrow\)} & E & X & A & & \\
\hline & E & A & & & remove largest \(\square \times\) \\
\hline \multirow[t]{2}{*}{insert \(M \Rightarrow\)} & E & A & M & & \\
\hline & E & A & & & remove largest \(\square M\) \\
\hline insert \(P \Rightarrow\) & E & A & P & & \\
\hline \multirow[t]{2}{*}{insert \(L \longrightarrow\)} & E & A & P & L & \\
\hline & E & A & L & & remove largest \(\square P\) \\
\hline \multirow[t]{5}{*}{insert \(E \Rightarrow\)} & E & A & L & E & \\
\hline & E & A & E & & remove largest \(\square \mathrm{L}\) \\
\hline & A & E & & & remove largest \(\square \mathrm{E}\) \\
\hline & A & & & & remove largest \(\Rightarrow \mathrm{E}\) \\
\hline & & & & & remove largest \(\square \mathrm{A}\) \\
\hline
\end{tabular}

Priority Queue Applications
- Event-driven simulation.
- Numerical computation.
- Data compression.
- Graph searching.
- Computational number theory.
- Artificial intelligence.
- Statistics.
- Operating systems.
- Discrete optimization.
- Spam filtering.
[customers in a line, colliding particles]
[reducing roundoff error]
[Huffman codes]
[Dijkstra's algorithm, Prim's algorithm]
[sum of powers]
[A* search]
[maintain largest \(M\) values in a sequence]
[load balancing, interrupt handling]
[bin packing, scheduling]
[Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Priority queue client example

Problem: Find the largest \(M\) of a stream of \(N\) elements.
- Fraud detection: isolate \(\$ \$\) transactions.
- File maintenance: find biggest files or directories.

Constraint. Not enough memory to store \(N\) elements. Solution. Use a priority queue.
\begin{tabular}{|c|c|c|}
\hline Operation & time & space \\
\hline sort & \(N \lg N\) & \(N\) \\
\hline elementary PQ & \(M N\) & \(M\) \\
\hline binary heap & \(N \lg M\) & \(M\) \\
\hline best in theory & \(N\) & \(M\) \\
\hline
\end{tabular}
```

MinPQ<Transaction> pq
= new MinPQ<Transaction>();
while(!StdIn.isEmpty())
{
String s = StdIn.readLine();
t = new Transaction(s);
pq.insert(t);
if (pq.size() > M)
pq.delMin();
}
while (!pq.isEmpty())
System.out.println(pq.delMin());

```

API
>elementary implementations
binary heaps
heapsort
> event-driven simulation

Priority queue: unordered array implementation
```

public class UnorderedPQ<Item extends Comparable>
{
private Item[] pq; // pq[i] = ith element on PQ
private int N; // number of elements on PQ
public UnorderedPQ(int maxN)
{ pq = (Item[]) new Comparable[maxN]; }
public boolean isEmpty()
{ return N == 0; }
public void insert(Item x)
{ pq[N++] = x; }
public Item delMax()
{
int max = 0;
for (int i = 1; i < N; i++)
if (less(max, i)) max = i;
exch(max, N-1);
return pq[--N];
}
}

```

Priority queue elementary implementations
\begin{tabular}{|c|c|c|}
\hline Implementation & Insert & Del Max \\
\hline unordered array & 1 & N \\
\hline ordered array & N & 1 \\
\hline
\end{tabular}
worst-case asymptotic costs for \(P Q\) with \(N\) items

Challenge. Implement both operations efficiently.
, API
>eleme
> binary heaps
>heapsort
event-driven simulation

\section*{Binary Heap}

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.
- Empty or
- Node with links to left and right trees.

\section*{Binary Heap}

Heap: Array representation of a heap-ordered complete binary tree.
Binary tree.
- Empty or
- Node with links to left and right trees.

Heap-ordered binary tree.
- Keys in nodes.
- No smaller than children's keys.

\section*{Binary Heap}

Heap: Array representation of a heap-ordered complete binary tree.
Binary tree.
- Empty or
- Node with links to left and right trees.

Heap-ordered binary tree.
- Keys in nodes.
- No smaller than children's keys.

Array representation.

- Take nodes in level order.
- No explicit links needed since tree is complete.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline X & T & O & G & S & M & N & A & E & R & A & I \\
\hline
\end{tabular}

\section*{Binary Heap Properties}

Property A. Largest key is at root.

\section*{Binary Heap Properties}

Property A. Largest key is at root.

Property B. Can use array indices to move through tree.
- Note: indices start at 1.
- Parent of node at \(k\) is at \(k / 2\).
- Children of node at \(k\) are at \(2 k\) and \(2 k+1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline X & T & O & G & S & M & N & A & E & R & A & I \\
\hline
\end{tabular}

\section*{Binary Heap Properties}

Property A. Largest key is at root.

Property B. Can use array indices to move through tree.
- Note: indices start at 1.
- Parent of node at \(k\) is at \(k / 2\).
- Children of node at \(k\) are at \(2 k\) and \(2 k+1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline X & T & O & G & S & M & N & A & E & R & A & I \\
\hline
\end{tabular}

Property C. Height of \(N\) node heap is \(1+\lfloor\lg N\rfloor\).
height increases only when
\(N\) is a power of 2

\section*{Promotion In a Heap}

Scenario. Exactly one node has a larger key than its parent.

To eliminate the violation:
- Exchange with its parent.
- Repeat until heap order restored.

```

private void swim(int k)
{
while (k > 1 \&\& less(k/2, k))
{
exch(k, k/2);
k = k/2;
}
parent of node at k is at k/2
}

```

Peter principle: node promoted to level of incompetence.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline X & T & O & G & S & M & N & A & E & R & A & I & P \\
\hline X & T & P & G & S & O & N & A & E & R & A & I & M \\
\hline
\end{tabular}

\section*{Insert}

Insert. Add node at end, then promote.

```

public void insert(Item x)
{
pq[++N] = x;
swim(N);
}

```


\section*{Demotion In a Heap}

Scenario. Exactly one node has a smaller key than does a child.
To eliminate the violation:
- Exchange with larger child.
- Repeat until heap order restored.

Power struggle: better subordinate promoted.

```

private void sink(int k)

```
private void sink(int k)
{
{
 while (2*k <= N)
 while (2*k <= N)
 {
 {
 int j = 2*k;
 int j = 2*k;
 if (j < N && less(j, j+1)) j++;
 if (j < N && less(j, j+1)) j++;
 if (!less(k, j)) break;
 if (!less(k, j)) break;
 exch(k, j);
 exch(k, j);
 k = j;
 k = j;
 }
 }
}
}
 children of node
```

        children of node
    ```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline O & T & X & G & S & P & N & A & E & R & A & I & M \\
\hline X & T & P & G & S & O & N & A & E & R & A & I & M \\
\hline
\end{tabular}

\section*{Remove the Maximum}

Remove max. Exchange root with node at end, then demote.
```

public Item delMax()
{
Item max = pq[1];
exch(1, N--);
sink(1);
pq[N+1] = null; \longleftarrow prevent loitering
return max;
}

```


Binary heap implementation summary
```

public class MaxPQ<Item extends Comparable>
{
private Item[] pq;
private int N;

```
 public MaxPQ (int maxN)
 \{ . . . \}
 public boolean isEmpty()
 \{ . . . \}
 public void insert (Item x)
 \{ . . . \}
 public Item delMax()
 \{ . . . \}
 private void swim(int k)
 \{ . . . \}
 private void sink (int k)
 \{ . . . \}
 private boolean less (int \(i\), int \(j\))
 \{ . . . \}
 private void exch(int \(i\), int \(j\))
 \{ . . . \}
\}

\section*{Binary heap considerations}

Minimum oriented priority queue
- replace less() with greater()
- implement greater ().

Array resizing
- add no-arg constructor
- apply repeated doubling. \(\longleftarrow\) leads to \(O(\log N)\) amortized time per op

Immutability of keys.
- assumption: client does not change keys while they're on the PQ
- best practice: use immutable keys

Other operations.
- remove an arbitrary item.
- change the priority of an item.

\section*{Priority Queues Implementation Cost Summary}
\begin{tabular}{|c|c|c|c|}
\hline Operation & Insert & Remove Max & Find Max \\
\hline ordered array & N & 1 & 1 \\
\hline ordered list & N & 1 & 1 \\
\hline unordered array & 1 & N & N \\
\hline unordered list & 1 & N & N \\
\hline binary heap & \(\lg \mathrm{N}\) & \(\lg \mathrm{N}\) & 1 \\
\hline
\end{tabular}
worst-case asymptotic costs for PQ with \(N\) items

Hopeless challenge. Make all ops \(O(1)\).

Why hopeless?
> API
>eleme ntary implementations
binary heaps
> heapsort
event-driven simulation

Digression: Heapsort

First pass: build heap.
- Insert items into heap, one at at time.
- Or can use faster bottom-up method; see book.
```

for (int k = N/2; k >= 1; k--)
sink(a, k, N);

```

Second pass: sort.
- Remove maximum items, one at a time.
- Leave in array, instead of nulling out.
```

while (N > 1
{
exch(a, 1, N--);
sink (a, 1, N);
}

```
\begin{tabular}{|c|}
\hline EAPSORTIN \\
\hline APS \(\mathbf{S}\) ORTIN \\
\hline (1) 1 \\
\hline TS \(0^{\text {A A P P I }}\) \\
\hline (P) \(S\) O (E)I \\
\hline , \\
\hline \\
\hline (P)R(G)N N A A EIH \\
\hline (1) \\
\hline \(\bigcirc \mathrm{G}(\mathrm{I}) \mathrm{H} / \mathrm{A} E \mathrm{R}\) \\
\hline (B) \\
\hline (1) \(=1\) \\
\hline H(E) \(A\) N \\
\hline G(A)EI \\
\hline (G) \({ }^{\text {a }} \mathrm{E}\) H \\
\hline E)A G] HI \\
\hline EG|H|I N|O|P|R|S \\
\hline \\
\hline
\end{tabular}

Property D. At most \(2 \mathrm{~N} \lg \mathrm{~N}\) comparisons.

\section*{Significance of Heapsort}
Q. Sort in \(O(N \log N)\) worst-case without using extra memory?
A. Yes. Heapsort.

Not mergesort? Linear extra space.
\(\longleftarrow\) in-place merge possible, not practical
Not quicksort? Quadratic time in worst case. \(\leftarrow \substack{\text { possible, not practical. }}\) (Nog N)

Heapsort is optimal for both time and space, but:
- inner loop longer than quicksort's.
- makes poor use of cache memory.

Sorting algorithms: summary
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & inplace & stable & worst & average & best & remarks \\
\hline selection & x & & \(N^{2} / 2\) & \(N^{2} / 2\) & \(N^{2} / 2\) & \(N\) exchanges \\
\hline insertion & x & \(x\) & \(N^{2} / 2\) & \(N^{2} / 4\) & \(N\) & use for small N or partly ordered \\
\hline shell & x & & & & \(N\) & tight code \\
\hline quick & \(x\) & & \(N^{2} / 2\) & \(2 N \ln N\) & \(N \lg N\) & \(N \log N\) probabilistic guarantee fastest in practice \\
\hline merge & & \(\times\) & \(N \lg N\) & \(N \lg N\) & \(N \lg N\) & \(N \log N\) guarantee, stable \\
\hline heap & \(x\) & & \(2 N \lg N\) & \(2 N \lg N\) & \(N \lg N\) & \(N \log N\) guarantee, in-place \\
\hline
\end{tabular}
> API
Deleme ntary implementations
binary heaps
> heapsort
> event-driven simulation

\section*{Review}

Bouncing balls (COS 126)
```

public class BouncingBalls
{
public static void main(String[] args)
{
int N = Integer.parseInt(args[0]);
Ball balls[] = new Ball[N];
for (int i = 0; i < N; i++)
balls[i] = new Ball();
while(true)
{
StdDraw.clear();
for (int i = 0; i < N; i++)
{
balls[i].move();
balls[i].draw();
}
StdDraw.show(50);
}
}
}

```

\section*{Review}

Bouncing balls (COS 126)
```

public class Ball
{
private double rx, ry; // position
private double vx, vy; // velocity
private double radius; // radius
public Ball()
{ ... initialize position and velocity ... }
public void move()
{
if ((rx + vx < radius) || (rx + vx > 1.0 - radius)) { vx = -vx; }
if ((ry + vy < radius) || (ry + vy > 1.0 - radius)) { vy = -vy; }
rx = rx + vx;
ry = ry + vy;
}
public void draw()
{ StdDraw.filledCircle(rx, ry, radius); }
}

```

Missing: check for balls colliding with each other
- physics problems: when? what effect?
- CS problems: what object does the checks? too many checks?

\section*{Molecular dynamics simulation of hard spheres}

Goal. Simulate the motion of \(N\) moving particles that behave according to the laws of elastic collision.

Hard sphere model.
- Moving particles interact via elastic collisions with each other, and with fixed walls.
- Each particle is a sphere with known position, velocity, mass, and radius.
- No other forces are exerted.
temperature, pressure,
diffusion constant
Significance. Relates macroscopic observables to microscopic dynamics.
- Maxwell and Boltzmann: derive distribution of speeds of interacting molecules as a function of temperature.
- Einstein: explain Brownian motion of pollen grains.

\section*{Time-driven simulation}

Time-driven simulation.
- Discretize time in quanta of size dt.
- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.

\section*{Time-driven simulation}

Main drawbacks.
- \(\mathrm{N}^{2}\) overlap checks per time quantum.
- May miss collisions if dt is too large and colliding particles fail to overlap when we are looking.
- Simulation is too slow if dt is very small.

\section*{Event-driven simulation}

Change state only when something happens.
- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain priority queue of collision events, prioritized by time.
- Remove the minimum = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.

Note: Same approach works for a broad variety of systems

\section*{Particle-wall collision}

Collision prediction.
- Particle of radius \(\sigma\) at position (\(r x, r y\)).
- Particle moving in unit box with velocity (\(v x\), vy).
- Will it collide with a horizontal wall? If so, when?
\[
\Delta t= \begin{cases}\infty & \text { if } v y=0 \\ (\sigma-r y) / v y & \text { if } v y<0 \\ (1-\sigma-r y) / v y & \text { if } v y>0\end{cases}
\]

Collision resolution. \(\left(v x^{\prime}, v y^{\prime}\right)=(v x,-v y)\).

time \(=\dagger+\Delta t\)

\section*{Particle-particle collision prediction}

Collision prediction.
- Particle i: radius \(\sigma_{i}\), position (\(r x_{i}, r y_{i}\)), velocity \(\left(v x_{i}, v y_{i}\right)\).
- Particle \(j\) : radius \(\sigma_{j}\), position (\(r x_{j}, r y_{j}\)), velocity \(\left(v x_{j}, v y_{j}\right)\).
- Will particles i and \(j\) collide? If so, when?

Particle-particle collision prediction

Collision prediction.
- Particle \(i\) : radius \(\sigma_{i}\), position (\(r x_{i}, r y_{i}\)), velocity \(\left(v x_{i}, v y_{i}\right)\).
- Particle \(j\) : radius \(\sigma_{j}\), position (\(r x_{j}, r y_{j}\)), velocity \(\left(v x_{j}, v y_{j}\right)\).
- Will particles \(i\) and \(j\) collide? If so, when?
\[
\begin{aligned}
& \Delta t= \begin{cases}\infty & \text { if } \Delta v \cdot \Delta r \geq 0 \\
\infty & \text { if } d<0 \\
-\frac{\Delta v \cdot \Delta r+\sqrt{d}}{\Delta v \cdot \Delta v} & \text { otherwise }\end{cases} \\
& d=(\Delta v \cdot \Delta r)^{2}-(\Delta v \cdot \Delta v)\left(\Delta r \cdot \Delta r-\sigma^{2}\right) \quad \sigma=\sigma_{i}+\sigma_{j}
\end{aligned}
\]
\[
\begin{array}{ll}
\Delta v=(\Delta v x, \Delta v y)=\left(v x_{i}-v x_{j}, v y_{i}-v y_{j}\right) & \Delta v \cdot \Delta v=(\Delta v x)^{2}+(\Delta v y)^{2} \\
\Delta r=(\Delta r x, \Delta r y)=\left(r x_{i}-r x_{j}, r y_{i}-r y_{j}\right) & \Delta r \cdot \Delta r=(\Delta r x)^{2}+(\Delta r y)^{2} \\
& \Delta v \cdot \Delta r=(\Delta v x)(\Delta r x)+(\Delta v y)(\Delta r y)
\end{array}
\]

\section*{Particle-particle collision prediction implementation}

Particle has method to predict collision with another particle
```

public double dt(Particle b)
{
Particle a = this;
if (a == b) return INFINITY;
double dx = b.rx - a.rx;
double dy = b.ry - a.ry;
double dvx = b.vx - a.vx;
double dvy = b.vy - a.vy;
double dvdr = dx*dvx + dy*dvy;
if(dvdr > 0) return INFINITY;
double dvdv = dvx*dvx + dvy*dvy;
double drdr = dx*dx + dy*dy;
double sigma = a.radius + b.radius;
double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);
if (d < O) return INFINITY;
return -(dvdr + Math.sqrt(d)) / dvdv;
}

```
and methods \(\operatorname{dtX}()\) and \(\operatorname{dtY}()\) to predict collisions with walls

Particle-particle collision prediction implementation
CollisionSystem has method to predict all collisions
```

private void predict(Particle a, double limit)
{
if (a == null) return;
for(int i = 0; i < N; i++)
{
double dt = a.dt(particles[i]);
if(t + dt <= limit)
pq.insert(new Event(t + dt, a, particles[i]));
}
double dtX = a.dtX();
double dtY = a.dtY();
if (t + dtX <= limit)
pq.insert(new Event(t + dtX, a, null));
if (t + dtY <= limit)
pq.insert(new Event(t + dtY, null, a));
}

```

\section*{Particle-particle collision resolution}

Collision resolution. When two particles collide, how does velocity change?
\[
\begin{aligned}
& \qquad \begin{aligned}
& v x_{i}^{\prime}=v x_{i}+J x / m_{i} \\
& v y_{i}^{\prime}=v y_{i}+J y / m_{i} \\
& v x_{j}^{\prime}=v x_{j}-J x / m_{j} \quad \begin{array}{l}
\text { Newton's second law } \\
\text { (momentum form) }
\end{array} \\
& v y_{j}^{\prime}=v x_{j}-J y / m_{j} \\
& J x=\frac{J \Delta r x}{\sigma}, J y=\frac{J \Delta r y}{\sigma}, J=\frac{2 m_{i} m_{j}(\Delta v \cdot \Delta r)}{\sigma\left(m_{i}+m_{j}\right)} \\
& \text { impulse due to normal force } \\
& \text { (conservation of energy, conservation of momentum) }
\end{aligned}
\end{aligned}
\]

\section*{Particle-particle collision resolution implementation}

Particle has method to resolve collision with another particle
```

public void bounce(Particle b)
{
Particle a = this;
double dx = b.rx - a.rx;
double dy = b.ry - a.ry;
double dvx = b.vx - a.vx;
double dvy = b.vy - a.vy;
double dvdr = dx*dvx + dy*dvy;
double dist = a.radius + b.radius;
double J = 2 * a.mass * b.mass * dvdr / ((a.mass + b.mass) * dist);
double Jx = J * dx / dist;
double Jy = J * dy / dist;
a.vx += Jx / a.mass;
a.vy += Jy / a.mass;
b.vx -= Jx / b.mass;
b.vy -= Jy / b.mass;
a.count++;
b.count++;
}

```
and methods bouncex() and bouncey() to resolve collisions with walls

\section*{Collision system: event-driven simulation main loop}

\section*{Initialization.}
- Fill PQ with all potential particle-wall collisions
- Fill PQ with all potential particle-particle collisions.
```

                        \uparrow
    "potential" since collision may not happen if
some other collision intervenes

```

Main loop.
- Delete the impending event from PQ (min priority \(=t\)).
- If the event in no longer valid, ignore it.
- Advance all particles to time \(t\), on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.

\section*{Collision system: main event-driven simulation loop implementation}
```

public void simulate(double limit)
{
pq = new MinPQ<Event>(); « initialize PQ with
for(int i = 0; i < N; i++)
predict(particles[i], limit);
pq.insert(new Event(0, null, null));
while(!pq.isEmpty())
{
Event e = pq.delMin();
if(!e.isValid()) continue;
Particle a = e.a();
Particle b = e.b();
for(int i = 0; i < N; i++)
particles[i].move(e.time() - t);
t = e.time();
if (a != null \&\& b != null) a.bounce(b);
else if (a != null \&\& b == null) a.bounceX()
else if (a == null \&\& b != null) b.bounceY();
else if (a == null \&\& b == null)
{
StdDraw.clear(StdDraw.WHITE);
for(int i = 0; i < N; i++) particles[i].draw();
StdDraw.show(20);
if (t < limit)
pq.insert(new Event(t + 1.0 / Hz, null, null));
}
predict(a, limit);
predict(b, limit);
}
java CollisionSystem 200

java CollisionSystem < billiards5.txt

java CollisionSystem < squeeze2.txt

## java CollisionSystem < brownianmotion.txt


java CollisionSystem < diffusion.txt


## Symbol Tables

- API
- basic implementations
- iterators
- Comparable keys
challenges


## References:

Algorithms in Java, Chapter 12
Intro to Programming, Section 4.4
http://www.cs.princeton.edu/introalgsds/41st

API
Dbasic implementations
iterators

- Comparable keys
> challenges


## Symbol Tables

Key-value pair abstraction.

- Insert a value with specified key.
- Given a key, search for the corresponding value.

Example: DNS lookup.

- Insert URL with specified IP address.
- Given URL, find corresponding IP address

URL	IP address
www.cs.princeton.edu	128.112 .136 .11
www.princeton.edu	128.112 .128 .15
www.yale.edu	130.132 .143 .21
www.harvard.edu	128.103 .060 .55
www.simpsons.com	209.052 .165 .60
key	value

Can interchange roles: given IP address find corresponding URL

## Symbol Table Applications

Application	Purpose		Key
Phone book	Look up phone number	Name	Phone number
Bank	Process transaction	Account number	Transaction details
File share	Find song to download	Name of song	Computer ID
File system	Find file on disk	Filename	Location on disk
Dictionary	Look up word	Word	Definition
Web search	Find relevant documents	Keyword	List of documents
Book index	Find relevant pages	Keyword	List of pages
Web cache	Download	Filename	File contents
Genomics	Find markers	DNA string	Known positions
DNS	Find IP address given URL	URL	IP address
Reverse DNS	Find URL given IP address	IP address	
Compiler	Find properties of variable	Variable name	Value and type
Routing table	Route Internet packets	Destination	Best route

## Symbol Table API

Associative array abstraction: Unique value associated with each key.

```
public class *ST<Key extends Comparable<Key>, Value>
 *ST() create a symbol table
 void put(Key key, Value val) put key-value pair into the table
 return value paired with key
 (null if key not in table)
 is there a value paired with key?
 void remove (Key key) remove key-value pair from table
 iterator through keys in table
```

Our conventions:

1. Values are not null.
2. Method get () returns null if key not present

$$
\begin{array}{ll}
\text { enables this code in all implementations: } & \begin{array}{l}
\text { public boolean contains (Key key) } \\
\{\text { return get (key) }!=\text { null; }\}
\end{array}
\end{array}
$$

3. Method put () overwrites old value with new value.

$$
a[\text { key }]=\text { val; } \longleftarrow \text { Some languages (not Java) allow this notation }
$$

## ST client: make a dictionary and process lookup requests

## Command line arguments

- a comma-separated value (CSV) file
- key field
- value field


## Example 1: DNS lookup

URL is key IP is value
\% java Lookup ip.csv 01
adobe.com
192.150.18.60
www.princeton.edu
128.112.128.15
ebay.edu
Not found
\% java Lookup ip.csv 1
128.112 .128 .15
www.princeton.edu
999.999 .999 .99
Not found
\% more ip.csv
www.princeton.edu, 128.112.128.15 www.cs.princeton.edu, 128.112.136.35
www.math.princeton.edu, 128.112.18.11
www.cs.harvard.edu, 140.247.50.127
www.harvard.edu, 128.103.60.24
www. yale.edu, 130.132 .51 .8
www.econ. yale.edu, 128.36.236.74
www.cs.yale.edu, 128.36.229.30
espn.com,199.181.135.201
yahoo.com, 66.94.234.13
msn.com, 207.68.172.246
google.com, 64.233.167.99
baidu. com, 202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn, 202.108.33.32
ebay.com, 66.135.192.87
adobe.com, 192.150.18.60
163.com,220.181.29.154
passport.net, 65.54.179.226
tom.com, 61.135.158.237
nate.com, 203.226.253.11
cnn.com, 64.236 .16 .20
daum.net, 211.115.77.211
blogger.com, 66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org, 66.230 .200 .100
rakuten.co.jp, 202.72.51.22

## ST client: make a dictionary and process lookup requests

```
public class Lookup
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int keyField = Integer.parseInt(args[1]);
 int valField = Integer.parseInt (args[2]);
 String[] database = in.readAll().split("\\n");
 ST<String, String> st = new ST<String, String>();
 for (int i = 0; i < database.length; i++)
 {
 String[] tokens = database[i].split(",");
 String key = tokens[keyField];
 String val = tokens[valField];
 st.put(key, val);
 }
 while (!StdIn.isEmpty())
 {
 String s = StdIn.readString();
 if (!st.contains(s)) StdOut.println("Not found");
 else StdOut.println(st.get(s));
 }
 }
}
```

        process input file
    
## ST client: make a dictionary and process lookup requests

## Command line arguments

- a comma-separated value (CSV) file
- key field
- value field


## Example 2: Amino acids

codon is key name is value
\% \% java Lookup amino. Csv $0 \quad 3$
ACT
Threonine
TAG
Stop
CAT
Histidine
\% more amino.csv
TTT, Phe, F, Phenylalanine TTC, Phe, F, Phenylalanine TTA, Leu, I, Leucine TTG, Leu, L, Leucine TCT, Ser, S, Serine TCC,Ser, S,Serine TCA,Ser, S, Serine TCG, Ser, S, Serine TAT, Tyr, Y, Tyrosine TAC, Tyr, Y, Tyrosine TAA, Stop, Stop, Stop TAG, Stop, Stop, Stop TGT, Cys, C, Cysteine TGC, Cys, C, Cysteine TGA, Stop, Stop, Stop TGG, Trp, W, Tryptophan CTT, Leu, L, Leucine CTC, Leu, L, Leucine CTA, Leu, L, Leucine CTG, Leu, L, Leucine CCT, Pro, P, Proline CCC, Pro, P, Proline CCA, Pro, P, Proline CCG, Pro, P, Proline CAT, His, H, Histidine CAC, His, H, Histidine CAA, Gln, Q, Glutamine CAG, Gln, Q, Glutamine CGT, Arg, R, Arginine CGC, Arg, R, Arginine CGA, Arg, R, Arginine CGG, Arg, R, Arginine ATT, Ile, I, Isoleucine ATC,Ile,I, Isoleucine ATA, Ile, I, Isoleucine ATG, Met, M, Methionine ...

## ST client: make a dictionary and process lookup requests

Command line arguments

- a comma-separated value (CSV) file
- key field
- value field


## Example 3: Class lists

\% java Lookup classlist.csv 31 jsh
Jeffrey Scott Harris
dgtwo
Daniel Gopstein
ye
Michael Weiyang Ye
\% java Lookup classlist.csv 32
jsh
P01A
dgtwo
P01
\% more classlist.csv
10,Bo Ling, PO3,bling
10, Steven A Ross, P01, saross
10,Thomas Oliver Horton
Conway, P03, oconway
08, Michael R. Corces
Zimmerman,P01A, mcorces
09, Bruce David Halperin, P02,bhalperi
09,Glenn Charles Snyders Jr., P03, gsnyders
09, Siyu Yang, P01A, siyuyang
08,Taofik O. Kolade, P01,tkolade
09, Katharine Paris
Klosterman, P01A, kkloster
SP,Daniel Gopstein, P01,dgtwo
10,Sauhard Sahi, P01,ssahi
10,Eric Daniel Cohen, P01A, edcohen
09,Brian Anthony Geistwhite, P02,bgeistwh
09, Boris Pivtorak, P01A, pivtorak

## 09,Jonathan Patrick

Zebrowski, P01A, jzebrows
09,Dexter James Doyle, P01A, ddoyle
09,Michael Weiyang Ye, P03,ye
08, Delwin Uy Olivan, P02, dolivan
08, Edward George Conbeer, P01A, econbeer
09,Mark Daniel Stefanski,P01,mstefans
09, Carter Adams Cleveland, P03, cclevela
10, Jacob Stephen Lewellen, P02,jlewelle
10,Ilya Trubov, P02,itrubov
09, Kenton William Murray, P03, kwmurray
07,Daniel Steven Marks, PO2,dmarks
09,Vittal Kadapakkam, P01, vkadapak
10,Eric Ruben Domb, P01A, edomb
07, Jie Wu, P03, jiewu
08,Pritha Ghosh, P02,prithag
10,Minh Quang Anh Do, P01,mqdo

## Keys and Values

Associative array abstraction.

- Unique value associated with each key
- If client presents duplicate key, overwrite to change value.

Key type: several possibilities

1. Assume keys are any generic type, use equals () to test equality.
2. Assume keys are comparable, use compareтo ().
3. Use equals () to test equality and hashcode () to scramble key.

Value type. Any generic type.

Best practices. Use immutable types for symbol table keys.

- Immutable in Java: String, Integer, BigInteger.
- Mutable in Java: Date, GregorianCalendar, StringBuilder.

Elementary ST implementations

Unordered array

## Ordered array

Unordered linked list

## Ordered linked list

Why study elementary implementations?

- API details need to be worked out
- performance benchmarks
- method of choice can be one of these in many situations
- basis for advanced implementations

Always good practice to study elementary implementations

## API

## basic implementations

Iterators

- Comparable keys
> challenges

Unordered array ST implementation
Maintain parallel arrays of keys and values.

Instance variables

- array keys [] holds the keys.
- array vals[] holds the values.
- integer n holds the number of entries.

Need to use standard array-doubling technique



Alternative: define inner type for entries

- space overhead for entry objects
- more complicated code


## Unordered array ST implementation (skeleton)

```
public class UnorderedST<Key, Value>
{
 private Value[] vals;
 private Key[] keys;
 private int N = 0;
 public UnorderedST(int maxN)
 {
 keys = (Key[]) new Object[maxN];
 vals = (Value[]) new Object[maxN];
 }
 public boolean isEmpty()
 { return N == 0; }
 public void put(Key key, Value val)
 // see next slide
 public Value get(Key key)
 // see next slide
}
```

Unordered array ST implementation (search)

```
public Value get(Key key)
{
 for (int i = 0; i < N; i++)
 if (keys[i].equals (key))
 return vals[i];
 return null;
}
```

	0	1	2	3	4	5
keys []	it	was	the	best	of	times
vals[]	2	2	1	1	1	1
	$\uparrow$	$\uparrow$	$\uparrow$			
get("the")						
returns 1						


	0	1	2	3	4	5	
keys []	it	was	the	best	of	times	
vals[]	2	2	1	1	1	1	
	$\uparrow$	$\uparrow$	$\uparrow$	$\uparrow$	$\uparrow$		$\uparrow$   "worst")

Key, Value are generic and can be any type

Unordered array ST implementation (insert)

```
public void put(Key key, Value val)
{
 int i;
 for (i = 0; i < N; i++)
 if (key.equals(keys[i]))
 break;
 vals[i] = val;
 keys[i] = key;
 if (i == N) N++;
}
```



Associative array abstraction

- must search for key and overwrite with new value if it is there
- otherwise, add new key, value at the end (as in stack)


## Java conventions for equals()

All objects implement equals() but default implementation is ( $\mathbf{x}=\mathbf{y}$ )
is the object referred to by $x$
Customized implementations.
String, URI, Integer.
User-defined implementations.
Some care needed (example: type of argument must be object)

Equivalence relation. For any references $\mathbf{x}, \mathrm{y}$ and z :

- Reflexive: x.equals(x) is true.
- Symmetric: x.equals(y) iff y.equals(x).
- Transitive: If $x$.equals $(y)$ and $y . e q u a l s(z)$, then $x$.equals $(z)$.
- Non-null: x.equals(null) is false.
- Consistency: Multiple calls to x.equals (y) return same value.


## Implementing equals()

Seems easy

```
public class PhoneNumber
{
 private int area, exch, ext;
 public boolean equals (PhoneNumber y)
 {
 PhoneNumber a = this;
 PhoneNumber b = (PhoneNumber) y;
 return (a.area == b.area)
 && (a.exch == b.exch)
 && (a.ext == b.ext);
 }
}
```


## Implementing equals()

Seems easy, but requires some care

```
 no safe way to use with inheritance
public final class PhoneNumber
{
 private final int area, exch, ext;
 Must be Object.
 Why? Experts still debate.
 public boolean equals(Object
y)
 {
 if (y == this) return true;
 if (y == null) return false;
 if (y.getClass() != this.getClass())
 return false;
 PhoneNumber a = this;
 PhoneNumber b = (PhoneNumber) y;
 return (a.area == b.area)
 && (a.exch == b.exch)
 && (a.ext == b.ext);
 }
}

\section*{Linked list ST implementation}

Maintain a linked list with keys and values.
inner node class
- instance variable key holds the key
- instance variable val holds the value
instance variable
- Node first refers to the first node in the list

\section*{Linked list ST implementation (skeleton)}
```

public class LinkedListST<Key, Value>
{
private Node first; }\Leftarrow\mathrm{ instance variable
private class Node \longleftarrow inner class
{
Key key;
Value val;
Node next;
Node(Key key, Value val, Node next)
{
this.key = key;
this.val = val;
this.next = next;
}
}
public void put(Key key, Value val)
// see next slides
public Val get(Key key)
// see next slides
}

```

\section*{Linked list ST implementation (search)}
```

public Value get(Key key)
{
for (Node x = first; x != null; x = x.next))
if (key.equals(x.key))
return vals[i];
return null;
}

```


Key, Value are generic and can be any type

\section*{Linked list ST implementation (insert)}
```

```
public void put(Key key, Value val)
```

```
public void put(Key key, Value val)
{
{
 for (Node x = first; x != null; x = x.next)
 for (Node x = first; x != null; x = x.next)
 if (key.equals(x.key))
 if (key.equals(x.key))
 { x.value = value; return; }
 { x.value = value; return; }
 first = new Node(key, value, first);
 first = new Node(key, value, first);
}
```

```
}
```

```


API
basic implementations
> iterators
Comparable keys
challenges

\section*{Iterators}

Symbol tables should be Iterable
Q. What is Iterable?
A. Implements iterator ()
```

public interface Iterable<Item>
{
Iterator<Item> iterator();
}

```
java.util.Iterator
 public interface Iterator<Item>
 1
 boolean hasNext();
 Item next () ;
 void remove (); \(\longleftarrow\) optional in Java
 \}
 Item next ();
 \(\longleftarrow\) optional in Java
Q. What is an Iterator? \(\qquad\)
A. Implements hasNext () and next ().

\section*{Iterable ST client: count frequencies of occurrence of input strings}

Standard input: A file (of strings)
Standard output: All the distinct strings in the file with frequency
```

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
% java FrequencyCount < tiny.txt
2 age
1 best
1 foolishness
it
Of
4 the
2 times
4 was
1 wisdom
1 worst

```
\begin{tabular}{cc}
\(\uparrow\) \\
\begin{tabular}{c}
\(\uparrow\) iny example \\
24 words \\
10 distinct
\end{tabular} & \begin{tabular}{c}
real example \\
\end{tabular} \\
\hline
\end{tabular}
```

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair
we had everything before us
we had nothing before us
% java FrequencyCount < tale.txt
2941 a
1 aback
1 abandon
10 abandoned
1 abandoning
l abandonment
abashed
1 abate
1 abated
5 abbaye
abed
1 abhorrence
1 abided
1 abiding
1 abilities
2 ability
1 abject
1 ablaze
17 able
1 abnegating

```

Iterable ST client: count frequencies of occurrence of input strings
```

public class FrequencyCount
{
public static void main(String[] args)
{
ST<String, Integer> st;
st = new ST<String, Integer>();
while (!StdIn.isEmpty())
{
String key = StdIn.readString();
if (!st.contains(key))
st.put(key, 1);
else
st.put(key, st.get(key) + 1);
}
for (String s: st)
StdOut.println(st.get(s) + " " + s);
}
}

```

Note: Only slightly more work required to build an index of all of the places where each key occurs in the text.

\section*{Iterators for array, linked list ST implementations}
```

import java.util.Iterator;
public class UnorderedST<Key, Value>
implements Iterable<Key>
{
public Iterator<Key> iterator()
{ return new ArrayIterator(); }
private class ArrayIterator
implements Iterator<Key>
{
private int i = 0;
public boolean hasNext()
{ return i < N; }
public void remove() { }
public Key next()
{ return keys[i++]; }
}
}

```
```

import java.util.Iterator;
public class LinkedListST<Key, Value>
implements Iterable<Key>
{
public Iterator<Key> iterator()
{ return new ListIterator(); }
private class ListIterator
implements Iterator<Key>
{
private Node current = first;
public boolean hasNext()
{ return current != null; }
public void remove() { }
public Key next()
{
Key key = current.key;
current = current.next;
return key;
}
}
}

```

\section*{Iterable ST client: A problem?}
```

Use UnorderedST in FrequencyCount
% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
% java FrequencyCount < tiny.txt
4 it
4 was
4 the
1 best
Of
2 times
1 worst
2 age
1 wisdom
1 foolishness
Use LinkedListST in FrequencyCount
% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
% java FrequencyCount < tiny.txt
1 foolishness
1 wisdom
2 age
1 worst
2 times
4 of
1 best
4 the
4 was
4t

```

Clients who use Comparable keys might expect ordered iteration
- not a requirement for some clients
- not a problem if postprocessing, e.g. with sort or grep
- not in API

API
> basic implementations
iterators
Comparable keys
challenges

Ordered array ST implementation

\section*{Assume that keys are Comparable}

Maintain parallel arrays with keys and values that are sorted by key.

Instance variables
- keys[i] holds the ith smallest key
- vals[i] holds the value associated with the ith smallest key
- integer n holds the number of entries.

Note: no duplicate keys
\begin{tabular}{ccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 \\
keys [] & best & it & of & the & times & was \\
vals [] & 1 & 2 & 1 & 1 & 1 & 2
\end{tabular}

Need to use standard array-doubling technique

Two reasons to consider using ordered arrays
- provides ordered iteration (for free)
- can use binary search to significantly speed up search

\section*{Ordered array ST implementation (skeleton)}
```

public class OrderedST
<Key extends Comparable<Key>, Value>
implements Iterable<Key>
{
private Value[] vals;
private Key[] keys;
private int N = 0;
public OrderedST(int maxN)
{
keys = (Key[]) new Object[maxN];
vals = (Value[]) new Object[maxN];
}
public boolean isEmpty()
{ return N == 0; }
public void put(Key key, Value val)
// see next slides
public Val get(Key key)
// see next slides
}

```

\section*{Ordered array ST implementation (search)}

Keeping array in order enables binary search algorithm
```

public Value get(Key key)
{
int i = bsearch(key);
if (i == -1) return null;
return vals[i];
}

```
```

private int bsearch(Key key)
{
int lo = 0, hi = N-1;
while (lo <= hi)
{
int m = lo + (hi - lo) / 2;
int cmp = key.compareTo(keys[m]);
if (cmp < 0) hi = m - 1;
else if (cmp > O) lo = m + 1;
else return m;
}
return -1;
}

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 10 & & & & m & & & & hi \\
\hline 0 & & & & 4 & & & & 8 \\
\hline age & best & it & Of & the & times & was & wisdom & worst \\
\hline 2 & 1 & 4 & 3 & 4 & 2 & 4 & 1 & 1 \\
\hline 0 & 1 & & 3 & & & & & \\
\hline age & best & it & of & & & & & \\
\hline 2 & 1 & 4 & 3 & & & & & \\
\hline & & 2 & 3 & & & & & \\
\hline & & it & of & & & & & \\
\hline & & 4 & 3 & & & & & \\
\hline & & & 3 & \multirow[b]{2}{*}{\(\longleftarrow\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
get("of") \\
returns 3
\end{tabular}}} & & \\
\hline & & & of & & & & & \\
\hline
\end{tabular}

Binary search analysis: Comparison count
Def. \(T(N) \equiv\) number of comparisons to binary search in an ST of size \(N\)

Binary search recurrence \(T(N)=T(N / 2)+1\) for \(N>1\), with \(T(1)=0\)
- not quite right for odd \(N\)
- same recurrence holds for many algorithms
- same number of comparisons for any input of size \(N\).

Solution of binary search recurrence \(T(N) \sim \lg N\)
- true for all N
- easy to prove when \(N\) is a power of 2 .

Binary search recurrence: Proof by telescoping
\[
\begin{aligned}
T(N)=T(N / 2)+1 \\
\text { for } N>1 \text {, with } T(1)=0
\end{aligned}
\]

\section*{(assume that N is a power of 2)}
\[
\text { Pf. } \begin{aligned}
T(N) & =T(N / 2)+1 & & \text { given } \\
& =T(N / 4)+1+1 & & \text { telescope (apply to first term) } \\
& =T(N / 8)+1+1+1 & & \text { telescope again } \\
& \ldots & & \\
& =T(N / N)+1+1+\ldots+1 & & \text { stop telescoping, } T(1)=0 \\
& =\lg N & & \\
& T(N)=\lg N & &
\end{aligned}
\]

\section*{Ordered array ST implementation (insert)}

Binary search is little help for put (): still need to move larger keys

Ordered array ST implementation: an important special case

Test whether key is equal to or greater than largest key
```

public Val put(Key key, Value val)
{
if (key.compareTo(keys[N-1]) == 0)
{ vals[N-1] = val; return; }
if (key.compareTo(keys[N-1] > 0)
{
vals[N] = val;
keys[N] = key;
N++;
return;
}
}

```

If either test succeeds, constant-time insert!

Method of choice for some clients:
- sort database by key
- insert \(N\) key-value pairs in order by key
- support searches that never use more than \(\lg N\) compares
- support occasional (expensive) inserts

\section*{Ordered linked-list ST implementation}

Binary search depends on array indexing for efficiency.

Jump to the middle of a linked list?

Advantages of keeping linked list in order for Comparable keys:
- support ordered iterator (for free)
- cuts search/insert time in half (on average) for random search/insert
[code omitted]

API
Dasic implementations
Iterators
Comparable keys
> challenges

\section*{Searching challenge 1A:}

Problem: maintain symbol table of song names for an iPod Assumption A: hundreds of songs

Which searching method to use?
1) unordered array
2) ordered linked list
3) ordered array with binary search
4) need better method, all too slow
5) doesn't matter much, all fast enough

Searching challenge 1 B :
Problem: maintain symbol table of song names for an iPod Assumption B: thousands of songs

Which searching method to use?
1) unordered array
2) ordered linked list
3) ordered array with binary search
4) need better method, all too slow
5) doesn't matter much, all fast enough

\section*{Searching challenge 2A:}

Problem: IP lookups in a web monitoring device
Assumption A: billions of lookups, millions of distinct addresses

Which searching method to use?
1) unordered array
2) ordered linked list
3) ordered array with binary search
4) need better method, all too slow
5) doesn't matter much, all fast enough

\section*{Searching challenge 2B:}

Problem: IP lookups in a web monitoring device
Assumption B: billions of lookups, thousands of distinct addresses

Which searching method to use?
1) unordered array
2) ordered linked list
3) ordered array with binary search
4) need better method, all too slow
5) doesn't matter much, all fast enough

\section*{Searching challenge 3:}

Problem: Frequency counts in "Tale of Two Cities"

Assumptions: book has 135,000+ words about 10,000 distinct words

Which searching method to use?
1) unordered array
2) ordered linked list
3) ordered array with binary search
4) need better method, all too slow
5) doesn't matter much, all fast enough

\section*{Searching challenge 4:}

Problem: Spell checking for a book
Assumptions: dictionary has 25,000 words book has 100,000+ words

Which searching method to use?
1) unordered array
2) ordered linked list
3) ordered array with binary search
4) need better method, all too slow
5) doesn't matter much, all fast enough

\section*{Searching challenge 5:}

Problem: Sparse matrix-vector multiplication
Assumptions: matrix dimension is billions by billions average number of nonzero entries/row is \(\sim 10\)

Which searching method to use?
1) unordered array
2) ordered linked list

3) ordered array with binary search
4) need better method, all too slow
5) doesn't matter much, all fast enough

Summary and roadmap
- basic algorithmics

- no generics
- more code
- more analysis
- equal keys in ST (not associative arrays)

Programming
- iterators
- ST as associative array (all keys distinct)
- BST implementations
- applications

API
basic implementations
- iterators
challenges

- distinguish algs by operations on keys
- ST as associative array (all keys distinct)
- important special case for binary search
- challenges

Elementary implementations: summary

Next challenge.
Efficient implementations of search and insert and ordered iteration for arbitrary sequences of operations.

\section*{Binary Search Trees}

\title{
- basic implementations \\ - randomized BSTs \\ - deletion in BSTs
}

\section*{References:}

Algorithms in Java, Chapter 12
Intro to Programming, Section 4.4
http://www.cs.princeton.edu/introalgsds/43bst

Elementary implementations: summary
\begin{tabular}{cccccccc}
implementation & worst case & \multicolumn{2}{c}{ average case } & \begin{tabular}{c}
ordered \\
search \\
insert
\end{tabular} & \begin{tabular}{c}
search \\
operations \\
on keys
\end{tabular} \\
\hline unordered array & N & N & \(\mathrm{N} / 2\) & \(\mathrm{~N} / 2\) & no & equals() \\
ordered array & \(\lg \mathrm{N}\) & N & \(\lg \mathrm{N}\) & \(\mathrm{N} / 2\) & yes & compareTo() \\
unordered list & N & N & \(\mathrm{N} / 2\) & N & no & equals() \\
ordered list & N & N & \(\mathrm{N} / 2\) & \(\mathrm{~N} / 2\) & yes & compareTo()
\end{tabular}

Challenge:
Efficient implementations of get () and put () and ordered iteration.
> basic implementations
>randomized BSTS
deletion in BSTs

\section*{Binary Search Trees (BSTs)}

Def. A BINARY SEARCH TREE is a binary tree in symmetric order.

A binary tree is either:
- empty
- a key-value pair and two binary trees [neither of which contain that key]

equal keys ruled out to facilitate
associative array implementations
Symmetric order means that:
- every node has a key
- every node's key is
larger than all keys in its left subtree smaller than all keys in its right subtree

\section*{BST representation}

A BST is a reference to a Node.

A Node is comprised of four fields:
- A key and a value.
- A reference to the left and right subtree.

\section*{BST implementation (skeleton)}
```

public class BST<Key extends Comparable<Key>, Value>
implements Iterable<Key>
{
private Node root; }\leftarrow\mathrm{ instance variable
private class Node }\leftarrow\mathrm{ inner class
{
Key key;
Value val;
Node left, right;
Node(Key key, Value val)
{
this.key = key;
this.val = val;
}
}
public void put(Key key, Value val)
// see next slides
public Val get(Key key)
// see next slides
}

```

\section*{BST implementation (search)}
```

public Value get(Key key)
{
Node x = root;
while (x != null)
{
int cmp = key.compareTo(x.key);
if (cmp == 0) return x.val;
else if (cmp < O) x = x.left;
else if (cmp > 0) x = x.right;
}
return null;
}

```


\section*{BST implementation (insert)}
public void put(Key key, Value val) \{ root \(=\) put (root, key, val); \}

private Node put (Node \(x\), Key key, Value val) \{
if (x \(==\) null) return new Node (key, val);
int cmp \(=\) key.compareTo(x.key);
if (cmp \(==0\)) x.val = val;
else if (cmp < O) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
return \(x\);
\}

\section*{BST: Construction}

Insert the following keys into BST. ASERCHINGXMPL

\section*{Tree Shape}

Tree shape.
- Many BSTs correspond to same input data.
- Cost of search/insert is proportional to depth of node.

