
http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

20. Central Processing
Unit

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, MAC HINES , and THEORY

Sections 6.3�4

20. CPU

•Overview
•Bits, registers, and memory
•Program counter
•Components and connections

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.20.A.CPU.Overview

Let's build a computer!

CPU = Central Processing Unit

Computer
 Display 
 Touchpad  
 Battery 
 Keyboard 
 ... 
 CPU (difference between a TV set and a computer)

Previous lecture
 Combinational circuits
 ALU (calculator)

This lecture 
 Sequential circuits with memory
 CPU (computer)

3

CPU

A smaller computing machine: TOY-8

TOY instruction-set architecture.

• 256 16-bit words of memory.

• 16 16-bit registers.

• 1 8-bit program counter.

• 2 instruction types.

• 16 instructions.

TOY-8 instruction-set architecture.

• 16 8-bit words of memory.

• 1 8-bit register.

• 1 4-bit program counter.

• 1 instruction type.

• 8 instructions.

4

4 bits to specify
one of 16 registers

8 bits to specify one
of 256 memory words

Type 1 instruction
opcode Rd Rs Rt

Type 2 instruction
opcode Rd addr

Purpose of TOY-8. Illustrate CPU circuit design for a "typical" computer.

4 bits to specify one
of 16 memory words

TOY-8 instruction
opcode addr

0

3 bits to specify 
one of 8 instructions

always 0
(future expansion of memory or instruction set)

TOY-8 reference card

5

opcode addr
0

PC

1

opcode operation pseudo-code

0 halt halt

2 add R = R + M[addr]

4 bitwise and R = R & M[addr]

6 bitwise xor R = R ^ M[addr]

8 load addr R = addr

A load R = M[addr]

C store M[addr] = R

E branch zero if (R == 0) PC = addr

ZERO M[0] is always 0.

STANDARD INPUT Load from M[F].

STANDARD OUTPUT Store to M[F].

Memory

R = M[5]
R = R + M[6]
M[7] = R

halt

1 A 5
2 2 6
3 C 7
4 0 0
5 0 5
6 0 8
7

...

 A TOY-8 program

R 0 50 D

0 D

2
3
4

Challenge for the bored:

 Write Fibonacci seq, add numbers on stdin, ...

Add two numbers from memory
and put sum in memory

CPU circuit components for TOY-8

TOY-8 CPU

• ALU (adder, AND, XOR)

• Memory

• Register (R)

• PC

• IR

• Control
• Clock

6

CLOCK

MEMORY

ALU

R

IR

PC

CONTROL

Goal. Complete CPU circuit for TOY-8 (same design extends to TOY and to your computer).

Review: Components, busses, and control lines

Basic design of our circuits

• Organized as components (functional units of TOY: ALU, memory, register, PC, and IR).

• Connected by busses (groups of wires that propagate information between components).

• Controlled by control lines (single wires that control circuit behavior).

7

Conventions

• Bus inputs are at the top, 
input connections are at the left.

• Bus outputs are at the bottom, 
output connections are at the right.

• Control lines are blue.

These conventions make circuits easy to understand.
(Like style conventions in coding.)

output
bus

input
busses

control
lines

Perspective

Q. Why TOY-8?

A. TOY circuit width would be about 5 times TOY-8 circuit width.

8

TOY

TOY-8

Sobering fact. The circuit for your computer is hundreds to thousands of times wider.

Reassuring fact. Design of all three is based on the same fundamental ideas.

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.20.A.CPU.Overview

20. CPU

•Overview
•Bits, registers, and memory
•Program counter
•Connections

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.20.B.CPU.Memory

Sequential circuits

Q. What is a sequential circuit?

A. A digital circuit (all signals are 0 or 1) with feedback (loops).

11

Q. Why sequential circuits?

A. Memory (difference between a DFA and a Turing machine).

Basic abstractions

• On and off.

• Wire: Propagates an on/off value.

• Switch: Controls propagation of on/off values through wires.

• Flip-flop: Remembers a value (next).

12

Simple circuits with feedback

Loops in circuits lead to time-varying behavior

• Sequence of switch operation matters.

• Need tight control (see next slide).

a "buzzer"

Example 1. Two switches, each blocked by the other.

• State determined by whichever switches first.

• Stable (once set, state never changes).

• Basic building block for memory circuits.

Example 2. Three switches, blocked in a cycle.

• State determined by whichever switches first.

• Not stable (cycles through states).

output
value
(state)

first to
switch

13

A new ingredient: Circuits with memory

An SR flip-flop controls feedback.

• Add control lines to switches 
in simple feedback loop.

• R (reset) sets state to 0.
• S (set) sets state to 1.

• Q (state) is always available.

 NOR

S

Q

component level

 NOR

R

Caveat. Timing of switch vs. propagation delay.

stays 0 stays 1 unused

SR

Q
output
value
(state)

QR

S

classic notation

"cross-coupled NOR gates"

examples
R: set to 0 S: set to 1

14

Flip-flop application: Memory bit

Add logic to an SR flip-flop for more precise control

• Provide data value on an input wire instead of using S and R controls.

• Use WRITE control wire to enable change in flip-flop value.

• Flip-flop value always available as output.

1

WRITE on

set to 1

S

stays 1

WRITE off

set to 0
0

WRITE on

R

stays 0

WRITE off

MEMORY BIT

input

WRITE

output

FETCH

CLOCK

EXECUTE

RUN

HALT

15

Memory bit application I: fetch/execute clock

Assumptions

• Physical clock provides regular on/off pulses.

• Duration is just enough to trigger a flip-flop.

• Space between pulses is long enough to allow
the longest chain of flip-flops in the circuit to
stabilize.

Fetch/execute clock. Attach clock to a memory bit.

• RUN control wire starts clock when on.

• HALT control wire stops clock when on.

• Memory bit flips on each clock tick 
(flip value and feed back to input).

• Result: on/off sequence for FETCH and EXECUTE
control wires that control the CPU (stay tuned).

CLOCK

FETCH

EXECUTE

CLOCK

16

Fetch/execute clock with write pulses

Generates on/off signals for 4 control wires

• FETCH.
• FETCH WRITE pulse.

• EXECUTE.
• EXECUTE WRITE pulse.

RUN

HALT

FETCH WRITE

FETCH

FETCH

FETCH WRITE

EXECUTE

EXECUTE WRITE

CLOCK

EXECUTE

EXECUTE WRITE

Implementation

• Add AND gates to fetch/execute clock.

• FETCH WRITE = FETCH AND CLOCK.
• EXECUTE WRITE = EXECUTE AND CLOCK.

Application

• Implements CPU fetch/execute cycles.

• Signals turn on control wires that change 
the state of PC, R, IR, and memory.

CLOCK

Interesting events occur at four distinct times in the cycle

Memory bit application II: Register

Register

• w memory bits.

• w-bit input bus.

• values available on output bus.

• input loaded on WRITE pulse.

17

0101 = 5
input
bus

Implementation

• Connect memory bits to busses.

• Use WRITE pulse for all of them.

Applications for TOY-8

• PC holds 4-bit address.

• IR holds 8-bit instruction.

• R holds 8-bit data value.

WRITE off
MEMORY

BIT
MEMORY

BIT
MEMORY

BIT
MEMORY

BIT

0101 = 5
input
bus

output
bus

0101 = 5

WRITE on

output
bus

1100 = 12

Memory bit application III: Memory bank

Memory bank

• 2n words, each w bits.

• n-bit address input.

• w-bit input bus.

• value of selected word
available on output bus.

• input loaded to selected
word on WRITE pulse.

18

Example: 4-words, each 6 bits

WRITE

input
bus

addr

output
bus

Memory bit application III: Memory bank

Memory bank

• 2n words, each w bits.

• n-bit address input.

• w-bit input bus.

• value of selected word
available on output bus.

• input loaded to selected
word on WRITE pulse.

19

Implementation

• Decoder/demux selects word.

• One-hot muxes take selected
word to output bus.

Application for TOY-8

• Main memory.

Example: 4-words, each 6 bits

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

MEMORY
BIT

D
EC

O
D

ER
/D

EM
U

X

WRITE

input
bus

addr

output
bus

MEMORY
16 8-bit words

TOY-8 main memory bank

Interface

• Input bus (for store)

• Output bus (for load)
• Address to select a word

• Write control signal

20

Connections

• Input bus from registers

• Output bus to IR and R

• Address bits from PC and IR

input
bus

addr

MEMORY

output
bus

WRITE

words bits/word addr bits

TOY-8 16 8 4

TOY 256 16 8

your computer 1 billion 64 32

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.20.B.CPU.Memory

20. CPU

•Overview
•Bits, registers, and memory
•Program counter
•Components and connections

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.20.C.CPU.PC

23

Designing a digital circuit: overview

Steps to design a digital (sequential) circuit

• Design interface: input busses, output busses, control signals.