Tree shape depends on order of insertion

\section*{BST implementation: iterator?}
```

public Iterator<Key> iterator()
{ return new BSTIterator(); }
private class BSTIterator
implements Iterator<Key>
{
BSTIterator()
{ }
public boolean hasNext()
{ }
public Key next()
{ }
}

```


\section*{BST implementation: iterator?}

Approach: mimic recursive inorder traversal
```

public void visit(Node x)
{
if (x == null) return;
visit(x.left)
StdOut.println(x.key);
visit(x.right);
}

```
 visit(E)
visit(A)
 visit (E)
visit (A)
 print A
 visit(C)
 print C
 print E
 visit(S)
 visit(I)
 visit(H)
 print H
 print \(I\)
 visit(R)
 visit(N)
 print \(N\)
 print \(R\)
 A
 E

\section*{BST implementation: iterator}
```

public Iterator<Key> iterator()
{ return new BSTIterator(); }
private class BSTIterator
implements Iterator<Key>
{
private Stack<Node>
stack = new Stack<Node>();
private void pushLeft(Node x)
{
while (x != null)
{ stack.push(x); x = x.left; }
}
BSTIterator()
{ pushLeft(root); }
public boolean hasNext()
{ return !stack.isEmpty(); }
public Key next()
{
Node x = stack.pop();
pushLeft(x.right);
return x.key;
}
}

```

\begin{tabular}{l|lll}
& \(\mathbf{A}\) & \(\mathbf{E}\) & \\
\(\mathbf{A}\) & \(\mathbf{C}\) & \(\mathbf{E}\) & \\
C & \(\mathbf{E}\) & & \\
E & H & \(\mathbf{I}\) & \(\mathbf{S}\) \\
H & \(\mathbf{I}\) & \(\mathbf{S}\) & \\
I & \(\mathbf{N}\) & \(\mathbf{R}\) & \(\mathbf{S}\) \\
\(\mathbf{N}\) & \(\mathbf{R}\) & \(\mathbf{S}\) & \\
\(\mathbf{R}\) & \(\mathbf{S}\) & & \\
\(\mathbf{S}\) & & &
\end{tabular}

1-1 correspondence between BSTs and Quicksort partitioning
\[
\begin{aligned}
& \text { ECAAIEKL PUTMQRXOS } \\
& \text { A C(E)IE } \mathrm{E}|\mathrm{~L}| \mathrm{P}|\mathrm{U}| \mathrm{T}|\mathrm{M}| Q|\mathrm{R}| \mathrm{X}|\mathrm{O}| \mathrm{S} \\
& \text { A(C)E|I|E|K|I|P|U|T|M|Q|R|X|O|S } \\
& \text { (A)C|E|I|E|K|L|P|U|T|M|Q|R|X|O|S } \\
& \begin{array}{|c|c|c|c|c|c|c|c|}
\hline \text { A } & \text { E } & \text { E } \\
\hline
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|}
\hline A & C & E & \text { I } \\
\hline
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \text { A C C E E I I K L M M O P Q R S X U T }
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A & C & E & E & I & L & M & O & P|Q| R|S| T \mid U \\
\hline
\end{array} \\
& \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \text { A } & C & E & E & I & L & M & O & P & Q & R \\
\hline
\end{array}
\end{aligned}
\]

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l}
\hline A & E & E & I & \(K\) & \(L\) & \(M\) & \(O\) & \(P\) & \(Q\) & \(R\) & \(S\) \\
\hline
\end{tabular}

\section*{BSTs: analysis}

Theorem. If keys are inserted in random order, the expected number of comparisons for a search/insert is about \(2 \ln N\).
\(\approx 1.38 \mathrm{lg} \mathrm{N}\), variance \(=O(1)\)
Proof: 1-1 correspondence with quicksort partitioning

Theorem. If keys are inserted in random order, height of tree is proportional to \(\lg N\), except with exponentially small probability.
```

    \uparrow
    mean }\approx6.22\operatorname{lg}N,\mathrm{ variance }=O(1

```

But... Worst-case for search/insert/height is N .

\section*{Searching challenge 3 (revisited):}

Problem: Frequency counts in "Tale of Two Cities"

Assumptions: book has 135,000+ words about 10,000 distinct words

Which searching method to use?
1) unordered array
2) unordered linked list
3) ordered array with binary search
4) need better method, all too slow
5) doesn't matter much, all fast enough
6) BSTs

> insertion cost < \(10000 * 1.38 * \lg 10000<.2\) million lookup cost < \(135000 * 1.38 * \lg 10000<2.5\) million

Elementary implementations: summary
\begin{tabular}{cccccccc}
implementation & \multicolumn{2}{c}{ guarantee } & \multicolumn{2}{c}{ average case } & \begin{tabular}{c}
ordered \\
iteration?
\end{tabular} & \begin{tabular}{c}
operations \\
on keys
\end{tabular} \\
\hline unordered array & N & N & \(\mathrm{N} / 2\) & \(\mathrm{~N} / 2\) & no & equals() \\
ordered array & \(\lg \mathrm{N}\) & N & \(\lg \mathrm{N}\) & \(\mathrm{N} / 2\) & yes & compareTo() \\
unordered list & N & N & \(\mathrm{N} / 2\) & N & no & equals() \\
ordered list & N & N & \(\mathrm{N} / 2\) & \(\mathrm{~N} / 2\) & yes & compareTo() \\
BST & N & N & \(1.38 \lg \mathrm{~N}\) & \(1.38 \lg \mathrm{~N}\) & yes & compareTo()
\end{tabular}

Next challenge:
Guaranteed efficiency for get () and put () and ordered iteration.

\section*{> basic implementations}
> randomized BSTs
deletion in BSTS

\section*{Rotation in BSTs}

Two fundamental operations to rearrange nodes in a tree.
- maintain symmetric order.
- local transformations (change just 3 pointers).
- basis for advanced BST algorithms

Strategy: use rotations on insert to adjust tree shape to be more balanced

Key point: no change in search code (!)

\section*{Rotation}

Fundamental operation to rearrange nodes in a tree.
- easier done than said
- raise some nodes, lowers some others
\(\operatorname{root}=\operatorname{rotL}(A)\)

```

private Node rotL(Node h)
{
Node v = h.r;
h.r = v.l;
v.l = h;
return v;
}

```
```

private Node rotR(Node h)
{
Node u = h.l;
h.l = u.r;
u.r = h;
return u;
}

```
A.left \(=\operatorname{rotR}(S)\)

\section*{Recursive BST Root Insertion}

Root insertion: insert a node and make it the new root.
- Insert as in standard BST.
- Rotate inserted node to the root.

- Easy recursive implementation

Caution: very tricky recursive code.
Read very carefully!
```

private Node putRoot(Node x, Key key, Val val)

```
\{
 if (\(x==\) null) return new Node (key, val);
 int cmp \(=\) key.compareTo(x.key);
 if (cmp \(==0\)) x.val = val;
 else if (cmp < 0)
 \{ x.left \(=\) putRoot(x.left, key, val); \(\mathbf{x}=\operatorname{rotR}(x)\); \}
 else if (cmp > 0)
 \{ x.right \(=\) putRoot(x.right, key, val); \(\mathbf{x}=\operatorname{rotL}(x) ; \quad\}\)
 return \(\mathbf{x}\);
\}

\section*{Constructing a BST with root insertion}

\section*{Ex. ASERCHINGXMPL}

Why bother?
- Recently inserted keys are near the top (better for some clients).
- Basis for advanced algorithms.

Randomized BSTs (Roura, 1996)

Intuition. If tree is random, height is logarithmic. Fact. Each node in a random tree is equally likely to be the root.

Idea. Since new node should be the root with probability \(1 /(N+1)\), make it the root (via root insertion) with probability \(1 /(\mathrm{N}+1)\).
```

private Node put(Node x, Key key, Value val)
{
if (x == null) return new Node(key, val);
int cmp = key.compareTo(x.key);
if (cmp == 0) { x.val = val; return x; }
if (StdRandom.bernoulli(1.0 / (x.N + 1.0))
return putRoot(h, key, val);
if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
x.N++;
return x; need to maintain count of
} nodes in tree rooted at }

```

\section*{Constructing a randomized BST}

Ex: Insert distinct keys in ascending order.

Surprising fact:
Tree has same shape as if keys were inserted in random order.

Random trees result from any insert order

Note: to maintain associative array abstraction need to check whether key is in table and replace value without rotations if that is the case.

\section*{Randomized BST}

Property. Randomized BSTs have the same distribution as BSTs under random insertion order, no matter in what order keys are inserted.

- Expected height is \(\sim 6.22 \lg N\)
- Average search cost is \(\sim 1.38 \lg \mathrm{~N}\).
- Exponentially small chance of bad balance.

Implementation cost. Need to maintain subtree size in each node.

\section*{Summary of symbol-table implementations}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{2}{|l|}{guarantee} & \multicolumn{2}{|l|}{average case} & \multirow[t]{2}{*}{ordered iteration?} & \multirow[t]{2}{*}{operations on keys} \\
\hline & search & insert & search & insert & & \\
\hline unordered array & N & N & N/2 & N/2 & no & equals () \\
\hline ordered array & \(\lg N\) & \(N\) & \(\lg N\) & N/2 & yes & compareto () \\
\hline unordered list & N & N & N/2 & N & no & equals() \\
\hline ordered list & \(N\) & \(N\) & N/2 & N/2 & yes & compareto () \\
\hline BST & N & \(N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & yes & compareto () \\
\hline randomized BST & \(7 \lg N\) & \(7 \lg N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & yes & compareto () \\
\hline
\end{tabular}

Randomized BSTs provide the desired guarantee
probabilistic, with
exponentially small chance of quadratic time

Bonus (next): Randomized BSTs also support delete (!)
basic implementations
randomized BSTs
deletion in BSTs

\section*{BST delete: lazy approach}

To remove a node with a given key
- set its value to null
- leave key in tree to guide searches [but do not consider it equal to any search key]

Cost. \(O\left(\log N^{\prime}\right)\) per insert, search, and delete, where \(N\) ' is the number of elements ever inserted in the BST.

Unsatisfactory solution: Can get overloaded with tombstones.

\section*{BST delete: first approach}

To remove a node from a BST. [Hibbard, 1960s]
- Zero children: just remove it.
- One child: pass the child up.
- Two children: find the next largest node using right-left* swap with next largest remove as above.

zero children

one child

two children

Unsatisfactory solution. Not symmetric, code is clumsy. Surprising consequence. Trees not random (!) \(\Rightarrow \operatorname{sqrt}(\mathrm{N})\) per op.

Longstanding open problem: simple and efficient delete for BSTs

\section*{Deletion in randomized BSTs}

To delete a node containing a given key
- remove the node
- join the two remaining subtrees to make a tree

Ex. Delete \(S\) in

\section*{Deletion in randomized BSTs}

To delete a node containing a given key
- remove the node
- join its two subtrees

Ex. Delete \(S\) in

\section*{Join in randomized BSTs}

To join two subtrees with all keys in one less than all keys in the other
- maintain counts of nodes in subtrees (\(L\) and \(R\))
- with probability \(L /(L+R)\)
make the root of the left the root
make its left subtree the left subtree of the root
join its right subtree to \(R\) to make the right subtree of the root
- with probability \(L /(L+R)\) do the symmetric moves on the right

\section*{Join in randomized BSTs}

To join two subtrees with all keys in one less than all keys in the other
- maintain counts of nodes in subtrees (\(L\) and \(R\))
- with probability \(L /(L+R)\)
make the root of the left the root
make its left subtree the left subtree of the root
join its right subtree to \(R\) to make the right subtree of the root
- with probability \(L /(L+R)\) do the symmetric moves on the right
```

private Node join(Node a, Node b)
{
if (a == null) return a;
if (b == null) return b;
int cmp = key.compareTo(x.key);
if (StdRandom.bernoulli((double)*a.N / (a.N + b.N))
{ a.right = join(a.right, b); return a; }
else
{ b.left = join(a, b.left ); return b; }
}

```


\section*{Deletion in randomized BSTs}

To delete a node containing a given key
- remove the node
- join its two subtrees

Ex. Delete \(S\) in

Theorem. Tree still random after delete (!)

Bottom line. Logarithmic guarantee for search/insert/delete

\section*{Summary of symbol-table implementations}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow[t]{2}{*}{ordered iteration?} \\
\hline & search & insert & delete & search & insert & delete & \\
\hline unordered array & N & N & N & N/2 & N/2 & N/2 & no \\
\hline ordered array & \(\lg N\) & N & N & \(\lg N\) & N/2 & N/2 & yes \\
\hline unordered list & N & N & N & N/2 & N & N/2 & no \\
\hline ordered list & N & N & N & N/2 & N/2 & N/2 & yes \\
\hline BST & \(N\) & N & \(N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & \(?\) & yes \\
\hline randomized BST & \(7 \lg N\) & \(7 \lg N\) & \(7 \lg N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & yes \\
\hline
\end{tabular}

Randomized BSTs provide the desired guarantees

\title{
Balanced Trees
}

\section*{- 2-3-4 trees \\ - red-black trees \\ - B-trees}

\section*{References:}

Algorithms in Java, Chapter 13
http://www.cs.princeton.edu/introalgsds/44balanced

\section*{Symbol Table Review}

Symbol table: key-value pair abstraction.
- Insert a value with specified key.
- Search for value given key.
- Delete value with given key.

\section*{Randomized BST.}
- Guarantee of \(\sim c \lg N\) time per operation (probabilistic).
- Need subtree count in each node.
- Need random numbers for each insert/delete op.

This lecture. 2-3-4 trees, left-leaning red-black trees, B-trees.
new for Fall 2007!

\section*{Summary of symbol-table implementations}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow[t]{2}{*}{ordered iteration?} \\
\hline & search & insert & delete & search & insert & delete & \\
\hline unordered array & N & N & N & N/2 & N/2 & N/2 & no \\
\hline ordered array & \(\lg N\) & N & N & \(\lg N\) & N/2 & N/2 & yes \\
\hline unordered list & N & N & N & N/2 & N & N/2 & no \\
\hline ordered list & N & N & N & N/2 & N/2 & N/2 & yes \\
\hline BST & N & N & N & \(1.39 \lg N\) & \(1.39 \lg N\) & \(?\) & yes \\
\hline randomized BST & \(7 \lg N\) & \(7 \lg N\) & \(7 \lg N\) & \(1.39 \lg N\) & \(1.39 \lg N\) & \(1.39 \lg N\) & yes \\
\hline
\end{tabular}

Randomized BSTs provide the desired guarantees

This lecture: Can we do better?

\section*{Typical random BSTs}

\section*{> 2-3-4 trees}
red-black trees
> B-trees

\section*{2-3-4 Tree}

2-3-4 tree. Generalize node to allow multiple keys; keep tree balanced.

Perfect balance. Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.
- 2-node: one key, two children.
- 3-node: two keys, three children.
- 4-node: three keys, four children.

\section*{Searching in a 2-3-4 Tree}

Search.
- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

Ex. Search for L

\section*{Insertion in a 2-3-4 Tree}

\section*{Insert.}
- Search to bottom for key.

\section*{Ex. Insert B}

\section*{Insertion in a 2-3-4 Tree}

\section*{Insert.}
- Search to bottom for key.
- 2-node at bottom: convert to 3-node.

\section*{Ex. Insert B}

\section*{Insertion in a 2-3-4 Tree}

\section*{Insert.}
- Search to bottom for key.

\section*{Ex. Insert \(X\)}

\section*{Insertion in a 2-3-4 Tree}

\section*{Insert.}
- Search to bottom for key.
- 2-node at bottom: convert to 3-node.
- 3-node at bottom: convert to 4-node.

\section*{Ex. Insert X}

\section*{Insertion in a 2-3-4 Tree}

\section*{Insert.}
- Search to bottom for key.

Ex. Insert H

\section*{Insertion in a 2-3-4 Tree}

\section*{Insert.}
- Search to bottom for key.
- 2-node at bottom: convert to 3-node.
- 3-node at bottom: convert to 4-node.
- 4-node at bottom: ??

Ex. Insert H

\section*{Splitting a 4-node in a 2-3-4 tree}

Idea: split the 4-node to make room

Problem: Doesn't work if parent is a 4-node
Solution 1: Split the parent (and continue splitting up while necessary).
Solution 2: Split 4-nodes on the way down.

\section*{Splitting 4-nodes in a 2-3-4 tree}

Idea: split 4-nodes on the way down the tree.
- Ensures that most recently seen node is not a 4-node.
- Transformations to split 4-nodes:

local transformations that work anywhere in the tree

Invariant. Current node is not a 4-node.

Consequences
- 4-node below a 4-node case never happens
- insertion at bottom node is easy since it's not a 4-node.

Splitting a 4-node below a 2-node in a 2-3-4 tree

A local transformation that works anywhere in the tree

\[
111
\]

Splitting a 4-node below a 3-node in a 2-3-4 tree

A local transformation that works anywhere in the tree

Growth of a 2-3-4 tree

Tree grows up from the bottom
insert \(A\)

insert S
\[
\begin{array}{ll}
A & S \\
1 & 1
\end{array}
\]
insert E
\[
A E S
\]
\[
1111
\]

split 4-node to

insert \(C\)

insert \(H\)

insert I
\begin{tabular}{llllll}
& \(E\) & \\
& & & \\
\(A\) & \(C\) & \(H\) & \(I\) & \(R\) & \(S\) \\
1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Growth of a 2-3-4 tree (continued)}

Tree grows up from the bottom

\section*{Balance in 2-3-4 trees}

Key property: All paths from root to leaf have same length.

Tree height.
- Worst case: \(\lg N\) [all 2-nodes]
- Best case: \(\log _{4} N=1 / 2 \lg N\) [all 4-nodes]
- Between 10 and 20 for a million nodes.
- Between 15 and 30 for a billion nodes.

\section*{2-3-4 Tree: Implementation?}

Direct implementation is complicated, because:
- Maintaining multiple node types is cumbersome.
- Implementation of getchild() involves multiple compares.
- Large number of cases for split(), make3Node(), and make4Node().
```

private void insert(Key key, Val val)
{
Node x = root;
while (x.getChild(key) != null)
{
x = x.getChild(key);
if (x.is4Node()) x.split();
}
if (x.is2Node()) x.make3Node(key, val);
else if (x.is3Node()) x.make4Node(key, val);
}

```
fantasy code

Bottom line: could do it, but stay tuned for an easier way.

\section*{Summary of symbol-table implementations}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow[t]{2}{*}{ordered iteration?} \\
\hline & search & insert & delete & search & insert & delete & \\
\hline unordered array & N & N & N & N/2 & N/2 & N/2 & no \\
\hline ordered array & \(\lg N\) & N & N & \(\lg N\) & N/2 & N/2 & yes \\
\hline unordered list & N & N & N & N/2 & N & N/2 & no \\
\hline ordered list & N & N & N & N/2 & N/2 & N/2 & yes \\
\hline BST & N & N & N & \(1.38 \lg N\) & \(1.38 \lg N\) & ? & yes \\
\hline randomized BST & \(7 \lg N\) & \(7 \lg N\) & \(7 \lg N\) & 1.38 \(\lg \mathrm{N}\) & \(1.38 \lg N\) & \(1.38 \lg N\) & yes \\
\hline 2-3-4 tree & \(c \lg N\) & \(c \lg N\) & & \(c \lg N\) & \(c \lg N\) & & yes \\
\hline
\end{tabular}

2-3-4 trees
> red-black trees
B-trees

Left-leaning red-black trees (Guibas-Sedgewick, 1979 and Sedgewick, 2007)
1. Represent 2-3-4 tree as a BST.
2. Use "internal" left-leaning edges for 3- and 4-nodes.

\section*{Key Properties}
- elementary BST search works
- 1-1 correspondence between 2-3-4 and left-leaning red-black trees

Left-leaning red-black trees
1. Represent 2-3-4 tree as a BST.
2. Use "internal" left-leaning edges for 3- and 4- nodes.

Disallowed:
- right-leaning red edges
- three red edges in a row

Search implementation for red-black trees
```

public Val get(Key key)
{
Node x = root;
while (x != null)
{
int cmp = key.compareTo(x.key);
if (cmp == 0) return x.val;
else if (cmp < O) x = x.left;
else if (cmp > 0) x = x.right;
}
return null;
}

```


Search code is the same as elementary BST (ignores the color) [runs faster because of better balance in tree]

Note: iterator code is also the same.

\section*{Insert implementation for red-black trees (skeleton)}
```

public class BST<Key extends Comparable<Key>, Value>
implements Iterable<Key>
{
private static final boolean RED = true;
private static final boolean BLACK = false;
private Node root;
private class Node
{
Key key;
Value val;
Node left, right; color of incoming link
boolean color;
Node(Key key, Value val, boolean color)
{
this.key = key;
this.val = val;
this.color = color;
}
}
public void put(Key key, Value val)
{
root = put(root, key, val);
root.color = BLACK;
}
}

```
helper method to test node color
```

private boolean isRed(Node x)
{
if (x == null) return false;
return (x.color == RED);
}

```

Insert implementation for left-leaning red-black trees (strategy)

Basic idea: maintain 1-1 correspondence with 2-3-4 trees
1. If key found on recursive search reset value, as usual
2. If key not found insert a new red node at the bottom

3. Split 4-nodes on the way DOWN the tree.

Inserting a new node at the bottom in a LLRB tree

Maintain 1-1 correspondence with 2-3-4 trees
1. Add new node as usual, with red link to glue it to node above
2. Rotate left if necessary to make link lean left

Splitting a 4-node below a 2-node in a left-leaning red-black tree
Maintain correspondence with 2-3-4 trees

Splitting a 4-node below a 3-node in a left-leaning red-black tree

Maintain correspondence with 2-3-4 trees

Splitting 4-nodes a left-leaning red-black tree

The two transformations are the same

Insert implementation for left-leaning red-black trees (strategy revisited)

Basic idea: maintain 1-1 correspondence with 2-3-4 trees

Search as usual
- if key found reset value, as usual

- if key not found insert a new red node at the bottom [might be right-leaning red link]

Split 4-nodes on the way DOWN the tree.
- right-rotate and flip color
- might leave right-leaning link higher up in the tree

NEW TRICK: enforce left-leaning condition on the way UP the tree.
- left-rotate any right-leaning link on search path
- trivial with recursion (do it after recursive calls)
- no other right-leaning links elsewhere

Note: nonrecursive top-down implementation possible, but requires keeping track of great-grandparent on search path (!) and lots of cases.

Insert implementation for left-leaning red-black trees (basic operations)

Insert a new node at bottom

Enforce left-leaning condition
left
rotate

Insert implementation for left-leaning red-black trees (code for basic operations)

\section*{Insert a new node at bottom}
```

if (h == null)
return new Node(key, value, RED);

```

\section*{Split a 4-node}
```

private Node splitFourNode(Node h)
{
x = rotR(h);
x.left.color = BLACK;
return x;
}

```


\section*{Enforce left-leaning condition}
```

private Node leanLeft(Node h)
{
x = rotL(h);
x.color = x.left.color;
x.left.color = RED;
return x;
}

```


Insert implementation for left-leaning red-black trees (code)
```

private Node insert(Node h, Key key, Value val)
{
if (h == null)
return new Node(key, val, RED);
if (isRed(h.left))
if (isRed(h.left.left)) « split 4-nodes on the way down
h = splitFourNode(h);
int cmp = key.compareTo(h.key);
if (cmp == 0) h.val = val;
else if (cmp < 0)
h.left = insert(h.left, key, val);
else
h.right = insert(h.right, key, val);
if (isRed(h.right))
h = leanLeft (h);
return h;
}

```

Balance in left-leaning red-black trees

Proposition A. Every path from root to leaf has same number of black links.
Proposition B. Never three red links in-a-row.
Proposition C. Height of tree is less than \(3 \lg N+2\) in the worst case.

Property D. Height of tree is \(\sim \lg N\) in typical applications.
Property E. Nearly all 4-nodes are on the bottom in the typical applications.

\section*{Why left-leaning trees?}

\section*{Take your pick:}
```

old code (that students had to learn in the past)
private Node insert (Node x, Key key, Value val, boolean sw)
{
if (x == null)
return new Node(key, value, RED)
int cmp = key.compareTo(x.key);
if (isRed(x.left) \&\& isRed(x.right))
{
x.color = RED;
x.left.color = BLACK;
x.right.color = BLACK;
}
if (cmp == 0) x.val = val;
else if (cmp < O))
{
x.left = insert(x.left, key, val, false);
if (isRed(x) \&\& isRed(x.left) \&\& sw)
x = rotR(x);
if (isRed(x.left) \&\& isRed(x.left.left))
{
x = rotR(x);
x.color = BLACK; x.right.color = RED;
}
}
else // if (cmp > 0)
{
x.right = insert(x.right, key, val, true);
if (isRed(h) \&\& isRed(x.right) \&\& !sw)
x = rotL(x);
if (isRed(h.right) \&\& isRed(h.right.right))
{
x = rotL (x);
x.color = BLACK; x.left.color = RED;
}
}
return x;
}

```
```

Algorithms

```
```

\square

```

\section*{new code (that you have to learn)}
private Node insert (Node h, Key key, Value val)
\{
 int cmp \(=\) key.compareTo(h.key);
 if (h == null)
 return new Node (key, val, RED);
 if (isRed(h.left))
 if (isRed(h.left.left))
 \{
 \(h=\operatorname{rot}(h)\)
 h.left.color = BLACK;
 \}
 if (cmp == 0) x.val = val;
 else if (cmp < 0)
 h.left \(=\) insert (h.left, key, val)
 else
 h.right \(=\) insert (h.right, key, val);
 if (isRed(h.right))
 \{
 \(h=\operatorname{rotL}(h) ;\)
 h.color \(=\) h.left.color;
 h.left.color = RED
 \}
 return \(h ;\)
\}

 \(=\)
\{

Why left-leaning trees?
Simplified code
- left-leaning restriction reduces number of cases
- recursion gives two (easy) chances to fix each node
- short inner loop

Same ideas simplify implementation of other operations
- delete min
- delete max
- delete

Built on the shoulders of many, many old balanced tree algorithms
- AVL trees
- 2-3 trees
- 2-3-4 trees
- skip lists

Bottom line: Left-leaning red-black trees are the simplest to implement

\section*{Summary of symbol-table implementations}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow[t]{2}{*}{\begin{tabular}{l}
ordered \\
iteration?
\end{tabular}} \\
\hline & search & insert & delete & search & insert & delete & \\
\hline unordered array & N & N & N & N/2 & N/2 & N/2 & no \\
\hline ordered array & \(\lg N\) & N & N & \(\lg N\) & N/2 & N/2 & yes \\
\hline unordered list & N & N & N & N/2 & N & N/2 & no \\
\hline ordered list & N & N & N & N/2 & N/2 & N/2 & yes \\
\hline BST & N & N & N & \(1.38 \lg N\) & \(1.38 \lg N\) & \(?\) & yes \\
\hline randomized BST & \(7 \lg N\) & \(7 \lg N\) & \(7 \lg N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & yes \\
\hline 2-3-4 tree & \(c \lg N\) & \(c \lg N\) & & \(c \lg N\) & \(c \lg N\) & & yes \\
\hline red-black tree & \(3 \lg N\) & \(3 \lg N\) & \(3 \lg N\) & \(\lg N\) & \(\lg N\) & \(\lg N\) & yes \\
\hline & & & & exact val but & & t unknown to 1 & \\
\hline
\end{tabular}

Typical random left-leaning red-black trees

2-3-4 trees
red-black trees
> B-trees

\section*{B-trees (Bayer-McCreight, 1972)}

B-Tree. Generalizes 2-3-4 trees by allowing up to \(M\) links per node.

Main application: file systems.
- Reading a page into memory from disk is expensive.
- Accessing info on a page in memory is free.
- Goal: minimize \# page accesses.
- Node size \(M=\) page size.

\section*{Space-time tradeoff.}
- M large \(\Rightarrow\) only a few levels in tree.
- M small \(\Rightarrow\) less wasted space.
- Typical \(M=1000, N<1\) trillion.

Bottom line. Number of page accesses is \(\log _{M} N\) per op.

\section*{B-Tree Example}

\section*{B-Tree Example (cont)}

\section*{Summary of symbol-table implementations}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow[t]{2}{*}{ordered iteration?} \\
\hline & search & insert & delete & search & insert & delete & \\
\hline unordered array & N & \(N\) & N & N/2 & N/2 & N/2 & no \\
\hline ordered array & \(\lg N\) & N & N & \(\lg N\) & N/2 & N/2 & yes \\
\hline unordered list & N & N & N & N/2 & N & N/2 & no \\
\hline ordered list & N & N & N & N/2 & N/2 & N/2 & yes \\
\hline BST & \(N\) & N & N & \(1.44 \mathrm{lg} N\) & \(1.44 \mathrm{l} N\) & \(?\) & yes \\
\hline randomized BST & \(7 \lg N\) & \(7 \lg N\) & \(7 \lg N\) & \(1.44 \lg N\) & \(1.44 \lg N\) & \(1.44 \lg N\) & yes \\
\hline 2-3-4 tree & \(c \lg N\) & \(c \lg N\) & & \(c \lg N\) & \(c \lg N\) & & yes \\
\hline red-black tree & \(2 \lg N\) & \(2 \lg N\) & \(2 \lg N\) & \(\lg N\) & \(\lg N\) & \(\lg N\) & yes \\
\hline B-tree & 1 & 1 & 1 & 1 & 1 & 1 & yes \\
\hline
\end{tabular}
\(B\)-Tree. Number of page accesses is \(\log _{M} N\) per op.

\section*{Balanced trees in the wild}

Red-black trees: widely used as system symbol tables
- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: linux/rbtree.h.

B-Trees: widely used for file systems and databases
- Windows: HPFS.
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

Bottom line: ST implementation with \(\lg \mathrm{N}\) guarantee for all ops.
- Algorithms are variations on a theme: rotations when inserting.
- Easiest to implement, optimal, fastest in practice: LLRB trees
- Abstraction extends to give search algorithms for huge files: B-trees

After the break: Can we do better??

\section*{Red-black trees in the wild}

Common sense. Sixth sense.
Together they're the FBI's newest team.

\section*{ACT FOUR}

FADE IN:
INT. FBI HQ - NIGHT
Antonio is at THE COMPUTER as Jess explains herself to Nicole and Pollock. The CONFERENCE TABLE is covered with OPEN REFERENCE BOOKS, TOURIST GUIDES, MAPS and REAMS OF PRINTOUTS.

\section*{JESS}

It was the red door again.

\section*{POLLOCK}

I thought the red door was the storage container.

JESS
But it wasn't red anymore. It was black.

ANTONIO
So red turning to black means... what?

POLLOCK
Budget deficits? Red ink, black ink?

\section*{NICOLE}

Yes. I'm sure that's what it is.
But maybe we should come up with a
couple other options, just in case.
Antonio refers to his COMPUTER SCREEN, which is filled with mathematical equations.

\section*{Red-black trees in the wild}

Common sense. Sixth sense.
Together they're the FBI's newest team.

\section*{ACT FOUR}

FADE IN:
INT. FBI HQ - NIGHT
Antonio is at THE COMPUTER as Jess explains herself to Nicole and Pollock. The CONFERENCE TABLE is covered with OPEN REFERENCE BOOKS, TOURIST GUIDES, MAPS and REAMS OF PRINTOUTS.

\section*{JESS}

It was the red door again.

\section*{POLLOCK}

I thought the red door was the storage container.
JESS
But it wasn't red anymore. It was
black.

ANTONIO
So red turning to black means...
what?
POLLOCK
Budget deficits? Red ink, black ink?

NICOLE
Yes. I'm sure that's what it is.
But maybe we should come up with a
couple other options, just in case.
Antonio refers to his COMPUTER SCREEN, which is filled with mathematical equations.

\section*{ANTONIO}

It could be an algorithm from a binary
search tree. A red-black tree tracks
every simple path from a node to a descendant leaf with the same number of black nodes.

\section*{Red-black trees in the wild}

Common sense. Sixth sense.
Together they're the FBI's newest team.

\section*{ACT FOUR}

FADE IN:
NTT. FBI HQ - NIGHT
Antonio is at THE COMPUTER as Jess explains herself to Nicole and Pollock. The CONFERENCE TABLE is covered with OPEN REFERENCE BOOKS, TOURIST GUIDES, MAPS and REAMS OF PRINTOUTS.

\section*{JESS}

It was the red door again.

\section*{POLLOCK}

I thought the red door was the storage container.
JESS
But it wasn't red anymore. It was
black.

ANTONIO
So red turning to black means... what?

POLLOCK
Budget deficits? Red ink, black ink?

\section*{NICOLE}

Yes. I'm sure that's what it is. But maybe we should come up with a couple other options, just in case.

Antonio refers to his COMPUTER SCREEN, which is filled with mathematical equations.

\section*{ANTONIO}

It could be an algorithm from a binary
search tree. A red-black tree tracks
every simple path from a node to a descendant leaf with the same number of black nodes.
JESS

Does that help you with girls?
Nicole is tapping away at a computer keyboard. She finds something.

\section*{Hashing}

\section*{- hash functions \\ - collision resolution \\ - applications}

\section*{References:}

Algorithms in Java, Chapter 14
http://www.cs.princeton.edu/introalgsds/42hash

\section*{Summary of symbol-table implementations}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow[t]{2}{*}{ordered iteration?} \\
\hline & search & insent & delete & search & insert & delete & \\
\hline unordered array & N & N & N & N/2 & N/2 & N/2 & no \\
\hline ordered array & \(\lg N\) & N & N & \(\lg N\) & N/2 & N/2 & yes \\
\hline unordered list & N & N & N & N/2 & N & N/2 & no \\
\hline ordered list & \(N\) & N & N & N/2 & N/2 & N/2 & yes \\
\hline BST & N & N & N & 1.39 \(\lg \mathrm{N}\) & \(1.39 \mathrm{l} N\) & ? & yes \\
\hline randomized BST & \(7 \lg N\) & \(7 \lg N\) & \(7 \lg N\) & \(1.39 \lg N\) & \(1.39 \lg N\) & \(1.39 \lg N\) & yes \\
\hline red-black tree & \(3 \lg N\) & \(3 \lg N\) & \(3 \lg N\) & \(\lg N\) & \(\lg N\) & \(\lg N\) & yes \\
\hline
\end{tabular}

Can we do better?

\section*{Optimize Judiciously}

More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reasonincluding blind stupidity. - William A. Wulf

We should forget about small efficiencies, say about \(97 \%\) of the time: premature optimization is the root of all evil. - Donald E. Knuth

We follow two rules in the matter of optimization:
Rule 1: Don't do it.
Rule 2 (for experts only). Don't do it yet - that is, not until you have a perfectly clear and unoptimized solution.
- M. A. Jackson

Reference: Effective Java by Joshua Bloch.

\section*{Hashing: basic plan}

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing table index from key.

\section*{Issues.}
1. Computing the hash function
2. Collision resolution: Algorithm and data structure to handle two keys that hash to the same index.
3. Equality test: Method for checking whether two keys are equal.

Classic space-time tradeoff.
- No space limitation: trivial hash function with key as address.
- No time limitation: trivial collision resolution with sequential search.
- Limitations on both time and space: hashing (the real world).
> hash functions
collision resolution
applications

Computing the hash function

Idealistic goal: scramble the keys uniformly.
- Efficiently computable.
- Each table position equally likely for each key.
thoroughly researched problem,
still problematic in practical applications

Practical challenge: need different approach for each type of key

Ex: Social Security numbers.
- Bad: first three digits.
- Better: last three digits.

Ex: date of birth.
- Bad: birth year.
- Better: birthday.

Ex: phone numbers.
- Bad: first three digits.
- Better: last three digits.
```

    573 = California, 574 = Alaska
    ```
assigned in chronological order within a given geographic region

\section*{Hash Codes and Hash Functions}

Java convention: all classes implement hashCode()
hashcode () returns a 32-bit int (between -2147483648 and 2147483647)

Hash function. An int between 0 and m-1 (for use as an array index)

First try:

Bug. Don't use (code \% m) as array index

1-in-a billion bug. Don't use (Math.abs (code) \% m) as array index.

OK. Safe to use ((code \& 0x7fffffff) \% M) as array index.

\section*{Java's hashCode () convention}

\section*{Theoretical advantages}
- Ensures hashing can be used for every type of object
- Allows expert implementations suited to each type

\section*{Requirements:}
- If \(x\). equals (\(y\)) then \(x\) and \(y\) must have the same hash code.
- Repeated calls to \(\mathbf{x}\).hashcode() must return the same value.

\section*{Practical realities}
- True randomness is hard to achieve
- Cost is an important consideration

Available implementations
- default (inherited from Object): Memory address of \(\mathbf{x}\) (!!!)
- customized Java implementations: String, URL, Integer, Date.
- User-defined types: users are on their own

\section*{A typical type}

\section*{Assumption when using hashing in Java:}

Key type has reasonable implementation of hashCode () and equals()

Ex. Phone numbers: (609) 867-5309.

```

public final class PhoneNumber
{
private final int area, exch, ext;
public PhoneNumber(int area, int exch, int ext)
{
this.area = area;
this.exch = exch;
this.ext = ext;
}
public boolean equals(Object y) { // as before }
public int hashCode()
{ return 10007 * (area + 1009 * exch) + ext; }
}

```
\(\qquad\)

Fundamental problem:
Need a theorem for each data type to ensure reliability.

A decent hash code design
Java 1.5 string library [see also Program 14.2 in Algs in Java].
```

public int hashCode()
{
int hash = 0;
for (int i = 0; i < length(); i++)
hash = s[i] + (31 * hash);
return hash;
}
ith character of s
$\{$
int hash $=0$;
for (int $i=0 ; i<l e n g t h() ; i++)$
return hash;
\}
ith character of s

```
- Equivalent to \(h=31^{L-1} \cdot s_{0}+\ldots+31^{2} \cdot s_{L-3}+31 \cdot s_{L-2}+s_{L-1}\).
- Horner's method to hash string of length L: L multiplies/adds

Ex.
```

String s = "call";
int code = s.hashCode();

```
```

3045982 = 99.313 + 97 3 312 + 108\cdot311 + 108 310
= 108+31\cdot(108+31\cdot(99+31\cdot(97)))

```

Provably random? Well, no.

\section*{A poor hash code design}

Java 1.1 string library.
- For long strings: only examines 8-9 evenly spaced characters.
- Saves time in performing arithmetic...
```

public int hashCode()
{
int hash = 0;
int skip = Math.max(1, length() / 8);
for (int i = 0; i < length(); i += skip)
hash = (37 * hash) + s[i];
return hash;
}

```
but great potential for bad collision patterns.
http://www.cs.princeton.edu/introcs/13loop/Hello.java http://www.cs.princeton.edu/introcs/13loop/Hello.class http://www.cs.princeton.edu/introcs/13loop/Hello.html http://www.cs.princeton.edu/introcs/13loop/index.html http://www.cs.princeton.edu/introcs/12type/index.html

Basic rule: need to use the whole key.

\section*{Digression: using a hash function for data mining}

Use content to characterize documents.

Applications
- Search documents on the web for documents similar to a given one.
- Determine whether a new document belongs in one set or another

Approach
- Fix order \(k\) and dimension d
- Compute hashCode () \% d for all k-grams in the document
- Result: d-dimensional vector profile of each document
- To compare documents:

Consider angle \(\theta\) separating vectors
\(\cos \theta\) close to 0 : not similar
\[
\begin{aligned}
& \cos \theta=a \cdot b / \\
& |a||b|
\end{aligned}
\]

\section*{Digression: using a hash function for data mining}
```

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of
foolishness

```
\% more genome.txt
CTTTCGGTTTGGAACC
GAAGCCGCGCGTCT
TGTCTGCTGCAGC
ATCGTTC
\(\cos \theta\) small: not similar

Digression: using a hash function to profile a document for data mining
```

public class Document
{
private String name;
private double[] profile;
public Document(String name, int k, int d)
{
this.name = name;
String doc = (new In(name)).readAll();
int N = doc.length();
profile = new double[d];
for (int i = 0; i < N-k; i++)
{
int h = doc.substring(i, i+k).hashCode();
profile[Math.abs(h % d)] += 1;
}
}
public double simTo(Document other)
{
// compute dot product and divide by magnitudes
}
}

```

Digression: using a hash function to compare documents
```

public class CompareAll
{
public static void main(String args[])
{
int k = Integer.parseInt(args[0]);
int d = Integer.parseInt(args[1]);
int N = StdIn.readInt();
Document[] a = new Document[N];
for (int i = 0; i < N; i++)
a[i] = new Document(StdIn.readString(), k, d);
System.out.print(" ");
for (int j = 0; j < N; j++)
System.out.printf(" %.4s", a[j].name());
System.out.println();
for (int i = O; i < N; i++)
{
System.out.printf("%.4s ", a[i].name());
for (int j = 0; j < N; j++)
System.out.printf("%8.2f", a[i].simTo(a[j]));
System.out.println();
}
}
}

```

Digression: using a hash function to compare documents
\begin{tabular}{lc}
Cons & US Constitution \\
Toms & "Tom Sawyer" \\
Huck & "Huckleberry Finn" \\
Prej & "Pride and Prejudice" \\
Pict & a photograph \\
DJIA & financial data \\
Amaz & Amazon.com website. html source \\
ACTG & genome
\end{tabular}
\begin{tabular}{lclllllll}
\% java & CompareAll & 51000 & < docs.txt & & & & \\
& Cons & TomS & Huck & Prej & Pict & DJIA & Amaz & ACTG \\
Cons & 1.00 & 0.89 & 0.87 & 0.88 & 0.35 & 0.70 & 0.63 & 0.58 \\
TomS & 0.89 & 1.00 & 0.98 & 0.96 & 0.34 & 0.75 & 0.66 & 0.62 \\
Huck & 0.87 & 0.98 & 1.00 & 0.94 & 0.32 & 0.74 & 0.65 & 0.61 \\
Prej & 0.88 & 0.96 & 0.94 & 1.00 & 0.34 & 0.76 & 0.67 & 0.63 \\
Pict & 0.35 & 0.34 & 0.32 & 0.34 & 1.00 & 0.29 & 0.48 & 0.24 \\
DJIA & 0.70 & 0.75 & 0.74 & 0.76 & 0.29 & 1.00 & 0.62 & 0.58 \\
Amaz & 0.63 & 0.66 & 0.65 & 0.67 & 0.48 & 0.62 & 1.00 & 0.45 \\
ACTG & 0.58 & 0.62 & 0.61 & 0.63 & 0.24 & 0.58 & 0.45 & 1.00
\end{tabular}

\section*{hash functions}
> collision resolution
applications

\section*{Helpful results from probability theory}

Bins and balls. Throw balls uniformly at random into \(M\) bins.

Birthday problem.
Expect two balls in the same bin after \(\sqrt{\pi M / 2}\) tosses.
Coupon collector.
Expect every bin has \(\geq 1\) ball after \(\Theta(M \ln M)\) tosses.

Load balancing.
After \(M\) tosses, expect most loaded bin has \(\Theta(\log M / \log \log M)\) balls.

\section*{Collisions}

Collision. Two distinct keys hashing to same index.

Conclusion. Birthday problem \(\Rightarrow\) can'† avoid collisions unless you have a ridiculous amount of memory.

Challenge. Deal with collisions efficiently.

accept multiple collisions
```

    25 items, }11\mathrm{ table positions
    ~2 items per table position
    ```


Approach 2:
minimize collisions
5 items, 11 table positions
~ . 5 items per table position

Collision resolution: two approaches
1. Separate chaining. [H. P. Luhn, IBM 1953]

Put keys that collide in a list associated with index.
2. Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953] When a new key collides, find next empty slot, and put it there.

Collision resolution approach 1: separate chaining
Use an array of \(M<N\) linked lists. \(\longleftarrow \operatorname{good}\) choice: \(M \approx N / 10\)
- Hash: map key to integer i between 0 and M-1.
- Insert: put at front of \(i^{\text {th }}\) chain (if not already there).
- Search: only need to search \(i^{\text {th }}\) chain.

Separate chaining ST implementation (skeleton)
```

public class ListHashST<Key, Value>
no generics in
arrays in Java
Object key;
Object val;
Node next;
Node(Key key, Value val, Node next)
{
this.key = key;
this.val = val;
this.next = next;
}
}
private int hash(Key key)
{ return (key.hashcode() \& Ox7fffffffff) % M; }
public void put(Key key, Value val)
// see next slide
public Val get(Key key)
// see next slide
}

```

\section*{Separate chaining ST implementation (put and get)}
```

public void put(Key key, Value val)
{
int i = hash(key);
for (Node x = st[i]; x != null; x = x.next)
if (key.equals(x.key))
{ x.val = val; return; }
st[i] = new Node(key, value, first);
}
public Value get(Key key)
{
int i = hash(key);
for (Node x = st[i]; x != null; x = x.next)
if (key.equals(x.key))
return (Value) x.val;
return null;
}

```

Identical to linked-list code, except hash to pick a list.

\section*{Analysis of separate chaining}

Separate chaining performance.
- Cost is proportional to length of list.
- Average length \(=N / M\).
- Worst case: all keys hash to same list.

Theorem. Let \(\alpha=N / M>1\) be average length of list. For any \(\dagger>1\), probability that list length > \(\dagger \alpha\) is exponentially small in \(\dagger\).
depends on hash map being random map
Parameters.
- \(M\) too large \(\Rightarrow\) too many empty chains.
- M too small \(\Rightarrow\) chains too long.
- Typical choice: \(\alpha=N / M \approx 10 \Rightarrow\) constant-time ops.

Collision resolution approach 2: open addressing

Use an array of size \(M \gg N\). \(\longleftarrow \operatorname{good}\) choice: \(M \approx 2 N\)
- Hash: map key to integer i between 0 and \(M-1\).

Linear probing:
- Insert: put in slot \(i\) if free; if not try \(i+1, i+2\), etc.
- Search: search slot \(i\); if occupied but no match, try \(i+1\), \(i+2\), etc.

\section*{Linear probing ST implementation}
```

public class ArrayHashST<Key, Value>
{
private int M = 30001;
private Value[] vals = (Value[]) new Object[maxN];
private Key[] keys = (Key[]) new Object[maxN];
privat int hash(Key key) // as before
public void put(Key key, Value val)
{
int i;
for (i = hash(key); keys[i] != null; i = (i+1) % M)
if (key.equals(keys[i]))
break;
vals[i] = val;
keys[i] = key;
}
public Value get(Key key)
{
for (int i = hash(key); keys[i] != null; i = (i+1) % M)
if (key.equals(keys[i]))
return vals]i];
return null;
}
}

```

\section*{Clustering}

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

Knuth's parking problem. Cars arrive at one-way street with M parking spaces. Each desires a random space \(i\) : if space \(i\) is taken, try \(i+1, i+2, \ldots\) What is mean displacement of a car?

Empty. With M/2 cars, mean displacement is about 3/2. Full. Mean displacement for the last car is about \(\sqrt{\pi M / 2}\)

\section*{Analysis of linear probing}

Linear probing performance.
- Insert and search cost depend on length of cluster.
- Average length of cluster \(=\alpha=N / M\).
- Worst case: all keys hash to same cluster.

Theorem. [Knuth 1962] Let \(\alpha=N / M<1\) be the load factor.
Average probes for insert/search miss
\[
\frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right)=\left(1+\alpha+2 \alpha^{2}+3 \alpha^{3}+4 \alpha^{4}+\ldots\right) /
\]

Average probes for search hit
\[
\frac{1}{2}\left(1+\frac{1}{(1-\alpha)}\right)=1+\left(\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4}+\ldots\right) / 2
\]

Parameters.
- Load factor too small \(\Rightarrow\) too many empty array entries.
- Load factor too large \(\Rightarrow\) clusters coalesce.
- Typical choice: \(M \approx 2 N \Rightarrow\) constant-time ops.

Hashing: variations on the theme

Many improved versions have been studied:
Ex: Two-probe hashing
- hash to two positions, put key in shorter of the two lists
- reduces average length of the longest list to \(\log \log N\)

\section*{Ex: Double hashing}
- use linear probing, but skip a variable amount, not just 1 each time
- effectively eliminates clustering
- can allow table to become nearly full

\section*{Double hashing}

Idea Avoid clustering by using second hash to compute skip for search.

Hash. Map key to integer i between 0 and \(M-1\).
Second hash. Map key to nonzero skip value \(k\).
\(E x: k=1+(v \bmod 97)\).
hashCode ()

Effect. Skip values give different search paths for keys that collide.

Best practices. Make \(k\) and \(M\) relatively prime.

Double Hashing Performance

Theorem. [Guibas-Szemerédi] Let \(\alpha=N / M<1\) be average length of list.
Average probes for insert/search miss
\[
\frac{1}{(1-\alpha)}=1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4}+\ldots
\]

Average probes for search hit
\[
\frac{1}{\alpha} \ln \frac{1}{(1-\alpha)}=1+\alpha / 2+\alpha^{2} / 3+\alpha^{3} / 4+\alpha^{4} / 5
\]

Parameters. Typical choice: \(\alpha \approx 1.2 \Rightarrow\) constant-time ops.

Disadvantage. Delete cumbersome to implement.

\section*{Hashing Tradeoffs}

Separate chaining vs. linear probing/double hashing.
- Space for links vs. empty table slots.
- Small table + linked allocation vs. big coherent array.

Linear probing vs. double hashing.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{} & & \multicolumn{4}{|c|}{ load factor \(\alpha\)} \\
\cline { 2 - 6 } & & \(50 \%\) & \(66 \%\) & \(75 \%\) & \(90 \%\) \\
\hline \multirow{2}{*}{\begin{tabular}{c}
linear
\end{tabular}} & get & 1.5 & 2.0 & 3.0 & 5.5 \\
probing & put & 2.5 & 5.0 & 8.5 & 55.5 \\
\hline \multirow{2}{*}{\begin{tabular}{c}
double \\
hashing
\end{tabular}} & get & put & 1.4 & 1.6 & 1.8 \\
\hline
\end{tabular}

\section*{Summary of symbol-table implementations}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow[t]{2}{*}{ordered iteration?} & \multirow[t]{2}{*}{operations on keys} \\
\hline & search & insert & delete & search & insert & delete & & \\
\hline unordered array & \(N\) & \(N\) & \(N\) & N/2 & N/2 & N/2 & no & equals() \\
\hline ordered array & \(\lg N\) & \(N\) & N & \(\lg N\) & N/2 & N/2 & yes & compareTo () \\
\hline unordered list & N & \(N\) & \(N\) & N/2 & \(N\) & N/2 & no & equals() \\
\hline ordered list & N & \(N\) & \(N\) & N/2 & N/2 & N/2 & yes & compareTo () \\
\hline BST & \(N\) & \(N\) & \(N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & \(?\) & yes & compareTo () \\
\hline randomized BST & \(7 \lg N\) & \(7 \lg N\) & \(7 \lg N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & yes & compareTo () \\
\hline red-black tree & \(2 \lg N\) & \(2 \lg N\) & \(2 \lg N\) & \(\lg N\) & \(\lg N\) & \(\lg N\) & yes & compareTo () \\
\hline hashing & 1* & 1* & 1* & 1* & 1* & 1* & no & \[
\begin{gathered}
\text { equals() } \\
\text { hashCode() }
\end{gathered}
\] \\
\hline & & & & & & \multicolumn{3}{|l|}{* assumes random hash code} \\
\hline
\end{tabular}

\section*{Hashing versus balanced trees}

Hashing
- simpler to code
- no effective alternative for unordered keys
- faster for simple keys (a few arithmetic ops versus \(\lg N\) compares)
- (Java) better system support for strings [cached hashcode]
- does your hash function produce random values for your key type??

\section*{Balanced trees}
- stronger performance guarantee
- can support many more operations for ordered keys
- easier to implement compareTo() correctly than equals() and hashCode ()

Java system includes both
- red-black trees: java.util.TreeMap, java.util.TreeSet
- hashing: java.util.HashMap, java.util.IdentityHashMap

\section*{Typical "full" ST API}

Hashing is not suitable for implementing such an API (no order)
BSTs are easy to extend to support such an API (basic tree ops)

Ex: Can use LLRB trees implement priority queues for distinct keys

\section*{>hash functions}
collision resolution

\section*{, applications}

\section*{Set ADT}

Set. Collection of distinct keys.
\begin{tabular}{cl}
public class *SET<Key extends Comparable<Key>, Value> \\
\hline SET () & create a set \\
void add(Key key) & put key into the set \\
boolean contains (Key key) & is there a value paired with key? \\
void remove (Key key) & remove key from the set \\
Iterator<Key> iterator ()
\end{tabular}

Normal mathematical assumption: Typical (eventual) client expectation: ordered iteration
Q. How to implement?

AO. Hashing (our ST code [value removed] or java.util. HashSet)
A1. Red-black BST (our ST code [value removed] or java.util. TreeSet)

\section*{SET client example 1: dedup filter}

Remove duplicates from strings in standard input
- Read a key.
- If key is not in set, insert and print it.
```

public class DeDup
{
public static void main(String[] args)
{
SET<String> set = new SET<String>();
while (!StdIn.isEmpty())
{
String key = StdIn.readString();
if (!set.contains(key))
{
set.add(key);
StdOut.println(key);
}
}
}
}

```

No iterator needed.
Output is in same order
as input with
dups removed.

\% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of
foolishness
\% java Dedup < tale.txt it
was
the
best
of
times
worst
age
wisdom
foolishness
-

\section*{SET client example 2A: lookup filter}

Print words from standard input that are found in a list
- Read in a list of words from one file.
- Print out all words from standard input that are in the list.
```

public class LookupFilter
{
public static void main(String[] args)
{
SET<String> set = new SET<String>();
In in = new In(args[0]);
while (!in.isEmpty())
set.add(in.readString());
while (!StdIn.isEmpty())
{
String word = StdIn.readString();
if (set.contains(word))
print words that
are not in list
StdOut.println(word);
}
}
}

```

\section*{SET client example 2B: exception filter}

Print words from standard input that are not found in a list
- Read in a list of words from one file.
- Print out all words from standard input that are not in the list.
```

public class LookupFilter
{
public static void main(String[] args)
{
SET<String> set = new SET<String>();
\longleftarrow create SET
In in = new In(args[0]);
while (!in.isEmpty())
set.add(in.readString());
while (!StdIn.isEmpty())
{
String word = StdIn.readString();
if (!set.contains(word))
print words that
are not in list
StdOut.println(word);
}
}
}

```

\section*{SET filter applications}
\begin{tabular}{cccccc}
application & purpose & key & type & in list & not in list \\
dedup & eliminate duplicates & & dedup & duplicates & unique keys \\
spell checker & find misspelled words & word & exception & dictionary & misspelled words \\
browser & mark visited pages & URL & lookup & visited pages & \\
chess & detect draw & board & lookup & positions & \\
spam filter & eliminate spam & IP addr & exception & spam & good mail \\
trusty filter & allow trusted mail & URL & lookup & good mail & \\
credit cards & check for stolen cards & number & exception & stolen cards & good cards
\end{tabular}

Searching challenge:

Problem: Index for a PC or the web Assumptions: 1 billion++ words to index

Which searching method to use?
1) hashing implementation of SET
2) hashing implementation of \(S T\)
3) red-black-tree implementation of \(S T\)
4) red-black-tree implementation of SET
5) doesn't matter much

Spotlight
searching challenge
閏 Show All (200)
Top Hit
Documents
: mobydick.txt
movies.txt
Papers/Abstracts
(1) score.card.txt

Requests
- Re: Draft of lecture on symb.
- SODA 07 Final Accepts

SODA 07 Summary
- Got-it
- No Subject

PDF Documents
08BinarySearchTrees.pdf 07SymbolTables.pdf
Z 07SymbolTables.pdf
06PriorityQueues.pdf
Z 06PriorityQueues.pdf
Presentations
[ci) 10Hashing
07SymbolTables
(요 06PriorityQueues

\section*{Index for search in a PC}
```

ST<String, SET<File>> st = new ST<String, SET<File>>();
for (File f: filesystem)
{
In in = new In(f);
String[] words = in.readAll().split("<br>s+");
for (int i = 0; i < words.length; i++)
{
String s = words[i];
if (!st.contains(s))
st.put(s, new SET<File>());
SET<File> files = st.get(s);
files.add(f);
}
}

```
SET<File> files = st.get(s);
process
for (File f: files) ...
lookup
request

Searching challenge:

Problem: Index for a book Assumptions: book has 100,000+ words

Which searching method to use?
1) hashing implementation of SET
2) hashing implementation of \(S T\)
3) red-black-tree implementation of \(S T\)
4) red-black-tree implementation of SET
5) doesn't matter much

\section*{Index for a book}
```

public class Index
{
public static void main(String[] args)
{
String[] words = StdIn.readAll().split("<br>s+");
ST<String, SET<Integer>> st;
read book and
st = new ST<String, SET<Integer>>();
for (int i = 0; i < words.length; i++)
{
String s = words[i];
if (!st.contains(s))
st.put(s, new SET<Integer>());
SET<Integer> pages = st.get(s);
pages.add(page(i));
}
for (String s : st)
StdOut.println(s + ": " + st.get(s));
}
}

```

Requires ordered iterators (not hashing)

Hashing in the wild: Java implementations
Java has built-in libraries for hash tables.
- java.util. Hashmap = separate chaining implementation.
- java.util.IdentityHashmap = linear probing implementation.
```

import java.util.HashMap;
public class HashMapDemo
{
public static void main(String[] args)
{
HashMap<String, String> st = new HashMap <String, String>();
st.put("www.cs.princeton.edu", "128.112.136.11");
st.put("www.princeton.edu", "128.112.128.15");
StdOut.println(st.get("www.cs.princeton.edu"));
}
}

```

Null value policy.
- Java Hashmap allows null values.
- Our implementation forbids null values.

\section*{Using HashMap}

\section*{Implementation of our API with java.util. HashMap.}
```

import java.util.HashMap;
import java.util.Iterator;
public class ST<Key, Value> implements Iterable<Key>
{
private HashMap<Key, Value> st = new HashMap<Key, Value>();
public void put(Key key, Value val)
{
if (val == null) st.remove(key);
else st.put(key, val);
}
public Value get(Key key) { return st.get(key); }
public Value remove(Key key) { return st.remove(key); }
public boolean contains(Key key) { return st.contains(key); }
public int size() contains(Key key) { return st.size(); }
public Iterator<Key> iterator() { return st.keySet().iterator(); }
}

```

\section*{Hashing in the wild: algorithmic complexity attacks}

Is the random hash map assumption important in practice?
- Obvious situations: aircraft control, nuclear reactor, pacemaker.
- Surprising situations: denial-of-service attacks.

> malicious adversary learns your ad hoc hash function (e.g., by reading Java API) and causes a big pile-up in single address that grinds performance to a halt

Real-world exploits. [Crosby-Wallach 2003]
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.

\section*{Algorithmic complexity attack on the Java Library}

Goal. Find strings with the same hash code.
Solution. The base-31 hash code is part of Java's string API.
\begin{tabular}{|cc|}
\hline Key & hashCode () \\
\hline Aa & 2112 \\
BB & 2112 \\
\hline
\end{tabular}

Does your hash function produce random values for your key type??

\section*{One-Way Hash Functions}

One-way hash function. Hard to find a key that will hash to a desired value, or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.
insecure
```

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);
// prints bytes as hex string

```

Applications. Digital fingerprint, message digest, storing passwords.

Too expensive for use in ST implementations (use balanced trees)

\section*{Undirected Graphs}

\section*{- Graph API}

\section*{- maze exploration \\ depth-first search \\ - breadth-first search \\ - connected components \\ challenges}

\section*{References:}

Algorithms in Java, Chapters 17 and 18 Intro to Programming in Java, Section 4.5
http://www.cs.princeton.edu/introalgsds/51undirected

\section*{Undirected graphs}

Graph. Set of vertices connected pairwise by edges.
Why study graph algorithms?
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

\section*{Graph applications}
\begin{tabular}{c|cc|}
\hline graph & vertices & edges \\
communication & telephones, computers & fiber optic cables \\
circuits & gates, registers, processors & wires \\
mechanical & joints & rods, beams, springs \\
hydraulic & reservoirs, pumping stations & pipelines \\
financial & stocks, currency & transactions \\
transportation & street intersections, airports & highways, airway routes \\
scheduling & tasks & precedence constraints \\
software systems & functions & function calls \\
internet & web pages & hyperlinks \\
games & board positions & legal moves \\
social relationship & people, actors & friendships, movie casts \\
neural networks & neurons & synapses \\
protein networks & proteins & protein-protein interactions \\
chemical compounds & molecules & bonds
\end{tabular}

\section*{Social networks}
high school dating

corporate e-mail

\section*{Power transmission grid of Western US}

Reference: Duncan Watts

Protein interaction network

Reference: Jeong et al, Nature Review | Genetics

The Internet

The Internet as mapped by The Opte Project
http://www.opte.org

\section*{Graph terminology}

\section*{Some graph-processing problems}

Path. Is there a path between \(s\) to t?
Shortest path. What is the shortest path between sand t?
Longest path. What is the longest simple path between \(s\) and \(t\) ?
Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

First challenge: Which of these problems is easy? difficult? intractable?

\section*{- Graph API}

Imaze exploration
depth-first search
> breadth-first search
> connected components
challenges

\section*{Graph representation}

Vertex representation.
- This lecture: use integers between 0 and v-1.
- Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.

\section*{Graph API}

Client that iterates through all edges
```

Graph G = new Graph(V, E);
StdOut.println(G);
for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
// process edge v-w

```
 processes BOTH
 \(v-w\) and \(w-v\)

\section*{Set of edges representation}

Store a list of the edges (linked list or array)

\section*{Adjacency matrix representation}

Maintain a two-dimensional \(\mathrm{v} \times \mathrm{v}\) boolean array.

For each edge v-w in graph: \(\operatorname{adj}[v][w]=\operatorname{adj}[w][v]=\) true.
\begin{tabular}{ll|lllllllllllll}
\end{tabular}

Adjacency-matrix graph representation: Java implementation
```

public class Graph
{
private int v;
private boolean[][] adj;
adjacency
matrix
public Graph(int V)
{
this.V = V;
adj = new boolean[V][V];
}
public void addEdge(int v, int w)
{
adj[v][w] = true; \& add edge v-w
adj[w][v] = true; (no parallel edges)
}
public Iterable<Integer> adj(int v)
{
return new AdjIterator(v);
iterator for
}
}

```

Adjacency matrix: iterator for vertex neighbors
```

private class AdjIterator implements Iterator<Integer>,
Iterable<Integer>
{
int v, w = 0;
AdjIterator(int v)
{ this.v = v; }
public boolean hasNext()
{
while (w < V)
{ if (adj[v][w]) return true; w++ }
return false;
}
public int next()
{
if (hasNext()) return w++ ;
else throw new NoSuchElementException();
}
public Iterator<Integer> iterator()
{ return this; }
}

```

Adjacency-list graph representation

Maintain vertex-indexed array of lists (implementation omitted)

Adjacency-SET graph representation

Maintain vertex-indexed array of SETs (take advantage of balanced-tree or hashing implementations)

Adjacency-SET graph representation: Java implementation
```

public class Graph
{
private int V;
private SET<Integer>[] adj;
adjacency
sets
public Graph(int V)
{
this.V = V;
adj = (SET<Integer>[]) new SET[V];
for (int v = O; v < v; v++)
adj[v] = new SET<Integer>();
}
public void addEdge(int v, int w)
{
adj[v].add (w); add edge v-w
adj[w].add(v);
}
public Iterable<Integer> adj(int v)
{
return adj[v];
iterable SET for
}
}

```

\section*{Graph representations}

Graphs are abstract mathematical objects, BUT
- ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.
\begin{tabular}{cccc}
representation & space & \begin{tabular}{c}
edge between \\
\(V\) and \(w ?\)
\end{tabular} & \begin{tabular}{c}
iterate over edges \\
incident to \(v ?\)
\end{tabular} \\
list of edges & \(E\) & \(E\) & \(E\) \\
adjacency matrix & \(V^{2}\) & 1 & \(V\) \\
adjacency list & \(E+V\) & degree \((v)\) & degree \((v)\) \\
adjacency SET & \(E+V\) & \(\log (\operatorname{degree}(v))\) & degree \((v)^{\star}\)
\end{tabular}
* easy to also support ordered iteration and
In practice: Use adjacency SET representation randomized iteration
- Take advantage of proven technology
- Real-world graphs tend to be "sparse"
[huge number of vertices, small average vertex degree]
- Algs all based on iterating over edges incident to \(v\).

\section*{- Graph APl}
> maze exploration
depth-first search
breadth-first search
> connected componen
chalenges

\section*{Maze exploration}

Maze graphs.
- Vertex = intersections.
- Edge = passage.

Goal. Explore every passage in the maze.

Trémaux Maze Exploration
Trémaux maze exploration.
- Unroll a ball of string behind you.
- Mark each visited intersection by turning on a light.
- Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur; Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

\section*{Maze Exploration}

Graph API
maze exploration
depth-first search
breadth-first search
connected components
> challenges

Flood fill

Photoshop "magic wand"

\section*{Graph-processing challenge 1:}

\section*{Problem: Flood fill}

Assumptions: picture has millions to billions of pixels

How difficult?
1) any COS126 student could do it
2) need to be a typical diligent COS226 student
3) hire an expert
4) intractable
5) no one knows

\section*{Depth-first search}

Goal. Systematically search through a graph.

Idea. Mimic maze exploration.

Typical applications.
- find all vertices connected to a given s
- find a path from s to \(t\)

Running time.
- \(O(E)\) since each edge examined at most twice
- usually less than \(V\) to find paths in real graphs

Design pattern for graph processing
Typical client program.
- Create a Graph.
- Pass the Graph to a graph-processing routine, e.g., DFSearcher.
- Query the graph-processing routine for information.
```

Client that prints all vertices connected to (reachable from)s
public static void main(String[] args)
{
In in = new In(args[0]);
Graph G = new Graph(in);
int s = 0;
DFSearcher dfs = new DFSearcher (G, s);
for (int v = 0; v < G.V(); v++)
if (dfs.isConnected(v))
System.out.println(v);
}

```

Decouple graph from graph processing.

Depth-first search (connectivity)

\section*{Connectivity application: Flood fill}

Change color of entire blob of neighboring red pixels to blue.
Build a grid graph
- vertex: pixel.
- edge: between two adjacent lime pixels.
- blob: all pixels connected to given pixel.

\section*{Connectivity Application: Flood Fill}

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph
- vertex: pixel.
- edge: between two adjacent red pixels.
- blob: all pixels connected to given pixel.

\section*{Graph-processing challenge 2 :}

Problem: Is there a path from sto t?

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student

3) hire an expert
4) intractable
5) no one knows

\section*{Graph-processing challenge 3:}

Problem: Find a path from s to t.
Assumptions: any path will do

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student

3) hire an expert
4) intractable
5) no one knows

\section*{Paths in graphs}

Is there a path from s to \(t\) ? If so, find one.

Paths in graphs

Is there a path from s to \(t\) ?
\begin{tabular}{c|c|c|c|}
\hline method & preprocess time & query time & space \\
\hline Union Find & \(V+E \log ^{\star} V\) & \(\log ^{\star} V+\) & \(V\) \\
DFS & \(E+V\) & 1 & \(E+V\) \\
& & +amortized &
\end{tabular}

If so, find one.
- Union-Find: no help (use DFS on connected subgraph)
- DFS: easy (stay tuned)

UF advantage. Can intermix queries and edge insertions. DFS advantage. Can recover path itself in time proportional to its length.

\section*{Keeping track of paths with DFS}

DFS tree. Upon visiting a vertex v for the first time, remember that you came from pred [v] (parent-link representation).

Retrace path. To find path between sand \(\mathbf{v}\), follow pred back from v .

©

9
0

\(\begin{array}{r}9 \\ 0 \\ 0 \\ 6 \\ \hline\end{array}\)

9
9
0
6
9
3

\(\begin{array}{r}9 \\ 0 \\ 0 \\ 6 \\ 9 \\ 3 \\ 3 \\ \hline(5)\end{array}\)

9
9
9
9
9
9
3
3
3

\footnotetext{

}

\section*{Depth-first-search (pathfinding)}
```

public class DFSearcher
{
... add instance variable for
private int[] pred;
parent-link representation
public DFSearcher(Graph G, int s)
{
pred = new int[G.V()];
for (int v = 0; v < G.V(); v++)
pred[v] = -1;
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w])
{
pred[w] = v; « set parent link
}
}
public Iterable<Integer> path(int v)
{ // next slide }
}

```

Depth-first-search (pathfinding iterator)
```

    public Iterable<Integer> path(int v)
    {
        Stack<Integer> path = new Stack<Integer>();
        while (v != -1 && marked[v])
        {
            list.push(v);
            v = pred[v];
        }
        return path;
    }
    }

```


\section*{DFS summary}

Enables direct solution of simple graph problems.
- Find path from s to \(t\).
- Connected components (stay tuned).
- Euler tour (see book).
- Cycle detection (simple exercise).
- Bipartiteness checking (see book).

Basis for solving more difficult graph problems.
- Biconnected components (see book).
- Planarity testing (beyond scope).
- Graph API
> maze exploration
depth-first search
> breadth-first search
connected components
chalenges

\section*{Breadth First Search}

Depth-first search. Put unvisited vertices on a stack. Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to \(t\) that uses fewest number of edges.

BFS (from source vertex s)
Put s onto a FIFO queue.
Repeat until the queue is empty:
- remove the least recently added vertex \(\mathbf{v}\)
- add each of v's unvisited neighbors to the queue, and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

\section*{Breadth-first search scaffolding}
```

public class BFSearcher
{
private int[] dist; «}\mathrm{ distances froms
public BFSearcher(Graph G, int s)
{
dist = new int[G.v()];
for (int v = 0; v < G.V(); v++)
dist[v] = G.V() + 1;
dist[s] = 0;
bfs(G, s); «
}
public int distance(int v)
{ return dist[v]; }
private void bfs(Graph G, int s)
{ // See next slide. }
}

```

\section*{Breadth-first search (compute shortest-path distances)}
```

private void bfs(Graph G, int s)
{
Queue<Integer> q = new Queue<Integer>();
q.enqueue(s);
while (!q.isEmpty())
{
int v = q.dequeue();
for (int w : G.adj(v))
{
if (dist[w] > G.V())
{
q.enqueue(w);
dist[w] = dist[v] + 1;
}
}
}
}

```

\section*{BFS Application}
- Kevin Bacon numbers.
- Facebook.
- Fewest number of hops in a communication network.

ARPANET
- Graph API
> maze exploration
depth first search
breadth-first search
>connected components
challenges

\section*{Connectivity Queries}

Def. Vertices \(v\) and \(w\) are connected if there is a path between them.
Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w? in constant time

\begin{tabular}{cc}
Vertex & Component \\
A & 0 \\
B & 1 \\
C & 1 \\
D & 0 \\
E & 0 \\
F & 0 \\
G & 2 \\
H & 0 \\
I & 2 \\
J & 1 \\
K & 0 \\
L & 0 \\
M & 1
\end{tabular}

Union-Find? not quite

\section*{Connected Components}

Goal. Partition vertices into connected components.

Connected components
Initialize all vertices \(v\) as unmarked.
For each unmarked vertex \(v\), run DFS and identify all vertices discovered as part of the same connected component.
\begin{tabular}{|c|c|c|}
\hline preprocess Time & query Time & extra Space \\
\hline\(E+V\) & 1 & \(V\) \\
\hline
\end{tabular}

Depth-first search for connected components
```

public class CCFinder
{
private final static int UNMARKED = -1;
private int components;
<component labels
private int[] cc;
public CCFinder(Graph G)
{
Cc = new int[G.V()];
for (int v = 0; v < G.V(); v++)
cc[v] = UNMARKED;
\longleftarrow
for (int v = 0; v < G.V(); v++)
if (cc[v] == UNMARKED)
{ dfs(G, v); components++; }
}
private void dfs(Graph G, int v)
{
cc[v] = components;
for (int w : G.adj(v))
« standard DFS
if (cc[w] == UNMARKED) dfs(G, w);
}
public int connected(int v, int w)
{ return cc[v] == cc[w]; }
}

```

\section*{Connected Components}

\section*{Connected components application: Image processing}

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

Input: scanned image
Output: number of red and blue states

\section*{Connected components application: Image Processing}

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

\section*{Efficient algorithm.}
- Connect each pixel to neighboring pixel if same color.
- Find connected components in resulting graph.

\section*{Connected components application: Particle detection}

Particle detection. Given grayscale image of particles, identify "blobs."
- Vertex: pixel.
- Edge: between two adjacent pixels with grayscale value \(\geq 70\).
- Blob: connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.
, Graph API
> maze exploration
depth-first search
breadth-first search
connected components

\section*{challenges}

\section*{Graph-processing challenge 4:}

Problem: Find a path from s to \(\dagger\)
Assumptions: any path will do

Which is faster, DFS or BFS?
1) \(D F S\)
2) BFS
3) about the same

4) depends on the graph
5) depends on the graph representation

\section*{Graph-processing challenge 5:}

Problem: Find a path from s to \(\dagger\)
Assumptions: any path will do randomized iterators

Which is faster, DFS or BFS?
1) \(D F S\)
2) BFS
3) about the same

4) depends on the graph
5) depends on the graph representation

\section*{Graph-processing challenge 6:}

Problem: Find a path from s to that uses every edge
Assumptions: need to use each edge exactly once

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert

4) intractable
5) no one knows

\section*{Bridges of Königsberg}

The Seven Bridges of Königsberg. [Leonhard Euler 1736]
"... in Königsberg in Prussia, there is an island A, called the Kneiphof: the river which surrounds it is divided into two branches ... and these branches are crossed by seven bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once..."

Euler tour. Is there a cyclic path that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
Tricky DFS-based algorithm to find path (see Algs in Java).

\section*{Graph-processing challenge 7:}

Problem: Find a path from s to that visits every vertex
Assumptions: need to visit each vertex exactly once

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows

\section*{Graph-processing challenge 8:}

Problem: Are two graphs identical except for vertex names?

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student

3) hire an expert
4) intractable
5) no one knows

\section*{Graph-processing challenge 9:}

Problem: Can you lay out a graph in the plane without crossing edges?

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student

\(2-1\)
\(2-4\)
\(2-0\)
\(6-5\)
\(5-3\)
\(3-6\)
\(2-3\)
\(6-4\)
3) hire an expert
4) intractable
5) no one knows

\section*{Directed Graphs}

\title{
- digraph search \\ transitive closure \\ - topological sort \\ strong components
}

\section*{References:}

Algorithms in Java, Chapter 19
http://www.cs.princeton.edu/introalgsds/52directed

\section*{Directed graphs (digraphs)}

Set of objects with oriented pairwise connections.

dependencies in software modules

prey-predator relationships

hyperlinks connecting web pages

\section*{Digraph applications}
\begin{tabular}{c|c|c|}
\hline digraph & vertex & edge \\
financial & stock, currency & transaction \\
transportation & street intersection, airport & highway, airway route \\
scheduling & task & precedence constraint \\
WordNet & synset & hypernym \\
Web & web page & hyperlink \\
game & board position & legal move \\
telephone & species & placed call \\
food web & person & predator-prey relation \\
infectious disease & journal article & infection \\
citation & object & citation \\
object graph & class & pointer \\
inheritance hierarchy & code block & inherits from \\
control flow & & jump
\end{tabular}

\section*{Some digraph problems}

Transitive closure.
Is there a directed path from v to w ?

Strong connectivity.
Are all vertices mutually reachable?

\section*{Topological sort.}

Can you draw the digraph so that all edges point from left to right?

PERT/CPM.
Given a set of tasks with precedence constraints, how we can we best complete them all?

Shortest path. Find best route from sto \(t\) in a weighted digraph

PageRank. What is the importance of a web page?

Digraph representations

\section*{Vertices}
- this lecture: use integers between 0 and \(\mathrm{v}-1\).
- real world: convert between names and integers with symbol table.

Edges: four easy options
- list of vertex pairs
- vertex-indexed adjacency arrays (adjacency matrix)
- vertex-indexed adjacency lists
- vertex-indexed adjacency SETs

Same as undirected graph BUT
orientation of edges is significant.

\section*{Adjacency matrix digraph representation}

Maintain a two-dimensional \(\mathrm{v} \times \mathrm{v}\) boolean array. For each edge \(\mathrm{v} \rightarrow \mathrm{w}\) in graph: adj[v][w] = true.

Adjacency-list digraph representation

Maintain vertex-indexed array of lists.

Adjacency-SET digraph representation

Maintain vertex-indexed array of SETs.

Adjacency-SET digraph representation: Java implementation
Same as Graph, but only insert one copy of each edge.
```

public class Digraph
{
private int v;
private SET<Integer>[] adj;
public Digraph(int V)
{
this.v = v;
adj = (SET<Integer>[]) new SET[V]; \leftarrow create empty
for (int v = 0; v < v; v++) V-vertex graph
adj[v] = new SET<Integer>();
}
public void addEdge(int v, int w)
{
adj[v].add(w); « add edge from v tow
(Graph also has adj[w].add[v])
public Iterable<Integer> adj(int v)
{
return adj[v];
iterable SET for
v's neighbors
}

```

\section*{Digraph representations}

Digraphs are abstract mathematical objects, BUT
- ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.
\begin{tabular}{cccc}
representation & space & \begin{tabular}{c}
edge between \\
vand w?
\end{tabular} & \begin{tabular}{c}
iterate over edges \\
incident to \(v ?\)
\end{tabular} \\
\hline list of edges & \(E\) & \(E\) & \(E\) \\
adjacency matrix & \(V^{2}\) & 1 & \(V\) \\
adjacency list & \(E+V\) & degree(v) & degree(v) \\
adjacency SET & \(E+V\) & \(\log (\operatorname{degree}(v))\) & degree \((v)\)
\end{tabular}

In practice: Use adjacency SET representation
- Take advantage of proven technology
- Real-world digraphs tend to be "sparse"
[huge number of vertices, small average vertex degree]
- Algs all based on iterating over edges incident to \(v\).

Typical digraph application: Google's PageRank algorithm
Goal. Determine which web pages on Internet are important.
Solution. Ignore keywords and content, focus on hyperlink structure.
Random surfer model.
- Start at random page.
- With probability 0.85, randomly select a hyperlink to visit next; with probability 0.15 , randomly select any page.
- PageRank = proportion of time random surfer spends on each page.

Solution 1: Simulate random surfer for a long time. Solution 2: Compute ranks directly until they converge Solution 3: Compute eigenvalues of adjacency matrix!

None feasible without sparse digraph representation

Every square matrix is a weighted digraph

\title{
digraph search
}
>transitive closure
topological sort
> strong components

Digraph application: program control-flow analysis
Every program is a digraph (instructions connected to possible successors)

Dead code elimination.
Find (and remove) unreachable code
can arise from compiler optimization (or bad code)

Infinite loop detection.
Determine whether exit is unreachable

Digraph application: mark-sweep garbage collector
Every data structure is a digraph (objects connected by references)
Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
easy to identify pointers in type-safe language

Mark-sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage, so add to free list.

Memory cost: Uses 1 extra mark bit per object, plus DFS stack.

\section*{Reachability}

Goal. Find all vertices reachable from s along a directed path.

\section*{Reachability}

Goal. Find all vertices reachable from s along a directed path.

Digraph-processing challenge 1:
Problem: Mark all vertices reachable from a given vertex.

How difficult?
1) any COS126 student could do it
2) need to be a typical diligent COS226 student
3) hire an expert
4) intractable
5) no one knows

Depth-first search in digraphs
Same method as for undirected graphs

Every undirected graph is a digraph
- happens to have edges in both directions
- DFS is a digraph algorithm

Depth-first search (single-source reachability)

Identical to undirected version (substitute Digraph for Graph).
```

public class DFSearcher
{
private boolean[] marked; «
public DFSearcher(Digraph G, int s)
{
marked = new boolean[G.V()]; \& < constructor
}
private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
recursive DFS
if (!marked[w]) dfs(G, w);
}
public boolean isReachable(int v)
{ client can ask whether
return marked[v];
any vertex is
}
}

```

Depth-first search (DFS)
DFS enables direct solution of simple digraph problems.
\(\checkmark\) - Reachability.
- Cycle detection
- Topological sort
- Transitive closure.
- Is there a path from \(s\) to \(t\) ?

Basis for solving difficult digraph problems.
- Directed Euler path.
- Strong connected components.

\section*{Breadth-first search in digraphs}

Same method as for undirected graphs

Every undirected graph is a digraph
- happens to have edges in both directions
- BFS is a digraph algorithm

\section*{BFS (from source vertex s)}

Put s onto a FIFO queue.
Repeat until the queue is empty:
- remove the least recently added vertex \(\mathbf{v}\)
- add each of v's unvisited neighbors to the queue and mark them as visited.

Visits vertices in increasing distance from s

Digraph BFS application: Web Crawler

The internet is a digraph

Goal. Crawl Internet, starting from some root website.
Solution. BFS with implicit graph.

\section*{BFS.}
- Start at some root website (say http://www.princeton.edu.).
- Maintain a queue of websites to explore.
- Maintain a Set of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).
Q. Why not use DFS?

A. Internet is not fixed (some pages generate new ones when visited)

\section*{Web crawler: BFS-based Java implementation}
```

Queue<String> q = new Queue<String>(); « % queue of sites to crawl
String s = "http://www.princeton.edu";
q.enqueue(s);
visited.add(s);
while (!q.isEmpty())
{
String v = q.dequeue();
System.out.println(v);
In in = new In(v);
String input = in.readAll();
String regexp = "http://(<br>w+<br>.)*(<br>w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input);
while (matcher.find())
{
String w = matcher.group();
if (!visited.contains(w))
{ if unvisited, mark as visited
visited.add(w);
q.enqueue(w);
}
}
}

```
digraph search
> transitive closure
topological sort
strong components

\section*{Graph-processing challenge (revisited)}

Problem: Is there a path from s to \(\dagger\) ?
Goals: linear \(\sim(V+E)\) preprocessing time
constant query time

How difficult?
1) any COS126 student could do it
2) need to be a typical diligent COS226 student

3) hire an expert
4) intractable
5) no one knows
6) impossible

\section*{Digraph-processing challenge 2}

Problem: Is there a directed path from \(s\) to \(t\) ? Goals: linear \(\sim(V+E)\) preprocessing time
constant query time

How difficult?
1) any COS126 student could do it
2) need to be a typical diligent COS226 student
3) hire an expert
4) intractable
5) no one knows
6) impossible

\section*{Transitive Closure}

The transitive closure of \(G\) has an directed edge from \(v\) to \(w\) if there is a directed path from \(v\) to \(w\) in \(G\)

Digraph-processing challenge 2 (revised)
Problem: Is there a directed path from s to t? Goals: ~ \(V^{2}\) preprocessing time constant query time

How difficult?
1) any COS126 student could do it
2) need to be a typical diligent COS226 student
3) hire an expert
4) intractable
5) no one knows
6) impossible

Digraph-processing challenge 2 (revised again)
Problem: Is there a directed path from \(s\) to \(t\) ? Goals: ~VE preprocessing time (\(\sim V^{3}\) for dense digraphs)
\(\sim V^{2}\) space
constant query time

How difficult?
1) any COS126 student could do it
2) need to be a typical diligent COS226 student
3) hire an expert
4) intractable
5) no one knows
6) impossible

Transitive closure: Java implementation

Use an array of DrSearcher objects, one for each row of transitive closure
```

public class TransitiveClosure
{
public TransitiveClosure(Digraph G)
{
tc = new DFSearcher[G.V()];
for (int v = 0; v < G.V(); v++)
tc[v] = new DFSearcher(G, v);
}
public boolean reachable(int v, int w)
{
return tc[v].isReachable(w); «
}
}

```
 private DFSearcher[] tc;
```

```
 private DFSearcher[] tc;
```

```
public class DFSearcher
 private boolean[] marked;
 public DFSearcher(Digraph G, int s)
 marked = new boolean[G.V()];
 dfs(G, s);
 }
 private void dfs(Digraph G, int v)
 marked[v] = true;
 marked[v] = true;
 for (int w : G.adj(v))
 for (int w : G.adj(v))
 if (!marked[w]) dfs (G, w);
 if (!marked[w]) dfs (G, w);
 }
 }
 public boolean isReachable(int v)
 public boolean isReachable(int v)
 {
 {
 return marked[v];
 return marked[v];
 }
 }
}
```

}

```

\title{
digraph search
}
transitive closure
topological sort
strong components

\section*{Digraph application: Scheduling}

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

Graph model.
- Create a vertex v for each task.
- Create an edge \(\mathrm{v} \rightarrow \mathrm{w}\) if task v must precede task w.
- Schedule tasks in topological order.

0. read programming assignment
1. download files
2. write code
3. attend precept
12. sleep

\section*{Topological Sort}

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point left to right.

Observation. Not possible if graph has a directed cycle.

\section*{Digraph-processing challenge 3}

Problem: Check that the digraph is a \(D A G\). If it is a DAG, do a topological sort.
Goals: linear \(\sim(V+E)\) preprocessing time
provide client with vertex iterator for topological order

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows
6) impossible

0-1
0-6
0-2
0-5
2-3
4-9
6-4
6-9
7-6
8-7
9-10
9-11
9-12
11-12

Topological sort in a DAG: Java implementation
```

public class TopologicalSorter
{
private int count;
private boolean[] marked;
private int[] ts;
public TopologicalSorter(Digraph G)
{
marked = new boolean[G.V()];
ts = new int[G.V()];
count = G.V();
for (int v = 0; v < G.V(); v++)
if (!marked[v]) tsort(G, v);
}
private void tsort(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w]) tsort(G, w);
ts[--count] = v;
}
}

```
 add iterator that returns
ts[0], ts[1], ts[2]...

Seems easy? Missed by experts for a few decades

Topological sort of a dag: trace
"visit" means "call tsort ()" and "leave" means "return from tsort()

> marked [] ts[]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline visit 0: & & & & & & & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline visit 1: & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 \\
\hline visit 4: & 1 & 1 & & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 \\
\hline leave 4: & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 \\
\hline leave 1: & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 1 \\
\hline visit 2: & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 1 \\
\hline leave 2: & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & & 1 \\
\hline visit 5: & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & & 1 \\
\hline check 2: & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & & 1 \\
\hline leave 5: & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 5 & 2 & & 1 \\
\hline leave 0: & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 5 & 2 & & 1 \\
\hline check 1: & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 5 & 2 & & 1 \\
\hline check 2: & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 5 & 2 & & 1 \\
\hline visit 3: & 1 & 1 & & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 5 & 2 & & 1 \\
\hline check 2: & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 5 & 2 & & 1 \\
\hline check 4: & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 5 & 2 & & 1 \\
\hline check 5: & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 5 & 2 & & 1 \\
\hline visit 6: & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 5 & 2 & & 1 \\
\hline leave 6: & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 6 & 0 & 5 & 2 & & 1 \\
\hline leave 3: & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 3 & 6 & 0 & 5 & 2 & & 1 \\
\hline check 4: & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 3 & 6 & 0 & 5 & 2 & & \\
\hline check 5: & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 3 & 6 & 0 & 5 & 2 & & 1 \\
\hline check 6: & 1 & 1 & 1 & 1 & 1 & 1 & & 3 & 6 & 0 & 5 & 2 & & 1 \\
\hline
\end{tabular}

visit 6:
\(\begin{array}{lllllll}0 & 6 & 0 & 5 & 2 & 1 & 4\end{array}\)
36055214

6:

Topological sort in a DAG: correctness proof

\section*{Invariant:}
tsort (G, v) visits all vertices
reachable from \(v\) with a directed path

Proof by induction:
- w marked: vertices reachable from w are already visited
- w not marked: call tsort (G, w) to visit the vertices reachable from w

Therefore, algorithm is correct
```

public class TopologicalSorter
{
private int count;
private boolean[] marked;
private int[] ts;
public TopologicalSorter(Digraph G)
{
marked = new boolean[G.V()];
ts = new int[G.V()];
count = G.V();
for (int v = 0; v < G.v(); v++)
if (!marked[v]) tsort(G, v);
}
private void tsort (Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w]) tsort(G, w);
ts[--count] = v;
}
}

```
in placing v before all vertices visited
during call to tsort (\(G\), v) just before returning.
Q. How to tell whether the digraph has a cycle (is not a DAG)?
A. Use TopologicalSorter (exercise)

Topological sort applications.
- Causalities.
- Compilation units.
- Class inheritance.
- Course prerequisites.
- Deadlocking detection.
- Temporal dependencies.
- Pipeline of computing jobs.
- Check for symbolic link loop.
- Evaluate formula in spreadsheet.
- Program Evaluation and Review Technique / Critical Path Method

Topological sort application (weighted DAG)

\section*{Precedence scheduling}
- Task v takes time [v] units of time.
- Can work on jobs in parallel.
- Precedence constraints:
- must finish task v before beginning task w.
- Goal: finish each task as soon as possible

\section*{Program Evaluation and Review Technique / Critical Path Method}

\section*{PERT/CPM algorithm.}
- compute topological order of vertices.
- initialize fin \([\mathrm{v}]=0\) for all vertices v .
- consider vertices \(v\) in topologically sorted order.
\[
\text { for each edge } v \rightarrow w, \text { set fin }[w]=\max (f i n[w], f i n[v]+\text { time }[w])
\]

- remember vertex that set value.
- work backwards from sink

\section*{> digraph search}
transitive closure
topotogtcal sort
strong components

\section*{Strong connectivity in digraphs}

\section*{Analog to connectivity in undirected graphs}

In a Graph, \(u\) and \(v\) are connected when there is a path from \(u\) to \(v\)

In a Digraph, \(u\) and \(v\) are strongly connected when there is a directed path from \(\mathbf{u}\) to \(\mathbf{v}\) and a directed path from \(v\) to \(u\)

4 strongly connected components (sets of mutually strongly connected vertices)

\section*{Strong connectivity table (how to compute?)}
\begin{tabular}{rrrrrrrrrrrrrr}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 2 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 0 & 0 & 0 & 0
\end{tabular}
```

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

```
constant-time client strong connectivity query

Digraph-processing challenge 4
Problem: Is there a directed cycle containing s and \(\dagger\) ?
Equivalent: Are there directed paths from \(s\) to \(t\) and from \(\dagger\) to \(s\) ?
Equivalent: Are sand tstrongly connected?

Goals: linear (\(V+E\)) preprocessing time (like for undirected graphs) constant query time

\section*{How difficult?}
1) any COS126 student could do it
2) need to be a typical diligent COS226 student
3) hire an expert
4) intractable
5) no one knows
6) impossible

\section*{Typical strong components applications}

Ecological food web

Strong component: subset with common energy flow
- source in kernel DAG: needs outside energy?
- sink in kernel DAG: heading for growth?

Software module dependency digraphs

Internet explorer

Strong component: subset of mutually interacting modules
- approach 1: package strong components together
- approach 2: use to improve design!

\section*{Strong components algorithms: brief history}

\section*{1960s: Core OR problem}
- widely studied
- some practical algorithms
- complexity not understood

\section*{1972: Linear-time DFS algorithm (Tarjan)}
- classic algorithm
- level of difficulty: CS226++
- demonstrated broad applicability and importance of DFS

1980s: Easy two-pass linear-time algorithm (Kosaraju)
- forgot notes for teaching algorithms class
- developed algorithm in order to teach it!
- later found in Russian scientific literature (1972)

1990s: More easy linear-time algorithms (Gabow, Mehlhorn)
- Gabow: fixed old OR algorithm
- Mehlhorn: needed one-pass algorithm for LEDA

\section*{Kosaraju's algorithm}

Simple (but mysterious) algorithm for computing strong components
- Run DFS on \(G^{R}\) and compute postorder.
- Run DFS on G, considering vertices in reverse postorder
- [has to be seen to be believed: follow example in book]

\[
\begin{array}{cccccccccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\cline { 2 - 10 } & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 0 & 1 & 11 & 10 & 12 & 9
\end{array}
\]

\[
\begin{array}{llllllllllllrr}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& 2 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 0 & 0 & 0 & 0
\end{array}
\]

Theorem. Trees in second DFS are strong components. (!)
Proof. [stay tuned in COS 423]

Digraph-processing summary: Algorithms of the day
\begin{tabular}{|c|c|c|}
\hline Single-source reachability & & DFS \\
\hline transitive closure & & DFS from each vertex \\
\hline topological sort (DAG) & & DFS \\
\hline strong components & & Kosaraju DFS (twice) \\
\hline
\end{tabular}

\section*{Minimum Spanning Trees}
- weighted graph API
- cycles and cuts
- Kruskal's algorithm
- Prim's algorithm
- advanced topics

\section*{References:}

Algorithms in Java, Chapter 20
http://www.cs.princeton.edu/introalgsds/54mst

\section*{Minimum Spanning Tree}

Given. Undirected graph \(G\) with positive edge weights (connected). Goal. Find a min weight set of edges that connects all of the vertices.

G

\section*{Minimum Spanning Tree}

Given. Undirected graph \(G\) with positive edge weights (connected). Goal. Find a min weight set of edges that connects all of the vertices.

Brute force: Try all possible spanning trees
- problem 1: not so easy to implement
- problem 2: far too many of them \(\qquad\) Ex: [Cayley, 1889]: V V-2 spanning trees on the complete graph on \(V\) vertices.

\section*{MST Origin}

Otakar Boruvka (1926).
- Electrical Power Company of Western Moravia in Brno.
- Most economical construction of electrical power network.
- Concrete engineering problem is now a cornerstone problem-solving model in combinatorial optimization.

Otakar Boruvka

\section*{Applications}

MST is fundamental problem with diverse applications.
- Network design.
telephone, electrical, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems.
traveling salesperson problem, Steiner tree
- Indirect applications.
max bottleneck paths
LDPC codes for error correction image registration with Renyi entropy learning salient features for real-time face verification reducing data storage in sequencing amino acids in a protein model locality of particle interactions in turbulent fluid flows autoconfig protocol for Ethernet bridging to avoid cycles in a network
- Cluster analysis.

\section*{Medical Image Processing}

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

http://ginger.indstate.edu/ge/gfx

Two Greedy Algorithms

Kruskal's algorithm. Consider edges in ascending order of cost. Add the next edge to \(T\) unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree \(T\) from s. At each step, add the cheapest edge to \(T\) that has exactly one endpoint in \(T\).

Proposition. Both greedy algorithms compute an MST.

Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit." - Gordon Gecko

> weighted graph API
cycles and cuts
Kruskal's algorithm
Prim's algorithm
- advanced topics

\section*{Weighted Graph API}
public class WeightedGraph
\begin{tabular}{rll}
\hline \multicolumn{1}{l}{ WeightedGraph(int \(V)\)} & create an empty graph with \(V\) vertices \\
void insert (Edge e) & insert edge \(e\)
\end{tabular}
iterate through all edges (once in each direction)

\section*{Weighted graph data type}

Identical to Graph. java but use Edge adjacency sets instead of int.
```

public class WeightedGraph
{
private int v;
private SET<Edge>[] adj;
public Graph(int V)
{
this.V = V;
adj = (SET<Edge>[]) new SET[V];
for (int v = 0; v < v; v++)
adj[v] = new SET<Edge>();
}
public void addEdge(Edge e)
{
int v = e.v, w = e.w;
adj[v].add(e);
adj[w].add(e);
}
public Iterable<Edge> adj(int v)
{ return adj[v]; }
}

```

\section*{Weighted edge data type}
```

public class Edge implements Comparable<Edge>
{
private final int v, int w;
private final double weight;
public Edge(int v, int w, double weight)
{
this.v = v;
this.w = w;
this.weight = weight;
}
public int either()
{ return v; }

```
 public int other(int vertex)
 \{
 if (vertex == v) return w;
 else return \(v\);
 \}
 public int weight()
 \{ return weight; \}
 // See next slide for edge compare methods.
\}

Edge abstraction needed for weights
slightly tricky accessor methods (enables client code like this)
```

for (int v = 0; v < G.V(); v++)
{
for (Edge e : G.adj(v))
{
int w = e.other(v);
// edge v-w
}
}

```

\section*{Weighted edge data type: compare methods}

\section*{Two different compare methods for edges}
- compareTo () so that edges are Comparable (for use in SET)
- compare () so that clients can compare edges by weight.
```

public final static Comparator<Edge> BY_WEIGHT = new ByWeightComparator();
private static class ByWeightComparator implements Comparator<Edge>
{
public int compare(Edge e, Edge f)
{
if (e.weight < f.weight) return -1;
if (e.weight > f.weight) return +1;
return 0;
}
}
public int compareTo(Edge that)
{
if (this.weight < that.weight) return -1;
else if (this.weight > that.weight) return +1;
else return 0;
}
}

```
> weighted graph API
>ycles and cuts
\Kruskal's algorithm
Prim's algorithm
- advanced topics

\section*{Spanning Tree}

MST. Given connected graph \(G\) with positive edge weights, find a min weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph \(G\) is a subgraph \(T\) that is connected and acyclic.

Property. MST of \(G\) is always a spanning tree.

\section*{Greedy Algorithms}

Simplifying assumption. All edge weights \(w_{e}\) are distinct.

Cycle property. Let \(C\) be any cycle, and let \(f\) be the max cost edge belonging to \(C\). Then the MST does not contain \(f\).

Cut property. Let \(S\) be any subset of vertices, and let \(e\) be the min cost edge with exactly one endpoint in S. Then the MST contains e.

\(f\) is not in the MST

\(e\) is in the MST

\section*{Cycle Property}

Simplifying assumption. All edge weights \(w_{e}\) are distinct.

Cycle property. Let \(C\) be any cycle, and let \(f\) be the max cost edge belonging to \(C\). Then the MST \(T^{*}\) does not contain \(f\).

\section*{Pf. [by contradiction]}
- Suppose \(f\) belongs to \(T^{\star}\). Let's see what happens.
- Deleting from \(T^{*}\) disconnects \(T^{\star}\). Let \(S\) be one side of the cut.
- Some other edge in \(C\), say \(e\), has exactly one endpoint in \(S\).
- \(T=T^{\star} \cup\{e\}-\{f\}\) is also a spanning tree.
- Since \(C_{e}<C_{f}, \operatorname{cost}(T)<\operatorname{cost}\left(T^{\star}\right)\).
- Contradicts minimality of \(T^{\star}\).

\section*{Cut Property}

Simplifying assumption. All edge costs \(c_{e}\) are distinct.

Cut property. Let \(S\) be any subset of vertices, and let e be the min cost edge with exactly one endpoint in \(S\). Then the MST T* contains e.

\section*{Pf. [by contradiction]}
- Suppose e does not belong to \(T^{\star}\). Let's see what happens.
- Adding e to \(T^{\star}\) creates a (unique) cycle \(C\) in \(T^{\star}\).
- Some other edge in \(C\), say \(f\), has exactly one endpoint in \(S\).
- \(T=T^{*} \cup\{e\}-\{f\}\) is also a spanning tree.
- Since \(C_{e}<C_{f}, \operatorname{cost}(T)<\operatorname{cost}\left(T^{\star}\right)\).
- Contradicts minimality of \(T^{\star}\).

weighted graph API
> cycles and cuts
> Kruskal's algorithm
Prim's algorithm
>advanced algorithms
>clustering

\section*{Kruskal's Algorithm: Example}

Kruskal's algorithm. [Kruskal, 1956] Consider edges in ascending order of cost. Add the next edge to \(T\) unless doing so would create a cycle.

3-5

1-7

6-7

0-2

\(4-5 \quad 4-7\)

Kruskal's algorithm example

\section*{Kruskal's algorithm correctness proof}

Proposition. Kruskal's algorithm computes the MST.
Pf. [case 1] Suppose that adding e to \(T\) creates a cycle \(C\)
- \(e\) is the max weight edge in \(C\) (weights come in increasing order)
- \(e\) is not in the MST (cycle property)

\section*{Kruskal's algorithm correctness proof}

Proposition. Kruskal's algorithm computes the MST.
Pf. [case 2] Suppose that adding \(e=(v, w)\) to \(T\) does not create a cycle
- let \(S\) be the vertices in v's connected component
- \(w\) is not in \(S\)
- \(e\) is the min weight edge with exactly one endpoint in \(S\)
- \(e\) is in the MST (cut property)

\section*{Kruskal's algorithm implementation}
Q. How to check if adding an edge to \(T\) would create a cycle?

A1. Naïve solution: use DFS.
- \(O(V)\) time per cycle check.
- \(O(E V)\) time overall.

\section*{Kruskal's algorithm implementation}
Q. How to check if adding an edge to \(T\) would create a cycle?

A2. Use the union-find data structure from lecture 1 (!).
- Maintain a set for each connected component.
- If \(v\) and \(w\) are in same component, then adding \(v\) - \(w\) creates a cycle.
- To add \(v-w\) to \(T\), merge sets containing \(v\) and \(w\).

Case 1: adding v-w creates a cycle

Case 2: add v-w to \(T\) and merge sets

\section*{Kruskal's algorithm: Java implementation}
```

public class Kruskal
{
private SET<Edge> mst = new SET<Edge>();
public Kruskal(WeightedGraph G)
{
Edge[] edges = G.edges(); sort edges
Arrays.sort (edges, Edge.BY_WEIGHT); by weight
UnionFind uf = new UnionFind(G.V());
for (Edge e: edges)
if (!uf.find(e.either(), e.other()))
{ uf unite(e either(), e other()).
mst.add (edge);
}
}
public Iterable<Edge> mst()
{ return mst; }
}

```
sort edges by weight
return to client iterable
sequence of edges

Easy speedup: Stop as soon as there are V-1 edges in MST.