• Determine components.

• Determine connections.

• Establish control sequence.

Warmup. Design TOY-8 program counter (PC).

First challenge. Need an incrementer circuit.

Second challenge. Multiple bus connections.

24

Pop quiz on combinational circuit design

Q. Design a circuit to compute x + 1.

25

Pop quiz on combinational circuit design

A. Start with a bitwise adder

• Delete y inputs, set carry in to 1.
• Compute carry with AND and sum with XOR.

Q. Design a circuit to compute x + 1.

c4 c3 c2 c1 1

+ x3 x2 x1 x0

 z3 z2 z1 z0

xi ci ci+1

0 0 0

0 1 0

1 0 0

1 1 1

carry bit

xi ci zi

0 0 0

0 1 1

1 0 1

1 1 0

sum bit

AND

0

0

0

1

XOR

0

1

1

0
x + 1

x

4-bit incrementer

XOR XOR XOR XOR

AND AND AND AND

R

ALU

MEMORY

Multiple bus connections

26

If component outputs go to multiple other components

• No problem, just use T connections.

• Values on both busses are the same.

• Example: Register connects to ALU and memory.

If component inputs come from multiple other components

• Problem.

• Values on the busses are different.
• Example: ALU, memory, and IR connect to register.

• Solution: Need a selector switch (bus mux).

MEMORY

ALU

IR

R

?

A (virtual) bus selector switch

One-hot m-way bus mux

• m input busses.

• m control lines (selection).

• One output bus.

• At most one selection line is 1.

• Output bus lines have same value 
as selected input bus lines.

27

 3-WAY BUS MUX

input
busses

0
1
2

0

1

2

selection
lines

 3-WAY BUS MUX

select 2
is 1 output is value of

selected input
(bus 2)

Important to note. No direct connection from input to output.

Example: 4-bit 3-way bus mux

0
1
2

One-hot bus mux

28

Implementation

• Bitwise one-hot muxes for output.

0

1

2

selection
lines

select 0
is 1

 output is
value of

selected input
(bus 0)

input
busses

Application (next): Select among inputs to a component.

One-hot m-way bus mux

• m input busses.

• m control lines (selection).

• One output bus.

• At most one selection line is 1.

• Output bus lines have same value 
as selected input bus lines.

Components

• PC register (4-bit).

• Incrementer (add 1).

Connections

• Input bus to PC register.

• Incrementer to PC register.

• PC register to incrementer.

• PC register to output bus.

29

Program counter (PC)

The PC holds an address and supports 3 control wires:

• INCREMENT. Add 1 to value when WRITE becomes 1.

• LOAD. Set value from input bus when WRITE becomes 1.

• WRITE. Enable PC address to change as specified.
The current address is always available on the output bus.

input
 bus

output
bus

PC

need 2-way
bus mux

INCREMENT

LOAD

WRITE

30

Program counter (PC)

The PC holds an address and supports 3 control wires:

• INCREMENT. Add 1 to value when WRITE becomes 1.

• LOAD. Set value from input bus when WRITE becomes 1.

• WRITE. Enable PC address to change as specified.
The current address is always available on the output bus.

 write

increment

output
bus

input
bus

 load

PC

incrementer

2-way bus mux

PC register

INCREMENT

LOAD

WRITE

output
bus

Components

• PC register (4-bit).

• Incrementer (add 1).

• 2-way bus mux.

Connections

• Input bus to bus mux.

• Incrementer to bus mux.

• Bus mux to PC register.

• PC register to incrementer.

• PC register to output bus.

31

Summary of TOY-8 PC circuit

The PC supports two control-signal sequences:

• Load, then write. Set address from input bus (example: branch instruction).

• Increment, then write. Add one to value.
Address is written to the PC register in both cases and always available on the output bus.

Next. CPU circuit.