Kruskal's algorithm running time
Kruskal running time: Dominated by the cost of the sort.
\begin{tabular}{|c|c|l|}
\hline Operation & Frequency & Time per op \\
\hline sort & 1 & \(E \log E\) \\
union & \(V\) & \(\log ^{\star} V+\) \\
find & \(E\) & \(\log ^{\star} V+\) \\
\hline
\end{tabular}
\(\dagger\) amortized bound using weighted quick union with path compression
\[
\text { recall: } \log ^{\star} V \leq 5 \text { in this universe }
\]

Remark 1. If edges are already sorted, time is proportional to \(E \log\) * \(V\)

Remark 2. Linear in practice with PQ or quicksort partitioning (see book: don't need full sort)
> weighted graph API
>ycles and cuts
Kruskal's algorthm
Prim's algorithm
>advanced topics

\section*{Prim's algorithm example}

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959] Start with vertex 0 and greedily grow tree T. At each step, add cheapest edge that has exactly one endpoint in \(T\).

\[
\begin{array}{ll}
0-1 & 0.32 \\
0-2 & 0.29 \\
0-5 & 0.60 \\
0-6 & 0.51 \\
0-7 & 0.31 \\
1-7 & 0.21 \\
3-4 & 0.34 \\
3-5 & 0.18 \\
4-5 & 0.40 \\
4-6 & 0.51 \\
4-7 & 0.46 \\
6-7 & 0.25
\end{array}
\]

Prim's Algorithm example

\section*{Prim's algorithm correctness proof}

Proposition. Prim's algorithm computes the MST.
Pf.
- Let \(S\) be the subset of vertices in current tree \(T\).
- Prim adds the cheapest edge e with exactly one endpoint in \(S\).
- \(e\) is in the MST (cut property)

\section*{Prim's algorithm implementation}
Q. How to find cheapest edge with exactly one endpoint in S?

A1. Brute force: try all edges.
- \(O(E)\) time per spanning tree edge.
- O(E V) time overall.

\section*{Prim's algorithm implementation}
Q. How to find cheapest edge with exactly one endpoint in S?

A2. Maintain a priority queue of vertices connected by an edge to \(S\)
- Delete \(\min\) to determine next vertex \(v\) to add to \(S\).
- Disregard \(v\) if already in S.
- Add to \(P Q\) any vertex brought closer to \(S\) by \(v\).

Running time.
- \(\log V\) steps per edge (using a binary heap).
- E \(\log V\) steps overall.

Note: This is a lazy version of implementation in Algs in Java
lazy: put all adjacent vertices (that are not already in MST) on PQ eager: first check whether vertex is already on \(P Q\) and decrease its key

\section*{Key-value priority queue}

Associate a value with each key in a priority queue.

\section*{API:}
```

public class MinPQplus<Key extends Comparable<Key>, Value>
MinPQplus() create a key-value priority queue
void put(Key key, Value val) put key-value pair into the priority queue
Value delMin() return value paired with minimal key
Key min() return minimal key

```

\section*{Implementation:}
- start with same code as standard heap-based priority queue
- use a parallel array vals[] (value associated with keys[i] is vals[i])
- modify exch() to maintain parallel arrays (do exch in vals[])
- modify delmin() to return value
- add min() (just returns keys[1])

Lazy implementation of Prim's algorithm
```

public class LazyPrim
{
Edge[] pred = new Edge[G.V()];
public LazyPrim(WeightedGraph G)
{
boolean[] marked = new boolean[G.V()];
double[] dist = new double[G.V()];
MinPQplus<Double, Integer> pq;
pq = new MinPQplus<Double, Integer>();
dist[s] = 0.0;
marked[s] = true;
pq.put(dist[s], s);
while (!pq.isEmpty())
{
int v = pq.delMin();
if (marked[v]) continue;
marked(v) = true;
for (Edge e : G.adj(v))
{
int w = e.other(v);
if (!done[w] \&\& (dist[w] > e.weight()))
{
dist[w] = e.weight(); pred[w] = e;
pq.insert(dist[w], w);
}
}
}
}
}

```

Prim's algorithm (lazy) example
Priority queue key is distance (edge weight); value is vertex

Lazy version leaves obsolete entries in the PQ therefore may have multiple entries with same value

\[
\begin{array}{ll}
0-1 & 0.32 \\
0-2 & 0.29 \\
0-5 & 0.60 \\
0-6 & 0.51 \\
0-7 & 0.31 \\
1-7 & 0.21 \\
3-4 & 0.34 \\
3-5 & 0.18 \\
4-5 & 0.40 \\
4-6 & 0.51 \\
4-7 & 0.46 \\
6-7 & 0.25
\end{array}
\]

\section*{Eager implementation of Prim's algorithm}

Use indexed priority queue that supports
- contains: is there a key associated with value \(v\) in the priority queue?
- decrease key: decrease the key associated with value \(v\)
[more complicated data structure, see text]

Putative "benefit": reduces PQ size guarantee from \(E\) to \(V\)
- not important for the huge sparse graphs found in practice
- \(P Q\) size is far smaller in practice
- widely used, but practical utility is debatable

\section*{Removing the distinct edge costs assumption}

Simplifying assumption. All edge weights \(w_{e}\) are distinct.
Fact. Prim and Kruskal don't actually rely on the assumption (our proof of correctness does)

Suffices to introduce tie-breaking rule for compare ().

Approach 1:
```

public int compare(Edge e, Edge f)
{
if (e.weight < f.weight) return -1;
if (e.weight > f.weight) return +1;
if (e.v < f.v) return -1;
if (e.v > f.v) return +1;
if (e.w < f.w) return -1;
if (e.w > f.w) return +1;
return 0;
}

```

Approach 2: add tiny random perturbation.
> weighted graph API
\(\downarrow\) cycles and cuts
Kruska's algorithm
Prim's algorithm
> advanced topics

Advanced MST theorems: does an algorithm with a linear-time guarantee exist?
\begin{tabular}{|c|c|c|}
\hline Year & Worst Case & Discovered By \\
\hline 1975 & \(E \log \log V\) & Yao \\
\hline 1976 & \(E \log \log V\) & Cheriton-Tarjan \\
\hline 1984 & \(E \log ^{*} V, E+V \log V\) & Fredman-Tarjan \\
\hline 1986 & \(E \log \left(\log ^{*} V\right)\) & Gabow-Galil-Spencer-Tarjan \\
\hline 1997 & \(E \alpha(V) \log \alpha(V)\) & Chazelle \\
\hline 2000 & \(E \alpha(V)\) & Chazelle \\
\hline 2002 & optimal & Pettie-Ramachandran \\
\hline 20xx & E & ??? \\
\hline
\end{tabular}
deterministic comparison based MST algorithms
\begin{tabular}{c|c|c|c}
Year & Problem & Time & Discovered By \\
\hline 1976 & Planar MST & E & Cheriton-Tarjan \\
1992 & MSTVerification & E & Dixon-Rauch-Tarjan \\
1995 & Randomized MST & E & Karger-Klein-Tarjan \\
& &
\end{tabular}

\section*{Euclidean MST}

Euclidean MST. Given N points in the plane, find MST connecting them.
- Distances between point pairs are Euclidean distances.

Brute force. Compute \(N^{2} / 2\) distances and run Prim's algorithm.
Ingenuity. Exploit geometry and do it in \(O(N \log N)\) [stay tuned for geometric algorithms]

\section*{Scientific application: clustering}
k-clustering. Divide a set of objects classify into k coherent groups. distance function. numeric value specifying "closeness" of two objects.

Fundamental problem.
Divide into clusters so that points in different clusters are far apart.

Applications.
- Routing in mobile ad hoc networks.
- Identify patterns in gene expression.

Outbreak of cholera deaths in London in 1850s.
- Document categorization for web search.

Reference: Nina Mishra, HP Labs
- Similarity searching in medical image databases
- Skycat: cluster \(10^{9}\) sky objects into stars, quasars, galaxies.
k-clustering of maximum spacing
\(k\)-clustering. Divide a set of objects classify into \(k\) coherent groups. distance function. Numeric value specifying "closeness" of two objects.

Spacing. Min distance between any pair of points in different clusters.
k-clustering of maximum spacing.
Given an integer \(k\), find \(a k\)-clustering such that spacing is maximized.

\[
k=4
\]

\section*{Single-link clustering algorithm}
"Well-known" algorithm for single-link clustering:
- Form V clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat until there are exactly k clusters.

Observation. This procedure is precisely Kruskal's algorithm (stop when there are \(k\) connected components).

Property. Kruskal's algorithm finds a k-clustering of maximum spacing.

Clustering application: dendrograms

Dendrogram.
Scientific visualization of hypothetical sequence of evolutionary events.
- Leaves = genes.
- Internal nodes = hypothetical ancestors.

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf

\section*{Dendrogram of cancers in human}

Tumors in similar tissues cluster together.

\section*{Shortest Paths}

\title{
Dijkstra's algorithm \\ - implementation \\ , negative weights
}

\section*{References:}

Algorithms in Java, Chapter 21
http://www.cs.princeton.edu/introalgsds/55dijkstra

Edsger W. Dijkstra: a few select quotes

The question of whether computers can think is like the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.

Edger Dijkstra Turing award 1972

\section*{Shortest paths in a weighted digraph}

\section*{Shortest paths in a weighted digraph}

Given a weighted digraph, find the shortest directed path from sto \(t\).
cost of path = sum of edge costs in path

Note: weights are arbitrary numbers
- not necessarily distances
- need not satisfy the triangle inequality
- Ex: airline fares [stay tuned for others]

\section*{Versions}
- source-target (s-t)
- single source
- all pairs.
- nonnegative edge weights
- arbitrary weights
- Euclidean weights.

Early history of shortest paths algorithms
Shimbel (1955). Information networks.

Ford (1956). RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957). Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958). Simplex method for linear programming.

Bellman (1958). Dynamic programming.

Moore (1959). Routing long-distance telephone calls for Bell Labs.
Dijkstra (1959). Simpler and faster version of Ford's algorithm.

\section*{Applications}

Shortest-paths is a broadly useful problem-solving model
- Maps
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Subroutine in advanced algorithms.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Approximating piecewise linear functions.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Dijkstra's algorithm
Dimplementation
negative weights

\section*{Single-source shortest-paths}

Given. Weighted digraph, single source s.

Distance from s to v : length of the shortest path from \(s\) to \(v\).

Goal. Find distance (and shortest path) from s to every other vertex.

Shortest paths form a tree

\section*{Single-source shortest-paths: basic plan}

Goal: Find distance (and shortest path) from s to every other vertex.

Design pattern:
- ShortestPaths class (WeightedDigraph client)
- instance variables: vertex-indexed arrays dist [] and pred[]
- client query methods return distance and path iterator

Note: Same pattern as Prim, DFS, BFS; BFS works when weights are all 1.

\section*{Edge relaxation}

For all \(v\), dist \([\mathrm{v}]\) is the length of some path from \(\mathbf{s}\) to v .

Relaxation along edge e from v to w.
- dist \([\mathrm{v}]\) is length of some path from \(\mathbf{s}\) to v
- dist \([w]\) is length of some path from \(s\) to \(w\)
- if v-w gives a shorter path to w through v, update dist [w] and pred[w]
```

if (dist[w] > dist[v] + e.weight())
{
dist[w] = dist[v] + e.weight());
pred[w] = e;
}

```


Relaxation sets dist [w] to the length of a shorter path from \(s\) to \(w\) (if \(v\)-w gives one)

\section*{Dijkstra's algorithm}

S: set of vertices for which the shortest path length from sis known.

Invariant: for v in S , dist \([\mathrm{v}]\) is the length of the shortest path from \(\mathbf{s}\) to v .

Initialize \(S\) to \(s\), dist [s] to 0 , dist [v] to \(\infty\) for all other \(v\) Repeat until \(S\) contains all vertices connected to s
- find e with \(v\) in \(S\) and \(w\) in \(S^{\prime}\) that minimizes dist [v] + e.weight ()
- relax along that edge
- add w to S

\section*{Dijkstra's algorithm}

S: set of vertices for which the shortest path length from sis known.

Invariant: for v in S , dist \([\mathrm{v}]\) is the length of the shortest path from \(\mathbf{s}\) to v .

Initialize \(S\) to \(s\), dist [s] to 0 , dist [v] to \(\infty\) for all other \(v\)
Repeat until \(S\) contains all vertices connected to s
- find e with \(v\) in \(S\) and \(w\) in \(S^{\prime}\) that minimizes dist [v] + e.weight ()
- relax along that edge
- add w to S

Dijkstra's algorithm proof of correctness

S: set of vertices for which the shortest path length from sis known.

Invariant: for \(v\) in \(S\), dist \([v]\) is the length of the shortest path from \(s\) to \(v\).
Pf. (by induction on \(|s|\))
- Let w be next vertex added to \(S\).
- Let \(P^{*}\) be the s-w path through \(v\).
- Consider any other s-w path \(P\), and let \(\mathbf{x}\) be first node on path outside \(S\).
- \(P\) is already longer than \(P^{*}\) as soon as it reaches \(\mathbf{x}\) by greedy choice.

\section*{Shortest Path Tree}

\section*{Dijkstra's algorithm}
> implementation
>negative weights

\section*{Weighted directed edge data type}
```

public class Edge implements Comparable<Edge>
{
public final int v, int w;
public final double weight;
public Edge(int v, int w, double weight)
{
this.v = v;
this.w = w;
this.weight = weight;
}
public int from()
{ return v; }
public int to()
{ return w; }
public int weight()
{ return weight; }
public int compareTo(Edge that)
{
if (this.weight < that.weight) return -1;
else if (this.weight > that.weight) return +1;
else return 0;
}
}

```
```

code is the same as for
(undirected) WeightedGraph
except
from() and to() replace
either() and other()

```

\section*{Weighted digraph data type}

Identical to WeightedGraph but just one representation of each Edge.
```

public class WeightedDigraph
{
private int v;
private SET<Edge>[] adj;
public Graph(int V)
{
this.V = V;
adj = (SET<Edge>[]) new SET[V];
for (int v = 0; v < v; v++)
adj[v] = new SET<Edge>();
}
public void addEdge(Edge e)
{
int v = e.from();
adj[v].add(e);
}
public Iterable<Edge> adj(int v)
{ return adj[v]; }
}

```

Dijkstra's algorithm: implementation approach
Initialize \(S\) to \(s\), dist[s] to 0 , dist[v] to \(\infty\) for all other \(v\)
Repeat until \(S\) contains all vertices connected to \(s\)
- find v-w with \(v\) in \(S\) and \(w\) in \(S^{\prime}\) that minimizes dist [v] + weight [v-w]
- relax along that edge
- add w to S

Idea 1 (easy): Try all edges

Total running time proportional to VE

\section*{Dijkstra's algorithm: implementation approach}
- find v-w with \(v\) in \(S\) and \(w\) in \(S^{\prime}\) that minimizes dist [v] + weight [v-w]

Idea 2 (Dijkstra) : maintain these invariants
- for v in S , dist \([\mathrm{v}]\) is the length of the shortest path from \(\mathbf{s}\) to v .
- for \(w\) in \(S^{\prime}\), dist [w] minimizes dist [v] + weight[v-w].

Two implications
- find v-w in \(V\) steps (smallest dist [] value among vertices in \(\mathrm{S}^{\prime}\))
- update dist [] in at most \(V\) steps (check neighbors of w)

Total running time proportional to \(\mathrm{V}^{2}\)

\section*{Dijkstra's algorithm implementation}
- find \(v\)-w with \(v\) in \(S\) and \(w\) in \(S^{\prime}\) that minimizes dist [\(v\)] + weight [\(v-w\)]

Idea 3 (modern implementations):
- for all vin S, dist [v] is the length of the shortest path from \(\mathbf{s}\) to v .
- use a priority queue to find the edge to relax
\begin{tabular}{cccc}
& sparse & dense \\
easy & \(V^{2}\) & EV \\
Dotal running time proportional to Elg \(E\) & modern & Vlg \(E \quad E \lg E\)
\end{tabular}

Dijkstra's algorithm implementation
Q. What goes onto the priority queue?
A. Fringe vertices connected by a single edge to a vertex in \(S\)

Starting to look familiar?

\section*{Lazy implementation of Prim's MST algorithm}
```

public class LazyPrim
{
Edge[] pred = new Edge[G.V()];
public LazyPrim(WeightedGraph G)
{
boolean[] marked = new boolean[G.V()];
double[] dist = new double[G.V()];
for (int v = 0; v < G.V(); v++)
dist[v] = Double.POSITIVE_INFINITY;
MinPQplus<Double, Integer> pq; }\longleftarrow< edges to MS
pq = new MinPQplus<Double, Integer>();
dist[s] = 0.0;
pq.put(dist[s], s);
while (!pq.isEmpty())
{
int v = pq.delMin();
if (marked[v]) continue;
marked(v) = true;
for (Edge e : G.adj(v))
{
int w = e.other(v);
if (!marked[w] \&\& (dist[w] > e.weight() ))
{
dist[w] = e.weight();
pred[w] = e;
pq.insert(dist[w], w);
}
}
}
}
}

```

\section*{Lazy implementation of Dijkstra's SPT algorithm}
```

public class LazyDijkstra
{
double[] dist = new double[G.V()];
Edge[] pred = new Edge[G.V()];
public LazyDijkstra(WeightedDigraph G, int s)
{
boolean[] marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
dist[v] = Double.POSITIVE_INFINITY;
MinPQplus<Double, Integer> pq;
pq = new MinPQplus<Double, Integer>();
dist[s] = 0.0;
pq.put(dist[s], s);
while (!pq.isEmpty())
{
int v = pq.delMin();
if (marked[v]) continue;
marked(v) = true;
for (Edge e : G.adj(v))
{
int w = e.to();
if (dist[w] > dist[v] + e.weight())
{
dist[w] = dist[v] + e.weight();
pred[w] = e;
pq.insert(dist[w], w);
}
}
}
}
}

```
code is the same as Prim's (!!)
except
- WeightedDigraph, not WeightedGraph
- weight is distance to s, not to tree
- add client query for distances

\section*{Dijkstra's algorithm example}

Dijkstra's algorithm. [Dijkstra 1957]
Start with vertex 0 and greedily grow tree T. At each step, add cheapest path ending in an edge that has exactly one endpoint in \(T\).

0-5 . 29 0-1 . 41

4-2 . 82 4-3 . 86 1-2 .92

0-1 . 41 5-4. 50

4-3. 86 1-2 . 92

5-4 . 50 1-2 . 92
\[
\begin{array}{ll}
0-1 & 0.41 \\
0-5 & 0.29 \\
1-2 & 0.51 \\
1-4 & 0.32 \\
2-3 & 0.50 \\
3-0 & 0.45 \\
3-5 & 0.38 \\
4-2 & 0.32 \\
4-3 & 0.36 \\
5-1 & 0.29 \\
5-4 & 0.21
\end{array}
\]

Eager implementation of Dijkstra's algorithm

Use indexed priority queue that supports
- contains: is there a key associated with value \(v\) in the priority queue?
- decrease key: decrease the key associated with value \(v\)
[more complicated data structure, see text]

Putative "benefit": reduces \(P Q\) size guarantee from \(E\) to \(V\)
- no signficant impact on time since \(\lg E<2 \lg V\)
- extra space not important for huge sparse graphs found in practice [\(P Q\) size is far smaller than \(E\) or even \(V\) in practice]
- widely used, but practical utility is debatable (as for Prim's)

\section*{Improvements to Dijkstra's algorithm}

Use a d-way heap (Johnson, 1970s)
- easy to implement
- reduces costs to Ed \(\log _{d} V\)
- indistinguishable from linear for huge sparse graphs found in practice

Use a Fibonacci heap (Sleator-Tarjan, 1980s)
- very difficult to implement
- reduces worst-case costs (in theory) to \(E+V \lg V\)
- not quite linear (in theory)
- practical utility questionable

Find an algorithm that provides a linear worst-case guarantee?
[open problem]

Dijkstra's Algorithm: performance summary
Fringe implementation directly impacts performance

Best choice depends on sparsity of graph.
- 2,000 vertices, 1 million edges. heap \(2-3 x\) slower than array
- 100,000 vertices, 1 million edges. heap gives \(500 \times\) speedup.
- 1 million vertices, 2 million edges. heap gives \(10,000 \times\) speedup.

Bottom line.
- array implementation optimal for dense graphs
- binary heap far better for sparse graphs
- d-way heap worth the trouble in performance-critical situations
- Fibonacci heap best in theory, but not worth implementing

\section*{Priority-first search}

Insight: All of our graph-search methods are the same algorithm!

Maintain a set of explored vertices \(S\)
Grow \(S\) by exploring edges with exactly one endpoint leaving \(S\).

DFS. Take edge from vertex which was discovered most recently.
BFS. Take from vertex which was discovered least recently.
Prim. Take edge of minimum weight.
Dijkstra. Take edge to vertex that is closest to s.
Gives simple algorithm for many graph-processing problems

Challenge: express this insight in (re)usable Java code

\section*{Priority-first search: application example}

Shortest s-t paths in Euclidean graphs (maps)
- Vertices are points in the plane.
- Edge weights are Euclidean distances.

A sublinear algorithm.
- Assume graph is already in memory.
- Start Dijkstra at s.
- Stop when you reach \(t\).

Even better: exploit geometry
- For edge \(v-w\), use weight \(d(v, w)+d(w, t)-d(v, t)\).
- Proof of correctness for Dijkstra still applies.
- In practice only \(O\left(V^{1 / 2}\right)\) vertices examined.

Euclidean distance
- Special case of \(A^{*}\) algorithm
[Practical map-processing programs precompute many of the paths.]

\title{
Dijkstra's algorithm \\ Dimplementation
}
>negative weights

Shortest paths application: Currency conversion

Currency conversion. Given currencies and exchange rates, what is best way to convert one ounce of gold to US dollars?
- 1 oz. gold \(\Rightarrow \$ 327.25\).
- 1 oz. gold \(\Rightarrow\) £208.10 \(\Rightarrow \quad \Rightarrow \$ 327.00\). [208.10×1.5714]
- 1 oz. gold \(\Rightarrow 455.2\) Francs \(\Rightarrow 304.39\) Euros \(\Rightarrow \$ 327.28\). \(\quad[455.2 \times .6677 \times 1.0752]\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Currency & \(£\) & Euro & \(\neq\) & Franc & \(\$\) & Gold \\
\hline UK Pound & 1.0000 & 0.6853 & 0.005290 & 0.4569 & 0.6368 & 208.100 \\
Euro & 1.4599 & 1.0000 & 0.007721 & 0.6677 & 0.9303 & 304.028 \\
Japanese Yen & 189.050 & 129.520 & 1.0000 & 85.4694 & 120.400 & 39346.7 \\
Swiss Franc & 2.1904 & 1.4978 & 0.011574 & 1.0000 & 1.3941 & 455.200 \\
US Dollar & 1.5714 & 1.0752 & 0.008309 & 0.7182 & 1.0000 & 327.250 \\
Gold (oz.) & 0.004816 & 0.003295 & 0.0000255 & 0.002201 & 0.003065 & 1.0000 \\
\hline
\end{tabular}

\section*{Shortest paths application: Currency conversion}

\section*{Graph formulation.}
- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find path that maximizes product of weights.

\section*{Shortest paths application: Currency conversion}

Reduce to shortest path problem by taking logs
- Let weight \((v-w)=-\lg\) (exchange rate from currency \(v\) to \(w)\)
- multiplication turns to addition
- Shortest path with costs c corresponds to best exchange sequence.

Challenge. Solve shortest path problem with negative weights.

Shortest paths with negative weights: failed attempts
Dijkstra. Doesn't work with negative edge weights.

Dijkstra selects vertex 3 immediately after 0 . But shortest path from 0 to 3 is \(0 \rightarrow \mathbf{1 \rightarrow 2 \rightarrow 3}\).

Re-weighting. Adding a constant to every edge weight also doesn't work.

Bad news: need a different algorithm.

\section*{Shortest paths with negative weights: negative cycles}

Negative cycle. Directed cycle whose sum of edge weights is negative.

Observations.
- If negative cycle \(C\) on path from s to \(t\), then shortest path can be made arbitrarily negative by spinning around cycle
- There exists a shortest s-t path that is simple.

Worse news: need a different problem

\section*{Shortest paths with negative weights}

Problem 1. Does a given digraph contain a negative cycle?

Problem 2. Find the shortest simple path from s to t.

Bad news: Problem 2 is intractable

Good news: Can solve problem 1 in O(VE) steps
Good news: Same algorithm solves problem 2 if no negative cycle

\section*{Bellman-Ford algorithm}
- detects a negative cycle if any exist
- finds shortest simple path if no negative cycle exists

\section*{Edge relaxation}

For all \(v\), dist \([\mathrm{v}]\) is the length of some path from \(\mathbf{s}\) to v .

Relaxation along edge e from v to w.
- dist \([\mathrm{v}]\) is length of some path from \(\mathbf{s}\) to \(\mathbf{v}\)
- dist \([w]\) is length of some path from \(s\) to \(w\)
- if v-w gives a shorter path to w through v, update dist [w] and pred [w]
```

if (dist[w] > dist[v] + e.weight())
{
dist[w] = dist[v] + e.weight());
pred[w] = e;
}

```


Relaxation sets dist [w] to the length of a shorter path from \(\mathbf{s}\) to \(\mathbf{w}\) (if \(\mathbf{v}\)-w gives one)

Shortest paths with negative weights: dynamic programming algorithm
A simple solution that works!
- Initialize dist \([\mathrm{v}]=\infty\), dist[s]=0.
- Repeat v times: relax each edge e.
```

                                    phase i
    for (int i = 1; i <= G.V(); i++)
for (int v = 0; v < G.V(); v++)
for (Edge e : G.adj(v))
{
int w = e.to();
if (dist[w] > dist[v] + e.weight())\longleftarrow relaxv-w
{
dist[w] = dist[v] + e.weight())
pred[w] = e;
}
}

```

Shortest paths with negative weights: dynamic programming algorithm
Running time proportional to E V

Invariant. At end of phase \(i\), dist \([v] \leq\) length of any path from \(s\) to \(v\) using at most i edges.

Theorem. If there are no negative cycles, upon termination dist [v] is the length of the shortest path from from sto v .
and pred [] gives the shortest paths

Shortest paths with negative weights: Bellman-Ford-Moore algorithm

Observation. If dist [v] doesn' \(\dagger\) change during phase \(i\), no need to relax any edge leaving \(v\) in phase \(i+1\).

FIFO implementation.
Maintain queue of vertices whose distance changed.
be careful to keep at most one copy of each vertex on queue

Running time.
- still could be proportional to EV in worst case
- much faster than that in practice

Shortest paths with negative weights: Bellman-Ford-Moore algorithm

Initialize dist \([v]=\infty\) and marked \([v]=\) false for all vertices \(v\).
```

Queue<Integer> q = new Queue<Integer>();
marked[s] = true;
dist[s] = 0;
q.enqueue(s);
while (!q.isEmpty())
{
int v = q.dequeue();
marked[v] = false;
for (Edge e : G.adj(v))
{
int w = e.target();
if (dist[w] > dist[v] + e.weight())
{
dist[w] = dist[v] + e.weight();
pred[w] = e;
if (!marked[w])
{
marked[w] = true;
q.enqueue (w);
}
}
}
}

```

\section*{Single Source Shortest Paths Implementation: Cost Summary}
\begin{tabular}{ccc}
algorithm & worst case & typical case \\
nonnegative costs & Dijkstra (classic) & \(\mathrm{V}^{2}\) \\
Dijkstra (heap) & ElgE & \(\mathrm{V}^{2}\) \\
no negative cycles & Dynamic programming & EV
\end{tabular}

Remark 1. Negative weights makes the problem harder.
Remark 2. Negative cycles makes the problem intractable.

\section*{Shortest paths application: arbitrage}

Is there an arbitrage opportunity in currency graph?
- Ex: \(\$ 1 \Rightarrow\) 1.3941 Francs \(\Rightarrow 0.9308\) Euros \(\Rightarrow \$ 1.00084\).
- Is there a negative cost cycle?
- Fastest algorithm is valuable!

\[
-0.4793+0.5827-0.1046<0
\]

Negative cycle detection
If there is a negative cycle reachable from s.
Bellman-Ford-Moore gets stuck in loop, updating vertices in cycle.

Finding a negative cycle. If any vertex \(v\) is updated in phase \(v\), there exists a negative cycle, and we can trace back pred[v] to find it.

Negative cycle detection
Goal. Identify a negative cycle (reachable from any vertex).

Solution. Add 0-weight edge from artificial source s to each vertex v . Run Bellman-Ford from vertex s.

\section*{Shortest paths summary}

Dijkstra's algorithm
- easy and optimal for dense digraphs
- PQ/ST data type gives near optimal for sparse graphs

Priority-first search
- generalization of Dijkstra's algorithm
- encompasses DFS, BFS, and Prim
- enables easy solution to many graph-processing problems

Negative weights
- arise in applications
- make problem intractable in presence of negative cycles (!)
- easy solution using old algorithms otherwise

Shortest-paths is a broadly useful problem-solving model

\title{
Geometric Algorithms
}

\author{
primitive operations \\ - convex hull \\ - closest pair \\ - voronoi diagram
}

\section*{References:}

Algorithms in C (2nd edition), Chapters 24-25
http://www.cs.princeton.edu/introalgsds/71primitives
http://www.cs.princeton.edu/introalgsds/72hull

\section*{Geometric Algorithms}

\section*{Applications.}
- Data mining.
- VLSI design.
- Computer vision.
- Mathematical models.
- Astronomical simulation.

- Geographic information systems.
airflow around an aircraft wing
- Computer graphics (movies, games, virtual reality).
- Models of physical world (maps, architecture, medical imaging).

Reference: http://www.ics.uci.edu/~eppstein/geom.html

History.
- Ancient mathematical foundations.
- Most geometric algorithms less than 25 years old.
p primitive operations
convex hull
closest pair
> voronoi diagram

\section*{Geometric Primitives}

Point: two numbers \((x, y)\).
Line: two numbers \(a\) and \(b[a x+b y=1] \swarrow\) any line not through origin
Line segment: two points.
Polygon: sequence of points.

Primitive operations.
- Is a point inside a polygon?
- Compare slopes of two lines.
- Distance between two points.
- Do two line segments intersect?
- Given three points \(p_{1}, p_{2}, p_{3}\), is \(p_{1}-p_{2}-p_{3}\) a counterclockwise turn?

Other geometric shapes.
- Triangle, rectangle, circle, sphere, cone, ...
- 3D and higher dimensions sometimes more complicated.

\section*{Intuition}

Warning: intuition may be misleading.
- Humans have spatial intuition in 2D and 3D.
- Computers do not.
- Neither has good intuition in higher dimensions!

Is a given polygon simple?
no crossings

we think of this
algorithm sees this

Polygon Inside, Outside

Jordan curve theorem. [Veblen 1905] Any continuous simple closed curve cuts the plane in exactly two pieces: the inside and the outside.

Is a point inside a simple polygon?

http://www.ics.uci.edu/~eppstein/geom.html
Application. Draw a filled polygon on the screen.

Polygon Inside, Outside: Crossing Number

Does line segment intersect ray?
\[
y_{0}=\frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}}\left(x_{0}-x_{i}\right)+y_{i}
\]
```

public boolean contains(double x0, double y0)

```
\{
 int crossings \(=0 ;\)
 for (int \(i=0 ; i<N ; i++)\)
 \{
 double slope \(=(y[i+1]-y[i]) /(x[i+1]-x[i]) ;\)
 boolean cond1 \(=(x[i]<=x 0) \& \&(x 0<x[i+1]) ;\)
 boolean cond2 \(=(x[i+1]<=x 0) \& \&(x 0<x[i]) ;\)
 boolean above \(=\left(y_{0}<\right.\) slope \(\left.*(x 0-x[i])+y[i]\right)\);
 if ((cond1 || cond2) \&\& above) crossings++;
 \}
 return (crossings \% 2 != 0);
 \}

\section*{Implementing CCW}

CCW. Given three point \(a, b\), and \(c\), is \(a-b-c\) a counterclockwise turn?
- Analog of comparisons in sorting.
- Idea: compare slopes.

Lesson. Geometric primitives are tricky to implement.
- Dealing with degenerate cases.
- Coping with floating point precision.

\section*{Implementing CCW}

CCW. Given three point \(a, b\), and \(c\), is \(a-b-c\) a counterclockwise turn?
- Determinant gives twice area of triangle.
\[
2 \times \operatorname{Area}(a, b, c)=\left|\begin{array}{lll}
a_{x} & a_{y} & 1 \\
b_{x} & b_{y} & 1 \\
c_{x} & c_{y} & 1
\end{array}\right|=\left(b_{x}-a_{x}\right)\left(c_{y}-a_{y}\right)-\left(b_{y}-a_{y}\right)\left(c_{x}-a_{x}\right)
\]
- If area \(>0\) then \(a-b-c\) is counterclockwise.
- If area < 0 , then \(a-b-c\) is clockwise.
- If area \(=0\), then \(a-b-c\) are collinear.

\section*{Immutable Point ADT}
```

public final class Point
{
public final int x;
public final int y;
public Point(int x, int y)
{ this.x = x; this.y = y; }
public double distanceTo(Point q)
{ return Math.hypot(this.x - q.x, this.y - q.y); }
public static int ccw(Point a, Point b, Point c)
{
double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
if else (area2 < 0) return -1;
else if (area2 > 0) return +1;
else if (area2 > 0 return 0;
}
public static boolean collinear(Point a, Point b, Point c)
{
return ccw(a, b, c) == 0;
}
}

```

\section*{Sample cow client: Line intersection}

Intersect: Given two line segments, do they intersect?
- Idea 1: find intersection point using algebra and check.
- Idea 2: check if the endpoints of one line segment are on different "sides" of the other line segment.
- 4 ccw computations.

```

public static boolean intersect(Line 11, Line 12)
{
int test1, test2;
test1 = Point.ccw(l1.p1, l1.p2, l2.p1)
* Point.ccw(l1.p1, l1.p2, l2.p2);
test2 = Point.ccw(l2.p1, l2.p2, l1.p1)
* Point.ccw(l2.p1, l2.p2, l1.p2);
return (test1 <= 0) \&\& (test2 <= 0);
}

```


\title{
> primitive operations \\ > convex hull
}

\section*{closest pair \\ voronoi diagram}

\section*{Convex Hull}

A set of points is convex if for any two points \(p\) and \(q\) in the set, the line segment \(p q\) is completely in the set.

Convex hull. Smallest convex set containing all the points.

Properties.
- "Simplest" shape that approximates set of points.
- Shortest (perimeter) fence surrounding the points.
- Smallest (area) convex polygon enclosing the points.

\section*{Mechanical Solution}

Mechanical algorithm. Hammer nails perpendicular to plane; stretch elastic rubber band around points.

http://www.dfanning.com/math_tips/convexhull_1.gif

\section*{Brute-force algorithm}

\section*{Observation 1.}

Edges of convex hull of \(P\) connect pairs of points in \(P\).

\section*{Observation 2.}
\(p-q\) is on convex hull if all other points are counterclockwise of \(\overrightarrow{p q}\).

\(O\left(\mathrm{~N}^{3}\right)\) algorithm.
For all pairs of points \(p\) and \(q\) in \(P\)
- compute \(\operatorname{ccw}(p, q, x)\) for all other \(x\) in \(P\)
- \(p-q\) is on hull if all values positive

\section*{Package Wrap (Jarvis March)}

Package wrap.
- Start with point with smallest y-coordinate.
- Rotate sweep line around current point in ccw direction.
- First point hit is on the hull.
- Repeat.

\section*{Package Wrap (Jarvis March)}

\section*{Implementation.}
- Compute angle between current point and all remaining points.
- Pick smallest angle larger than current angle.
- \(\Theta(N)\) per iteration.

\section*{How Many Points on the Hull?}

\section*{Parameters.}
- \(N=\) number of points.
- \(h=\) number of points on the hull.

Package wrap running time. \(\Theta(\mathrm{Nh})\) per iteration.

How many points on hull?
- Worst case: \(h=N\).
- Average case: difficult problems in stochastic geometry.
in a disc: \(h=N^{1 / 3}\).
in a convex polygon with \(O(1)\) edges: \(h=\log N\).

\section*{Graham Scan: Example}

\section*{Graham scan.}
- Choose point \(p\) with smallest \(y\)-coordinate.
- Sort points by polar angle with \(p\) to get simple polygon.
- Consider points in order, and discard those that would create a clockwise turn.

p

\section*{Graham Scan: Example}

\section*{Implementation.}
- Input: p [1], \(\mathrm{p}[2]\), ..., \(\mathrm{p}[\mathrm{N}]\) are points.
- Output: \(m\) and rearrangement so that \(p[1], \ldots, p[m]\) is convex hull.
```

// preprocess so that p[1] has smallest y-coordinate
// sort by angle with p[1]
points[0] = points[N]; // sentinel
int M = 2;
for (int i = 3; i <= N; i++)
{
while (Point.ccw(p[M-1], p[M], p[i]) <= 0) M--;
M++;
swap(points, M, i); discard points that would create clockwise turn
}
add i to putative hull

```

Running time. \(O(N \log N)\) for sort and \(O(N)\) for rest.

\section*{Quick Elimination}

\section*{Quick elimination.}
- Choose a quadrilateral \(Q\) or rectangle \(R\) with 4 points as corners.
- Any point inside cannot be on hull 4 ccw tests for quadrilateral 4 comparisons for rectangle

\section*{Three-phase algorithm}
- Pass through all points to compute R.
- Eliminate points inside R.
- Find convex hull of remaining points.

In practice can eliminate almost all points in linear time.

\section*{Convex Hull Algorithms Costs Summary}

Asymptotic cost to find h-point hull in N -point set

† assumes "reasonable" point distribution

\section*{Convex Hull: Lower Bound}

Models of computation.
- Comparison based: compare coordinates. (impossible to compute convex hull in this model of computation)
\[
(a \cdot x<b \cdot x) \|((a \cdot x==b \cdot x) \& \&(a \cdot y<b \cdot y)))
\]
- Quadratic decision tree model: compute any quadratic function of the coordinates and compare against 0 .
```

(a.x*b.y - a.y*b.x + a.y*c.x - a.x*c.y + b.x*c.y - c.x*b.y) < 0

```

Theorem. [Andy Yao, 1981] In quadratic decision tree model, any convex hull algorithm requires \(\Omega(N \log N)\) ops.
even if hull points are not required to be
higher degree polynomial tests don't help either [Ben-Or, 1983]

\title{
primitive operations \\ convex hull
}
> closest pair

\section*{vorono diagram}

\section*{Closest pair problem}

Given: N points in the plane
Goal: Find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.
fast closest pair inspired fast algorithms for these problems

\section*{Brute force.}

Check all pairs of points \(p\) and \(q\) with \(\Theta\left(N^{2}\right)\) distance calculations.
1-D version. \(O(N \log N)\) easy if points are on a line.
Degeneracies complicate solutions.
[assumption for lecture: no two points have same \(\times\) coordinate]

\section*{Closest Pair of Points}

Algorithm.
- Divide: draw vertical line \(L\) so that roughly \(\frac{1}{2} N\) points on each side.

\section*{Closest Pair of Points}

Algorithm.
- Divide: draw vertical line \(L\) so that roughly \(\frac{1}{2} N\) points on each side.
- Conquer: find closest pair in each side recursively.

\section*{Closest Pair of Points}

\section*{Algorithm.}
- Divide: draw vertical line \(L\) so that roughly \(\frac{1}{2} N\) points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.
seems like \(\Theta\left(N^{2}\right)\)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance \(<\delta\).

\section*{Closest Pair of Points}

Find closest pair with one point in each side, assuming that distance \(<\delta\).
- Observation: only need to consider points within \(\delta\) of line \(L\).

\section*{Closest Pair of Points}

Find closest pair with one point in each side, assuming that distance \(<\delta\).
- Observation: only need to consider points within \(\delta\) of line \(L\).
- Sort points in \(2 \delta\)-strip by their y coordinate.

\section*{Closest Pair of Points}

Find closest pair with one point in each side, assuming that distance \(<\delta\).
- Observation: only need to consider points within \(\delta\) of line \(L\).
- Sort points in \(2 \delta\)-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

\section*{Closest Pair of Points}

Def. Let \(s_{i}\) be the point in the \(2 \delta\)-strip, with the \(\mathrm{i}^{\text {th }}\) smallest y -coordinate.

Claim. If \(|i-j| \geq 12\), then the distance between \(s_{i}\) and \(s_{j}\) is at least \(\delta\).
Pf.
- No two points lie in same \(\frac{1}{2} \delta-b y-\frac{1}{2} \delta\) box.
- Two points at least 2 rows apart have distance \(\geq 2\left(\frac{1}{2} \delta\right)\).

Fact. Still true if we replace 12 with 7.

\section*{Closest Pair Algorithm}
```

Closest-Pair(p
{
Compute separation line L such that half the points
are on one side and half on the other side.
\delta
\delta
\delta = min ( }\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
Delete all points further than \delta from separation line L
Sort remaining points by y-coordinate.
Scan points in y-order and compare distance between
each point and next }11\mathrm{ neighbors. If any of these
O(N\operatorname{log}N)
2T(N/2)
O(N)
O(N\operatorname{log}N)
O(N)
distances is less than }\delta\mathrm{ , update }\delta\mathrm{ .
return \delta.
}

```

\section*{Closest Pair of Points: Analysis}

Algorithm gives upper bound on running time

Recurrence
\[
T(N) \leq 2 T(N / 2)+O(N \log N)
\]

Solution
\[
T(N)=O\left(N(\log N)^{2}\right)
\]

Lower bound. In quadratic decision tree model, any algorithm for closest pair requires \(\Omega(N \log N)\) steps.

\title{
primitive operations \\ > convex hull \\ closest pair
}
> voronoi diagrams

\section*{1854 Cholera Outbreak, Golden Square, London}

Life-or-death question:
Given a new cholera patient \(p\), which water pump is closest to \(p\) 's home?

http://content.answers.com/main/content/wp/en/c/c7/Snow-cholera-map.jpg

\section*{Nearest-neighbor problem}

Input.
N Euclidean points.

Nearest neighbor problem.
Given a query point \(p\), which one of original \(N\) points is closest to \(p\) ?
\begin{tabular}{|c|c|c|}
\hline Algorithm & Preprocess & Query \\
\hline Brute & 1 & \(N\) \\
Goal & \(N \log N\) & \(\log N\) \\
\hline
\end{tabular}

\section*{Voronoi Diagram}

Voronoi region. Set of all points closest to a given point. Voronoi diagram. Planar subdivision delineating Voronoi regions. Fact. Voronoi edges are perpendicular bisector segments.

Voronoi of 2 points (perpendicular bisector)

Voronoi of 3 points
(passes through circumcenter)

\section*{Voronoi Diagram}

Voronoi region. Set of all points closest to a given point.
Voronoi diagram. Planar subdivision delineating Voronoi regions.
Fact. Voronoi edges are perpendicular bisector segments.

Quintessential nearest neighbor data structure.

\section*{Voronoi Diagram: Applications}

Toxic waste dump problem. \(N\) homes in a region. Where to locate nuclear power plant so that it is far away from any home as possible?

Path planning. Circular robot must navigate through environment with N obstacle points. How to minimize risk of bumping into a obstacle?
robot should stay on Voronoi diagram of obstacles

Reference: J. O'Rourke. Computational Geometry.

\section*{Voronoi Diagram: More Applications}

Anthropology. Identify influence of clans and chiefdoms on geographic regions.
Astronomy. Identify clusters of stars and clusters of galaxies.
Biology, Ecology, Forestry. Model and analyze plant competition.
Cartography. Piece together satellite photographs into large "mosaic" maps.
Crystallography. Study Wigner-Setiz regions of metallic sodium.
Data visualization. Nearest neighbor interpolation of 2D data.
Finite elements. Generating finite element meshes which avoid small angles.
Fluid dynamics. Vortex methods for inviscid incompressible 2D fluid flow.
Geology. Estimation of ore reserves in a deposit using info from bore holes.
Geo-scientific modeling. Reconstruct 3D geometric figures from points.
Marketing. Model market of US metro area at individual retail store level.
Metallurgy. Modeling "grain growth" in metal films.
Physiology. Analysis of capillary distribution in cross-sections of muscle tissue.
Robotics. Path planning for robot to minimize risk of collision.
Typography. Character recognition, beveled and carved lettering.
Zoology. Model and analyze the territories of animals.

\section*{Scientific Rediscoveries}
\begin{tabular}{c|c|cc|}
\hline Year & Discoverer & Discipline & Name \\
\hline 1644 & Descartes & Astronomy & "Heavens" \\
1850 & Dirichlet & Math & Dirichlet tesselation \\
1908 & Voronoi & Math & Voronoi diagram \\
1909 & Boldyrev & Geology & area of influence polygons \\
1911 & Thiessen & Meteorology & Thiessen polygons \\
1927 & Niggli & Crystallography & domains of action \\
1933 & Wigner-Seitz & Physics & Wigner-Seitz regions \\
1958 & Frank-Casper & Physics & atom domains \\
1965 & Brown & Ecology & area of potentially available \\
1966 & Mead & Ecology & plant polygons \\
1985 & Hoofd et al. & Anatomy & capillary domains
\end{tabular}

Reference: Kenneth E. Hoff III

\section*{Adding a Point to Voronoi Diagram}

\section*{Challenge. Compute Voronoi.}

Basis for incremental algorithms: region containing point gives points to check to compute new Voronoi region boundaries.

How to represent the Voronoi diagram?
Use multilist associating each point with its Voronoi neighbors
How to find region containing point?
Use Voronoi itself (possible, but not easy!)

\section*{Randomized Incremental Voronoi Algorithm}

Add points (in random order).
- Find region containing point. \(\leftarrow u s i n g ~ V o r o n o i ~ i t s e l f ~\)
- Update neighbor regions, create region for new point.

- Running time: \(O(N \log N)\) on average.

Not an elementary algortihm

\section*{Sweep-line Voronoi algorithm}

Presort points on \(x\)-coordinate Eliminates point location problem

\section*{Fortune's Algorithm}

\section*{Industrial-strength Voronoi implementation.}
- Sweep-line algorithm
- \(O(N \log N)\) time
- properly handles degeneracies
- properly handles floating-point computations
\begin{tabular}{|c|c|c|}
\hline Algorithm & Preprocess & Query \\
\hline Brute & 1 & \(N\) \\
Goal & \(N \log N\) & \(\log N\) \\
\hline
\end{tabular}

Try it yourself!
http://www.diku.dk/hjemmesider/studerende/duff/Fortune/

best animation on the web student Java project "lost" the source
Interface between numeric and combinatorial computing
- exact calculations impossible (using floating point)
- exact calculations required!
- one solution: randomly jiggle the points

\section*{Fortune's algorithm in action}
http://www.diku.dk/hjemmesider/studerende/duff/Fortune/

Fortune's algorithm in action

Fortune's algorithm in action

Fortune's algorithm in action

Fortune's algorithm in action

\section*{Geometric-algorithm challenge}

Problem: Draw a Voronoi diagram Goals: lecture slide, book diagram

How difficult?
1) any COS126 student could do it
2) need to be a typical diligent COS226 student
3) hire an expert
4) intractable
5) no one knows
6) impossible

\section*{Geometric-algorithm challenge}

Problem: Draw a Voronoi diagram
Goals: lecture slide, book diagram

How difficult?

\section*{surprise!}
\(\checkmark\) 1) any COS126 student could do it
2) need to be a typical diligent COS226 student
3) hire an expert
4) intractable
5) no one knows
6) impossible

\section*{Discretized Voronoi diagram}

Observation: to draw a Voronoi diagram, only need an approximation

Ex: Assign a color to each pixel corresponding to its nearest neighbor

An effective approximate solution to the nearest neighbor problem
\begin{tabular}{c|c|c|}
\hline Algorithm & Preprocess & Query \\
Brute & 1 & \(N\) \\
Fortune & \(N \log N\) & \(\log N\) \\
Discretized complicated alg (stay tuned) \\
& \(N P\) & 1
\end{tabular}

\section*{Discretized Voronoi: Java Implementation}

InteractiveDraw. Version of StdDraw that supports user interaction. DrawListener. Interface to support InteractiveDraw callbacks.
```

public class Voronoi implements DrawListener
{
private int SIZE = 512;
private Point[][] nearest = new Point[SIZE][SIZE];
private InteractiveDraw draw;
public Voronoi()
{
draw = new InteractiveDraw(SIZE, SIZE);
draw.setScale(0, 0, SIZE, SIZE);
draw.addListener(this); «}\mathrm{ send callbacks to Voronoi
draw.show();
}
public void keyTyped(char c) { }
public void mouseDragged (double x, double y) { }
public void mouseReleased(double x, double y) { }
public void mousePressed
{ /* See next slide */ }
}

```
http://www.cs.princeton.edu/introcs/35inheritance/Voronoi.java

\section*{Discretized Voronoi: Java Implementation}
```

public void mousePressed(double x, double y)
{
Point p = new Point (x, y); user clicks (x,y)
draw.setColorRandom();
for (int i = 0; i < SIZE; i++)
for (int j = 0; j < SIZE; j++)
{
Point q = new Point(i, j);
if ((nearest[i][j] == null) ||
(q.distanceTo(p) < q.distanceTo(nearest[i][j])))
{
nearest[i][j] = p;
draw.moveTo(i, j);
draw.spot();
}
}
draw.setColor(StdDraw.BLACK);
draw.moveTo(x, y) ;
draw.spot(4);
draw.show();
}

```

Voronoi alternative 2: Hoff's algorithm

Hoff's algorithm. Align apex of a right circular cone with sites.
- Minimum envelope of cone intersections projected onto plane is the Voronoi diagram.
- View cones in different colors \(\Rightarrow\) render Voronoi.

Implementation. Draw cones using standard graphics hardware!
http://www.cs.unc.edu/~geom/voronoi/siggraph_paper/voronoi.pdf

\section*{Delaunay Triangulation}

Delaunay triangulation. Triangulation of N points such that no point is inside circumcircle of any other triangle.

Fact 0 . It exists and is unique (assuming no degeneracy).

Fact 1. Dual of Voronoi (connect adjacent points in Voronoi diagram).
Fact 2. No edges cross \(\Rightarrow O(N)\) edges.
Fact 3. Maximizes the minimum angle for all triangular elements.
Fact 4. Boundary of Delaunay triangulation is convex hull.
Fact 5. Shortest Delaunay edge connects closest pair of points.

- Delaunay
- \(-\quad\) Voronoi

\section*{Euclidean MST}

Euclidean MST. Given N points in the plane, find MST connecting them.
- Distances between point pairs are Euclidean distances.

Brute force. Compute N / 2 distances and run Prim's algorithm.
Ingenuity.
- MST is subgraph of Delauney triagulation
- Delauney has \(O(N)\) edges
- Compute Delauney, then use Prim or Kruskal to get \(M S T\) in \(O(N \log N)\) !

\section*{Summary}

Ingenuity in algorithm design can enable solution
of large instances for numerous fundamental geometric problems.
\begin{tabular}{|c|c|c|}
\hline Problem & Brute & Cleverness \\
\hline convex hull & \(N^{2}\) & \(N \log N\) \\
closest pair & \(\mathrm{N}^{2}\) & \(\mathrm{~N} \log \mathrm{~N}\) \\
Voronoi & \(?\) & \(N \log N\) \\
Delaunay triangulation & \(\mathrm{N}^{4}\) & \(\mathrm{~N} \log \mathrm{~N}\) \\
Euclidean MST & \(\mathrm{N}^{2}\) & \(\mathrm{~N} \log \mathrm{~N}\) \\
\hline
\end{tabular}
asymptotic time to solve a 2D problem with \(N\) points

Note: 3D and higher dimensions test limits of our ingenuity

Geometric algorithms summary: Algorithms of the day
convex hull

\section*{Geometric Algorithms}
- range search
- quad and kd trees
- intersection search
- VLSI rules check

\section*{References:}

Algorithms in C (2nd edition), Chapters 26-27
http://www.cs.princeton.edu/introalgsds/73range
http://www.cs.princeton.edu/introalgsds/74intersection

\section*{Overview}

Types of data. Points, lines, planes, polygons, circles, ...
This lecture. Sets of \(N\) objects.
Geometric problems extend to higher dimensions.
- Good algorithms also extend to higher dimensions.
- Curse of dimensionality.

\section*{Basic problems.}
- Range searching.
- Nearest neighbor.
- Finding intersections of geometric objects.

\title{
> range search
}
quad and kd trees
intersection search
> VLSI rules check

\section*{1D Range Search}

Extension to symbol-table ADT with comparable keys.
- Insert key-value pair.
- Search for key k.
- How many records have keys between \(\mathrm{k}_{1}\) and \(\mathrm{k}_{2}\) ?
- Iterate over all records with keys between \(\mathrm{k}_{1}\) and \(\mathrm{k}_{2}\).

Application: database queries.

Geometric intuition.
- Keys are point on a line.
- How many points in a given interval?
```

insert B B
insert D BD
insert A ABD
insert I ABDI
insert H ABDHI
insert F ABDFHI
insert P ABDFHIP
count G to K 2
search G to K HI

```

1D Range search: implementations

Range search. How many records have keys between \(k_{1}\) and \(k_{2}\) ?

Ordered array. Slow insert, binary search for \(k_{1}\) and \(k_{2}\) to find range. Hash table. No reasonable algorithm (key order lost in hash).

BST. In each node \(x\), maintain number of nodes in tree rooted at \(x\). Search for smallest element \(\geq k_{1}\) and largest element \(\leq k_{2}\).
\begin{tabular}{cc|c|c}
& insert & count & range \\
\hline ordered array & \(N\) & \(\log N\) & \(R+\log N\) \\
hash table & 1 & \(N\) & \(N\) \\
BST & \(\log N\) & \(\log N\) & \(R+\log N\)
\end{tabular}

\footnotetext{
\(N=\#\) records
\(R=\#\) records that match
}

- nodes examined
- within interval
- not touched

\section*{2D Orthogonal Range Search}

Extension to symbol-table ADT with 2D keys.
- Insert a 2D key.
- Search for a 2D key.
- Range search: find all keys that lie in a 2D range?
- Range count: how many keys lie in a 2D range?

Applications: networking, circuit design, databases.

Geometric interpretation.
- Keys are point in the plane
- Find all points in a given \(h-v\) rectangle

2D Orthogonal range Search: Grid implementation

Grid implementation. [Sedgewick 3.18]
- Divide space into M-by-M grid of squares.
- Create linked list for each square.
- Use 2D array to directly access relevant square.
- Insert: insert (\(x, y\)) into corresponding grid square.
- Range search: examine only those grid squares that could have points in the rectangle.

\section*{2D Orthogonal Range Search: Grid Implementation Costs}

Space-time tradeoff.
- Space: \(M^{2}+N\).
- Time: \(1+N / M^{2}\) per grid cell examined on average.

Choose grid square size to tune performance.
- Too small: wastes space.
- Too large: too many points per grid square.
- Rule of thumb: \(\sqrt{N}\) by \(\sqrt{N}\) grid.

Running time. [if points are evenly distributed]
- Initialize: \(O(N)\).
- Insert: \(O(1)\).

- Range: \(O(1)\) per point in range.

\section*{Clustering}

Grid implementation. Fast, simple solution for well-distributed points. Problem. Clustering is a well-known phenomenon in geometric data.

Ex: USA map data.
13,000 points, 1000 grid squares.

Lists are too long, even though average length is short.
Need data structure that gracefully adapts to data.
>range search
> quad and kd trees
intersection search
VLSI rules check

\section*{Space Partitioning Trees}

Use a tree to represent a recursive subdivision of d-dimensional space.

BSP tree. Recursively divide space into two regions.
Quadtree. Recursively divide plane into four quadrants.
Octree. Recursively divide 3D space into eight octants.
kD tree. Recursively divide k-dimensional space into two half-spaces.
[possible but much more complicated to define Voronoi-based structures]

\section*{Applications.}
- Ray tracing.
- Flight simulators.
- N-body simulation.
- Collision detection.
- Astronomical databases.
- Adaptive mesh generation.
- Accelerate rendering in Doom.
- Hidden surface removal and shadow casting.

Grid

Quadtree

kD tree

\section*{Quadtree}

Recursively partition plane into 4 quadrants.

Implementation: 4-way tree.
```

actually a trie
partitioning on bits of coordinates

```

```

public class QuadTree
{
private Quad quad;
private Value value;
private QuadTree NW, NE, SW, SE;
}

```


Primary reason to choose quad trees over grid methods: good performance in the presence of clustering

\section*{Curse of Dimensionality}

Range search / nearest neighbor in \(k\) dimensions?
Main application. Multi-dimensional databases.

3D space. Octrees: recursively divide 3D space into 8 octants. 100D space. Centrees: recursively divide into \(2^{100}\) centrants???

Raytracing with octrees
http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html

\section*{2D Trees}

Recursively partition plane into 2 halfplanes.
Implementation: BST, but alternate using \(x\) and \(y\) coordinates as key.
- Search gives rectangle containing point.
- Insert further subdivides the plane.

\section*{Near Neighbor Search}

Useful extension to symbol-table ADT for records with metric keys.
- Insert a k dimensional point.
- Near neighbor search: given a point p, which point in data structure is nearest to \(p\) ?

Need concept of distance, not just ordering.
kD trees provide fast, elegant solution.
- Recursively search subtrees that could have near neighbor (may search both).
- \(O(\log N)\) ?

\section*{kD Trees}
kD tree. Recursively partition k-dimensional space into 2 halfspaces.
Implementation: BST, but cycle through dimensions ala 2D trees.

Efficient, simple data structure for processing k-dimensional data.
- adapts well to clustered data.
- adapts well to high dimensional data.
- widely used.
- discovered by an undergrad in an algorithms class!

\section*{Summary}

Basis of many geometric algorithms: search in a planar subdivision.
\begin{tabular}{|c|c|c|c|c|}
\hline & grid & 2D tree & Voronoi diagram & \begin{tabular}{c}
intersecting \\
lines
\end{tabular} \\
\hline basis & \(\sqrt{ }\) N h-v lines & N points & N points & VN lines \\
\hline representation & \begin{tabular}{c}
2D array \\
of \(N\) lists
\end{tabular} & N-node BST & \begin{tabular}{c}
N-node \\
multilist
\end{tabular} & \(\sim N\)-node BST \\
\hline cells & \(\sim N\) squares & N rectangles & N polygons & \(\sim N\) triangles \\
\hline search cost & 1 & \(\log N\) & \begin{tabular}{c}
\(\log N\)
\end{tabular} & log \(N\) \\
\hline extend to kD? & too many cells & easy & \begin{tabular}{c}
cells too \\
complicated
\end{tabular} & \begin{tabular}{c}
use (k-1)D \\
hyperplane
\end{tabular} \\
\hline
\end{tabular}

range search
>quad and kd trees
> intersection search
> VLSI rules check

\section*{Search for intersections}

Problem. Find all intersecting pairs among set of \(N\) geometric objects. Applications. CAD, games, movies, virtual reality.

Simple version: 2D, all objects are horizontal or vertical line segments.

Brute force. Test all \(\Theta\left(N^{2}\right)\) pairs of line segments for intersection.
Sweep line. Efficient solution extends to 3D and general objects.

Orthogonal segment intersection search: Sweep-line algorithm

Sweep vertical line from left to right.
- x-coordinates define events.
- left endpoint of h-segment: insert y coordinate into ST.
- right endpoint of h-segment: remove y coordinate from ST.
- \(v\)-segment: range search for interval of \(y\) endpoints.

Orthogonal segment intersection: Sweep-line algorithm

Reduces 2D orthogonal segment intersection search to 1D range search!

Running time of sweep line algorithm.
- Put x-coordinates on a PQ (or sort).
- Insert y-coordinate into SET.
```

O(N log N)
O(N\operatorname{log}N)
O(N log N)
O(R+N\operatorname{log}N)

```
\(N=\) \# line segments
\(R=\#\) intersections
- Delete y-coordinate from SET.
- Range search. \(O(R+N \log N)\)

Efficiency relies on judicious use of data structures.

\section*{Immutable \(\mathrm{H}-\mathrm{V}\) segment ADT}
```

public final class SegmentHV implements Comparable<SegmentHV>
{
public final int x1, y1;
public final int x2, y2;
public SegmentHV(int x1, int y1, int x2, int y2)
{ ... }
public boolean isHorizontal()
{ ... }
public boolean isVertical()
{ ... }
public int compareTo(SegmentHV b) « compare by x-coordinate;
{ ... }
public String toString()
{ ... }
}

```


\section*{Sweep-line event}
```

public class Event implements Comparable<Event>
{
private int time;
private SegmentHV segment;
public Event(int time, SegmentHV segment)
{
this.time = time;
this.segment = segment;
}
public int compareTo(Event b)
{
return a.time - b.time;
}
}

```

\section*{Sweep-line algorithm: Initialize events}
```

MinPQ<Event> pq = new MinPQ<Event>(); «u initialize
PQ
for (int i = 0; i < N; i++)
{
if (segments[i].isVertical())
{
Event e = new Event(segments[i].x1, segments[i]);
pq.insert(e);
}
else if (segments[i].isHorizontal())
{
Event e1 = new Event(segments[i].x1, segments[i]);
Event e2 = new Event(segments[i].x2, segments[i]);
pq.insert(e1);
pq.insert(e2);
}
}

```

\section*{Sweep-line algorithm: Simulate the sweep line}
```

int INF = Integer.MAX_VALUE;
SET<SegmentHV> set = new SET<SegmentHV>();
while (!pq.isEmpty())
{
Event e = pq.delMin();
int sweep = e.time;
SegmentHV segment = e.segment;
if (segment.isVertical())
{
SegmentHV seg1, seg2;
seg1 = new SegmentHV(-INF, segment.y1, -INF, segment.y1);
seg2 = new SegmentHV(+INF, segment. y2, +INF, segment. y2);
for (SegmentHV seg : set.range(seg1, seg2))
System.out.println(segment + " intersects " + seg);
}
else if (sweep == segment.x1) set.add(segment);
else if (sweep == segment.x2) set.remove(segment);
}

```

\section*{General line segment intersection search}

Extend sweep-line algorithm
- Maintain order of segments that intersect sweep line by y-coordinate.
- Intersections can only occur between adjacent segments.
- Add/delete line segment \(\Rightarrow\) one new pair of adjacent segments.
- Intersection \(\Rightarrow\) swap adjacent segments.

- insert segment
- delete segment
- intersection
order of segments

\section*{Line Segment Intersection: Implementation}

Efficient implementation of sweep line algorithm.
- Maintain PQ of important \(x\)-coordinates: endpoints and intersections.
- Maintain SET of segments intersecting sweep line, sorted by y.
- \(O(R \log N+N \log N)\).

Implementation issues.
- Degeneracy.
- Floating point precision.
- Use PQ, not presort (intersection events are unknown ahead of time).
> range search
> quad and kd trees
intersection search
> VLSI rules check

Algorithms and Moore's Law
Rectangle intersection search. Find all intersections among h-v rectangles.

Application. Design-rule checking in VLSI circuits.

Algorithms and Moore's Law

Early 1970s: microprocessor design became a geometric problem.
- Very Large Scale Integration (VLSI).
- Computer-Aided Design (CAD).

Design-rule checking:
- certain wires cannot intersect
- certain spacing needed between
 different types of wires
- debugging \(=\) rectangle intersection search

\section*{Algorithms and Moore's Law}
"Moore's Law." Processing power doubles every 18 months.
- 197x: need to check N rectangles.
- 197(x+1.5): need to check \(2 N\) rectangles on a \(2 x\)-faster computer.

Bootstrapping: we get to use the faster computer for bigger circuits

But bootstrapping is not enough if using a quadratic algorithm
- 197x: takes M days.
- 197(\(x+1.5\)): takes \((4 M) / 2=2 M\) days. (!)

\(O(N \log N) C A D\) algorithms are necessary to sustain Moore's Law.

\section*{Rectangle intersection search}

Move a vertical "sweep line" from left to right.
- Sweep line: sort rectangles by \(x\)-coordinate and process in this order, stopping on left and right endpoints.
- Maintain set of intervals intersecting sweep line.
- Key operation: given a new interval, does it intersect one in the set?

\section*{Interval Search Trees}

\((4,8)\)

Support following operations.
- Insert an interval (10, hi).
- Delete the interval (10, hi).
- Search for an interval that intersects (lo, hi).

Non-degeneracy assumption. No intervals have the same \(x\)-coordinate.

\section*{Interval Search Trees}

Interval tree implementation with BST.
- Each BST node stores one interval.
- use lo endpoint as BST key.

\section*{Interval Search Trees}

\((4,8)\)

Interval tree implementation with BST.
- Each BST node stores one interval.
- BST nodes sorted on lo endpoint.
- Additional info: store and maintain max endpoint in subtree rooted at node.

\section*{Finding an intersecting interval}

Search for an interval that intersects (10, hi).
```

Node x = root;
while (x != null)
{
if (x.interval.intersects(lo, hi)) return x.interval;
else if (x.left == null) x = x.right;
else if (x.left.max < lo) x = x.right;
else x = x.left;
}
return null;

```

Case 1. If search goes right, then either
- there is an intersection in right subtree

- there are no intersections in either subtree.

Pf. Suppose no intersection in right.
- (x.left \(==\) null) \(\Rightarrow\) trivial.
- (x.left.max \(<10\)) \(\Rightarrow\) for any interval \((a, b)\) in left subtree of \(x\), we have \(b \leq \max <l o\).
defn of max

Finding an intersecting interval
Search for an interval that intersects (10, hi).
```

Node x = root;
while (x != null)
{
if (x.interval.intersects(lo, hi)) return x.interval;
else if (x.left == null) x = x.right;
else if (x.left.max < lo) x = x.right;
else x = x.left;
}
return null;

```

Case 2. If search goes left, then either
- there is an intersection in left subtree
- there are no intersections in either subtree.

Pf. Suppose no intersection in left. Then for any interval (a, b) in right subtree, a \(\geq \mathrm{c}>\mathrm{hi} \Rightarrow\) no intersection in right.

\section*{Interval Search Tree: Analysis}

Implementation. Use a red-black tree to guarantee performance.
can maintain auxiliary information
using \(\log \mathrm{N}\) extra work per op
\begin{tabular}{|c|c|}
\hline Operation & Worst case \\
\hline insert interval & \(\log N\) \\
delete interval & \(\log N\) \\
\hline find an interval that intersects \((l o\), hi) & \(\log N\) \\
find all intervals that intersect (lo, hi) & \(R \log N\) \\
\hline
\end{tabular}
\(N=\#\) intervals
\(R=\#\) intersections

\section*{Rectangle intersection sweep-line algorithm: Review}

Move a vertical "sweep line" from left to right.
- Sweep line: sort rectangles by x-coordinates and process in this order.
- Store set of rectangles that intersect the sweep line in an interval search tree (using y-interval of rectangle).
- Left side: interval search for \(y\)-interval of rectangle, insert \(y\)-interval.
- Right side: delete y-interval.

VLSI Rules checking: Sweep-line algorithm (summary)

Reduces 2D orthogonal rectangle intersection search to 1D interval search!

Running time of sweep line algorithm.
- Sort by \(x\)-coordinate. \(O(N \log N)\)
- Insert y-interval into \(S T\). \(O(N \log N)\)
- Delete y-interval from ST.
\(O(N \log N)\)
\(N=\#\) line segments
\(R=\#\) intersections
- Interval search.
\(O(R \log N)\)

Efficiency relies on judicious extension of BST.

Bottom line.
Linearithmic algorithm enables design-rules checking for huge problems

Geometric search summary: Algorithms of the day
\begin{tabular}{llll}
1D range search & & BST \\
&. & \(\ddots\) & \\
kD range search &. & \(\ddots\) & kD tree
\end{tabular}

1D interval intersection search

2D orthogonal line intersection search

sweep line reduces to 1D interval intersection search

\section*{Radix Sorts}
* key-indexed counting
- LSD radix sort
- MSD radix sort
- 3-way radix quicksort
- application: LRS

\section*{References:}

Algorithms in Java, Chapter 10
http://www.cs.princeton.edu/introalgsds/61sort

Review: summary of the performance of sorting algorithms

Frequency of execution of instructions in the inner loop:
\begin{tabular}{ccccc}
algorithm & guarantee & average & \begin{tabular}{c}
extra \\
space
\end{tabular} & \begin{tabular}{c}
operations \\
on keys
\end{tabular} \\
insertion sort & \(\mathrm{N}^{2} / 2\) & \(\mathrm{~N}^{2} / 4\) & no & compareTo () \\
selection sort & \(\mathrm{N}^{2} / 2\) & \(\mathrm{~N}^{2} / 2\) & no & compareTo() \\
mergesort & NlgN & NlgN & N & compareTo() \\
quicksort & 1.39 Nlg N & 1.39 Nlg N & clg N & compareTo ()
\end{tabular}
lower bound: \(\mathrm{N} \lg \mathrm{N}-1.44 \mathrm{~N}\) compares are required by any algorithm

Q: Can we do better (despite the lower bound)?

\section*{Digital keys}

Many commonly-use key types are inherently digital (sequences of fixed-length characters)
example interface

\section*{Examples}
- Strings
- 64-bit integers
```

interface Digital
{
public int charAt(int k);
public int length(int);
}

```

\section*{This lecture:}
- refer to fixed-length vs. variable-length strings
- \(R\) different characters for some fixed value \(R\).
- assume key type implements charAt () and length () methods
- code works for string

Widely used in practice
- low-level bit-based sorts
- string sorts

\section*{key-indexed counting}

DLSD radix sort
MSD radix sort
- 3-way radix quicksort
> application: LRS

Key-indexed counting: assumptions about keys
Assume that keys are integers between 0 and R-1
Implication: Can use key as an array index

Examples:
- char (\(\mathrm{R}=256\))
- short with fixed R, enforced by client
- int with fixed \(R\), enforced by client

Reminder: equal keys are not uncommon in sort applications
Applications:
- sort phone numbers by area code
- sort classlist by precept
- Requirement: sort must be stable
- Ex: Full sort on primary key, then stable radix sort on secondary key

\section*{Key－indexed counting}

Task：sort an array a［ ］of N integers between 0 and \(\mathrm{R}-1\) Plan：produce sorted result in array temp［］
1．Count frequencies of each letter using key as index
2．Compute frequency cumulates
3．Access cumulates using key as index to find record positions．
4．Copy back into original array
```

    int N = a.length;
    int[] count = new int[R];
    \mathrm{ count }
compute cumulates }->\mathrm{ for (int k = 1; k < 256; k++)
count[k] += count[k-1];
\⿴囗十,
copyback }->\mathrm{ for (int i = O; i < N; i++)
a[i] = temp[i];

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{a［］} \\
\hline 0 & a & \\
\hline 1 & a & \\
\hline 2 & b & \\
\hline 3 & b & \\
\hline 4 & b & \\
\hline 5 & c & \\
\hline 6 & d & \\
\hline 7 & d & \\
\hline 8 & e & \\
\hline 9 & f & \\
\hline 10 & f & \\
\hline 11 & f & \\
\hline
\end{tabular}

Review: summary of the performance of sorting algorithms

Frequency of execution of instructions in the inner loop:
\begin{tabular}{ccccc}
algorithm & guarantee & average & \begin{tabular}{c}
extra \\
space
\end{tabular} & \begin{tabular}{c}
operations \\
on keys
\end{tabular} \\
insertion sort & \(\mathrm{N}^{2} / 2\) & \(\mathrm{~N}^{2} / 4\) & no & compareTo() \\
selection sort & \(\mathrm{N}^{2} / 2\) & \(\mathrm{~N}^{2} / 2\) & no & compareTo() \\
mergesort & NlgN & NlgN & N & compareTo() \\
quicksort & 1.39 NlgN & 1.39 NlgN & \(c \lg \mathrm{~N}\) & compareTo() \\
key-indexed counting & \(\mathrm{N}+\mathrm{R}\) & \(\mathrm{N}+\mathrm{R}\) & \(\mathrm{N}+\mathrm{R}\) & \begin{tabular}{c}
use as \\
array index
\end{tabular} \\
& & & \(\uparrow\) &
\end{tabular}
inplace version is possible and practical

Q: Can we do better (despite the lower bound)?
A: Yes, if we do not depend on comparisons
> key-indexed counting
, LSD radix sort
MSD radix sort
3-way radix quicksort
> application: LRS

Least-significant-digit-first radix sort

LSD radix sort.
- Consider characters a from right to left
- Stably sort using dth character as the key via key-indexed counting.

sort must be stable
arrows do not cross

LSD radix sort: Why does it work?

\section*{Pf 1. [thinking about the past]}
- If two strings differ on first character, key-indexed sort puts them in proper relative order.
- If two strings agree on first character, stability keeps them in proper relative order.

\section*{Pf 2. [thinking about the future]}
- If the characters not yet examined differ, it doesn't matter what we do now.
- If the characters not yet examined agree, stability ensures later pass won't affect order.

in order
by previous
passes

LSD radix sort implementation
Use k-indexed counting on characters, moving right to left

Review: summary of the performance of sorting algorithms

Frequency of execution of instructions in the inner loop:
\begin{tabular}{ccccc}
algorithm & guarantee & average & \begin{tabular}{c}
extra \\
space
\end{tabular} & \begin{tabular}{c}
assumptions \\
on keys
\end{tabular} \\
insertion sort & \(\mathrm{N}^{2} / 2\) & \(\mathrm{~N}^{2} / 4\) & no & Comparable \\
selection sort & \(\mathrm{N}^{2} / 2\) & \(\mathrm{~N}^{2} / 2\) & no & Comparable \\
mergesort & NlgN & NlgN & N & Comparable \\
quicksort & \(1.39 \mathrm{~N} \lg \mathrm{~N}\) & 1.39 Nlg N & clg N & Comparable \\
LSD radix sort & WN & WN & \(\mathrm{N}+\mathrm{R}\) & digital
\end{tabular}

\section*{Sorting Challenge}

Problem: sort a huge commercial database on a fixed-length key field Ex: account number, date, SS number

Which sorting method to use?
1. insertion sort
2. mergesort
3. quicksort
4. LSD radix sort
\begin{tabular}{|l|c|l|l|}
\hline & B14-99-8765 & & \\
\hline & \(756-12-A D 46\) & & \\
\hline & CX6-92-0112 & & \\
\hline & \(332-\) WX-9877 & & \\
\hline & \(375-99-\) QWAX & & \\
\hline & CV2-59-0221 & & \\
\hline & \(7-\) SS-0371 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline KJ- _ 888 & \\
\hline 715-Yт-013C & \\
\hline MJ0-PP-983F & \\
\hline 908-KK-33TY & \\
\hline BBN-63-23RE & \\
\hline 48G-BM-912D & \\
\hline 982-ER-9P1B & \\
\hline WBL-37-PB81 & \\
\hline 810-F4-J872 & \\
\hline LE9-N8-XX76 & \\
\hline 908-KK-33TY & \\
\hline B14-99-8765 & \\
\hline Cx6-92-0112 & \\
\hline CV2-59-0221 & \\
\hline 332-Wx-23SQ & \\
\hline 332-6A-9877 & \\
\hline
\end{tabular}

Sorting Challenge

Problem: sort huge files of random 128-bit numbers Ex: supercomputer sort, internet router

Which sorting method to use?
1. insertion sort
2. mergesort
3. quicksort
4. LSD radix sort

\section*{LSD radix sort: a moment in history (1960s)}

card punch

punched cards

card reader

mainframe

line printer

To sort a card deck
1. start on right column
2. put cards into hopper
3. machine distributes into bins
4. pick up cards (stable)
5. move left one column
6. continue until sorted

card sorter

LSD radix sort actually predates computers

\title{
key-indexed counting \\ ILSD radix sort
}
>MSD radix sort
>3-way radix quicksort
>application: LRS

\section*{MSD Radix Sort}

Most-significant-digit-first radix sort.
- Partition file into \(R\) pieces according to first character (use key-indexed counting)
- Recursively sort all strings that start with each character (key-indexed counts delineate files to sort)

\section*{MSD radix sort implementation}

Use key-indexed counting on first character, recursively sort subfiles

\section*{MSD radix sort: potential for disastrous performance}

\section*{Observation 1: Much too slow for small files}
- all counts must be initialized to zero
- ASCII (256 counts): \(100 x\) slower than copy pass for \(N=2\).
- Unicode (65536 counts): 30,000x slower for \(N=2\)

Observation 2: Huge number of small files because of recursion.
- keys all different: up to N/2 files of size 2
- ASCII: 100x slower than copy pass for all N.
- Unicode: \(30,000 x\) slower for all \(N\)
switch to Unicode might be a big surprise

Solution. Switch to insertion sort for small N.

\section*{MSD radix sort bonuses}

Bonus 1: May not have to examine all of the keys.

Bonus 2: Works for variable-length keys (String values)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & a & c & e & t & - & n & e & \0 & & \\
\hline 1 & a & d & d & i & \(t\) & i & - & n & 10 & \\
\hline 2 & b & a & d & g & e & 10 & & & & \\
\hline 3 & b & e & d & a & \(z\) & z & 1 & e & d & 10 \\
\hline 4 & b & e & e & h & i & v & e & \0 & & \\
\hline 5 & c & a & b & i & n & e & t & r & y & 10 \\
\hline 6 & d & a & b & b & 1 & e & 10 & & & \\
\hline 7 & d & a & d & 10 & & & & & & \\
\hline
\end{tabular}

Implication: sublinear sorts (!)

\section*{MSD string sort implementation}

Use key-indexed counting on first character, recursively sort subfiles

\section*{Sorting Challenge (revisited)}

Problem: sort huge files of random 128-bit numbers
Ex: supercomputer sort, internet router

Which sorting method to use?
1. insertion sort
2. mergesort
3. quicksort
4. LSD radix sort on MSDs
\(2^{16}=65536\) counters
divide each word into 16-bit "chars" sort on leading 32 bits in 2 passes
finish with insertion sort
examines only \(\sim 25 \%\) of the data

\section*{MSD radix sort versus quicksort for strings}

Disadvantages of MSD radix sort.
- Accesses memory "randomly" (cache inefficient)
- Inner loop has a lot of instructions.
- Extra space for counters.
- Extra space for temp (or complicated inplace key-indexed counting).

Disadvantage of quicksort.
- \(N \lg N\), not linear.
- Has to rescan long keys for compares
- [but stay tuned]

\title{
> key-indexed counting
}

LLSD radix sort
MSD radix sort
> 3-way radix quicksort
rapplication: LRS

Idea. Do 3-way partitioning on the dth character.
- cheaper than R-way partitioning of MSD radix sort
- need not examine again chars equal to the partitioning char

Recursive structure: MSD radix sort vs. 3-Way radix quicksort

\section*{3-way radix quicksort collapses empty links in MSD recursion tree.}

MSD radix sort recursion tree
(1035 null links, not shown)

3-way radix quicksort recursion tree
(155 null links)

\section*{3-Way radix quicksort}
```

private static void quicksortX(String a[], int lo, int hi, int d)
{
if (hi - lo <= 0) return;
int i = lo-1, j = hi;
int p = lo-1, q = hi;
char v = a[hi].charAt (d);
while (i < j)
{
while (a[++i].charAt(d) < v) if (i == hi) break;
while (v < a[--j].charAt(d)) if (j == lo) break;
if (i > j) break;
exch(a, i, j);
if (a[i].charAt (d) == v) exch(a, ++p, i);
if (a[j].charAt(d) == v) exch(a, j, --q);
}
if (p == q)
{
if (v != '\0') quicksortX(a, lo, hi, d+1);
return;
}
if (a[i].charAt(d) < v) i++;
for (int k = lo; k <= p; k++) exch(a, k, j--);
for (int k = hi; k >= q; k--) exch(a, k, i++);
quicksortX(a, lo, j, d);
if ((i == hi) \&\& (a[i].charAt(d) == v)) i++;
if (v != '\O') quicksortX(a, j+1, i-1, d+1);
quicksortX(a, i, hi, d);
}

```

3-Way Radix quicksort vs. standard quicksort
standard quicksort.
- uses \(2 \mathrm{~N} \ln \mathrm{~N}\) string comparisons on average.
- uses costly compares for long keys that differ only at the end, and this is a common case!

3-way radix quicksort.
- avoids re-comparing initial parts of the string.
- adapts to data: uses just "enough" characters to resolve order.
- uses \(2 \mathrm{~N} \ln \mathrm{~N}\) character comparisons on average for random strings.
- is sub-linear when strings are long

Theorem. Quicksort with 3-way partitioning is OPTIMAL. No sorting algorithm can examine fewer chars on any input

Pf. Ties cost to entropy. Beyond scope of 226.

3-Way Radix quicksort vs. MSD radix sort

\section*{MSD radix sort}
- has a long inner loop
- is cache-inefficient
- repeatedly initializes counters for long stretches of equal chars, and this is a common case!

\author{
Ex. Library call numbers
}

3-way radix quicksort
- uses one compare for equal chars.
- is cache-friendly
- adapts to data: uses just "enough" characters to resolve order.

3-way radix quicksort is the method of choice for sorting strings
> key-indexed counting
LLSD radix sort
MSD radix sort
3-way radix quicksort
> application: LRS

\section*{Longest repeated substring}

Given a string of \(N\) characters, find the longest repeated substring.
 g gagagttatactggtcgtcaacctana c ctaatcctigtgtgtacacacactacta ctgtcgtcgtcatatatcgagatcatcga accg gaaggccg gacaag gcgg g g g gtat a gatagatagaccctagatacacataca tagatctagctagctagctcatcgataca cactctcacactagagttatactggtc a acacactactacgacagacgaccacca gacagaaaaaactctatatctataaa

Longest repeated substring
Given a string of \(N\) characters, find the longest repeated substring.
 g gagagttatactg gtcgtcaacctgaa c ctaatcctegtgtgtacacacactacta ctgtcgtcgtcatatatcgagatcatcga accg gaaggccg gacaag gcg g g g g gtat a gatagatagaccctagatacacataca tagatctagctagctagctcatcgataca
 a acacactactacgacagacgaccacca gacagaaaaaa actctatatctataaa

\section*{String processing}

String. Sequence of characters.

Important fundamental abstraction

Natural languages, Java programs, genomic sequences, ...

The digital information that underlies biochemistry, cell biology, and development can be represented by a simple string of \(G^{\prime} s, A^{\prime} s, T^{\prime} s\) and \(C^{\prime} s\). This string is the root data structure of an organism's biology. -M. V. Olson

\section*{Using Strings in Java}

String concatenation: append one string to end of another string.
Substring: extract a contiguous list of characters from a string.

```

String s = "strings"; // s = "strings"
char c = s.charAt(2);
// c = 'r'
String t = s.substring(2, 6);
// t = "ring"
String u = s + t;
// u = "stringsring"

```

\section*{Implementing Strings In Java}

\section*{Memory. \(40+2 \mathrm{~N}\) bytes for a virgin string!}
could use byte array instead of String to save space
```

public final class String implements Comparable<String>
{
private char[] value; // characters
private int offset; // index of first char into array
private int count; // length of string
private int hash; // cache of hashCode()
private String(int offset, int count, char[] value)
{
this.offset = offset;
this.count = count;
this.value = value;
}
public String substring(int from, int to)
{
return new String(offset + from, to - from, value); }
...
}

```

\section*{String vs. StringBuilder}

String. [immutable] Fast substring, slow concatenation. StringBuilder. [mutable] Slow substring, fast (amortized) append.

Ex. Reverse a string
```

public static String reverse(String s)
{
String rev = "";
for (int i = s.length() - 1; i >= 0; i--) quadratic time
rev += s.charAt(i);
return rev;
}
public static String reverse(String s)
{
StringBuilder rev = new StringBuilder();
for (int i = s.length() - 1; i >= 0; i--)
rev.append(s.charAt (i));
return rev.toString();
}

```

\section*{Warmup: longest common prefix}

Given two strings, find the longest substring that is a prefix of both

```

public static String lcp(String s, String t)
{
int n = Math.min(s.length(), t.length());
for (int i = 0; i < n; i++)
{
if (s.charAt(i) != t.charAt (i))
return s.substring(0, i);
}
return s.substring(0, n);
}

```

Would be quadratic with StringBuilder Lesson: cost depends on implementation

This lecture: need constant-time substring (), use String

Longest repeated substring
Given a string of \(N\) characters, find the longest repeated substring.
Classic string-processing problem.

Applications
- bioinformatics.
- cryptanalysis.

Brute force.
- Try all indices i and j for start of possible match, and check.
- Time proportional to \(M N^{2}\), where \(M\) is length of longest match.

Longest repeated substring
Suffix sort solution.
- form \(N\) suffixes of original string.
- sort to bring longest repeated substrings together.
- check LCP of adjacent substrings to find longest match
suffixes

\section*{Suffix Sorting: Java Implementation}
```

public class LRS {
public static void main(String[] args) {
String s = StdIn.readAll(); read input
int N = s.length();
String[] suffixes = new String[N];
for (int i = 0; i < N; i++) « create suffixes
suffixes[i] = s.substring(i, N);
Arrays.sort(suffixes); \& sort suffixes
String lrs = "";
for (int i = 0; i < N - 1; i++) {
String x = lcp(suffixes[i], suffixes[i+1]);
if (x.length() > lrs.length()) lrs = x;
}
System.out.println(lrs);
}
}
% java LRS < mobydick.txt
,- Such a funny, sporty, gamy, jesty, joky, hoky-poky lad, is the Ocean, oh! Th

```

Sorting Challenge

Problem: suffix sort a long string
Ex. Moby Dick ~1.2 million chars

Which sorting method to use?
1. insertion sort
2. mergesort
3. quicksort
4. LSD radix sort
5. MSD radix sort
\(\checkmark\) 6. 3-way radix quicksort

> only if LRS is not long (!)

\section*{Suffix sort experimental results}
\begin{tabular}{cc}
algorithm & \begin{tabular}{c}
time to suffix- \\
sort Moby Dick \\
(seconds)
\end{tabular} \\
brute-force & 36.000 (est.) \\
quicksort & 9.5 \\
LSD & not fixed-length \\
MSD & 395 \\
MSD with cutoff & 6.8 \\
3-way radix quicksort & 2.8
\end{tabular}

\section*{Suffix Sorting: Worst-case input}

Longest match not long:
- hard to beat 3-way radix quicksort.

Longest match very long:
- radix sorts are quadratic in the length of the longest match
- Ex: two copies of Moby Dick.

Can we do better? linearithmic? linear?

Observation. Must find longest repeated substring while suffix sorting to beat \(N^{2}\).
```

abcdefghi
abcdefghiabcdefghi
bcdefghi
bcdefghiabcdefghi
cdefghi
cdefghiabcdefgh
defghi
efghiabcdefghi
efghi
fghiabcdefghi
fghi
ghiabcdefghi
fhi
hiabcdefghi
hi
iabcdefghi
i

```

Input: "abcdeghiabcdefghi"

\section*{Fast suffix sorting}

\section*{Manber's MSD algorithm}
- phase 0: sort on first character using key-indexed sort.
- phase i: given list of suffixes sorted on first \(2^{i-1}\) characters, create list of suffixes sorted on first \(2^{i}\) characters

Running time
- finishes after \(\lg N\) phases
- obvious upper bound on growth of total time: \(O\left(N(\lg N)^{2}\right)\)
- actual growth of total time (proof omitted): \(\sim N \lg N\).
not many subfiles if not much repetition
3-way quicksort handles equal keys if repetition

Best algorithm in theory is linear (but more complicated to implement).

Linearithmic suffix sort example: phase 0

Linearithmic suffix sort example: phase 1
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{index sort} & \multicolumn{2}{|l|}{inverse} \\
\hline babaaaabcbabaaaaa0 & 17 & 0 & 0 & 12 \\
\hline 1 abaaaabcbabaaaaa0 & 16 & a 0 & 1 & 10 \\
\hline 2 baaaabcbabaaaaa0 & 12 & aamaa & 2 & 15 \\
\hline 3 aaaabcbabaaaaa0 & 3 & aaaabcbabaaaaa0 & 3 & 3 \\
\hline 4 aaabcbabaaaaa0 & 4 & aaabcbabaaaaa & 4 & 4 \\
\hline 5 aabcbabaaaaa0 & 5 & aabcbabaaaaa0 & 5 & 5 \\
\hline 6 abcbabaaaaa0 & 13 & aaaa & 6 & 9 \\
\hline 7 bcbabaaaaa0 & 15 & aa 0 & 7 & 16 \\
\hline 8 cbabaaaaa0 & 14 & aaa0 & 8 & 17 \\
\hline 9 babaaaaa0 & 6 & abcbabaaaaa0 & 9 & 13 \\
\hline 10 abaaaaa0 & 1 & abaaaabcbabaaaaa0 & 10 & 11 \\
\hline 11 baaaaa0 & 10 & abaaaaa & 11 & 14 \\
\hline 12 aaaaa0 & 0 & balbaaaabcbabaaaaa0 & 12 & 2 \\
\hline 13 aaaa0 & 9 & babaaaaa0 & 13 & 6 \\
\hline 14 aaa0 & 11 & baaaaa0 & 14 & 8 \\
\hline 15 aa0 & 2 & baaaabcbabaaaaa0 & 15 & 7 \\
\hline 16 a0 & 7 & bcbabaaaaa0 & 16 & 1 \\
\hline 170 & 8 & cbabaaaaa0 & 17 & 0 \\
\hline
\end{tabular}

Linearithmic suffix sort example: phase 2
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{index sort} & \multicolumn{2}{|l|}{inverse} \\
\hline 0 babaaaabcbabaaaaa0 & 17 & 0 & 0 & 14 \\
\hline 1 abaaaabcbabaaaaa0 & 16 & a 0 & 1 & 9 \\
\hline 2 baaaabcbabaaaaa0 & 15 & aa0 & 2 & 12 \\
\hline 3 aaaabcbabaaaaa0 & 14 & aaa0 & 3 & 4 \\
\hline 4 aaabcbabaaaaa0 & 3 & aaaabcbabaaaaa0 & 4 & 7 \\
\hline 5 aabcbabaaaaa0 & 12 & aaaa 0 & 5 & 8 \\
\hline 6 abcbabaaaaa0 & 13 & aaaa0 & 6 & 11 \\
\hline 7 bcbabaaaaa0 & 4 & aaabcbabaaaaa0 & 7 & 16 \\
\hline 8 cbabaaaaa0 & 5 & aabcbabaaaaa0 & 8 & 17 \\
\hline 9 babaaaaa0 & 1 & abaaaabcbabaaaaa0 & 9 & 15 \\
\hline 10 abaaaaa0 & 10 & abaazaa0 & 10 & 10 \\
\hline 11 baaaaa0 & 6 & abcbabaaaaa0 & 11 & 13 \\
\hline 12 aaaaa0 & 2 & baaa \({ }^{\text {abcbabaaaaa0 }}\) & 12 & 5 \\
\hline 13 aaaa0 & & baaaaa & 13 & 6 \\
\hline 14 aaa0 & 0 & baba aaabcbabaaaaa0 & 14 & 3 \\
\hline 15 aa0 & 9 & babaaaaa0 & 15 & 2 \\
\hline 16 a0 & 7 & bcbabaaaaa0 & 16 & 1 \\
\hline 170 & 8 & cbabaaaaa0 & 17 & 0 \\
\hline
\end{tabular}

Linearithmic suffix sort example: phase 3

Linearithmic suffix sort: key idea
Achieve constant-time string compare by indexing into inverse
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{\begin{tabular}{l}
index \\
sort
\end{tabular}} & \multicolumn{2}{|l|}{inverse} \\
\hline 0 & babaaaabcbabaaaaa0 & 17 & 0 & 0 & 14 \\
\hline 1 & abaaaabcbabaaaaa0 & 16 & a0 & 1 & 9 \\
\hline 2 & baaaabcbabaaaaa0 & 15 & aa0 & 2 & 12 \\
\hline 3 & aaaabcbabaaaaa0 & 14 & aaa0 & 3 & 4 \\
\hline 4 & aaabcbabaaaaa0 & 3 & aaaabcbabaaaaa0 & 4 & 7 \\
\hline 5 & aabcbabaaaaa0 & 12 & aaaaa & 5 & 8 \\
\hline 6 & abcbabaaaaa0 & 13 & aaaab & 6 & 11 \\
\hline 7 & bcbabaaaaa0 & 4 & aaabcbabaaaaa0 & 7 & 16 \\
\hline 8 & cbabaaaaa0 & 5 & aabcbabaaaaa0 & 8 & 17 \\
\hline 9 & babaaaaa0 & 1 & abaaaabcbabaaaaa0 & 9 & 15 \\
\hline 10 & abaaaaa0 & 10 & abaaaaa0 & 10 & 10 \\
\hline 11 & baaaaa0 & 6 & abcbabaaaaa0 & 11 & 13 \\
\hline 12 & aaaaa & 2 & baaaabcbabaaaaa0 & 12 & 5 \\
\hline 13 & aaaa0 & \(0+4=4 \times 11\) & baaaaa0 & 13 & 6 \\
\hline 14 & aaa0 & 0 & babaaaabcbabaaaaa0 & 14 & 3 \\
\hline 15 & aa0 & & babajaaa0 & 15 & 2 \\
\hline 16 & a0 & \(9+4=13 \quad 7\) & bcbabaaaaa0 & 16 & 1 \\
\hline 17 & 0 & 8 & cbabaaaaa0 & 17 & 0 \\
\hline
\end{tabular}
\(13<4\) (because \(6<7\)) so \(9<0\)

\section*{Suffix sort experimental results}
\begin{tabular}{|c|c|c|c|}
\hline algorithm & time to suffixsort Moby Dick (seconds) & time to suffixsort AesopAesop (seconds) & \\
\hline brute-force & 36.000 (est.) & 4000 (est.) & \\
\hline quicksort & 9.5 & 167 & \\
\hline MSD & 395 & out of memory & counters in deep recursion \\
\hline MSD with cutoff & 6.8
28 & 162
400 & only 2 keys in subfiles with long matches \\
\hline 3-way radix quicksort & 2.8 & 400 & \\
\hline Manber MSD & 17 & 8.5 & \\
\hline
\end{tabular}

\section*{Radix sort summary}

We can develop linear-time sorts.
- comparisons not necessary for some types of keys
- use keys to index an array

We can develop sub-linear-time sorts.
- should measure amount of data in keys, not number of keys
- not all of the data has to be examined

No algorithm can examine fewer bits than 3-way radix quicksort
- 1.39 \(\mathrm{N} \lg \mathrm{N}\) bits for random data

Long strings are rarely random in practice.
- goal is often to learn the structure!
- may need specialized algorithms
lecture acronym cheatsheet
\begin{tabular}{c|c}
LSD & least significant digit \\
MSD & most significant digit \\
LCP & longest common prefix \\
LRS & longest repeated substring
\end{tabular}

\section*{Tries}

\section*{References:}

Algorithms in Java, Chapter 15
http://www.cs.princeton.edu/introalgsds/62search
> rules of the game
tries
TSTs
Dapplications

Review: summary of the performance of searching (symbol-table) algorithms

Frequency of execution of instructions in the inner loop:

\section*{Review}

\section*{Symbol tables.}
- Associate a value with a key.
- Search for value given key.

\section*{Balanced trees}
- use between \(\lg N\) and \(2 \lg N\) key comparisons
- support ordered iteration and other operations

Hash tables
- typically use 1-2 probes
- require good hash function for each key type

\section*{Radix sorting}
- some keys are inherently digital
- digital keys give linear and sublinear sorts

This lecture. Symbol tables for digital keys.

\section*{Digital keys (review)}

Many commonly-use key types are inherently digital (sequences of fixed-length characters)
```

interface

```

\section*{Examples}
- Strings
- 64-bit integers
```

interface Digital
{
public int charAt(int k);
public int length(int);
}

```

\section*{This lecture:}
- refer to fixed-length vs. variable-length strings
- \(R\) different characters for some fixed value \(R\).
- key type implements charAt () and length() methods
- code works for string and for key types that implement Digital.

Widely used in practice
- low-level bit-based keys
- string keys

\section*{Digital keys in applications}

Key = sequence of "digits."
- DNA: sequence of \(a, c, g, t\).
- IPv6 address: sequence of 128 bits.
- English words: sequence of lowercase letters.
- Protein: sequence of amino acids \(A, C, \ldots, Y\).
- Credit card number: sequence of 16 decimal digits.
- International words: sequence of Unicode characters.
- Library call numbers: sequence of letters, numbers, periods.

This lecture. Key = string over ASCII alphabet.

\section*{String Set API}

String set. Unordered collection of distinct strings.
\begin{tabular}{rll}
public class & StringSET & \\
\hline & StringSET () & create a set of strings \\
void & add(String key) & add string to set \\
boolean contains (String key) & is key in the set?
\end{tabular}

Typical client: Dedup (remove duplicate strings from input)
```

StringSET set = new StringSET();
while (!StdIn.isEmpty())
{
String key = StdIn.readString();
if (!set.contains(key))
{
set.add(key);
System.out.println(key);
}
}

```

This lecture: focus on StringSET implementation Same ideas improve STs with wider API

StringSET implementation cost summary

Challenge. Efficient performance for long keys (large L).
>rules of the game

\section*{> tries}

DISTS
applications

\section*{Tries}

Tries. [from retrieval, but pronounced "try"]
- Store characters in internal nodes, not keys.
- Store records in external nodes.
- Use the characters of the key to guide the search.

EX. sells sea shells by the sea

\section*{Tries}

\section*{Tries. [from retrieval, but pronounced "try"]}
- Store characters in internal nodes, not keys.
- Store records in external nodes.
- Use the characters of the key to guide the search.

EX. sells sea shells by the sea shore

\section*{Tries}
Q. How to handle case when one key is a prefix of another?

A1. Append sentinel character ' \(\backslash 0\) ' to every key so it never happens.
A2. Store extra bit to denote which nodes correspond to keys.

EX. she sells sea shells by the sea shore

\section*{Branching in tries}
Q. How to branch to next level?
A. One link for each possible character

EX. sells sea shells by the sea shore

\section*{R-way tie}

R-Way Trie: Java implementation
R-way existence trie: a node.

Node: references to \(R\) nodes.
```

private class Node
{
Node[] next = new Node[R];
boolean end;
}

```


8-way trie that represents \(\{\mathbf{a}, \mathbf{f}, \mathbf{h}\}\)

R-way trie implementation of StringSET
```

public class StringSET
{
private static final int R = 128;
emptytrie }\longrightarrow\mathrm{ private Node root = new Node();
private class Node
{
Node[] next = new Node[R];
boolean end;
}
public boolean contains(String s)
current digit
{ return contains(root, s, 0); }
private boolean contains(Node x, String s, int i)
{
if (x == null) return false;
if (i == s.length()) return x.end;
char c = s.charAt(i);
return contains(x.next[c], s, i+1);
}
public void add(String s)
// see next slide
}

```

R-way trie implementation of StringSET (continued)
```

public void add(String s)
{
root = add(root, s, 0);
}
private Node add(Node x, String s, int i)
{
if (x == null) x = new Node();
if (i == s.length()) x.end = true;
else
{
char c = s.charAt(i);
x.next[c] = add(x.next[c], s, i+1);
}
return x;
}

```

R-way trie performance characteristics
Time
- examine one character to move down one level in the trie
- trie has \(\sim \log _{R} N\) levels (not many!)
- need to check whole string for search hit (equality)
- search miss only involves examining a few characters

Space
- R empty links at each leaf
- 65536-way branching for Unicode impractical

Bottom line.
- method of choice for small R
- you use tries every day

- stay tuned for ways to address space waste

\section*{Sublinear search with tries}

Tries enable user to present string keys one char at a time

\section*{Search hit}
- can present possible matches after a few digits
- need to examine all \(L\) digits for equality

\section*{Search miss}
- could have mismatch on first character
- typical case: mismatch on first few characters

Bottom line: sublinear search cost (only a few characters)

Further help for Java string keys
- object equality test
- cached hash values

StringSET implementation cost summary
typical case
dedup
\begin{tabular}{|c|c|c|c|c|c|}
\hline implementation & Search hit & Insert & Space & moby & actors \\
\hline input * & \(L\) & \(L\) & \(L\) & 0.26 & 15.1 \\
red-black & \(L+\log N\) & \(\log N\) & \(C\) & 1.40 & 97.4 \\
hashing & \(L\) & \(L\) & \(C\) & 0.76 & 40.6 \\
R-way trie & \(L\) & \(\ll L\) & \(R N+C\) & 1.12 & out of memory \\
\hline
\end{tabular}

R-way trie
- faster than hashing for small \(R\)
- too much memory if \(R\) not small

65536-way trie for Unicode??

Challenge. Use less memory!
\(N=\) number of strings
\(L=\) size of string
\(C=\) number of characters in input
\(R=\) radix
\begin{tabular}{cccc}
file & megabytes & words & distinct \\
moby & 1.2 & 210 K & 32 K \\
actors & 82 & 11.4 M & 900 K
\end{tabular}

Digression: Out of memory?
" 640 K ought to be enough for anybody."
- attributed to Bill Gates, 1981
(commenting on the amount of RAM in personal computers)
" 64 MB of RAM may limit performance of some Windows XP features; therefore, 128 MB or higher is recommended for best performance." - Windows XP manual, 2002
"64 bit is coming to desktops, there is no doubt about that. But apart from Photoshop, I can't think of desktop applications where you would need more than 4GB of physical memory, which is what you have to have in order to benefit from this technology. Right now, it is costly." - Bill Gates, 2003

Digression: Out of memory?

A short (approximate) history
\begin{tabular}{cccccc}
& & \begin{tabular}{c}
address \\
bits
\end{tabular} & \begin{tabular}{c}
addressable \\
memory
\end{tabular} & \begin{tabular}{c}
typical actual \\
memory
\end{tabular} & cost \\
PDP-8 & 1960s & 12 & \(6 K\) & 6 K & \(\$ 16 \mathrm{~K}\) \\
PDP-10 & 1970s & 18 & 256 K & 256 K & \(\$ 1 \mathrm{M}\) \\
IBM S/360 & 1970 s & 24 & 4 M & 512 K & \(\$ 1 \mathrm{M}\) \\
VAX & 1980 s & 32 & \(4 G\) & \(1 M\) & \(\$ 1 \mathrm{M}\) \\
Pentium & 1990 s & 32 & \(4 G\) & \(1 G B\) & \(\$ 1 \mathrm{~K}\) \\
Xeon & 2000s & 64 & enough & \(4 G B\) & \(\$ 100\) \\
?? & future & \(128+\) & enough & enough & \(\$ 1\)
\end{tabular}

\section*{A modest proposal}

Number of atoms in the universe: < \(2^{266}\) (estimated)
Age of universe (estimated): 20 billion years \(\sim 2^{50}\) secs < \(2^{80}\) nanoseconds

How many bits address every atom that ever existed?

A modest proposal: use a unique 512-bit address for every object

512 bits is enough:
\begin{tabular}{ccc}
266 bits & 80 bits & 174 bits \\
place & time & cushion for whatever
\end{tabular}
current plan:
```

    128 bits }64\mathrm{ bits
    place (ipv6) place (machine)

```

Use trie to map to current location. 648 -bit chars
- wastes 255/256 actual memory
- need better use of memory
rules of the game
tries
>TSTs
>applications

Ternary Search Tries (TSTs)

Ternary search tries. [Bentley-Sedgewick, 1997]
- Store characters in internal nodes, records in external nodes.
- Use the characters of the key to guide the search
- Each node has three children
- Left (smaller), middle (equal), right (larger).

Ternary Search Tries (TSTs)

Ternary search tries. [Bentley-Sedgewick, 1997]
- Store characters in internal nodes, records in external nodes.
- Use the characters of the key to guide the search
- Each node has three children:
left (smaller), middle (equal), right (larger).

EX. sells sea shells by the sea shore

Observation. Only three null links in leaves!

\section*{26-Way Trie vs. TST}

TST. Collapses empty links in 26-way trie.

26-way trie (1035 null links, not shown)

TST (155 null links)

\section*{TST representation}

A TST string set is a TST node.

A TST node is five fields:
- a character c.
- a reference to a left TST. [smaller]
- a reference to a middle TST. [equal]
- a reference to a right TST. [larger]
- a bit to indicate whether this node is the last character in some key.
```

private class Node
{
char C;
Node l, m, r;
boolean end;
}

```


TST implementation of contains () for StringSET

Recursive code practically writes itself!
```

public boolean contains(String s)
{
if (s.length() == 0) return false;
return contains(root, s, 0);
}
private boolean contains(Node x, String s, int i)
{
if (x == null) return false;
char c = s.charAt(i);
if (c<x.c) return contains(x.l, s, i);
else if (c > x.c) return contains(x.r, s, i);
else if (i < s.length()-1) return contains(x.m, s, i+1);
else return x.end;
}

```

TST implementation of add() for StringSET
```

public void add(String s)
{
root = add(root, s, 0);
}
private Node add(Node x, String s, int i)
{
char c = s.charAt(i);
if (x == null) x = new Node(c);
if (c < x.c) x.l = add(x.l, s, i);
else if (c > x.c) x.r = add(x.r, s, i);
else if (i < s.length()-1) x.m = add(x.m, s, i+1);
else x.end = true;
return x;
}

```

StringSET implementation cost summary
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{typical case} & \multicolumn{2}{|r|}{dedup} \\
\hline implementation & Search hit & Insent & Space & moby & actors \\
\hline input * & L & L & L & 0.26 & 15.1 \\
\hline red-black & \(L+\log N\) & \(\log N\) & \(C\) & 1.40 & 97.4 \\
\hline hashing & L & L & \(C\) & 0.76 & 40.6 \\
\hline R-way trie & L & \(L\) & \(R N+C\) & 1.12 & out of memory \\
\hline TST & L & L & \(3 C\) & 0.72 & 38.7 \\
\hline
\end{tabular}

TST
\(N\) = number of strings
\(L\) = size of string
\(C=\) number of characters in input
\(R=\operatorname{radix}\)
- faster than hashing
- space usage independent of \(R\)
- supports extended APIs (stay tuned)
- Unicode no problem

Space-efficient trie: challenge met.

TST With R \({ }^{2}\) Branching At Root

Hybrid of R-way and TST.
- Do R-way or \(\mathrm{R}^{2}\)-way branching at root.
- Each of \(R^{2}\) root nodes points to a TST.

Note. Need special test for one-letter words.

StringSET implementation cost summary
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{typical case} & \multicolumn{2}{|r|}{dedup} \\
\hline implementation & Search hit & Insert & Space & moby & actors \\
\hline input * & L & L & L & 0.26 & 15.1 \\
\hline red-black & \(L+\log N\) & \(\log N\) & \(C\) & 1.40 & 97.4 \\
\hline hashing & L & L & \(c\) & 0.76 & 40.6 \\
\hline R-way trie & \(L\) & \(L\) & \(R N+C\) & 1.12 & out of memory \\
\hline TST & L & L & \(3 C\) & . 72 & 38.7 \\
\hline TST with R \({ }^{2}\) & L & L & \(3 C+R^{2}\) & . 51 & 32.7 \\
\hline
\end{tabular}

TST performance even better with nonuniform keys
\begin{tabular}{ll}
& WUS-------10706-----7---10 \\
& WUS-------12692-----4---27 \\
Ex. Library call numbers & WLSOC------2542----30 \\
LTK--6015-P-63-1988 \\
LDS---361-H-4
\end{tabular} TSTS 5 times faster than hashing

\section*{TST summary}

\section*{Hashing.}
- need to examine entire key
- hits and misses cost about the same.
- need good hash function for every key type
- no help for ordered-key APIs

TSTs.
- need to examine just enough key characters
- search miss may only involve a few characters
- works only for keys types that implement charat ()
- can handle ordered-key APIs

\section*{Bottom line:}

TSTs are faster than hashing and more flexible than LL RB trees
> rules of the game
\(\downarrow\) tries
TSTs
, applications

\section*{Extending the StringSET API}

Add. Insert a key.
Contains. Check if given key in the set.
Delete. Delete key from the set.

Sort. Iterate over keys in ascending order.
Select. Find the \(\mathrm{k}^{\text {th }}\) largest key.
Range search. Find all elements between \(k_{1}\) and \(k_{2}\).

Longest prefix match. Find longest prefix match.
Wildcard match. Allow wildcard characters.
Near neighbor search. Find strings that differ in \(\leq P\) chars.

\section*{Longest Prefix Match}

Find string in set with longest prefix matching given key.

Ex. Search IP database for longest prefix matching destination IP, and route packets accordingly.
```

"128"
"128.112"
"128.112.136"
"128.112.055"
"128.112.055.15"
"128.112.155.11"
"128.112.155.13"
"128.222"
"128.222.136"
prefix("128.112.136.11") = "128.112.136"
prefix("128.166.123.45") = "128"

```

R-way trie implementation of longest prefix match operation
Find string in set with longest prefix matching a given key.
```

public String prefix(String s)
{
int length = prefix(root, s, 0);
return s.substring(0, length);
}
private int prefix(Node x, String s, int i)
{
if (x == null) return 0;
int length = 0;
if (x.end) length = i;
if (i == s.length()) return length;
char c = s.charAt(i);
return Math.max(length, prefix(x.next[c], s, i+1));
}

```

\section*{Wildcard Match}

Wildcard match. Use wildcard . to match any character.
```

coalizer
coberger
codifier
cofaster
cofather
cognizer
cohelper
colander
coleader
...
compiler
...
composer
computer
cowkeper
acresce
acroach
acuracy
octarch
science
scranch
scratch
scrauch
screich
scrinch
scritch
scrunch
scudick
scutock
.c...c.

```
co....er

TST implementation of wildcard match operation

Wildcard match. Use wildcard . to match any character.
- Search as usual if query character is not a period.
- Go down all three branches if query character is a period.
```

                                    for printing out matches
    public void wildcard(String s)
(use stringBuilder for long keys)
{ wildcard(root, s, 0, ""); }
private void wildcard(Node x, String s, int i, String prefix)
{
if (x == null) return;
char c = s.charAt(i);
if (c == '.' || c < x.c) wildcard(x.left, s, i, prefix);
if (c == '.' || c == x.c)
{
if (i < s.length() - 1)
wildcard(x.mid, s, i+1, prefix + x.c);
else if (x.end)
System.out.println(prefix + x.c);
}
if (c == '.' || c > x.c) wildcard(x.right, s, i, prefix);
}

```

\section*{T9 Texting}

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key until the desired letter appears.

T9 text input. ["A much faster and more fun way to enter text."]
- Find all words that correspond to given sequence of numbers.
- Press 0 to see all completion options.

Ex: hello
- Multi-tap: 4433555555666
- T9: 43556

www.t9.com

\section*{A Letter to t9.com}
```

To: info@t9support.com
Date: Tue, 25 Oct 2005 14:27:21 -0400 (EDT)
Dear T9 texting folks,
I enjoyed learning about the T9 text system
from your webpage, and used it as an example
in my data structures and algorithms class.
However, one of my students noticed a bug
in your phone keypad
http://www.t9.com/images/how.gif
Somehow, it is missing the letter s. (!)
Just wanted to bring this information to
your attention and thank you for your website.
Regards,
Kevin

```


\section*{A world without "s" ??}
```

To: "'Kevin Wayne'" [wayne@CS.Princeton.EDU](mailto:wayne@CS.Princeton.EDU)
Date: Tue, 25 Oct 2005 12:44:42 -0700
Thank you Kevin.
I am glad that you find T9 o valuable for your
cla. I had not noticed thi before. Thank for
writing in and letting u know.
Take care,
Brooke nyder
OEM Dev upport
AOL/Tegic Communication
1000 Dexter Ave N. uite 300
eattle, WA 98109
ALL INFORMATION CONTAINED IN THIS EMAIL IS CONIDERED CONFIDENTIAL AND PROPERTY OF AOL/TEGIC COMMUNICATION

```

\section*{TST: Collapsing 1-Way Branches}

Collapsing 1-way branches at bottom.
- internal node stores char; external node stores full key.
- append sentinel character ' 10 ' to every key
- search hit ends at leaf with given key.
- search miss ends at null link or leaf with different key.

Collapsing interior 1-way branches
- keep char position in nodes
- need full compare at leaf

\section*{TST: Collapsing 1-Way Branches}

Collapsing 1-way branches at bottom.
- internal node stores char; external node stores full key.
- append sentinel character ' 10 ' to every key
- search hit ends at leaf with given key.
- search miss ends at null link or leaf with different key.

Collapsing interior 1-way branches
- keep char position in nodes
- need full compare at leaf

StringSET implementation cost summary
\begin{tabular}{|c|c|c|c|}
\hline implementation & Search hit & Insent & Space \\
\hline input * & L & L & L \\
red-black & \(\mathrm{L}+\log \mathrm{N}\) & \(\log N\) & \(C\) \\
hashing & L & L & \(C\) \\
R-way trie & L & L & \(\mathrm{RN}+\mathrm{C}\) \\
TST & L & L & \(3 C\) \\
TST with R & & L & L \\
R-way with no 1-way & \(\log _{R} N\) & \(\log R \mathrm{C}\) & \(\mathrm{RN}+\mathrm{C}\) \\
TST with no 1-way & \(\log N\) & \(\log N\) & \(C\) \\
\hline
\end{tabular}

Challenge met.
- Efficient performance for arbitrarily long keys.
- Search time is independent of key length!

A classic algorithm
Patricia tries. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]
- Collapse one-way branches in binary trie.
- Thread trie to eliminate multiple node types.

Applications.
- Database search.
- P2P network search.
- IP routing tables: find longest prefix match.
- Compressed quad-tree for N -body simulation.
- Efficiently storing and querying XML documents.
(Just slightly) beyond the scope of COS 226 (see Program 15.7)

\section*{Suffix Tree}

Suffix tree.
Threaded trie with collapsed 1-way branching for string suffixes.

\(\begin{array}{rccccccccccccc}\text { CODE: M } & \text { I } & \text { S } & \text { S } & \text { I } & \text { S } & \text { S } & \text { I } & \text { P } & \text { P } & \text { I } & \text { S } \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}\)
Applications.
- Longest common substring, longest repeated substring.
- Computational biology databases (BLAST, FASTA).
- Search for music by melody.
(Just slightly) beyond the scope of COS 226.

\section*{Symbol tables summary}

A success story in algorithm design and analysis.
Implementations are a critical part of our computational infrastructure.

Binary search trees. Randomized, red-black.
- performance guarantee: \(\log N\) compares
- supports extensions to API based on key order

Hash tables. Separate chaining, linear probing.
- performance guarantee: N/M probes
- requires good hash function for key type
- no support for API extensions
- enjoys systems support (ex: cached value for String)

Tries. R-way, TST.
- performance guarantee: \(\log N\) characters accessed
- supports extensions to API based on partial keys

Bottom line: you can get at anything by examining 50-100 bits (!!!)

\section*{Data Compression}
- introduction
- basic coding schemes
- an application
- entropy
, LZW codes

\section*{References:}

Algorithms 2nd edition, Chapter 22
http://www.cs.princeton.edu/introalgsds/65compression

\title{
> introduction
}

Dasic coding schemes
an application
> entropy
LZW codes

\section*{Data Compression}

Compression reduces the size of a file:
- To save space when storing it.
- To save time when transmitting it.
- Most files have lots of redundancy.

Who needs compression?
- Moore's law: \# transistors on a chip doubles every 18-24 months.
- Parkinson's law: data expands to fill space available.
- Text, images, sound, video, ...

> All of the books in the world contain no more information than is broadcast as video in a single large American city in a single year. Not all bits have equal value. -Carl Sagan

Basic concepts ancient (1950s), best technology recently developed.

\section*{Applications}

Generic file compression.
- Files: GZIP, BZIP, BOA.
- Archivers: PKZIP.
- File systems: NTFS.

Multimedia.
- Images: GIF, JPEG.
- Sound: MP3.
- Video: MPEG, DivX \({ }^{\text {TM }}\), HDTV.

Communication.
- ITU-T T4 Group 3 Fax.

- V.42bis modem.

Databases. Google.
Google

\section*{Encoding and decoding}

Message. Binary data \(M\) we want to compress.
Encode. Generate a "compressed" representation C(M).
Decode. Reconstruct original message or some approximation \(M^{\prime}\).

Compression ratio. Bits in \(C(M) /\) bits in \(M\).

Lossless. \(M=M^{\prime}, 50-75 \%\) or lower.
\(\longleftarrow\) this lecture
Ex. Natural language, source code, executables.

Lossy. \(M \approx M^{\prime}, 10 \%\) or lower.
Ex. Images, sound, video.
"Poetry is the art of lossy data compression."

\section*{Food for thought}

Data compression has been omnipresent since antiquity,
- Number systems.
- Natural languages.
- Mathematical notation.
has played a central role in communications technology,
- Braille.
- Morse code.
- Telephone system.
and is part of modern life.
- zip.
- MP3.
- MPEG.

What role will it play in the future?
Ex: If memory is to be cheap and ubiquitous, why are we doing lossy compression for music and movies??

\section*{introduction}
> basic coding schemes
an application
> entropy
LZW codes

\section*{Fixed length encoding}
- Use same number of bits for each symbol.
- k-bit code supports \(2^{k}\) different symbols

\section*{Ex. 7-bit ASCII}
\begin{tabular}{|ccc|}
\hline char & decimal & code \\
\hline NUL & 0 & 0 \\
. . & \(\ldots\) & \\
a & 97 & 1100001 \\
b & 98 & 1100010 \\
C & 99 & 1100011 \\
d & 100 & 1100100 \\
. . & \(\ldots\) & \\
\(\sim\) & 126 & 1111110 \\
& 127 & 1111111 \\
\hline
\end{tabular}
\begin{tabular}{cccccccccccccc}
\(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{r}\) & \(\mathbf{a}\) & \(\mathbf{c}\) & \(\mathbf{a}\) & \(\mathbf{d}\) & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{r}\) & \(\mathbf{a}\) & \(\mathbf{l}\) \\
1100001 & 1100010 & 1110010 & 1100001 & 1100011 & 1100001 & 1100100 & 1100001 & 1100010 & 111000 & 1100001 & 1111111
\end{tabular}

Fixed length encoding
- Use same number of bits for each symbol.
- k-bit code supports \(2^{k}\) different symbols

Ex. 3-bit custom code

Important detail: decoder needs to know the code!

Fixed length encoding: general scheme
- count number of different symbols.
- \(\lfloor\lg M\rfloor\) bits suffice to support \(M\) different symbols

Ex. genomic sequences
- 4 different codons
- 2 bits suffice

- Amazing but true: initial databases in 1990s did not use such a code!

Decoder needs to know the code
- can amortize over large number of files with the same code
- in general, can encode an \(N\)-char file with \(N\lfloor\lg M\rfloor+16\lfloor\lg M\rfloor\) bits

Variable-length encoding
Use different number of bits to encode different characters.

Ex. Morse code.

Issue: ambiguity.

SOS ?
IAMIE ?
EEWNI ?
V70 ?

\section*{Variable-length encoding}

Use different number of bits to encode different characters.
Q. How do we avoid ambiguity?

A1. Append special stop symbol to each codeword.
A2. Ensure that no encoding is a prefix of another.

Ex. custom prefix-free code
\begin{tabular}{|cc|}
\hline char & code \\
\hline a & 0 \\
b & 111 \\
c & 1010 \\
d & 100 \\
r & 110 \\
! & 1011 \\
\hline
\end{tabular}

Note 1: fixed-length codes are prefix-free
Note 2: can amortize cost of including the code over similar messages

\section*{Prefix-free code: Encoding and Decoding}

How to represent? Use a binary trie.
- Symbols are stored in leaves.
- Encoding is path to leaf.

Encoding.
- Method 1: start at leaf; follow path up to the root, and print bits in reverse order.

- Method 2: create ST of symbol-encoding pairs.

Decoding.
\begin{tabular}{|c|c|}
\hline char & encoding \\
\hline a & 0 \\
b & 111 \\
c & 1010 \\
d & 100 \\
r & 110 \\
l & 1011 \\
\hline
\end{tabular}

\section*{Providing the code}

\section*{How to transmit the trie?}
- send preorder traversal of trie. we use * as sentinel for internal nodes [what if no sentinel is available?]
- send number of characters to decode.
- send bits (packed 8 to the byte).

```

preorder traversal *a**d*c!*rb

# chars to decode

12
01111100101001000111111001011

```

If message is long, overhead of transmitting trie is small.
\begin{tabular}{|c|c|}
\hline char & encoding \\
\hline a & 0 \\
b & 111 \\
c & 1010 \\
d & 100 \\
r & 110 \\
! & 1011 \\
& \\
\hline
\end{tabular}

Prefix-free decoding implementation
```

public class PrefixFreeDecoder
{
private Node root = new Node();
private class Node
{
char ch;
Node left, right;
Node()
{
ch = StdIn.readChar();
if (ch == '*')
{
left = new Node();
right = new Node();
}
}
boolean isInternal() { }
}
public void decode()
{ /* See next slide. */ }
}

```

build tree from preorder traversal
*a**d*c!*rb

\section*{Prefix-free decoding iImplementation}
```

public void decode()
{
int N = StdIn.readInt();
for (int i = O; i < N; i++)
{
Node x = root;
while (x.isInternal())
Use bits, not chars }\xrightarrow{\mathrm{ in actual applications }}{{}\mathrm{ char bit = StdIn.readChar();
in actual applications if (bit == '0') x = x.left;
else if (bit == '1') x = x.right;
}
System.out.print(x.ch);
}
}

```
```

more code.txt
12
0111110010100100011111001011
% java PrefixFreeDecoder < code.txt
abacadabra!

```

\section*{Introduction to compression: summary}

Variable-length codes can provide better compression than fixed-length
\begin{tabular}{ccccccccccccc}
a & b & \(\mathbf{r}\) & a & c & a & d & a & b & r & a & ! \\
1100001 & 1100010 & 1110010 & 1100001 & 1100011 & 1100001 & 1100100 & 1100001 & 1100010 & 1110010 & 1100001 & 1111111
\end{tabular}
\begin{tabular}{cccccccccccc}
a & \(\mathbf{b}\) & \(\mathbf{r}\) & \(\mathbf{a}\) & \(\mathbf{c}\) & \(\mathbf{a}\) & \(\mathbf{d}\) & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{r}\) & \(\mathbf{a}\) & ! \\
000 & 001 & 100 & 000 & 010 & 000 & 011 & 000 & 001 & 100 & 000 & 111
\end{tabular}
\[
\begin{aligned}
& |a| c|c| c|c| c|c| c|c| c \mid \\
& |c| \\
& 0111110010100100011111001011
\end{aligned}
\]

Every trie defines a variable-length code
Q. What is the best variable length code for a given message?

\section*{Huffman coding}
Q. What is the best variable length code for a given message?
A. Huffman code. [David Huffman, 1950]

To compute Huffman code:
- count frequency \(p_{s}\) for each symbol \(s\) in message.
- start with one node corresponding to each symbol s (with weight \(p_{s}\)).
- repeat until single trie formed:
select two tries with min weight \(p_{1}\) and \(p_{2}\) merge into single trie with weight \(p_{1}+p_{2}\)

Applications. JPEG, MP3, MPEG, PKZIP, GZIP, ...

David Huffman

Huffman coding example
\[
\begin{aligned}
& a \quad b \quad r \quad a \quad c \quad a \quad d \quad a \quad b \quad r a \quad \text { ! } \\
& \begin{array}{l|l|l|l|l|l}
1 & 1 & 1 & 2 & 2 & 5 \\
\text { c } & \mathbf{l} & \text { d } & \mathbf{r} & \text { b } & \text { a }
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \text { d }
\end{aligned}
\]

\section*{Huffman trie construction code}
```

int[] freq = new int[128];
for (int i = 0; i < input.length(); i++)
{ freq[input.charAt(i)]++; }

```
MinPQ<Node> \(p q=\) new MinPQ<Node>();
for (int \(i=0 ; i<128 ; i++\))
 if (freq[i] > 0)
 pq.insert (new Node((char) i, freq[i], null, null));
while (pq.size() > 1)
\{
 Node \(\mathbf{x}=\mathrm{pq} . \mathrm{del}^{(M i n() ;}\)
 Node \(y=p q . d e l M i n() ;\)
 Node parent \(=\) new Node('*', \(x . f r e q+y . f r e q, ~ x, y)\);
 pq.insert (parent);
\}
root \(=\) pq.delMin();
two subtrees
internal node marker
total
frequency

\section*{Huffman encoding summary}

Theorem. Huffman coding is an optimal prefix-free code.
no prefix-free code uses fewer bits

\section*{Implementation.}
- pass 1: tabulate symbol frequencies and build trie
- pass 2: encode file by traversing trie or lookup table.

Running time. Use binary heap \(\Rightarrow O(M+N \log N)\).

Can we do better? [stay tuned]

\section*{introduction}
> basic coding schemes
an application
entropy
IZW codes

An application: compress a bitmap

Typical black-and-white-scanned image
300 pixels/inch
8.5 by 11 inches
\(300 * 8.5 * 300 * 11=8.415\) million bits

Bits are mostly white

Typical amount of text on a page:
40 lines * 75 chars per line \(=3000\) chars

\section*{Natural encoding of a bitmap}

\section*{one bit per pixel}

000000000000000000000000000011111111111111000000000 000000000000000000000000001111111111111111110000000 000000000000000000000001111111111111111111111110000 000000000000000000000011111111111111111111111111000 000000000000000000001111111111111111111111111111110 000000000000000000011111110000000000000000001111111 000000000000000000011111000000000000000000000011111 000000000000000000011100000000000000000000000000111 000000000000000000011100000000000000000000000000111 000000000000000000011100000000000000000000000000111 000000000000000000011100000000000000000000000000111 000000000000000000001111000000000000000000000001110 000000000000000000000011100000000000000000000111000 011 011 011 011 011 0110011

19-by-51 raster of letter ' \(q\) ' lying on its side

\section*{Run-length encoding of a bitmap}
natural encoding. \((19 \times 51)+6=975\) bits.
run-length encoding. \((63 \times 6)+6=384\) bits.

63 6-bit run lengths
\begin{tabular}{|c|c|}
\hline & 51 \\
\hline 000000000000000000000000000011111111111111000000000 & 28149 \\
\hline 000000000000000000000000001111111111111111110000000 & 26187 \\
\hline 000000000000000000000001111111111111111111111110000 & 23244 \\
\hline 000000000000000000000011111111111111111111111111000 & 22263 \\
\hline 000000000000000000001111111111111111111111111111110 & 20301 \\
\hline 000000000000000000011111110000000000000000001111111 & 197187 \\
\hline 000000000000000000011111000000000000000000000011111 & 195225 \\
\hline 000000000000000000011100000000000000000000000000111 & 193263 \\
\hline 000000000000000000001111000000000000000000000001110 & \\
\hline 000000000000000000000011100000000000000000000111000 & 2232033 \\
\hline 011 & 150 \\
\hline 0110011 & 12462 \\
\hline
\end{tabular}

19-by-51 raster of letter ' \(q\) ' lying on its side

\section*{Run-length encoding}
- Exploit long runs of repeated characters.
- Bitmaps: runs alternate between 0 and 1; just output run lengths.
- Issue: how to encode run lengths (!)

- Does not compress when runs are short.

Runs are long in typical applications (such as black-and-white bitmaps).

Run-length encoding and Huffman codes in the wild

ITU-T T4 Group 3 Fax for black-and-white bitmap images (~1980)
- up to 1728 pixels per line
- typically mostly white.

Step 1. Use run-length encoding.
Step 2. Encode run lengths using two Huffman codes.
\begin{tabular}{|c|c|c|c|c|c|c|c|ccc|}
\hline
\end{tabular}

\section*{BW bitmap compression: another approach}

Fax machine (~1980)
- slow scanner produces lines in sequential order
- compress to save time (reduce number of bits to send)

Electronic documents (~2000)
- high-resolution scanners produce huge files
- compress to save space (reduce number of bits to save)

\section*{Idea:}
- use OCR to get back to ASCII (!)
- use Huffman on ASCII string (!)

\section*{Ex. Typical page}
- 40 lines, 75 chars/line ~ 3000 chars
- compress to ~ 2000 chars with Huffman code
- reduce file size by a factor of 500 (! ?)

Bottom line: Any extra information about file can yield dramatic gains

\title{
> introduction \\ > basic coding schemes \\ Dan application
}
entropy
LZW codes

What data can be compressed?
US Patent 5,533,051 on "Methods for Data Compression", which is capable of compression all files.

Slashdot reports of the Zero Space Tuner \({ }^{\text {TM }}\) and BinaryAccelerator \({ }^{\text {TM }}\).
"ZeoSync has announced a breakthrough in data compression that allows for 100:1 lossless compression of random data. If this is true, our bandwidth problems just got a lot smaller...."

\section*{Perpetual Motion Machines}

Universal data compression algorithms are the analog of perpetual motion machines.

Closed-cycle mill by Robert Fludd, 1618

Gravity engine by Bob Schadewald

Reference: Museum of Unworkable Devices by Donald E. Simanek
http://www.lhup.edu/~dsimanek/museum/unwork.htm

\section*{What data can be compressed?}

Theorem. Impossible to losslessly compress all files.
Pf 1.
- consider all 1,000 bit messages.
- \(2^{1000}\) possible messages.
- only \(2^{999}+2^{998}+\ldots+1\) can be encoded with \(\leq 999\) bits.
- only 1 in \(2^{499}\) can be encoded with \(\leq 500\) bits!

Pf 2 (by contradiction).
- given a file \(M\), compress it to get a smaller file \(M_{1}\).
- compress that file to get a still smaller file \(M_{2}\).
- continue until reaching file size 0 .
- implication: all files can be compressed with 0 bits!

Practical test for any compression algorithm:
- given a file \(M\), compress it to get a (smaller, you hope) file \(M_{1}\)
- compress that file to get a still smaller file \(M_{2}\).
- continue until file size does not decrease

\section*{A difficult file to compress}

\section*{One million pseudo-random characters (\(a-p\))}
fclkkacifobjofmkgdcoiicnfmcpcjfccabckjamolnihkbgobcjbngjiceeelpfgcjiihppenefllhglfemdemgahlbpi ggmllmnefnhjelmgjncjcidlhkglhceninidmmgnobkeglpnadanfbecoonbiehglmpnhkkamdffpacjmgojmcaabpcjce cplfbgamlidceklhfkkmioljdnoaagiheiapaimlcnlljniggpeanbmojgkccogpmkmoifioeikefjidbadgdcepnhdpfj aeeapdjeofklpdeghidbgcaiemajllhnndigeihbebifemacfadnknhlbgincpmimdogimgeeomgeljfjgklkdgnhafoho npjbmlkapddhmepdnckeajebmeknmeejnmenbmnnfefdbhpmigbbjknjmobimamjjaaaffhlhiggaljbaijnebidpaeigd goghcihodnlhahllhhoojdfacnhadhgkfahmeaebccacgeojgikcoapknlomfignanedmajinlompjoaifiaejbcjcdibp kofcbmjiobbpdhfilfajkhfmppcngdneeinpnfafaeladbhhifechinknpdnplamackphekokigpddmmjnbngklhibohdf eaggmclllmdhafkldmimdbplggbbejkcmhlkjocjjlcngckfpfakmnpiaanffdjdlleiniilaenbnikgfnjfcophbgkhdg mfpoehfmkbpiaignphogbkelphobonmfghpdgmkfedkfkchceeldkcofaldinljjcgafimaanelmfkokcjekefkbmegcgj ifjcpjppnabldjoaafpbdafifgcoibbcmoffbbgigmngefpkmbhbghlbdjngenldhgnfbdlcmjdmoflhcogfjoldfjpaok epndejmnbiealkaofifekdjkgedgdlgbioacflfjlafbcaemgpjlagbdgilhcfdcamhfmppfgohjphlmhegjechgdpkklj pndphfcnnganmbmnggpphnckbieknjhilafkegboilajdppcodpeoddldjfcpialoalfeomjbphkmhnpdmcpgkgeaohfdm cnegmibjkajcdcpjcpgjminhhakihfgiiachfepffnilcooiciepoapmdjniimfbolchkibkbmhbkgconimkdchahcnhap fdkiapikencegcjapkjkfljgdlmgncpbakhjidapbldcgeekkjaoihbnbigmhboengpmedliofgioofdcphelapijcegej gcldcfodikalehbccpbbcfakkblmoobdmdgdkafbbkjnidoikfakjclbchambcpaepfeinmenmpoodadoecbgbmfkkeabi laoeoggghoekamaibhjibefmoppbhfbhffapjnodlofeihmjahmeipejlfhloefgmjhjnlomapjakhhjpncomippeanbik khekpcfgbgkmklipfbiikdkdcbolofhelipbkbjmjfoempccneaebklibmcaddlmjdcajpmhhaeedbbfpjafcndianlfcj mmbfncpdcccodeldhmnbdjmeajmboclkggojghlohlbhgjkhkmclohkgjamfmcchkchmiadjgjhjehflcbklfifackbecg joggpbkhlcmfhipflhmnmifpjmcoldbeghpcekhgmnahi jpabnomnokldjcpppbcpgcjofngmbdcpeeeiiiclmbbmfjkhl anckidhmbeanmlabncnccpbhoafajjicnfeenppoekmlddholnbdjapbfcajblbooiaepfmmeoafedflmdcbaodgeahimc gpcammjljoebpfmghogfckgmomecdipmodbcempidfnlcggpgbffoncajpncomalgoiikeolmigliikjkolgolfkdgiijj iooiokdihjbbofiooibakadjnedlodeeiijkliicnioimablfdpjiafcfineecbafaamheiipegegibioocmlmhjekfikf effmddhoakllnifdhckmbonbchfhhclecjamjildonjjdpifngbojianpljahpkindkdoanlldcbmlmhjfomifhmncikol jjhebidjdphpdepibfgdonjljfgifimniipogockpidamnkcpipglafmlmoacjibognbplejnikdoefccdpfkomkimffgj gielocdemnblimfmbkfbhkelkpfoheokfofochbmifleecbglmnfbnfncjmefnihdcoeiefllemnohlfdcmbdfebdmbeeb balggfbajdamplphdgiimehglpikbipnkkecekhilchhhfaeafbbfdmcjojfhpponglkfdmhjpcieofcnjgkpibcbiblfp njlejkcppbhopohdghljlcokhdoahfmlglbdkliajbmnkkfcoklhlelhjhoiginaimgcabcfebmjdnbfhohkjphnklcbhc jpgbadakoecbkjcaebbanhnfhpnfkfbfpohmnkligpgfkjadomdjjnhlnfailfpcmnololdjekeolhdkebiffebajjpclg hllmemegncknmkkeoogilijmmkomllbkkabelmodcohdhppdakbelmlejdnmbfmcjdebefnjihnejmnogeeafldabjcgfo aehldcmkbnbafpciefhlopicifadbppgmfngecjhefnkbjmliodhelhicnfoongngemddepchkokdjafegnpgledakmbcp cmkckhbffeihpkajginfhdolfnlgnadefamlfocdibhfkiaofeegppcjilndepleihkpkkgkphbnkggjiaolnolbjpobjd cehglelckbhjilafccfipgebpc....

\section*{A difficult file to compress}
```

public class Rand
{
public static void main(String[] args)
{
for (int i = 0; i < 1000000; i++)
{
char c = 'a';
c += (char) (Math.random() * 16);
System.out.print(c);
}
}
}

```

231 bytes, but output is hard to compress (assume random seed is fixed)
```

% javac Rand.java
% java Rand > temp.txt
% compress -c temp.txt > temp.z
% gzip -c temp.txt > temp.gz
% bzip2 -c temp.txt > temp.bz2

```
```

% ls -1
231 Rand.java
1000000 temp.txt
576861 temp.z
570872 temp.gz
499329 temp.bz2

```
resulting file sizes (bytes)

\section*{Information theory}

Intrinsic difficulty of compression.
- Short program generates large data file.
- Optimal compression algorithm has to discover program!
- Undecidable problem.
Q. How do we know if our algorithm is doing well?
A. Want lower bound on \# bits required by any compression scheme.

\section*{Language model}
Q. How do compression algorithms work?
A. They exploit statistical biases of input messages.
- ex: white patches occur in typical images.
- ex: ord princeton occurs more frequently than yale.

\section*{Basis of compression: probability.}
- Formulate probabilistic model to predict symbols.
simple: character counts, repeated strings complex: models of a human face
- Use model to encode message.
- Use same model to decode message.

Ex. Order 0 Markov model
- \(R\) symbols generated independently at random
- probability of occurrence of \(i\) th symbol: \(p_{i}\) (fixed).

\section*{Entropy}

A measure of information. [Shannon, 1948]
\[
H(M)=p_{0} / \lg p_{0}+p_{1} / \lg p_{1}+p_{2} / \lg p_{2}+\ldots+p_{R-1} / \lg p_{R-1}
\]
- information content of symbol \(s\) is proportional to \(1 / \lg _{2} p(s)\).
- weighted average of information content over all symbols.
- interface between coding and model.

Ex. 4 binary models \((R=2)\)
\begin{tabular}{|c|c|c|c|}
\hline & \(p_{0}\) & \(p_{1}\) & \(H(M)\) \\
\hline 1 & \(1 / 2\) & \(1 / 2\) & 1 \\
\hline 2 & 0.900 & 0.100 & 0.469 \\
\hline 3 & 0.990 & 0.010 & 0.0808 \\
\hline 4 & 1 & 0 & 0 \\
\hline
\end{tabular}

Claude Shannon

Ex. fair die \((R=6)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(p(1)\) & \(p(2)\) & \(p(3)\) & \(p(4)\) & \(p(5)\) & \(p(6)\) & \(H(M)\) \\
\hline \(1 / 6\) & \(1 / 6\) & \(1 / 6\) & \(1 / 6\) & \(1 / 6\) & \(1 / 6\) & 2.585 \\
\hline
\end{tabular}

\section*{Entropy and compression}

Theorem. [Shannon, 1948] If data source is an order 0 Markov model, any compression scheme must use \(\geq H(M)\) bits per symbol on average.
- Cornerstone result of information theory.
- Ex: to transmit results of fair die, need \(\geq 2.58\) bits per roll.

Theorem. [Huffman, 1952] If data source is an order 0 Markov model, Huffman code uses \(\leq H(M)+1\) bits per symbol on average.
Q. Is there any hope of doing better than Huffman coding?

A1. Yes. Huffman wastes up to 1 bit per symbol.
if \(H(M)\) is close to 0 , this difference matters can do better with "arithmetic coding"

A2. Yes. Source may not be order 0 Markov model.

\section*{Entropy of the English Language}
Q. How much redundancy is in the English language?
"... randomising letters in the middle of words [has] little or no effect on the ability of skilled readers to understand the text. This is easy to denmtrasote. In a pubiltacion of New Scnieitst you could ramdinose all the letetrs, keipeng the first two and last two the same, and reibadailty would hadrly be aftcfeed. My ansaylis did not come to much beucase the thoery at the time was for shape and senqeuce retigcionon. Saberi's work sugsegts we may have some pofrweul palrlael prsooscers at work. The resaon for this is suerly that idnetiyfing coentnt by paarllel prseocsing speeds up regnicoiton. We only need the first and last two letetrs to spot chganes in meniang."
A. Quite a bit.

\section*{Entropy of the English Language}
Q. How much information is in each character of the English language?
Q. How can we measure it?
A. [Shannon's 1951 experiment]
- Asked subjects to predict next character given previous text.
- The number of guesses required for right answer:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \# of guesses & 1 & 2 & 3 & 4 & 5 & \(\geq 6\) \\
\hline Fraction & 0.79 & 0.08 & 0.03 & 0.02 & 0.02 & 0.05 \\
\hline
\end{tabular}
- Shannon's estimate: about 1 bit per char [0.6-1.3].

Compression less than 1 bit/char for English? If not, keep trying!

\title{
> introduction
}
> basic coding schemes
Dan application
entropy
>LZW codes

\section*{Statistical Methods}

Static model. Same model for all texts.
- Fast.
- Not optimal: different texts have different statistical properties.
- Ex: ASCII, Morse code.

Dynamic model. Generate model based on text.
- Preliminary pass needed to generate model.
- Must transmit the model.
- Ex: Huffman code.

Adaptive model. Progressively learn and update model as you read text.
- More accurate modeling produces better compression.
- Decoding must start from beginning.
- Ex: LZW.

\section*{LZW Algorithm}

\section*{Lempel-Ziv-Welch. [variant of LZ78]}
- Create ST associating a fixed-length codeword with some previous substring.
- When input matches string in ST, output associated codeword.
- length of strings in ST grows, hence compression.

To send (encode) M.
- Find longest string s in ST that is a prefix of unsent part of \(M\)
- Send codeword associated with s.
- Add \(s\) • \(x\) to ST, where \(x\) is next char in M.

EX. ST: a, aa, ab, aba, abb, abaa, abaab, abaaa,
- unsent part of \(M\) : abaababbb...
- \(s=a b a a b, x=a\).
- Output integer associated with s; insert abaaba into ST.

LZW encoding example
\begin{tabular}{|c|c|c|}
\hline input & code & add to ST \\
\hline a & 97 & ab \\
\hline b & 98 & br \\
\hline \(r\) & 114 & ra \\
\hline a & 97 & ac \\
\hline c & 99 & ca \\
\hline a & 97 & ad \\
\hline d & 100 & da \\
\hline \multicolumn{3}{|l|}{a} \\
\hline b & 128 & \(a b r\) \\
\hline \multicolumn{3}{|l|}{r} \\
\hline a & 130 & rac \\
\hline \multicolumn{3}{|l|}{c} \\
\hline a & 132 & cad \\
\hline \multicolumn{3}{|l|}{d} \\
\hline a & 134 & dab \\
\hline \multicolumn{3}{|l|}{b} \\
\hline \(r\) & 129 & bra \\
\hline a & 97 & \\
\hline STOP & 255 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
input: 7-bit ASCII \\
output: 8-bit codewords
\end{tabular}} & \multicolumn{2}{|r|}{ASCII} & \multicolumn{2}{|c|}{ST} \\
\hline & key & value & key & value \\
\hline & & 0 & ab & 128 \\
\hline & & & br & 129 \\
\hline & & . . & ra & 130 \\
\hline & & & ac & 131 \\
\hline & a & 97 & ca & 132 \\
\hline & b & 98 & ad & 133 \\
\hline & c & 99 & da & 134 \\
\hline & d & 100 & abr & 135 \\
\hline & & & rac & 136 \\
\hline & r & 114 & cad & 137 \\
\hline & & & dab & 138 \\
\hline & & & bra & 139 \\
\hline & & - & & -•• \\
\hline & & 127 & STOP & 255 \\
\hline
\end{tabular}

To send (encode) M.
- Find longest string s in ST that is a prefix of unsent part of \(M\)
- Send integer associated with \(s\).
- Add \(s \cdot x\) to ST, where \(x\) is next char in M.

LZW encoding example
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & input & code & & \\
\hline & & a & 97 & & \\
\hline & & b & 98 & & \\
\hline & & \(r\) & 114 & & \\
\hline & & a & 97 & & \\
\hline & & c & 99 & & \\
\hline & & a & 97 & & \\
\hline & & d & 100 & & \\
\hline input: & 7-bit ASCII & a & & output: 8-bit codewords & \\
\hline & 19 chars & b & 128 & 14 chars & \\
\hline & 133 bits & \(r\) & & 112 bits & \\
\hline & & a & 130 & & \\
\hline & & c & & & \\
\hline & & a & 132 & & \\
\hline & & d & & & \\
\hline & & a & 134 & & \\
\hline & & b & & & \\
\hline & & \(r\) & 129 & & \\
\hline & & a & 97 & Key point: no need to send ST (!) & \\
\hline & & STOP & 255 & & 45 \\
\hline
\end{tabular}

LZW encode ST implementation
Q. How to do longest prefix match?
A. Use a trie for the ST

\section*{Encode.}
- lookup string suffix in trie.
- output ST index at bottom.
- add new node to bottom of trie.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ASCII} & \multicolumn{2}{|c|}{ST} \\
\hline key & value & key & value \\
\hline & 0 & ab & 128 \\
\hline & & br & 129 \\
\hline & \(\ldots\) & ra & 130 \\
\hline & & ac & 131 \\
\hline a & 97 & ca & 132 \\
\hline b & 98 & ad & 133 \\
\hline c & 99 & da & 134 \\
\hline d & 100 & abr & 135 \\
\hline & & rac & 136 \\
\hline r & 114 & cad & 137 \\
\hline & & dab & 138 \\
\hline & & bra & 139 \\
\hline & ... & & \(\ldots\) \\
\hline & 127 & STOP & 255 \\
\hline
\end{tabular}

Note that all substrings are in ST

LZW encoder: Java implementation

Use specialized TST
postprocess
to encode in binary
- initialized with ASCII chars and codes
- getput () method returns code of longest prefix s and adds \(s+\) next char to symbol table

Need input stream with backup [stay tuned]

LZW encoder: Java implementation (TST scaffolding)
```

public class LZWst
{
private int i; «}\mathrm{ next codeword to assign
private int codeword; «}\mathrm{ codeword to return
private Node[] roots; \longleftarrow array of TSTs
public LZWst()
{
roots = new Node[128];
for (i = 0; i < 128; i++)
roots[i] = new Node((char) i, i);
}
private class Node
{
Node(char c, int codeword)
{ this.c = c; this.codeword = codeword; }
standard
char C;
Node left, mid, right;
int codeword;
}
public int getput(LookAheadIn in)
// See next slide.
}

LZW encoder: Java implementation (TST search/insert)

```
public int getput(LookAheadIn in)
{
 char c = in.readChar();
 if (c == '!') return 255;
 roots[c] = getput(c, roots[c], in);
 in.backup();
 return codeword; \longleftarrow longest prefix
}
```

public Node getput (char c, Node $x$, LookAheadIn in)
\{
if ( $x==n u l$ )
\{ $\mathbf{x}=$ new Node (c, i+t); return $x$; \}
if ( $\quad$ < x.c) x.left $=$ getput (c, x.left, in);
else if (c > x.c) x.right $=$ getput (c, x.right, in);
else
\{
char next $=$ in.readChar();
codeword $=$ x.codeword;
x.mid $=$ getput(next, x.mid, in);
\}
return $\mathbf{x}$;
\}

LZW encoder: Java implementation (input stream with lookahead)

```
public class LookAheadIn
{
 In in = new In();
 char last;
 boolean backup = false;
 public void backup()
 { backup = true; }
 public char readChar()
 {
 if (!backup)
 { last = in.readChar(); }
 backup = false;
 return last;
 }
 public boolean isEmpty()
 { return !backup && in.isEmpty(); }
}
```

Provides input stream with one-character lookahead. backup () call means that last readChar () call was lookahead.

LZW Algorithm

## Lempel-Ziv-Welch. [variant of LZ78]

- Create ST and associate an integer with each useful string.
- When input matches string in ST, output associated integer.
- length of strings in ST grows, hence compression.
- decode by rebuilding ST from code

To send (encode) M.

- Find longest string s in ST that is a prefix of unsent part of $M$
- Send integer associated with s.
- Add $s$ • $x$ to ST, where $x$ is next char in M.

To decode received message to $M$.

- Let $s$ be ST entry associated with received integer
- Add $s$ to $M$.
- Add $p \cdot x$ to $S T$, where $x$ is first char in $s, p$ is previous value of $s$.

LZW decoding example

codeword	output	add to ST	role of keys and values switched				
97	a		key value	key	value		
98	b	ab	0	128 ab			
114	$r$	br		129 br			
97	a	ra	. .	130 ra			
99	c	ac		131 ac			
97	a	ca	97 a	132	ca		
100	d	ad	$98 \quad b$	134 da		Use an array to implement ST	
128	a		$\begin{array}{cc} 99 & c \\ 100 & \mathrm{~d} \end{array}$	135 abr			
	b	da		136 rac			
130	$r$		114 r	137 cad			
	a	$a b r$		138 dab			
132	c		. .	139 bra			
	a	rac					
134	d		127	255			
	a	cad	To decode received message to $M$.   - Let $s$ be ST entry associated with received integer   - Add s to M.				
129	b						
	$r$	dab					
97	a	bra	- Add $p \cdot x$ to ST, where $x$ is first char in $s, p$ is previous value of				
255	STOP						

LZW decoder: Java implementation

```
public class LZWDecoder
{
 public static void main(String[] args)
 {
 String[] st = new String[256]; % < ST with
 int i;
 for (i = 0; i < 128; i++)
 { st[i] = Character.toString((char) i); }
 st[255] = "!";
```



```
 }
}

LZW decoding example (tricky situation)
\begin{tabular}{|ccc|}
\hline input code & add to ST \\
\hline a & 97 & \(a b\) \\
b & 98 & ba \\
a & & \\
b & 128 & aba \\
a & & \\
b & & \\
a & 130 & \\
b & & \\
STOP & 255 &
\end{tabular}

To send (encode) M.
- Find longest prefix
- Send integer associated with s.
- Add s • \(x\) to ST, where \(x\) is next char in \(M\).
\begin{tabular}{|c|c|c|c|c|}
\hline & & codeword & output & add to ST \\
\hline key & value & 97 & a & \\
\hline 128 & ab & 98 & b & ab \\
\hline 129 & ba & 128 & a & \\
\hline 130 & aba & & b & ba \\
\hline 131 & abab & & a & \\
\hline & & & a & aba \\
\hline 255 & & 98 & b & \\
\hline & & 255 & Stop & \\
\hline
\end{tabular}
needed before
added to ST!

To decode received message to \(M\).
- Let \(s\) be ST entry for integer
- Add \(s\) to \(M\).
- Add \(p \cdot x\) to ST where
\(x\) is first char in \(s\)
\(p\) is previous value of \(s\).

LZW implementation details

How big to make ST?
- how long is message?
- whole message similar model?
- ...
- [many variations have been developed]

What to do when ST fills up?
- throw away and start over. GIF
- throw away when not effective. Unix compress
- ...
- [many other variations]

Why not put longer substrings in ST?
- [many variations have been developed]

LZW in the real world

Lempel-Ziv and friends.
- LZ77.
- LZ78. LZ77 not patented \(\Rightarrow\) widely used in open source
- LZW. some versions copyrighted
- Deflate \(=\) LZ77 variant + Huffman.

PNG: LZ77.
Winzip, gzip, jar: deflate.
Unix compress: LZW.
Pkzip: LZW + Shannon-Fano.
GIF, TIFF, V.42bis modem: LZW. Google: zlib which is based on deflate.
never expands a file

Lossless compression ratio benchmarks
Calgary corpus: standard data compression benchmark
\begin{tabular}{c|c|c|c|c|}
\hline Year & Scheme & Bits / char & Entropy & Bits/char \\
\hline 1967 & ASCII & 7.00 & & Char by char \\
1950 & Huffman & 4.70 & 4.5 \\
1977 & LZ77 & 3.94 & 8 chars at a time & 2.4 \\
1984 & LZMW & 3.32 & Asymptotic & 1.3 \\
1987 & LZH & 3.30 & & \\
1987 & Move-to-front & 3.24 & & \\
1987 & LZB & 3.18 & & \\
1987 & Gzip & 2.71 & & \\
1988 & PPMC & 2.48 & & \\
1988 & SAKDC & 2.47 & & \\
1994 & PPM & 2.34 & & \\
1995 & Burrows-Wheeler & 2.29 & next assignment & \\
1997 & BOA & 1.99 & & \\
1999 & RK & 1.89 & & \\
\hline
\end{tabular}

Data compression summary
Lossless compression.
- Represent fixed length symbols with variable length codes. [Huffman]
- Represent variable length symbols with fixed length codes. [LZW]

Lossy compression. [not covered in this course]
- JPEG, MPEG, MP3.
- FFT, wavelets, fractals, SVD, ...

Limits on compression. Shannon entropy.

Theoretical limits closely match what we can achieve in practice.

Practical compression: Use extra knowledge whenever possible.

Butch: I don't mean to be a sore loser, but when it's done, if I'm dead, kill him. Sundance: Love to.

Butch: No, no, not yet. Not until me and Harvey get the rules straightened out.
Harvey: Rules? In a knife fight? No rules.
Butch: Well, if there ain't going to be any rules, let's get the fight started...

\section*{Pattern Matching}

\section*{exact pattern matching \\ - Knuth-Morris-Pratt \\ - RE pattern matching \\ grep}

\section*{References:}

Algorithms in C (2nd edition), Chapter 19 http://www.cs.princeton.edu/introalgsds/63long http://www.cs.princeton.edu/introalgsds/72regular
> exact pattern matching
\Knuth-Morris-Pratt
RE pattern matching
- grep

\section*{Exact pattern matching}

Problem:
Find first match of a pattern of length \(M\) in a text stream of length \(N\).
n e e d le e \(M=6\)
text

Applications.
- parsers.
- spam filters.
- digital libraries.
- screen scrapers.
- word processors.
- web search engines.
- natural language processing.
- computational molecular biology.
- feature detection in digitized images.

\section*{Brute-force exact pattern match}

Check for pattern starting at each text position.
```

    h a y n e e d c a n n e e e d l l e m
    n e e d l e
    n e e d l e
        n e e d l e
        n e e d
        n e e d l
        n e e d l
        n e e d l e
        n
    public static int search(String pattern, String text)
{
int M = pattern.length();
int N = text.length();
for (int i = 0; i < N - M; i++)
{
int j;
for (j = 0; j < M; j++)
if (text.charAt(i+j) != pattern.charAt(j))
break;
if (j == M) return i; \longleftarrow pattern start index in text
}
return -1; \longleftarrow not found
}

```

Brute-force exact pattern match: worst case

Brute-force algorithm can be slow if text and pattern are repetitive

but this situation is rare in typical applications
Hence, the indexOf() method in Java's string class uses brute-force

\section*{Exact pattern matching in Java}

Exact pattern matching is implemented in Java's String class
s.indexOf(\(t, i\)): index of first occurrence of pattern \(t\) in string s, starting at offset i.

Ex: Screen scraping. Exact match to extract info from website
```

public class StockQuote
{
public static void main(String[] args)
{
String name = "http://finance.yahoo.com/q?s=";
In in = new In(name + args[0]);
String input = in.readAll();
int start = input.indexOf("Last Trade:", 0);
int from = input.indexOf("<b>", start);
int to = input.indexOf("</b>", from);
String price = input.substring(from + 3, to);
System.out.println(price);
}
}

```
http://finance. yahoo.com/q?s=qooq
<tr>
<td class= "yfnc_tablehead1"
width= "48\%">
Last Trade:
</td>
<td class= "Yfnc_tabledatal"> <big>688.04</big>
</td></tr>
<td class= "yfnc_tablehead1"
width= "48\%">
Trade Time:
</td>
<td class= "yfnc_tabledata1">
```

% java StockQuote goog
68.04
% java StockQuote msft
33.75

```

\section*{Algorithmic challenges in pattern matching}

\section*{Brute-force is not good enough for all applications}

Theoretical challenge: Linear-time guarantee. \(\leftarrow\) fundamental algorithmic problem

Practical challenge: Avoid backup in text stream. \(\leftarrow\) often no room or time to save text

\begin{abstract}
Now is the time for all people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good people to come to the aid of their party. Now is the time for all of the good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for each good person to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many or all good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good Democrats to come to the aid of their party. Now is the time for all people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good people to come to the aid of their party. Now is the time for all of the good people to come to the aid of their party. Now is the time for all good people to come to the aid of their attack at dawn party. Now is the time for each person to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many or all good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good Democrats to come to the aid of their party.
\end{abstract}

\section*{>exact pattern matching}
> Knuth-Morris-Pratt
RE pattern matching
> grep

\section*{Knuth-Morris-Pratt (KMP) exact pattern-matching algorithm}

Classic algorithm that meets both challenges
- linear-time guarantee
- no backup in text stream

Basic plan (for binary alphabet)

- build DFA from pattern
- simulate DFA with text as input

No backup in a DFA
Linear-time because each step is just a state change

\section*{Knuth-Morris-Pratt DFA example}

One state for each pattern character
- Match input character: move from i to i+1
- Mismatch: move to previous state
\[
\begin{gathered}
\text { DFA } \\
\text { for } \\
\text { pattern } \\
\text { a a } b a \operatorname{a} a
\end{gathered}
\]

How to construct? Stay tuned

Knuth-Morris-Pratt DFA simulation

 \(\uparrow\)

\(1 \quad a \mathrm{a} a \mathrm{~b} \mathrm{a} a \mathrm{~b} \mathrm{a} a \mathrm{a} b\) \(\uparrow\)

\(2 \quad \mathrm{a} a \mathrm{a} b \mathrm{a} a \mathrm{~b} \mathrm{a} a \mathrm{a} b\) \(\uparrow\)

\(2 \quad a \mathrm{a} a \mathrm{~b} \mathrm{a} a \mathrm{~b} \mathrm{a} a \mathrm{a} b\) \(\uparrow\)

\(3 \quad a \quad a \quad a b a \operatorname{a} a \mathrm{a} a \mathrm{~b}\)

Knuth-Morris-Pratt DFA simulation

\(4 \quad a \operatorname{a}+\mathrm{b} a \mathrm{a} b \mathrm{a} a \mathrm{a} b\)

\(5 \quad a \operatorname{a} a b a \operatorname{a} b a \mathrm{a} b\)

\(3 \quad a a \operatorname{aba} a b a a \operatorname{ab}\)
\(4 \quad a \quad a \operatorname{a} b a \operatorname{a} a \mathrm{a} a \mathrm{~b}\)

\(5 \quad a \quad a \quad a b a \operatorname{ab} a \operatorname{a} b\)

\section*{Knuth-Morris-Pratt DFA simulation}

When in state i:
- have found match in i previous input chars
- that is the longest such match

Ex. End in state 4 iff text ends in aaba.
Ex. End in state 2 iff text ends in aa (but not aabaa or aabaaa).
\begin{tabular}{|c|c|}
\hline & a \({ }^{\text {a }}\) \\
\hline 1 & \(b\) a a b \\
\hline 2 & \(a \mathrm{a} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{a} \mathrm{a} \mathrm{b}\) \\
\hline 2 & a a a b a a b a \\
\hline 3 & a a a b a a ba a \\
\hline 4 & a a a b a a b a \\
\hline 5 & \(a \mathrm{a} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{a} \mathrm{a} \mathrm{b}\) \\
\hline 3 & a a a b a a \\
\hline 4 & a a a b a a b a a \\
\hline 5 & \(a \mathrm{a} a \mathrm{~b} a \mathrm{a} b \mathrm{a} a \mathrm{a}\) b \\
\hline & \(a \operatorname{a} a b a \operatorname{a} b a \operatorname{a}\) \\
\hline
\end{tabular}

\section*{KMP implementation}

DFA representation: a single state-indexed array next []
- Upon character match in state j, go forward to state j+1.
- Upon character mismatch in state \(j, ~ g o ~ b a c k ~ t o ~ s t a t e ~ n e x t ~[j] . ~\)

\section*{KMP implementation}

Two key differences from brute-force implementation:
- Text pointer i never decrements
- Need to precompute next [] table (DFA) from pattern.
```

int j = 0;
for (int i = 0; i < N; i++)
{
if (t.charAt(i) == p.charAt(j)) j++; // match
else j = next[j];
// mismatch
if (j == M) return i - M + 1; // found
}
return -1; // not found

```

Simulation of KMP DFA

\section*{Knuth-Morris-Pratt: Iterative DFA construction}

DFA for first i states contains the information needed to build state i+1

Ex: given DFA for pattern aabaaa. how to compute DFA for pattern aabaaab ?

Key idea
- on mismatch at 7th char, need to simulate 6-char backup
- previous 6 chars are known (abaaaa in example)
- 6-state DFA (known) determines next state!

Keep track of DFA state for start at 2nd char of pattern
- compare char at that position with next pattern char
- match/mismatch provides all needed info
\begin{tabular}{lllllll}
0 & \(a\) & \(b\) & \(a\) & \(a\) & \(a\) & \(a\) \\
1 & \(a\) & \(b\) & \(a\) & \(a\) & \(a\) & \(a\) \\
0 & \(a\) & \(b\) & \(a\) & \(a\) & \(a\) & \(a\) \\
1 & \(a\) & \(b\) & \(a\) & \(a\) & \(a\) & \(a\) \\
2 & \(a\) & \(b\) & \(a\) & \(a\) & \(a\) & \(a\) \\
2 & \(a\) & \(b\) & \(a\) & \(a\) & \(a\) & \(a\) \\
2 & \(a\) & \(b\) & \(a\) & \(a\) & \(a\) & \(a\)
\end{tabular}

\section*{KMP iterative DFA construction: two cases}

Let \(\mathbf{x}\) be the next state in the simulation and j the next state to build.

If \(\mathrm{p}[\mathrm{x}]\) and \(\mathrm{p}[\mathrm{j}]\) match, copy and increment next[j] = next[X]; \(\mathrm{x}=\mathrm{x}+1\)

DFA for a a b a a a b

If \(\mathrm{p}[\mathrm{x}]\) and p [j] mismatch, do the opposite next[j] = \(\mathrm{x}+1\); \(\mathrm{x}=\) next [X];

DFA for a a b a a a a

\section*{Knuth-Morris-Pratt DFA construction}

\section*{Knuth-Morris-Pratt DFA construction examples}

DFA construction for KMP: Java implementation

Takes time and space proportional to pattern length.
```

    int X = 0;
    int[] next = new int[M];
    for (int j = 1; j < M; j++)
    {
    if (p.charAt (X) == p.charAt(j))
    { // match
            next[j] = next[x];
            x = x + 1;
    }
    else
    { // mismatch
        next[j] = x + 1;
        x = next[X];
    }
    }

```

DFA Construction for KMP (assumes binary alphabet)

\section*{Optimized KMP implementation}

Ultimate search program for any given pattern:
- one statement comparing each pattern character to next
- match: proceed to next statement
- mismatch: go back as dictated by DFA
- translates to machine language (three instructions per pattern char)
```

int kmpsearch(char t[])
{
int i = 0;
s0: if (t[i++] != 'a') goto s0;
s1: if (t[i++] != 'a') goto s0;
s2: if (t[i++] != 'b') goto s2;
s3: if (t[i++] != 'a') goto s0;
s4: if (t[i++] != 'a') goto s0;
s5: if (t[i++] != 'a') goto s3;
s6: if (t[i++] != 'b') goto s2;
s7: if (t[i++] != 'b') goto s4;
return i - 8;
}
pattern[] next[]

## KMP summary

## General alphabet

- more difficult
- easy with next [] [] indexed by mismatch position, character
- KMP paper has ingenious solution that is not difficult to implement [ build NFA, then prove that it finishes in 2 N steps ]

Bottom line: linear-time pattern matching is possible (and practical)

Short history:

- inspired by esoteric theorem of Cook
[ linear time 2-way pushdown automata simulation is possible ]
- discovered in 1976 independently by two theoreticians and a hacker

Knuth: discovered linear time algorithm
Pratt: made running time independent of alphabet
Morris: trying to build a text editor.

- theory meets practice


## Exact pattern matching: other approaches

Rabin-Karp: make a digital signature of the pattern

- hashing without the table
- linear-time probabilistic guarantee
- plus: extends to 2D patterns
- minus: arithmetic ops much slower than char comparisons

Boyer-Moore: scan from right to left in pattern

- main idea: can skip $M$ text chars when finding one not in the pattern
- needs additional KMP-like heuristic
- plus: possibility of sublinear-time performance ( $\sim N / M$ )
- used in Unix, emacs

```
pattern s
 text a a a b b a a b a b a a a b b a a a b a a a
 s y z y y g y y
 s y z y g y
s y z y y g y
```

Exact pattern match cost summary

Cost of searching for $M$-character pattern in $N$-character text

algorithm	typical	worst-case
brute-force	1.1 N char compares ${ }^{\dagger}$	$M \mathrm{~N}$ char compares
Karp-Rabin	3 N arithmetic ops	3 N arithmetic ops ${ }^{\ddagger}$
KMP	1.1 N char compares ${ }^{\dagger}$	2 N char compares
Boyer-Moore	$\sim$ N/M char compares ${ }^{\dagger}$	$3 N$ char compares
	+ assumes appropriate model   $\ddagger$ randomized	

# exact pattern matching <br> Knuth-Morris-Pratt 

> RE pattern matching

## Regular-expression pattern matching

## Exact pattern matching:

Search for occurrences of a single pattern in a text file.

Regular expression (RE) pattern matching:
Search for occurrences of one of multiple patterns in a text file.

Ex. (genomics)

- Fragile $X$ syndrome is a common cause of mental retardation.
- human genome contains triplet repeats of cgg or agg bracketed by gcg at the beginning and ctg at the end
- number of repeats is variable, and correlated with syndrome
- use regular expression to specify pattern: gcg(cgg|agg)*ctg
- do RE pattern match on person's genome to detect Fragile $X$

```
pattern(RE) gcg(cgg|agg)*ctg
```

    text gcggcgtgtgtgcgagagagtgggtttaaagctggcgcggaggcggctggcgcggaggctg
    
## RE pattern matching: applications

Test if a string matches some pattern.

- Process natural language.
- Scan for virus signatures.
- Search for information using Google.
- Access information in digital libraries.
- Retrieve information from Lexis/Nexis.
- Search-and-replace in a word processors.
- Filter text (spam, NetNanny, Carnivore, malware).
- Validate data-entry fields (dates, email, URL, credit card).
- Search for markers in human genome using PROSITE patterns.

Parse text files.

- Compile a Java program.
- Crawl and index the Web.
- Read in data stored in ad hoc input file format.
- Automatically create Java documentation from Javadoc comments.


## Regular expression examples

A regular expression is a notation to specify a set of strings.

operation	example RE	in set	not in set
concatenation	aabaab	aabaab	every other string
wildcard	.u.u.u.	cumulus jugulum	succubus tumultuous
union	aa \| baab	aa baab	every other string
closure	$a b * a$	aa   abbba	$a b$ ababa
	$a(a \mid b) a a b$	aaaab abaab	every other string
	(ab) *a	a ababababa	aa   abbba

## Regular expression examples (continued)

Notation is surprisingly expressive

regular expression	in set	not in set
.*spb.*   contains the trigraph spb	raspberry crispbread	subspace subspecies
$a * \mid(a * b a * b a * b a *) *$   number of $b$ 's is a multiple of 3	bbb   aaa   bbbaababbaa	b   bb   baabbbaa
. * $0 . . .$. fifth to last digit is 0	$\begin{aligned} & 1000234 \\ & 98701234 \end{aligned}$	$\begin{aligned} & 111111111 \\ & 403982772 \end{aligned}$
$\operatorname{gcg}(c g g \mid a g g) * c t g$   fragile $X$ syndrome indicator	gcgctg gcgeggetg gcgcggaggctg	gcgegg cggcggcggctg gcgcaggctg

and plays a well-understood role in the theory of computation

## Generalized regular expressions

## Additional operations are often added

- Ex: [a-e]+ is shorthand for ( $a|b| c|d| e)(a|b| c|d| e)$ *
- for convenience only
- need to be alert for non-regular additions (Ex: Java /)

operation	example	in set	not in set
one or more	$\mathrm{a}(\mathrm{bc})+\mathrm{de}$	abcde abcbcde	ade bcde
character classes	[A-Za-z][a-z]*	word Capitalized	camelCase   4illegal
exactly k	[0-9]\{5\}-[0-9]\{4\}	$\begin{aligned} & 08540-1321 \\ & 19072-5541 \end{aligned}$	$\begin{aligned} & 111111111 \\ & 166-54-111 \end{aligned}$
negations	[^aeiou] 6 \}	rhythm	decade

## Regular expressions in Java

## RE pattern matching is implemented in Java's String class

- basic: match() method
- various other methods also available (stay tuned)

Ex: Validity checking. Is input in the set described by the re?

```
public class Validate
{
 public static void main(String[] args)
 {
 String re = args[0];
 String input = args[1];
 System.out.println(input.matches(re));
 }
}
```

```
% java Validate "..oo..oo." bloodroot
true
% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" ident123 < legal Java identifier
% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu
true
% java Validate "[0-9]{3}-[0-9]{2}-[0-9]{4}" 166-11-4433
Social Security number
true
```

Regular expressions in other languages

Broadly applicable programmer's tool.

- originated in UNIX in the 1970s
- many languages support extended regular expressions
- built into grep, awk, emacs, Perl, PHP, Python, JavaScript

```
grep NEWLINE */*.java print all lines containing NEWLINE which
 occurs in any file with a . java extension
```

egrep '^[qwertyuiop]*[zxcvbnm]*\$' dict.txt | egrep

PERL. Practical Extraction and Report Language.

```
perl -p -i -e 's|from|tolg' input.txt replace all occurrences of from
perl -n -e 'print if /^[A-Za-z][a-z]*$/' dict.txt
 do for each line
```


## Regular expression caveat

Writing a RE is like writing a program.

- need to understand programming model
- can be easier to write than read
- can be difficult to debug
"Sometimes you have a programming problem and it seems like the best solution is to use regular expressions; now you have two problems."


## Can the average web surfer learn to use REs?

## Google. Supports * for full word wildcard and | for union.

```
单 Google Search: " the * of seville" - Mozilla _- प|
 File Edit View Go Bookmarks Iools Window Help
+
W00
```

Web

```
News results for " the * of seville" - View all the latest headlines
P) Opera: Barber of Seville/ Marriage of Figaro - Financial Times - 3 hours ago
Information about the Citv of Sevilla (Seville), Andalucia ...
... Post a request on our Notice Board. Promote your business on this website; email sales@andalucia.com. Information about the City of Seville. ...
whw andalucia.com/cities/sevilla.htm-22k - Cached - Similar pages
Universidad de Sevilla - [Translate this page]
INICIO | ESTUDIANTES | PROFESORES | PAS | INDICES | BUSCADOR | COMENTARIOS
Complemento Autonómico, Estatuto, Espacio Europeo de Educación ...
waw us.es/ - 15k - Apr 18, 2004 - Cached - Similar pages
CATHOLIC ENCYCLOPEDIA: St. Isidore of Seville
... On the death of Leander, Isidore succeeded to the See of Seville. His long incumbency
to this office was spent in a period of disintegration and transition. ...
whw. newadvent. org/cathen/08186a.htm - 32k - Cached - Similar pages
The Trickster of Seville and the Stone Guest
Commentary and analysis of Tirso de Molina's "The Trickster of Seville", one of the seventeenth century's.. www.modlang.fsu.edu/darst/trickster.htm - Similar pages

\section*{Can the average TV viewer learn to use REs?}

\section*{TiVo. WishList has very limited pattern matching.}

Using * in WishList Searches. To search for similar words in Keyword and Title WishList searches, use the asterisk \(\left(^{*}\right)\) as a special symbol that replaces the endings of words. For example, the keyword AIRP* would find shows containing "airport," "airplane," "airplanes," as well as the movie "Airplane!" To enter an asterisk, press the SLOW ((-) button as you are spelling out your keyword or title.

The asterisk can be helpful when you're looking for a range of similar words, as in the example above, or if you're just not sure how something is spelled. Pop quiz: is it "irresistible" or "irresistable?" Use the keyword IRRESIST* and don't worry about it! Two things to note about using the asterisk:
- It can only be used at a word's end; it cannot be used to omit letters at the beginning or in the middle of a word. (For example, AIR*NE or *PLANE would not work.)

\section*{Can the average programmer learn to use REs?}

\section*{Perl RE for Valid RFC822 Email Addresses}

Reference: \(h t t p: / / w w w . e x-p a r r o t . c o m / \sim p d w / M a i l-R F C 822-A d d r e s s . h t m l ~\)

 31]+(?: (?: (?: \r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\}] (?: (?: \r\n) ? [\t]) *) (?: \. (?: (?: \r\n)? [\t])*(?:[^()<>@, ;:\\".\[\] \000-\031]+

 \(\backslash t]) *\) (?: \(\backslash(?:(?: \backslash r \backslash n) ?[\backslash t]) *(?:[\wedge()<>@, ;: \backslash \backslash " . \backslash[\backslash] \backslash 000-\backslash 031]+(?:(?:(?: \backslash r \backslash n)\)
)*) * (?: , @(?: (?: \r\n) ? [\t])*(?:[^() <>@, ;: \\". \[\] \000-\031]+(?: (?: (?: \r\n)? [

])) *" (?: (?: \r\n)? [\t]) *)) *@(?: (?: \r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031
 ?: (?: \r\n) ? [\t])*) (?: \. (?: (?: \r\n)? [\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(? \(:(?:(?: \backslash r \backslash n) ?[\backslash t])+|\backslash z|(?=[\backslash["()<>@, ;: \backslash \backslash " . \backslash[\backslash]])) \mid \backslash[([\wedge \backslash[\backslash] \backslash r \backslash \backslash \mid \backslash \backslash). * \backslash](?:(?\) \(: \backslash r \backslash n) ?[\backslash t]) *)\)) \(\backslash>(?:(?: \backslash r \backslash n) ?[\backslash t]) *) \mid(?:[\wedge()<>@, ;: \backslash \backslash " . \backslash[\backslash] \backslash 000-\backslash 031]+(?:(?\)
 [\t]) *" (?: (?: \r\n)? [\t])*)*: (?: (?: \r\n)?[\t])*(?: (?: (?: [^() <>@, ;: \\". \[\]
 \(\backslash . \mid(?:(?: \backslash r \backslash n) ?[\backslash t])\) *" \((?:(?: \backslash r \backslash n) ?[\backslash t]) *)(?: \backslash\). \((?:(?: \backslash r \backslash n) ?[\backslash t]) *(?:[\wedge()<>\)

 \(:[\wedge()<>@, ;: \backslash \backslash " . \backslash[\backslash] \backslash 000-\backslash 031]+(?:(?:(?: \backslash r \backslash n) ?[\backslash t])+|\backslash z|(?=[\backslash["()<>@, ;: \backslash \backslash " . \backslash[\)

 \(: \backslash \backslash " . \backslash[\backslash] \backslash 000-\backslash 031]+(?:(?:(?: \backslash r \backslash n) ?[\backslash t])+|\backslash z|(?=[\backslash["()<>@, ;: \backslash \backslash " \cdot \backslash[\backslash]]) \mid \backslash[([\) \(\wedge \backslash[\backslash]\) l

 \(r \backslash \backslash] \mid \backslash \backslash). * \backslash](?:(?: \backslash r \backslash n) ?[\backslash t]) *)(?: \backslash .(?:(?: \backslash r \backslash n) ?[\backslash t]) *(?:[\wedge()<>@, ;: \backslash \backslash " \backslash[\backslash]\)
"Implementing validation with regular expressions somewhat pushes the limits of what it is sensible to do with regular expressions, although Perl copes well."

37 more lines
\(\downarrow\)

\section*{> exact pattern matching \\ - Knuth-Morris-Pratt \\ RE pattern matching \\ > grep}

GREP implementation: basic plan

Overview is the same as for KMP!
- linear-time guarantee
- no backup in text stream

Basic plan for GREP
- build DFA from RE
- simulate DFA with text as input

No backup in a DFA
Linear-time because each step is just a state change

\section*{Deterministic finite-state automata}

\section*{DFA review.}

```

int pc = 0;
while (!tape.isEmpty())
{
boolean bit = tape.read();
if (pc == 0) { if (!bit) pc = 0; else pc = 1; }
else if (pc == 1) { if (!bit) pc = 1; else pc = 2; }
else if (pc == 2) { if (!bit) pc = 2; else pc = 0; }
}
if (pc == 0) System.out.println("accepted");
else System.out.println("rejected");

```


\section*{Duality}

RE. Concise way to describe a set of strings.
DFA. Machine to recognize whether a given string is in a given set.
Kleene's theorem.
- for any DFA, there exists a RE that describes the same set of strings
- for any RE, there exists a DFA that recognizes the same set of strings

Ex: set of strings whose number of 1 's is a multiple of 3

Good news: The basic plan works (build DFA from RE and run with text as input)
Bad news : The DFA can be exponentially large (can't afford to build it). Consequence: We need a smaller abstract machine.

\section*{Nondeterministic finite-state automata}

\section*{NFA.}
- may have 0,1 , or more transitions for each input symbol
- may have \(\varepsilon\)-transitions (move to another state without reading input)
- accept if any sequence of transitions leads to accept state

Ex: set of strings that do not contain 110

\[
\begin{aligned}
& \text { in set: } 111,00011,101001011 \\
& \text { not in set: } 110,00011011,00110
\end{aligned}
\]

\section*{Implication of proof of Kleene's theorem: RE \(\rightarrow\) NFA \(\rightarrow\) DFA}

Basic plan for GREP (revised)
- build NFA from RE
- simulate NFA with text as input
- give up on linear-time guarantee

\section*{Simulating an NFA}

How to simulate an NFA? Maintain set of all possible states that NFA could be in after reading in the first i symbols.

\section*{NFA Simulation}

\section*{NFA Representation}

NFA representation. Maintain several digraphs, one for each symbol in the alphabet, plus one for \(\varepsilon\).

\section*{NFA: Java Implementation}
```

public class NFA
{
private int START = 0; // start state
private int ACCEPT = 1; // accept state
private int N = 2; // number of states
private String ALPHABET = "01"; // RE alphabet
private int EPS = ALPHABET.length(); // symbols in alphabet
private Digraph[] G;
public NFA(String re)
{
G = new Digraph[EPS + 1];
for (int i = 0; i <= EPS; i++)
G[i] = new Digraph();
build(0, 1, re);
}
private void build(int from, int to, String re) { }
public boolean simulate(Tape tape) { }
}

```

\section*{NFA Simulation}

How to simulate an NFA?
- Maintain a Set of all possible states that NFA could be in after reading in the first i symbols.
- Use Digraph adjacency and reachability ops to update.

NFA Simulation: Java Implementation
```

public boolean simulate(Tape tape)
{
SET<Integer> pc = G[EPS].reachable(START);
while (!tape.isEmpty())
{ // Simulate NFA taking input from tape.
char c = tape.read();
int i = ALPHABET.indexOf(c); « all possible states after
SET<Integer> next = G[i].neighbors(pC); reading character c from tape
pc = G[EPS].reachable(next);
}
for (int state : pc)
if (state == ACCEPT) return true;
return false;
}

```

```

                states reachable from start by \(\varepsilon\)-transitions
    while (!tape.isEmpty ())
\{ // Simulate NF'A taking input from tape. char $c=$ tape.read (); int $i=A L P H A B E T$.indexOf (c); SET<Integer> next $=$ G[i].neighbors (pc);
}
follow \varepsilon-transitions
check whether
in accept state at end

```

\section*{Converting from an RE to an NFA: basic transformations}

Use generalized NFA with full RE on trasitions arrows
- start with one transition having given RE
- remove operators with transformations given below
- goal: standard NFA (all single-character or epsilon-transitions)

concatenation

Converting from an RE to an NFA example: ab* | ab*

\section*{NFA Construction: Java Implementation}
```

private void build(int from, int to, String re)
{
int or = re.indexOf('|');
if (re.length() == 0) G[EPSILON].addEdge(from, to);
else if (re.length() == 1)
{ single char
char c = re.charAt(0);
for (int i = 0; i < EPSILON; i++)
if (c == ALPHABET.charAt (i) || c == '.')
G[i].addEdge(from, to);
}
else if (or != -1)
{
build(from, to, re.substring(0, or));
build(from, to, re.substring(or + 1));
}
else if (re.charAt(1) == '*')
{
G[EPSILON] .addEdge (from, N);
build(N, N, re.substring(0, 1));
build(N++, to, re.substring(2));
}
else
{
build(from, N, re.substring(0, 1));
build(N++, to, re.substring(1));
}
}

```


\section*{Grep running time}

Input. Text with \(N\) characters, RE with \(M\) characters.
Claim. The number of edges in the NFA is at most \(2 M\).
- Single character: consumes 1 symbol, creates 1 edge.
- Wildcard character: consumes 1 symbol, creates 2 edges.
- Concatenation: consumes 1 symbols, creates 0 edges.
- Union: consumes 1 symbol, creates 1 edges.
- Closure: consumes one symbol, creates 2 edges.

NFA simulation. \(O(M N)\) since NFA has \(2 M\) transitions
- bottleneck: 1 graph reachability per input character
- can be substantially faster in practice if few \(\varepsilon\)-transitions NFA construction. Ours is \(O\left(M^{2}\right)\) but not hard to make \(O(M)\).

\section*{Surprising bottom line:}

Worst-case cost for grep is the same as for elementary exact match!

\section*{Industrial-strength grep implementation}

To complete the implementation,
- Deal with parentheses.
- Extend the alphabet.
- Add character classes.
- Add capturing capabilities.
- Deal with meta characters.
- Extend the closure operator.
- Error checking and recovery.
- Greedy vs. reluctant matching.

\section*{Regular expressions in Java (revisited)}

\section*{RE pattern matching is implemented in Java's Pattern and Matcher classes}

Ex: Harvesting. Print substrings of input that match re
```

import java.util.regex.Pattern;
import java.util.regex.Matcher;
public class Harvester
{
public static void main(String[] args)
{
String re = args[0];
In in = new In(args[1])
String input = in.readAll();
Pattern pattern = Pattern.compile (re);
Matcher matcher = pattern.matcher(input);
Matcher matcher = patt
System.out.println(matcher.group());\longleftarrow_group() returns
}
}
compile() creates a
Pattern (NFA) from RE
matcher() creates a
Matcher (NFA simulator)
from NFA and text
find() looks for
the substring most
recently found by find()

```
\% java Harvester "gcg (cgg|agg)*ctg" chromosomex.txt gcgcggcggcggcggcggctg \(\qquad\) harvest patterns
gcgctg from DNA
gcgetg
gcgcggcggcggaggcggaggcggctg
\% java Harvester "http://(\\w+\\.)*(\\w+)" http://www.cs.princeton.edu \(\longleftarrow\) harvest links http://www.princeton.edu
http://www.google.com

\section*{Typical application: Parsing a data file}

\section*{Example. NCBI genome file, ...}
```

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846
KEYWORDS HTG; HTGS_PHASE2; HTGS DRAFT
SOURCE Ornithorhynchus anatinus (platypus)
ORIGIN
1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac
6 1 ~ g t g a t t c t g t ~ t t g t t t t a t g ~ c t g c c g a a t a ~ g c t g c t c g a t ~ g a a t c t c t g c ~ a t a g a c a g c t ~ / / ~ a ~ c o m m e n t
1 2 1 ~ g c c g c a g g g a ~ g a a a t g a c c a ~ g t t t g t g a t g ~ a c a a a a t g t a ~ g g a a a g c t g t ~ t t c t t c a t a a ~
1 2 8 1 0 1 ~ g g a a a t g c g a ~ c c c c c a c g c t ~ a a t g t a c a g c ~ t t c t t t a g a t ~ t g ~

```
```

String regexp = "[ ]*[0-9]+([actg ]*).*";
Pattern pattern = Pattern.compile(regexp);
In in = new In(filename);
while (!in.isEmpty())
{
String line = in.readLine();
Matcher matcher = pattern.matcher(line);
if (matcher.find())
{
String s = matcher.group(1).replaceAll(" ", "|);
// Do something with s.
}
}

## Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performance!
grep, Java, Perl


SpamAssassin regular expression.

```
java RE "[a-z]+@[a-z]+([a-z\.]+\.)+[a-z]+" spammer@x...........................
```

- Takes exponential time.
- Spammer can use a pathological email address to DOS a mail server.

Not-so-regular expressions

Back-references.

- \1 notation matches sub-expression that was matched earlier.
- Supported by typical RE implementations.

```
java Harvester "\b(.+)\1\b" dictionary.txt
beriberi
couscous
 word boundary
```

Some non-regular languages.

- set of strings of the form ww for some string w: beriberi.
- set of bitstrings with an equal number of Os and 1s: 01110100.
- set of Watson-Crick complemented palindromes: atttcggaaat.

Remark. Pattern matching with back-references is intractable.

## Context

Abstract machines, languages, and nondeterminism.

- basis of the theory of computation
- intensively studied since the 1930s
- basis of programming languages

Compiler. A program that translates a program to machine code.

- KMP string $\Rightarrow$ DFA.
- grep $R E \Rightarrow N F A$.
- javac Java language $\Rightarrow$ Java byte code.

	KMP	grep	Java
pattern	string	RE	program
parser	unnecessary	check if legal	check if legal
compiler output	DFA	NFA	byte code
simulator	DFA simulator	NFA simulator	JVM

## Summary of pattern-matching algorithms

## Programmer:

- Implement exact pattern matching by DFA simulation (KMP).
- REs are a powerful pattern matching tool.
- Implement RE pattern matching by NFA simulation (grep).


## Theoretician:

- RE is a compact description of a set of strings.
- NFA is an abstract machine equivalent in power to RE.
- DFAs and REs have limitations.

You: Practical application of core CS principles.

Example of essential paradigm in computer science.

- Build intermediate abstractions.
- Pick the right ones!
- Solve important practical problems.


## Linear Programming

brewer's problem
simplex algorithm
implementation

- linear programming


## References:

The Allocation of Resources by Linear Programming,
Scientific American, by Bob Bland
Algs in Java, Part 5

Overview: introduction to advanced topics

## Main topics

- linear programming: the ultimate practical problem-solving model
- reduction: design algorithms, prove limits, classify problems
- NP: the ultimate theoretical problem-solving model
- combinatorial search: coping with intractability


## Shifting gears

- from linear/quadratic to polynomial/exponential scale
- from individual problems to problem-solving models
- from details of implementation to conceptual framework


## Goals

- place algorithms we've studied in a larger context
- introduce you to important and essential ideas
- inspire you to learn more about algorithms!


## Linear Programming

## What is it?

- Quintessential tool for optimal allocation of scarce resources, among a number of competing activities.
- Powerful and general problem-solving method that encompasses: shortest path, network flow, MST, matching, assignment... $A x=b, 2$-person zero sum games


## Why significant?

- Widely applicable problem-solving model
- Dominates world of industry.
- Fast commercial solvers available: CPLEX, OSL.
- Powerful modeling languages available: AMPL, GAMS.
- Ranked among most important scientific advances of $20^{\text {th }}$ century.


## Applications

Agriculture. Diet problem.
Computer science. Compiler register allocation, data mining.
Electrical engineering. VLSI design, optimal clocking.
Energy. Blending petroleum products.
Economics. Equilibrium theory, two-person zero-sum games.
Environment. Water quality management.
Finance. Portfolio optimization.
Logistics. Supply-chain management.
Management. Hotel yield management.
Marketing. Direct mail advertising.
Manufacturing. Production line balancing, cutting stock.
Medicine. Radioactive seed placement in cancer treatment.
Operations research. Airline crew assignment, vehicle routing.
Physics. Ground states of 3-D Ising spin glasses.
Plasma physics. Optimal stellarator design.
Telecommunication. Network design, Internet routing.
Sports. Scheduling ACC basketball, handicapping horse races.
> brewer's problem
simplex algorithm
implementation
> linear programming

Toy LP example: Brewer's problem

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

	corn (lbs)	hops (oz)	malt (lbs)	profit (\$)
available	480	160	1190	
ale (1 barrel)	5	4	35	13
beer (1 barrel)	15	4	20	23

Brewer's problem: choose product mix to maximize profits.

all ale   (34 barrels)	179	136	1190	442	
all beer   (32 barrels)   20 barrels ale   20 barrels beer   12 barrels ale   28 barrels beer	480	128	640	736	34 barrels times 35 lbs malt   per barrel is 1190 lbs   amount of available malt ]
more profitable   product mix?	480	160	980	800	

Brewer's problem: mathematical formulation

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.


## Mathematical formulation

- let $A$ be the number of barrels of beer
- and $B$ be the number of barrels of ale

	ale		beer			profit
maximize	13A	+	23B			
subject	5A	+	15B	$\leq$	480	corn
to the	4A	+	4B	$\leq$	160	hops
constraints	35A	+	20B	$\leq$	1190	malt
			A	$\geq$	0	
			B	$\geq$	0	



Brewer's problem: Feasible region


Brewer's problem: Objective function


Brewer's problem: Geometry

Brewer's problem observation. Regardless of objective function coefficients, an optimal solution occurs at an extreme point.


## Standard form linear program

Input: real numbers $a_{i j}, c_{j}, b_{i}$.
Output: real numbers $x_{j}$.
$n=\#$ nonnegative variables, $m=\#$ constraints.
Maximize linear objective function subject to linear equations.
$n$ variables

## maximize

subject to the constraints

$$
C_{1} X_{1}+C_{2} X_{2}+\ldots+c_{n} X_{n}
$$


matrix version

maximize	$c^{\top} x$
subject to the	$A x=b$
constraints	$x \geq 0$

"Linear"
No $x^{2}, x y, \arccos (x)$, etc.
"Programming" " Planning" (term predates computer programming).

Converting the brewer's problem to the standard form
Original formulation

maximize	$13 A+23 B$
subject	$5 A+15 B \leq 480$
to the	$4 A+4 B \leq 160$
constraints $35 A+20 B \leq 1190$	

Standard form

- add variable $Z$ and equation corresponding to objective function
- add slack variable to convert each inequality to an equality.
- now a 5-dimensional problem.



## Geometry

A few principles from geometry:

- inequality: halfplane (2D), hyperplane (kD).
- bounded feasible region: convex polygon (2D), convex polytope (kD).

Convex set. If two points $a$ and $b$ are in the set, then so is $\frac{1}{2}(a+b)$.

Extreme point. A point in the set that can't be written as $\frac{1}{2}(a+b)$, where $a$ and $b$ are two distinct points in the set.


## Geometry (continued)

Extreme point property. If there exists an optimal solution to $(P)$, then there exists one that is an extreme point.

Good news. Only need to consider finitely many possible solutions.

Bad news. Number of extreme points can be exponential!

Ex: n-dimensional hypercube

Greedy property. Extreme point is optimal iff no neighboring extreme point is better.

>brewer's problem
> simplex algorithm
Iimplementation
linear programming

## Simplex Algorithm

Simplex algorithm. [George Dantzig, 1947]

- Developed shortly after WWII in response to logistical problems, including Berlin airlift.
- One of greatest and most successful algorithms of all time.

Generic algorithm.

- Start at some extreme point.
- Pivot from one extreme point to a neighboring one.
- Repeat until optimal.

How to implement? Linear algebra.


## Simplex Algorithm: Basis

Basis. Subset of $m$ of the $n$ variables.

Basic feasible solution (BFS).

- Set $n-m$ nonbasic variables to 0 , solve for remaining $m$ variables.
- Solve $m$ equations in $m$ unknowns.
- If unique and feasible solution $\Rightarrow B F S$.
- $\mathrm{BFS} \Leftrightarrow$ extreme point.



## Simplex Algorithm: Initialization

Start with slack variables as the basis.

Initial basic feasible solution (BFS).

- set non-basis variables $A=0, B=0$ (and $Z=0$ ).
- 3 equations in 3 unknowns give $S_{C}=480, S_{C}=160, S_{C}=1190$ (immediate).
- extreme point on simplex: origin



## Simplex Algorithm: Pivot 1



$$
\begin{gathered}
\text { basis }=\left\{S_{C}, S_{H}, S_{M}\right\} \\
A=B=0 \\
Z=0 \\
S_{C}=480 \\
S_{H}=160 \\
S_{M}=1190
\end{gathered}
$$

Substitution $B=(1 / 15)\left(480-5 A-S_{C}\right)$ puts $B$ into the basis

which variable does it replace? ( rewrite ind equation, eliminate $B$ in 1st, 3rd, and 4th equations)

$$
\begin{gathered}
\text { basis }=\left\{B, S_{H}, S_{M}\right\} \\
A=S_{C}=0 \\
Z=736 \\
B=32 \\
S_{H}=32 \\
S_{M}=550
\end{gathered}
$$

## Simplex Algorithm: Pivot 1



Why pivot on B ?

- Its objective function coefficient is positive (each unit increase in B from 0 increases objective value by $\$ 23$ )
- Pivoting on column 1 also OK.

Why pivot on row 2?

- Preserves feasibility by ensuring RHS $\geq 0$.
- Minimum ratio rule: $\min \{480 / 15,160 / 4,1190 / 20\}$.


## Simplex Algorithm: Pivot 2



Substitution $A=(3 / 8)\left(32+(4 / 15) S_{C}-S_{H}\right)$ puts $A$ into the basis (rewrite 3nd equation, eliminate $A$ in $1 s t, 2 r d$, and 4 th equations)


$$
\begin{gathered}
\text { basis }=\left\{B, S_{H}, S_{M}\right\} \\
A=S_{C}=0 \\
Z=736 \\
B=32 \\
S_{H}=32 \\
S_{M}=550
\end{gathered}
$$

$$
\begin{aligned}
\text { basis } & =\left\{A, B, S_{M}\right\} \\
S_{C} & =S_{H}=0 \\
Z & =800 \\
B & =28 \\
A & =12 \\
S_{M} & =110
\end{aligned}
$$

## Simplex algorithm: Optimality

Q. When to stop pivoting?
A. When all coefficients in top row are non-positive.
Q. Why is resulting solution optimal?
A. Any feasible solution satisfies system of equations in tableaux.

- In particular: $Z=800-S_{C}-2 S_{H}$
- Thus, optimal objective value $Z^{*} \leq 800$ since $S_{C}, S_{H} \geq 0$.
- Current BFS has value $800 \Rightarrow$ optimal.

maximize   subject to the constraints	Z										
			-	Sc	-			Z	=	-800	basis $=\left\{A, B, S_{M}\right\}$
		B									$S_{C}=S_{H}=0$
			+	$(1 / 10) S_{c}$	+	(1/8) $S_{H}$			$=$	28	$Z=800$
	A		-	$(1 / 10) S_{c}$	+	(3/8) $S_{H}$			=	12	$B=28$
											$A=12$
			-	(25/6) $S_{c}$	-	$(85 / 8) S_{H}$	$S_{M}$		-	110	$S_{M}=110$
				A, B, SC,	H,				$\geq$	0	

brewer's problem
simplex algorithm
rimplementation
>linear programming

## Simplex tableau

## Encode standard form LP in a single Java 2D array



5	15	1	0	0	480
4	4	0	1	0	160
35	20	0	0	1	1190
13	23	0	0	0	0



## Simplex tableau

## Encode standard form LP in a single Java 2D array (solution)



Simplex algorithm transforms initial array into solution

## Simplex algorithm: Bare-bones implementation

Construct the simplex tableau.


```
public class Simplex
{
 private double[][] a; // simplex tableaux
constructor
 private int M, N;
 public Simplex(double[][] A, double[] b, double[] c)
 {
 M = b.length;
 N = c.length;
 a = new double[M+1][M+N+1];
 for (int i = 0; i < M; i++)
 for (int j = O; j < N; j++)
 a[i][j] = A[i][j];
 for (int j = N; j < M + N; j++) a[j-N][j] = 1.0; « put I[] into tableau
 for (int j = 0; j < N; j++) a[M][j] = c[j];\longleftarrow putc[] into tableau
 for (int i=0; i < M; i++) a[i][M+N] = b[i];\longleftarrow putb[] into tableau
 }
```


## Simplex algorithm: Bare-bones Implementation

Pivot on element ( $p, q$ ).

public void pivot(int $p$, int $q$ )
\{ scale all elements but row $p$ and column q

```
 for (int i = 0; i <= M; i++)
 for (int j = 0; j <= M + N; j++) if (i ! \(=\mathrm{p}\) \&\& j ! \(=\mathrm{q}\)) \(a[i][j]-=a[p][j]\) * \(a[i][q] / a[p][q] ;\)
 a[i][j] -= a[p][j] * a[i][q] / a[p][q];
```

```
for (int i = 0; i <= M; i++)
```

    if (i ! \(=\) p) a[i][q] \(=0.0\);
    $\longleftarrow$ zero out column q
for (int $j=0 ; j<=M+N ; j++$ )
if (j != q) a[p][j] /= a[p][q];
$\longleftarrow$ scale row $p$
$a[p][q]=1.0$;
\}

## Simplex Algorithm: Bare Bones Implementation


for (p = 0; p<M; p++)

```
```

```
public void solve()
```

```
public void solve()
{
{
 while (true)
 while (true)
 {
 {
 int p, q;
 int p, q;
 for (q = 0; q < M + N; q++)
 for (q = 0; q < M + N; q++)
 if (a[M][q] > 0) break;
 if (a[M][q] > 0) break;
 if (q >= M + N) break;
```

            if (q >= M + N) break;
    ```
```

                                    find entering variable q
                                    (positive objective function coefficient)
                \longleftarrow find row p according
                        to min ratio rule
        pivot(p, q);
    }
    }

```
Simplex algorithm.

\section*{Simplex Algorithm: Running Time}

Remarkable property. In practice, simplex algorithm typically terminates after at most \(2(m+n)\) pivots.
- No pivot rule that is guaranteed to be polynomial is known.
- Most pivot rules known to be exponential (or worse) in worst-case.

Pivoting rules. Carefully balance the cost of finding an entering variable with the number of pivots needed.

\section*{Simplex algorithm: Degeneracy}

Degeneracy. New basis, same extreme point.
"stalling" is common in practice

Cycling. Get stuck by cycling through different bases that all correspond to same extreme point.
- Doesn't occur in the wild.
- Bland's least index rule guarantees finite \# of pivots.

\section*{Simplex Algorithm: Implementation Issues}

To improve the bare-bones implementation
- Avoid stalling.
- Choose the pivot wisely.
- Watch for numerical stability.
- Maintain sparsity. « requires fancy data structures
- Detect infeasiblity
- Detect unboundedness.
- Preprocess to reduce problem size.

Basic implementations available in many programming environments.

Commercial solvers routinely solve LPs with millions of variables.

\section*{LP solvers: basic implementations}

\section*{Ex. 1: OR-Objects Java library}
```

import drasys.or.mp.*;
import drasys.or.mp.lp.*;
public class LPDemo
{
public static void main(String[] args) throws Exception
{
Problem prob = new Problem(3, 2);
prob.getMetadata().put("lp.isMaximize", "true");
prob.newVariable("x1").setObjectiveCoefficient(13.0);
prob.newVariable("x2").setObjectiveCoefficient(23.0);
prob.newConstraint("corn").setRightHandSide( 480.0);
prob.newConstraint("hops").setRightHandSide( 160.0);
prob.newConstraint("malt").setRightHandSide(1190.0);
prob.setCoefficientAt("corn", "x1", 5.0);
prob.setCoefficientAt("corn", "x2", 15.0);
prob.setCoefficientAt("hops", "x1", 4.0);
prob.setCoefficientAt("hops", "x2", 4.0);
prob.setCoefficientAt("malt", "x1", 35.0);
prob.setCoefficientAt("malt", "x2", 20.0);
DenseSimplex lp = new DenseSimplex(prob);
System.out.println(lp.solve());
System.out.println(lp.getSolution());
}
}

```

Ex. 2: MS Excel (!)

\section*{LP solvers: commercial strength}

AMPL. [Fourer, Gay, Kernighan] An algebraic modeling language.
CPLEX solver. Industrial strength solver.

\section*{History}
1939. Production, planning. [Kantorovich]
1947. Simplex algorithm. [Dantzig]
1950. Applications in many fields.
1979. Ellipsoid algorithm. [Khachian]
1984. Projective scaling algorithm. [Karmarkar]
1990. Interior point methods.
- Interior point faster when polyhedron smooth like disco ball.
- Simplex faster when polyhedron spiky like quartz crystal.

200x. Approximation algorithms, large scale optimization.
> brewer's problem
> simplex algorithm
Implementation
Dlinear programming

\section*{Linear programming}

Linear "programming"
- process of formulating an LP model for a problem
- solution to LP for a specific problem gives solution to the problem
1. Identify variables
2. Define constraints (inequalities and equations)
3. Define objective function

\section*{Examples:} convert to standard form
- shortest paths
- maxflow
- bipartite matching

-
-
- [a very long list]

\section*{Single-source shortest-paths problem (revisited)}

Given. Weighted digraph, single source s.

Distance from s to \(v\) : length of the shortest path from \(s\) to \(v\).

Goal. Find distance (and shortest path) from s to every other vertex.

LP formulation of single-source shortest-paths problem
One variable per vertex, one inequality per edge.
\begin{tabular}{cc}
\begin{tabular}{c}
minimize \\
subject \\
to the \\
constraints
\end{tabular} & \(x_{s}+9 \leq x_{2}\) \\
\(x_{s}+14 \leq x_{6}\) \\
& \(x_{s}+15 \leq x_{7}\) \\
\(x_{2}+24 \leq x_{3}\) \\
& \(x_{3}+2 \leq x_{5}\) \\
& \(x_{3}+19 \leq x_{t}\) \\
shortest path from & \(x_{4}+6 \leq x_{3}\) \\
source to i & \(x_{4}+6 \leq x_{t}\) \\
interpretation: & \(x_{5}+11 \leq x_{4}\) \\
& \(x_{5}+16 \leq x_{t}\) \\
& \(x_{6}+18 \leq x_{3}\) \\
& \(x_{6}+30 \leq x_{5}\) \\
& \(x_{6}+5 \leq x_{7}\) \\
& \(x_{7}+20 \leq x_{5}\) \\
& \(x_{7}+44 \leq x_{t}\) \\
& \(x_{s}=0\) \\
& \(x_{2}, \ldots, x_{t} \geq 0\)
\end{tabular}

LP formulation of single-source shortest-paths problem
One variable per vertex, one inequality per edge.
\begin{tabular}{cc}
\begin{tabular}{c}
minimize \\
subject \\
to the \\
constraints
\end{tabular} & \(x_{s}+9 \leq x_{2}\) \\
& \(x_{s}+14 \leq x_{6}\) \\
& \(x_{s}+15 \leq x_{7}\) \\
& \(x_{2}+24 \leq x_{3}\) \\
& \(x_{3}+2 \leq x_{5}\) \\
& \(x_{3}+19 \leq x_{t}\) \\
shortest path from & \(x_{4}+6 \leq x_{3}\) \\
source to i & \(x_{4}+6 \leq x_{t}\) \\
interpretation: & \(x_{5}+11 \leq x_{4}\) \\
& \(x_{5}+16 \leq x_{t}\) \\
& \(x_{6}+18 \leq x_{3}\) \\
& \(x_{6}+30 \leq x_{5}\) \\
& \(x_{6}+5 \leq x_{7}\) \\
& \(x_{7}+20 \leq x_{5}\) \\
& \(x_{7}+44 \leq x_{t}\) \\
& \(x_{s}=0\) \\
& \(x_{2}, \ldots, x_{+} \geq 0\)
\end{tabular}

\section*{Maxflow problem}

Given: Weighted digraph, source s, destinationt.

Interpret edge weights as capacities
- Models material flowing through network
- Ex: oil flowing through pipes
- Ex: goods in trucks on roads
- [many other examples]

Flow: A different set of edge weights
- flow does not exceed capacity in any edge
- flow at every vertex satisfies equilibrium [flow in equals flow out]

Goal: Find maximum flow from s to \(\dagger\)

LP formulation of maxflow problem
One variable per edge.
One inequality per edge, one equality per vertex.

LP formulation of maxflow problem
One variable per edge.
One inequality per edge, one equality per vertex.

Maximum cardinality bipartite matching problem

Given: Two sets of vertices, set of edges (each connecting one vertex in each set)

\section*{Matching: set of edges} with no vertex appearing twice

Interpretation: mutual preference constraints
- Ex: people to jobs
- Ex: medical students to residence positions
- Ex: students to writing seminars
- [many other examples]
\begin{tabular}{l|l}
Alice & Adobe \\
Adobe, Apple, Google & Alice, Bob, Dave \\
Bob & Apple \\
Adobe, Apple, Yahoo & Alice, Bob, Dave \\
Carol & Google \\
Google, IBM, Sun & Alice, Carol, Frank \\
Dave & IBM \\
Adobe, Apple & Carol, Eliza \\
Eliza & Sun \\
IBM, Sun, Yahoo & Carol, Eliza, Frank \\
Frank & Yahoo \\
Google, Sun, Yahoo & Bob, Eliza, Frank
\end{tabular}

Example: Job offers

Goal: find a maximum cardinality matching

LP formulation of maximum cardinality bipartite matching problem
One variable per edge, one equality per vertex.
interpretation: An edge is in the matching iff \(x_{i j}=1\)
\[
x_{A O}+x_{A 1}+x_{A 2}+x_{B 0}+x_{B 1}+x_{B 5}
\]
maximize
\[
+x_{C 2}+x_{C 3}+x_{C 4}+x_{D 0}+x_{D 1}
\]
\[
+X_{E 3}+X_{E 4}+X_{E 5}+X_{F 2}+X_{F 4}+X_{F 5}
\]
subject
to the
constraints

Crucial point: not always so lucky!

Theorem. [Birkhoff 1946, von Neumann 1953]
All extreme points of the above polyhedron have integer (0 or 1) coordinates
Corollary. Can solve bipartite matching problem by solving LP

LP formulation of maximum cardinality bipartite matching problem
One variable per edge, one equality per vertex.
interpretation: An edge is in the matching iff \(x_{i j}=1\)
maximize
to the
constraints

\[
\begin{aligned}
& \text { solution } \\
& \qquad \begin{aligned}
x_{A 1} & =1 \\
x_{B 5} & =1 \\
x_{C 2} & =1 \\
x_{D O} & =1 \\
x_{E 3} & =1 \\
x_{F 4} & =1
\end{aligned} \\
& \text { all other } x_{i j}=0
\end{aligned}
\]

\[
\begin{aligned}
& x_{A O}+x_{A 1}+x_{A 2}+x_{B O}+x_{B 1}+x_{B 5} \\
& +x_{C 2}+x_{C 3}+x_{C 4}+x_{D 0}+x_{D 1} \\
& +X_{E 3}+X_{E 4}+X_{E 5}+X_{F 2}+X_{F 4}+X_{F 5} \\
& x_{B 0}+x_{B 1}+x_{B 5}=1 \\
& x_{C 2}+x_{C 3}+x_{C 4}=1 \\
& x_{D O}+x_{D 1}=1 \\
& X_{E 3}+X_{E 4}+X_{E 5}=1 \\
& X_{F 2}+X_{F 4}+X_{F 5}=1 \\
& x_{A O}+x_{B O}+x_{D O}=1 \\
& x_{A 1}+x_{B 1}+x_{D 1}=1 \\
& x_{A 2}+x_{C 2}+x_{F 2}=1 \\
& x_{C 3}+x_{E 3}=1 \\
& X_{C 4}+X_{E 4}+X_{F 4}=1 \\
& X_{B 5}+X_{E 5}+X_{F 5}=1 \\
& \text { all } x_{i j} \geq 0
\end{aligned}
\]

Linear programming perspective
Got an optimization problem?
ex: shortest paths, maxflow, matching, . . . [many, many, more]

Approach 1: Use a specialized algorithm to solve it
- Algs in Java
- vast literature on complexity
- performance on real problems not always well-understood

Approach 2: Use linear programming
- a direct mathematical representation of the problem often works
- immediate solution to the problem at hand is often available
- might miss specialized solution, but might not care
```

[cos226:tucson] ~> ampl
AMPL Version 20010215 (SunOS 5.7)
Got an LP solver? Learn to use it!

LP: the ultimate problem-solving model (in practice)

Fact 1: Many practical problems are easily formulated as LPs
Fact 2: Commercial solvers can solve those LPs quickly

More constraints on the problem?

- specialized algorithm may be hard to fix $\longleftarrow$ Ex. Mincost maxflow and
- can just add more inequalities to LP

New problem?

- may not be difficult to formulate LP
- may be very difficult to develop specialized algorithm

Today's problem?

- similar to yesterday's
- edit tableau, run solver

Ex. Airline scheduling
[ similar to vast number of other business processes ]

Too slow?

- could happen
- doesn't happen

Ultimate problem-solving model (in theory)

Is there an ultimate problem-solving model?

- Shortest paths
- Maximum flow
- Bipartite matching
- . . .
- Linear programming
- .
-.
- NP-complete problems
- 
- .
- .


Does $P=N P$ ? No universal problem-solving model exists unless $P=N P$.

LP perspective

LP is near the deep waters of intractability.
Good news:

- LP has been widely used for large practical problems for 50+ years
- Existence of guaranteed poly-time algorithm known for $25+$ years.

Bad news:

- Integer linear programming is NP-complete
- (existence of guaranteed poly-time algorithm is highly unlikely).
- [stay tuned]


An unsuspecting MBA student transitions to the world of intractability with a single mouse click.

## Reductions

designing algorithms
proving limits

- classifying problems
, NP-completeness


## Bird's-eye view

Desiderata.
Classify problems according to their computational requirements.

Frustrating news.
Huge number of fundamental problems have defied classification

Desiderata'.
Suppose we could (couldn't) solve problem $X$ efficiently. What else could (couldn' $\dagger$ ) we solve efficiently?


Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. -Archimedes

## Reduction

Def. Problem $X$ reduces to problem $Y$
if you can use an algorithm that solves $Y$ to help solve $X$


Ex. Euclidean MST reduces to Voronoi.
To solve Euclidean MST on N points

- solve Voronoi for those points
- construct graph with linear number of edges
- use Prim/Kruskal to find MST in time proportional to $N \log N$


## Reduction

## Def. Problem $X$ reduces to problem $Y$

if you can use an algorithm that solves $Y$ to help solve $X$

number of times $Y$ is used

## Applications

- designing algorithms: given algorithm for $Y$, can also solve $X$.
- proving limits: if $X$ is hard, then so is $Y$.
- classifying problems: establish relative difficulty of problems.
designing algorithms
> proving limits
classifying problems
, NP-completeness

Reductions for algorithm design

Def. Problem $X$ reduces to problem $Y$
if you can use an algorithm that solves $Y$ to help solve $X$

```
Cost of solving X = M*(cost of solving Y) + cost of reduction.
 \uparrow
number of times }\textrm{Y}\mathrm{ is used
```

Applications.

- designing algorithms: given algorithm for $Y$, can also solve $X$.
- proving limits: if $X$ is hard, then so is $Y$.
- classifying problems: establish relative difficulty of problems.

Mentality: Since I know how to solve $Y$, can I use that algorithm to solve $X$ ?

Reductions for algorithm design: convex hull

Sorting. Given N distinct integers, rearrange them in ascending order.
Convex hull. Given $N$ points in the plane, identify the extreme points of the convex hull (in counter-clockwise order).

Claim. Convex hull reduces to sorting.
Pf. Graham scan algorithm.

convex hull

1251432
2861534
3988818
4190745
13546464
89885444
sorting

Cost of convex hull $=$ cost of sort + cost of reduction
linearithmic

Reductions for algorithm design: shortest paths

Claim. Shortest paths reduces to path search in graphs (PFS)


Pf. Dijkstra's algorithm


Cost of shortest paths = cost of search + cost of reduction

Reductions for algorithm design: maxflow
Claim: Maxflow reduces to PFS (!)
A forward edge is an edge in the same direction of the flow

An backward edge is an edge in the opposite direction of the flow

An augmenting path is along which we can increase flow by adding
flow on a forward edge or decreasing flow on a backward edge

Theorem [Ford-Fulkerson] To find maxflow:

- increase flow along any augmenting path
- continue until no augmenting path can be found

Reduction is not linear because it requires multiple calls to PFS

Reductions for algorithm design: maxflow (continued)

Two augmenting-path sequences


Cost of maxflow $=M^{*}($ cost of PFS $)+$ cost of reduction $\uparrow \quad$ linear
linear

Reductions for algorithm design: bipartite matching

Bipartite matching reduces to maxflow

## Proof:

- construct new vertices $s$ and $\dagger$
- add edges from s to each vertex in one set
- add edges from each vertex in other set to $\dagger$
- set all edge weights to 1
- find maxflow in resulting network
- matching is edges between two sets

s

t

Note: Need to establish that maxflow solution has all integer (0-1) values.

Reductions for algorithm design: bipartite matching

Bipartite matching reduces to maxflow

## Proof:



- construct new vertices $s$ and $\dagger$
- add edges from s to each vertex in one set
- add edges from each vertex in other set to $\dagger$
- set all edge weights to 1
- find maxflow in resulting network
- matching is edges between two sets


Note: Need to establish that maxflow solution has all integer (0-1) values.


Cost of matching $=$ cost of maxflow + cost of reduction

Reductions for algorithm design: summary

Some reductions we have seen so far:


Reductions for algorithm design: a caveat
PRIME. Given an integer $\times$ (represented in binary), is $\times$ prime? COMPOSITE. Given an integer $x$, does $x$ have a nontrivial factor?

```
PRIME reduces to COMPOSITE
 public static boolean isPrime(BigInteger x)
{
 if (isComposite(x)) return false;
 else return true;
}
COMPOSITE reduces to PRIME
 public static boolean isComposite(BigInteger x)
 PRIME
```



```
 if (isPrime(x)) return false;
 else return true;
}
```

A possible real-world scenario:

- System designer specs the interfaces for project.
- Programmer A implements isComposite () using isPrime().
- Programmer B implements isPrime() using isComposite().
- Infinite reduction loop!
designing algorithms
$>$ proving limits
classifyling problems
polynomial-time reductions
> NP-completeness

Linear-time reductions to prove limits

Def. Problem $X$ linear reduces to problem $Y$ if $X$ can be solved with:

- linear number of standard computational steps for reduction
- one call to subroutine for $Y$.

Applications.

- designing algorithms: given algorithm for $Y$, can also solve $X$.
- proving limits: if $X$ is hard, then so is $Y$.
- classifying problems: establish relative difficulty of problems.

Mentality:
If I could easily solve $Y$, then I could easily solve $X$
I can't easily solve $X$.
Therefore, I can't easily solve $Y$
NOT intended for use
Purpose of reduction is to establish that $Y$ is hard

Proving limits on convex-hull algorithms

Lower bound on sorting: Sorting $N$ integers requires $\Omega(N \log N)$ steps.

> need "quadratic decision tree" model of computation that allows tests of the form $x_{i}<x_{j}$ or $\left(x_{j}-x_{i}\right)\left(y_{k}-y_{i}\right)-\left(y_{j}-y_{i}\right)\left(x_{k}-x_{i}\right)<0$

Claim. SORTING reduces to CONVEX HULL [see next slide].

Consequence.
Any ccw-based convex hull algorithm requires $\Omega(N \log N)$ steps.
1251432
2861534
3988818
4190745
13546464
89885444
Sorting

convex hull

Sorting linear-reduces to convex hull

Sorting instance.

$$
X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}
$$

Convex hull instance. $P=\left\{\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}{ }^{2}\right), \ldots,\left(x_{N}, x_{N}{ }^{2}\right)\right\}$


Observation. Region $\left\{x: x^{2} \geq x\right\}$ is convex $\Rightarrow$ all points are on hull.

Consequence. Starting at point with most negative $x$, counter-clockwise order of hull points yields items in ascending order.

To sort $X$, find the convex hull of $P$.

## 3-SUM reduces to 3-COLLINEAR

3-SUM. Given $N$ distinct integers, are there three that sum to 0 ?

3-COLLINEAR. Given $N$ distinct points in the plane, are there 3 that all lie on the same line?


Claim. 3-SUM reduces to 3-COLLINEAR.
see next two slides

Conjecture. Any algorithm for 3-SUM requires $\Omega\left(N^{2}\right)$ time.

Consequence. Sub-quadratic algorithm for 3-COLLINEAR unlikely.
your $N^{2} \log N$ algorithm from Assignment 2 was pretty good

## 3-SUM reduces to 3-COLLINEAR (continued)

Claim. 3 -SUM $\leq_{L} 3$-COLLINEAR.

- 3-SUM instance:

$$
x_{1}, x_{2}, \ldots, x_{N}
$$

$$
\text { - 3-COLLINEAR instance: } \quad\left(x_{1}, x_{1}^{3}\right),\left(x_{2}, x_{2}^{3}\right), \ldots,\left(x_{N}, x_{N}^{3}\right)
$$

$$
f(x)=x^{3}
$$



## 3-SUM reduces to 3-COLLINEAR (continued)

Lemma. If $a, b$, and $c$ are distinct, then $a+b+c=0$ if and only if $\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ are collinear.

Pf. Three points $\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ are collinear iff:

$$
\begin{aligned}
\left(a^{3}-b^{3}\right) /(a-b) & =\left(b^{3}-c^{3}\right) /(b-c) & & \text { slopes are equal } \\
(a-b)\left(a^{2}+a b+b^{2}\right) /(a-b) & =(b-c)\left(b^{2}+b c+c^{2}\right) /(b-c) & & \text { factor numerators } \\
\left(a^{2}+a b+b^{2}\right) & =\left(b^{2}+b c+c^{2}\right) & & a-b \text { and } b-c \text { are nonzero } \\
a^{2}+a b-b c-c^{2} & =0 & & \text { collect terms } \\
(a-c)(a+b+c) & =0 & & \text { factor } \\
a+b+c & =0 & & a-c \text { is nonzero }
\end{aligned}
$$

Reductions for proving limits: summary

Establishing limits through reduction is an important tool in guiding algorithm design efforts


Want to be convinced that no linear-time convex hull alg exists? Hard way: long futile search for a linear-time algorithm Easy way: reduction from sorting

## 3-SUM

## 3-COLLINEAR

Want to be convinced that no subquadratic 3-COLLINEAR alg exists?
Hard way: long futile search for a subquadratic algorithm
Easy way: reduction from 3-SUM
designing algorithms
> proving limits
classifying problems
NP-completeness

Reductions to classify problems

Def. Problem $X$ linear reduces to problem $Y$ if $X$ can be solved with:

- Linear number of standard computational steps.
- One call to subroutine for $Y$.

Applications.

- Design algorithms: given algorithm for $Y$, can also solve $X$.
- Establish intractability: if $X$ is hard, then so is $Y$.
- Classify problems: establish relative difficulty between two problems.

Ex: Sorting linear-reduces to convex hull.
Convex hull linear-reduces to sorting.
Thus, sorting and convex hull are equivalent


Most often used to classify problems as either

- tractable (solvable in polynomial time)
- intractable (exponential time seems to be required)


## Polynomial-time reductions

Def. Problem $X$ polynomial reduces to problem $Y$ if arbitrary instances of problem $X$ can be solved using:

- Polynomial number of standard computational steps for reduction
- One call to subroutine for $Y$.
critical detail (not obvious why)

Notation. $X \leq{ } \mathrm{Y}$.

Ex. Any linear reduction is a polynomial reduction.

Ex. All algorithms for which we know poly-time algorithms poly-time reduce to one another.

Poly-time reduction of $X$ to $Y$ makes sense only when $X$ or $Y$ is not known to have a poly-time algorithm

## Polynomial-time reductions for classifying problems

Goal. Classify and separate problems according to relative difficulty.

- tractable problems: can be solved in polynomial time.
- intractable problems: seem to require exponential time.

Establish tractability. If $X \leq{ }_{p} Y$ and $Y$ is tractable then so is $X$.

- Solve $Y$ in polynomial time.
- Use reduction to solve $X$.

Establish intractability. If $\mathrm{Y} \leq_{p} \mathrm{X}$ and Y is intractable, then so is X .

- Suppose $X$ can be solved in polynomial time.
- Then so could Y (through reduction).
- Contradiction. Therefore $X$ is intractable.

Transitivity. If $X s_{p} Y$ and $Y s_{p} Z$ then $X \leq_{p} Z$.

Ex: all problems that reduce to LP are tractable

## 3-satisfiability

Literal: A Boolean variable or its negation.

$$
x_{i} \text { or }-x_{i}
$$

Clause. A disjunction of 3 distinct literals.

$$
C_{j}=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

Conjunctive normal form. A propositional

$$
C N F=\left(C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}\right)
$$

formula $\Phi$ that is the conjunction of clauses.

3-SAT. Given a CNF formula $\Phi$ consisting of $k$ clauses over $n$ literals, does it have a satisfying truth assignment?
yes instance
$\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee x_{4}\right)$

$$
\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
T & T & F & (-T \vee T \vee F) \wedge(T \vee \vee \vee \vee F) \wedge(-T \vee \neg T \vee \vee) \wedge(-T \vee \neg \vee \vee) \wedge(-T \vee F \vee T)
\end{array}
$$

no instance
$\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee x_{4}\right)$

Applications: Circuit design, program correctness, [many others]

## 3-satisfiability is intractable

Good news: easy algorithm to solve 3-SAT
[ check all possible solutions ]
Bad news: running time is exponential in input size.
[ there are $2^{n}$ possible solutions ]

## Worse news:

no algorithm that guarantees subexponential running time is known

## Implication:

- suppose 3-SAT poly-reduces to a problem A
- poly-time algorithm for A would imply poly-time 3-SAT algorithm
- we suspect that no poly-time algorithm exists for A!

Want to be convinced that a new problem is intractable?
Hard way: long futile search for an efficient algorithm (as for 3-SAT)
Easy way: reduction from a known intractable problem (such as 3-SAT)

## Graph 3-colorability

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?


## Graph 3-colorability

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?


## Graph 3-colorability

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?

no instance

## 3 -satisfiability reduces to graph 3-colorability

Claim. $3-$ SAT $\leq p 3-C O L O R$.

Pf. Given 3-SAT instance $\Phi$, we construct an instance of 3-COLOR that is 3 -colorable if and only if $\Phi$ is satisfiable.
Construction.
(i) Create one vertex for each literal and 3 vertices $F$ $T$
(ii) Connect $F$ ( $B$ in a triangle and connect each literal to $B$
(iii) Connect each literal to its negation.
(iv) For each clause, attach a 6-vertex gadget [details to follow].


## 3-satisfiability reduces to graph 3-colorability

Claim. If graph is 3 -colorable then $\Phi$ is satisfiable..
Pf.

- Consider assignment where F corresponds to false and $T$ to true .
- (ii) [triangle] ensures each literal is true or false.



## 3-satisfiability reduces to graph 3-colorability

Claim. If graph is 3 -colorable then $\Phi$ is satisfiable..
Pf. $\Rightarrow$ Suppose graph is 3 -colorable.

- Consider assignment where $F$ corresponds to false and $T$ to true .
- (ii) [triangle] ensures each literal is true or false.
- (iii) ensures a literal and its negation are opposites.



## 3 -satisfiability reduces to graph 3-colorability

Claim. If graph is 3 -colorable then $\Phi$ is satisfiable.

Pf.

- Consider assignment where $F$ corresponds to false and $T$ to true.
- (ii) [triangle] ensures each literal is true or false.
- (iii) ensures a literal and its negation are opposites.
- (iv) [gadget] ensures at least one literal in each clause is true.



## 3-satisfiability reduces to graph 3-colorability

Claim. If graph is 3-colorable then $\Phi$ is satisfiable.

Pf.

- Consider assignment where $F$ corresponds to false and $F$ to true.
- (ii) [triangle] ensures each literal is true or false.
- (iii) ensures a literal and its negation are opposites.
- (iv) [gadget] ensures at least one literal in each clause is true.

Therefore, $\Phi$ is satisfiable.


## 3-satisfiability reduces to graph 3-colorability

Claim. If $\Phi$ is satisfiable then graph is 3-colorable.
Pf.

- Color nodes corresponding to false literals $\bigcirc$ and to true literals



## 3-satisfiability reduces to graph 3-colorability

Claim. If $\Phi$ is satisfiable then graph is 3-colorable.
Pf.

- Color nodes corresponding to false literals $\bigcirc$ and to true literals
- Color vertex below one vertex and vertex below that $\bigcirc$.



## 3-satisfiability reduces to graph 3-colorability

Claim. If $\Phi$ is satisfiable then graph is 3-colorable.
Pf.

- Color nodes corresponding to false literals $\bigcirc$ and to true literals
- Color vertex below one vertex and vertex below that $O$.
- Color remaining middle row vertices



## 3 -satisfiability reduces to graph 3-colorability

Claim. If $\Phi$ is satisfiable then graph is 3-colorable.

Pf.

- Color nodes corresponding to false literals $\bigcirc$ and to true literals $\square$
- Color vertex below one vertex and vertex below that $O$.
- Color remaining middle row vertices
- Color remaining bottom vertices or as forced.

Works for all gadgets, so graph is 3-colorable. -


## 3 -satisfiability reduces to graph 3-colorability

Claim. $3-$ SAT $\leq p 3-C O L O R$.

Pf. Given 3-SAT instance $\Phi$, we construct an instance of 3-COLOR that is 3 -colorable if and only if $\Phi$ is satisfiable.

Construction.
(i) Create one vertex for each literal.
(ii) Create 3 new vertices T, F, and B; connect them in a triangle, and connect each literal to B .
(iii) Connect each literal to its negation.
(iv) For each clause, attach a gadget of 6 vertices and 13 edges

Conjecture: No polynomial-time algorithm for 3-SAT
Implication: No polynomial-time algorithm for 3-COLOR.

## Reminder

Construction is not intended for use, just to prove 3-COLOR difficult
> designing algorithms
proving limits
classifying problems
polynomia-time reductions
, NP-completeness

## More Poly-Time Reductions



## Cook's Theorem

NP: set of problems solvable in polynomial time by a nondeterministic Turing machine
$T H M$. Any problem in NP $\leq p 3-S A T$.

Pf sketch.

Each problem $P$ in NP corresponds to a TM M that accepts or rejects any input in time polynomial in its size
Given $M$ and a problem instance $I$, construct an instance of 3-SAT that is satisfiable iff the machine accepts I.

Construction.

- Variables for every tape cell, head position, and state at every step.
- Clauses corresponding to each transition.
- [many details omitted]



## Implications of Karp + Cook

All of these problems poly-reduce to one another!


Poly-Time Reductions: Implications

"I can't find an efficient algorithm, I guess I'm just too dumb."

## Poly-Time Reductions: Implications


"I can't find an efficient algorithm, because no such algorithm is possible!"

## Poly-Time Reductions: Implications


"I can't find an efficient algorithm, but neither can all these famous people."

## Summary

Reductions are important in theory to:

- Establish tractability.
- Establish intractability.
- Classify problems according to their computational requirements.

Reductions are important in practice to:

- Design algorithms.
- Design reusable software modules.
stack, queue, sorting, priority queue, symbol table, set, graph shortest path, regular expressions, linear programming
- Determine difficulty of your problem and choose the right tool. use exact algorithm for tractable problems use heuristics for intractable problems


# Combinatorial Search 


permutations
backtracking
counting

- subsets
- paths in a graph


## Overview

Exhaustive search. Iterate through all elements of a search space.
Backtracking. Systematic method for examining feasible solutions to a problem, by systematically eliminating infeasible solutions.

Applicability. Huge range of problems (include NP-hard ones).

Caveat. Search space is typically exponential in size $\Rightarrow$ effectiveness may be limited to relatively small instances.

Caveat to the caveat. Backtracking may prune search space to reasonable size, even for relatively large instances

## Warmup: enumerate N -bit strings

Problem: process all $2^{\mathrm{N}} \mathrm{N}$-bit strings (stay tuned for applications).
Equivalent to counting in binary from 0 to $2^{N}-1$.

- maintain a[i] where a[i] represents bit i
- initialize all bits to o
- simple recursive method does the job (call enumerate (0))

```
private void enumerate(int k)
```

private void enumerate(int k)
{
{
if (k == N)
if (k == N)
{ process(); return; }
{ process(); return; }
enumerate(k+1);
enumerate(k+1);
a[k] = 1;
a[k] = 1;
enumerate(k+1);
enumerate(k+1);
a[k] = 0;
a[k] = 0;
}
}
clean up

```
 clean up
```



Invariant (prove by induction);
Enumerates all (N-k)-bit strings and cleans up after itself.

## Warmup: enumerate N -bit strings (full implementation)

Equivalent to counting in binary from 0 to $2^{N}-1$.

```
all the programs
 in this lecture
 are variations
 on this theme
```

public class Counter
{
private int N; // number of bits
private int[] a; // bits (0 or 1)
public Counter(int N)
{
this.N = N;
a = new int[N];
for (int i = 0; i < N; i++)
a[i] = 0; « optional
a[i] = 0; « optional
enumerate (0); (in this case)
enumerate (0); (in this case)
}
}
private void enumerate(int k)
private void enumerate(int k)
{
{
if (k == N)
if (k == N)
{ process(); return; }
{ process(); return; }
enumerate (k+1);
enumerate (k+1);
a[k] = 1;
a[k] = 1;
enumerate (k+1);
enumerate (k+1);
a[k] = 0;
a[k] = 0;
}
}
public static void main(String[] args)
public static void main(String[] args)
{
{
int N = Integer.parseInt (args[0]);
int N = Integer.parseInt (args[0]);
Counter c = new Counter(N);
Counter c = new Counter(N);
}
}
}

```
}
```

```
private void process()
{
 for (int i = 0; i < N; i++)
 StdOut.print(a[i]);
 StdOut.println();
}
```

\% java Counter 4
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
> permutations
Dacktracking
counting
〉 subsets
paths in a graph

## N-rooks Problem

How many ways are there to place
N rooks on an N -by- N board so that no rook can attack any other?


No two in the same row, so represent solution with an array
a[i] = column of rook in row i.
No two in the same column, so array entries are all different
a[] is a permutation (rearrangement of $0,1, \ldots \mathrm{~N}-1$ )

Answer: There are $N$ ! non mutually-attacking placements. Challenge: Enumerate them all.

## Enumerating permutations

Recursive algorithm to enumerate all $N$ ! permutations of size N :

- Start with 012 ... N-1.
- For each value of $i$
- swap i into position o
- enumerate all (N-1)! arrangements of a[1. . N-1]
- clean up (swap i and o back into position)

|  |  | 0 followed by perms of 123 |  | 1 followed by perms of 023 $\downarrow$ |  | 2 followed by perms of 103 $\downarrow$ |  | 3 followed by perms of 120 $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 012 | 01 2 3 | 1 | $\begin{array}{lll}0 & 2 & 3\end{array}$ | 2 | $\begin{array}{llll}1 & 0 & 3\end{array}$ | 3 | 120 |
| 10 | $0 \quad 2 \quad 1$ | 0015 | 1 | 032 | 2 | $1 \begin{array}{lll}1 & 3 & 0\end{array}$ | 3 | $1 \begin{array}{lll}1 & 0 & 2\end{array}$ |
|  | 102 | 002123 | 1 | 203 |  | 0 |  | 210 |
|  | 120 | 0021 | 1 | 230 | 2 | 0 | 3 | 2001 |
|  | 210 | 00312 | 1 | 320 |  | $\begin{array}{lll}3 & 0 & 1\end{array}$ |  | 0 |
|  | 2001 | 0031812 |  | $\begin{array}{llll}3 & 0 & 2\end{array}$ |  | $\begin{array}{llll}3 & 1 & 0\end{array}$ | 3 | $\begin{array}{llll}0 & 1 & 2\end{array}$ |
|  |  |  | 1 | 320 |  |  |  |  |
|  |  |  |  | 023 |  |  |  |  |
|  |  |  |  | 123 |  |  |  |  |

N-rooks problem (enumerating all permutations): scaffolding

```
public class Rooks
{
 private int N;
 private int[] a;
 public Rooks(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++) « initialize a[0..N-1] to 0..N-1
 a[i] = i;
 enumerate(0);
 }
 private void enumerate(int k)
 { /* See next slide. */ }
 private void exch(int i, int j)
 { int t = a[i]; a[i] = a[j]; a[j] = t; }
 private void process()
 {
 for (int i = 0; i < N; i++)
 StdOut.print(a[i] + " ");
 StdOut.println();
 }
 public static void main(String[] args) % java Rooks 3
 { N = Integer parseTnt(args[0]). 0 2 1
 int N = Integer.parseInt(args[0]); 1 0 2
 low new Rooks(N);
 t.enumerate (0);
 }
 2 0
}
2 0 1
```

$N$-rooks problem (enumerating all permutations): recursive enumeration
Recursive algorithm to enumerate all N ! permutations of size N :

- Start with 012 ... N-1.
- For each value of $i$
- swap i into position o
- enumerate all (N-1)! arrangements of a [1. . N-1]
- clean up (swap i and o back into position)

```
private void enumerate(int k)
{
 if (k == N)
 {
 process();
 return;
 }
 for (int i = k; i < N; i++)
 {
 exch(a, k, i);
 enumerate (k+1);
 exch(a, k, i);
 }
}
```



4-Rooks search tree


N -rooks problem: back-of-envelope running time estimate

## [ Studying slow way to compute N! but good warmup for calculations.]

```
% java Rooks 10
3628800 solutions \longleftarrow instant
% java Rooks 11
39916800 solutions \longleftarrow about 2 seconds
% java Rooks }1
4 7 9 0 0 1 6 0 0 ~ s o l u t i o n s ~ \longleftarrow ~ a b o u t ~ 2 4 ~ s e c o n d s ~ (c h e c k s ~ w i t h ~ N ! ~ h y p o t h e s i s)
```

Hypothesis: Running time is about 2(N! / 11!) seconds.

```
Google R2ss/11/ seconsisin cenvices
Web
2 * ((25!)/(11!)) * seconds = 246277800 centuries
 More about calculator.
```

Search
Search for documents containing the terms $\underline{\mathbf{2}(25!/ 111) \text { seconds in centuries. }}$
\% java Rooks 25
permutations
> backtracking
counting
subsets
paths in a graph

## N-Queens problem

How many ways are there to place
N queens on an N -by- N board so that no queen can attack any other?


Representation. Same as for rooks:
represent solution as a permutation: a[i] = column of queen in row $i$.

Additional constraint: no diagonal attack is possible


Challenge: Enumerate (or even count) the solutions

4-Queens search tree


## N Queens: Backtracking solution

Iterate through elements of search space.

- when there are $N$ possible choices, make one choice and recur.
- if the choice is a dead end, backtrack to previous choice, and make next available choice.

Identifying dead ends allows us to prune the search tree

## For $N$ queens:

- dead end: a diagonal conflict
- pruning: backtrack and try next row when diagonal conflict found

In general, improvements are possible:

- try to make an "intelligent" choice
- try to reduce cost of choosing/backtracking

4-Queens Search Tree (pruned)


## N-Queens: Backtracking solution

```
private boolean backtrack(int k)
{
 for (int i = 0; i < k; i++)
 {
 if ((a[i] - a[k]) == (k - i)) return true;
 if ((a[k] - a[i]) == (k - i)) return true;
 }
 return false;
}
private void enumerate(int k)
{
 if (k == N)
 {
 process();
 return;
 }
 for (int i = k; i < N; i++)
 {
 exch(a, k, i);
 if (! backtrack(k)) enumerate(k+1);
 exch(a, k, i);
 }
}
```

```
% java Queens 4
```

% java Queens 4
1 3 0 2
1 3 0 2
2 0 3 1
2 0 3 1
% java Queens 5
% java Queens 5
0 2 4 1 3
0 2 4 1 3
0 3 1 4 2
0 3 1 4 2
1 3 0 2 4
1 3 0 2 4
14203
14203
2 0
2 0
2413 0
2413 0
3 1 4 2 0
3 1 4 2 0
3 0 2 4 1
3 0 2 4 1
4113 0 2
4113 0 2
42031
42031
% java Queens 6
% java Queens 6
1 350 24
1 350 24
2 5 1 4 4 0 3
2 5 1 4 4 0 3
3}0044145
3}0044145
4 2 0 5 3 1

```
4 2 0 5 3 1
```

N-Queens: Effectiveness of backtracking
Pruning the search tree leads to enormous time savings

| $N$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Q(N)$ | 0 | 0 | 2 | 10 | 4 | 40 | 92 | 352 | 724 | 2,680 | 14,200 |
| $N!$ | 2 | 6 | 24 | 120 | 720 | 5,040 | 40,320 | 362,880 | $3,628,800$ | $39,916,800$ | $479,001,600$ |


| $N$ | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: |
| $Q(N)$ | 73,712 | 365,596 | $2,279,184$ | $14,772,512$ |
| $N!$ | $6,227,020,800$ | $87,178,291,200$ | $1,307,674,368,000$ | $20,922,789,888,000$ |
|  |  |  | savings: factor of more than 1-million |  |

$N$-Queens: How many solutions?

Answer to original question easy to obtain:

- add an instance variable to count solutions (initialized to 0 )
- change process () to increment the counter
- add a method to return its value

```
% java Queens 4
2 solutions
% java Queens 8
92 solutions
% java Queens 16
14772512 solutions
```

Source: On-line encyclopedia of integer sequences, N. J. Sloane [ sequence A000170 ]

| $N$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Q(N)$ | 0 | 0 | 2 | 10 | 4 | 40 | 92 | 352 | 724 | 2,680 | 14,200 | 73,712 | 365,596 | $2,279,184$ |
| $N$ |  | 16 |  | 17 |  | 18 |  | 19 |  |  | 25 |  |  |  |
| $Q(N)$ | $14,772,512$ | $95,815,104$ | $666,090,624$ | $4,968,057,848$ | $\cdots$ | $2,207,893,435,808,350$ |  |  |  |  |  |  |  |  |

N -queens problem: back-of-envelope running time estimate
Hypothesis ??

```
% java Queens 13
% java Queens 14
% java Queens 15
% java Queens 16
14772512 solutions
\longleftarrow about }360\mathrm{ seconds
```

ratio


Hypothesis: Running time is about (N/2) ! seconds.


Web
(s)
$((25 / 2)!)$ seconds $=0.54204965$ centuries More about calculator.

Search for documents containing the terms (25/2)! seconds in centuries.
permutations
> backtracking
counting
subsets
paths in a graph

## Counting: Java Implementation

Problem: enumerate all N -digit base-R numbers
Solution: generalize binary counter in lecture warmup
enumerate N -digit base-R numbers

```
```

private static void enumerate(int k)

```
```

private static void enumerate(int k)
{
{
if (k == N)
if (k == N)
{ process(); return; }
{ process(); return; }
for (int n = 0; n < R; n++)
for (int n = 0; n < R; n++)
{
{
a[k] = n;
a[k] = n;
enumerate(k + 1);
enumerate(k + 1);
}
}
a[k] = 0;
a[k] = 0;
}

```
```

}

```
```

enumerate binary numbers (from warmup)
private void enumerate (int k)
$\{$
if (k == N)
\{ process(); return; \}
enumerate ( $k+1$ );
$a[k]=1$;
enumerate ( $k+1$ );
$a[k]=0 ;$
\}
clean up

| 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 | 1 | 2 | 0 | 1 |
| 0 | 0 | 2 | 1 | 0 | 2 | 2 | 0 | 2 |
| 0 | 1 | 0 | 1 | 1 | 0 | 2 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 |
| 0 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 |
| 0 | 2 | 0 | 1 | 2 | 0 | 2 | 2 | 0 |
| 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
| 0 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 |
| 0 | 2 | 0 |  |  |  |  |  |  |
| 0 | 0 | 0 |  |  |  |  |  |  |

## Counting application: Sudoku

Problem:
Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.


Remark: Natural generalization is NP-hard.

## Counting application: Sudoku

Problem:
Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

| 7 | 2 | 8 | 9 | 4 | 6 | 3 | 1 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 3 | 4 | 2 | 5 | 1 | 6 | 7 | 8 |
| 5 | 1 | 6 | 7 | 3 | 8 | 2 | 4 | 9 |
| 1 | 4 | 7 | 5 | 9 | 3 | 8 | 2 | 6 |
| 3 | 6 | 9 | 4 | 8 | 2 | 1 | 5 | 7 |
| 8 | 5 | 2 | 1 | 6 | 7 | 4 | 9 | 3 |
| 2 | 9 | 3 | 6 | 1 | 5 | 7 | 8 | 4 |
| 4 | 8 | 1 | 3 | 7 | 9 | 5 | 6 | 2 |
| 6 | 7 | 5 | 8 | 2 | 4 | 9 | 3 | 1 |

Solution: Enumerate all 81-digit base-9 numbers (with backtracking).


## Sudoku: Backtracking solution

Iterate through elements of search space.

- For each empty cell, there are 9 possible choices.
- Make one choice and recur.
- If you find a conflict in row, column, or box, then backtrack.


Improvements are possible.

- try to make an "intelligent" choice
- try to reduce cost of choosing/backtracking


## Sudoku: Java implementation

```
private static void solve(int cell)
{
 if (cell == 81)
 { show(board); return; }
```

    if (board[cell] \(!=0)\)
    $\{$ solve (cell +1 ); return; $\}$
if (board[cell] $!=0)$
$\{$ solve (cell +1 ); return; $\}$
for (int $n=1 ; n<=9 ; n++$ )
\{ if (! backtrack (cell, $n$ ))
\{ if (! backtrack (cell, $n$ ))
\{
board[cell] = n;
solve (cell + 1);
\}
\}
board[cell] $=0 ; \quad \longleftarrow$ clean up
\}
int[81] board;
for (int $i=0$; $i<81$; i++)
board[i] $=$ StdOut.readInt();
Solver s = new Solver (board);
s.solve() ;

```
% more board.txt
70 8 0 0 0 3 0 0
0 0 0 2 0 1 0 0 0
500000 0 0 0 0
04000002 6
3000 8 0 0 0 0
0 0 0 1 0 0 0 9 0
0}9006000000
0 0 0 0 7 0 5 0 0
000000000
% java Solver
7 2 8 9 4 6 3 1 5
9 3 4 2 5 1 6 7 8
5}114647%lllll
14475 9 3 8 2 6
3 6 9 4 8 2 1 5 7
85 2 1 6 7 4 9 3
2 9 3 6 1 5 7 8 4
481 3 7 9 5 6 2
675 8 2 4 9 3 1
```

Works remarkably well (plenty of constraints). Try it!
permutations
backtracking
counting
subsets
paths in a graph

Enumerating subsets: natural binary encoding
Given $n$ items, enumerate all $2^{n}$ subsets.

- count in binary from 0 to $2^{n}-1$.
- bit i represents item i
- if 0 , in subset; if 1 , not in subset

| i | binary |  |  |  | subset | complement |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | empty | 4321 |
| 1 | 0 | 0 | 0 | 1 | 1 | 432 |
| 2 | 0 | 0 | 1 | 0 | 2 | 431 |
| 3 | 0 | 0 | 1 | 1 | 21 | 43 |
| 4 | 0 | 1 | 0 | 0 | 3 | 421 |
| 5 | 0 | 1 | 0 | 1 | 31 | 42 |
| 6 | 0 | 1 | 1 | 0 | 32 | 41 |
| 7 | 0 | 1 | 1 | 1 | 321 | 4 |
| 8 | 1 | 0 | 0 | 0 | 4 | 321 |
| 9 | 1 | 0 | 0 | 1 | 41 | 32 |
| 10 | 1 | 0 | 1 | 0 | 42 | 31 |
| 11 | 1 | 0 | 1 | 1 | 421 | 3 |
| 12 | 1 | 1 | 0 | 0 | 43 | 21 |
| 13 | 1 | 1 | 0 | 1 | 431 | 2 |
| 14 | 1 | 1 | 1 | 0 | 432 | 1 |
| 15 | 1 | 1 | 1 | 1 | 4321 | empty |

Enumerating subsets: natural binary encoding

Given $N$ items, enumerate all $2^{N}$ subsets.

- count in binary from 0 to $2^{N}-1$.
- maintain a[i] where a[i] represents item i
- if 0 , a[i] in subset; if 1 , a[i] not in subset

Binary counter from warmup does the job

```
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate (k+1);
 a[k] = 0;
}
```


## Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

| code | subset | move |
| :---: | :---: | :---: |
| 0000 | empty |  |
| 0001 | 1 | enter 1 |
| 00011 | 21 | enter 2 |
| 0010 | 2 | exit 1 |
| 0110 | 32 | enter 3 |
| 01111 | 321 | enter 1 |
| 0101 | 31 | exit 2 |
| 0100 | 3 | exit 1 |
| 1100 | 43 | enter 4 |
| 1101 | 431 | enter 1 |
| $\begin{array}{llll}1 & 1 & 1\end{array}$ | 4321 | enter 2 |
| 11110 | 432 | exit 1 |
| 1010 | 42 | exit 3 |
| 1011 | 421 | enter 1 |
| 10001 | 41 | exit 2 |
| 1000 | 4 | exit 1 |



## Binary reflected gray code

The $n$-bit binary reflected Gray code is:

- the ( $n-1$ ) bit code with a 0 prepended to each word, followed by
- the ( $n-1$ ) bit code in reverse order, with a 1 prepended to each word.



## Beckett: Java implementation

```
public static void moves(int n, boolean enter)
{
 if (n == 0) return;
 moves(n-1, true);
 if (enter) System.out.println("enter " + n);
 else System.out.println("exit " + n);
 moves(n-1, false);
}
```



More Applications of Gray Codes


3-bit rotary encoder

Towers of Hanoi



8-bit rotary encoder


Chinese ring puzzle

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:

- flip a [k] instead of setting it to 1
- eliminate cleanup

```
Gray code enumeration
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate (k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}
```

```
standard binary (from warmup)
```

```
private void enumerate(int k)
 {
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0; K
 }
 clean up
```

| 000 |
| :--- | :--- |
| 001 |
| 011 |
| 010 |
| 110 |
| 111 |
| 101 |
| 100 |

Advantage (same as Beckett): only one item changes subsets

## Scheduling

Scheduling (set partitioning). Given $n$ jobs of varying length, divide among two machines to minimize the time the last job finishes.


## Scheduling (full implementation)

```
public class Scheduler
{
```

```
 int N;
```

    int N;
    int[] a; // Subset assignments.
    int[] a; // Subset assignments.
    int[] b; // Best assignment.
    int[] b; // Best assignment.
    double[] jobs; // Job lengths.
    double[] jobs; // Job lengths.
    public Scheduler(double[] jobs)
    {
        this.N = jobs.length;;
        this.jobs = jobs;
        a = new int[N];
        b = new int[N];
        for (int i = 0; i < N; i++)
            a[i] = 0;
        for (int i = 0; i < N; i++)
            b[i] = a[i];
        enumerate(0);
    }
    ```
 public int[] best()
 \{ return b; \}
 private void enumerate (int k)
 \{ /* Gray code enumeration. */ \}
```

private void process()
{
if (cost(a) < cost(b))
for (int i = 0; i < N; i++)
b[i] = a[i];
}

```
 public static void main(String[] args)
 \{ /* Create Scheduler, print result. */ \}
\}

public static void main(String[] args) \{ /* Create Scheduler, print result. */ \}

\section*{Scheduling (larger example)}

Large number of subsets leads to remarkably low cost

\section*{Scheduling: improvements}

Many opportunities (details omitted)
- fix last job on machine 0 (quick factor-of-two improvement)
- backtrack when partial schedule cannot beat best known (check total against goal: half of total job times)
```

private void enumerate(int k)
{
if (k == N-1)
{ process(); return; }
if (backtrack(k)) return;
enumerate (k+1);
a[k] = 1 - a[k];
enumerate (k+1);
}

```
- process all \(2^{k}\) subsets of last \(k\) jobs, keep results in memory, (reduces time to \(2^{N-k}\) when \(2^{k}\) memory available).

\section*{Backtracking summary}

N-Queens: permutations with backtracking
Soduko : counting with backtracking
Scheduling: subsets with backtracking
permutations
backtracking
counting
subsets
paths in a graph

\section*{Hamilton Path}

Hamilton path. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.

\section*{Knight's Tour}

Knight's tour. Find a sequence of moves for a knight so that, starting from any square, it visits every square on a chessboard exactly once.

legal knight moves

a knight's tour

Solution. Find a Hamilton path in knight's graph.

\section*{Hamilton Path: Backtracking Solution}

Backtracking solution. To find Hamilton path starting at v:
- Add v to current path.
- For each vertex w adjacent to v
find a simple path starting at w using all remaining vertices
- Remove v from current path.

How to implement?
Add cleanup to DFS (!!)

Hamilton Path: Java implementation
```

public class HamiltonPath
{
private boolean[] marked;
private int count;
public HamiltonPath(Graph G)
{
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
dfs(G, v, 1);
count = 0;
}
private void dfs(Graph G, int v, int depth)
{
marked[v] = true;
if (depth == G.V()) count++;
for (int w : G.adj(v))
if (!marked[w]) dfs(G, w, depth+1);
marked[v] = false;
}
}

Easy exercise: Modify this code to find and print the longest path

## The Longest Path

Recorded by Dan Barrett in 1988 while a student at Johns Hopkins during a difficult algorithms final.

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
If you said $P$ is NP tonight,
There would still be papers left to write, I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.
The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.
Garey, Johnson, Karp and other men (and women)
Tried to make it order $N \log N$.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