Important note: write pulse must be very short because of the cycle in this circuit.

 write

increment

output
bus

input
bus

 load

PC

incrementer

2-way bus mux

PC register
write

loadLOAD

WRITE write

increment

output
bus

input
bus

 load

PC

incrementer

2-way bus mux

PC register
write

incrementINCREMENT

WRITE

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.20.C.CPU.PC

20. CPU

•Overview
•Bits, registers, and memory
•Program counter
•Components, connections, and control

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.20.D.CPU.Components

CPU is a circuit inside the machine

Interface to outside world

• Switches and lights

• ON/OFF

• RUN

Connections to outside (omitted)

• ADDR to PC

• DATA to memory bank input bus

• Buttons to control lines that
activate memory load/store

TOY-8: Interface

34

TOY-8
A computing machine

RUN

Review: CPU circuit components for TOY-8

TOY-8 CPU

• ALU (adder, AND, XOR)

• Memory

• Register (R)

• PC

• IR

• Control

• Clock

35

CLOCK

MEMORY
ALU

R

IR

PC

CONTROL

R mux

addr mux

Also needed (see next slide): Bus muxes for R and memory addr.

instructions bus connections

fetch (all)
PC to memory addr

memory to IR

halt none

add, and, xor

IR addr to memory addr

memory to ALU 1

R to ALU 0

ALU to R

load address IR addr to R

load
IR addr to memory addr

memory to R

store
IR addr to memory addr

R to memory

branch if zero IR addr to PC

Connections for TOY-8 CPU

36

CLOCK

MEMORY
ALU

R

IR

PC

CONTROL

R mux

addr mux
need 3-way

bus mux

need 2-way
bus mux

`

`

`

component control wires

CLOCK
RUN

HALT

CONTROL

FETCH

FETCH WRITE

EXECUTE

EXECUTE WRITE

ALU

ADD

XOR

AND

R mux

R MUX ALU

R MUX MEM

R MUX IR

R R WRITE

IR IR WRITE

memory MEMORY WRITE

PC
PC INCREMENT

PC LOAD

PC WRITE

addr mux
ADDR MUX PC

ADDR MUX IR

Control wires for TOY-8 CPU

37

CLOCK

MEMORY
ALU

R

IR

PC

CONTROL

R mux

addr mux

`

`

`

38

One final combinational circuit: Control

Control. Circuit for control wire sequencing.

Inputs

• Four control wires from clock.

• opcode from IR.

• contents of R.

Outputs

• 15 control wires for CPU components.

Key feature. A simple combinational circuit.

ALU ADD

ALU XOR

ALU AND

R MUX ALU

R MUX MEMORY

R MUX IR

R WRITE

IR WRITE

MEMORY WRITE

PC LOAD

PC WRITE

PC INCREMENT

ADDR MUX PC

ADDR MUX IR

FETCH
FETCH
WRITE EXECUTE EXECUTE

WRITE

HALT

opcode

R

39

Control wire sequences

instruction EXECUTE EXECUTE WRITE

halt HALT

add
ALU ADD

R WRITE
R MUX ALU

xor
ALU ADD

R WRITE
R MUX ALU

and
ALU ADD

R WRITE
R MUX ALU

load address R MUX IR R WRITE

load
R MUX MEMORY R WRITE

ADDR MUX IR

store ADDR MUX IR MEMORY WRITE

FETCH FETCH WRITE EXECUTE WRITE

all
instructions

ADDR MUX PC
IR WRITE PC WRITE

PC INCREMENT*

* PC LOAD for branch if 0 if R is 0.

ALU ADD

ALU XOR

ALU AND

R MUX ALU

R MUX MEMORY

R MUX IR

R WRITE

IR WRITE

MEMORY WRITE

PC LOAD

PC WRITE

PC INCREMENT

ADDR MUX PC

ADDR MUX IR

FETCH
FETCH
WRITE EXECUTE EXECUTE

WRITE

HALT

opcode

R

Sample program

40

And THAT . . . is how your computer works!

CLOCK

MEMORY
ALU

R

IR

PC

CONTROL

R mux

addr mux

`

`

`

control signal result
FETCH ADDR MUX PC

FETCH WRITE IR WRITE IR = A5

EXECUTE

PC INCREMENT

ADDR MUX IR

R MUX MEMORY

EXECUTE
WRITE

R WRITE R = 05
PC WRITE PC = 2

FETCH ADDR MUX PC

FETCH WRITE IR WRITE IR = 26

EXECUTE

PC INCREMENT

ALU ADD

R MUX ALU

EXECUTE
WRITE

R WRITE R = 0D
PC WRITE PC = 3

FETCH ADDR MUX PC

FETCH WRITE IR WRITE IR = C7

EXECUTE
PC INCREMENT

ADDR MUX IR

EXECUTE
WRITE

MEMORY WRITE M[7] = 0D
PC WRITE PC = 4

FETCH ADDR MUX PC

FETCH WRITE IR WRITE IR = 00

EXECUTE
PC INCREMENT

HALT

1 A5

2 26

3 C7

4 00

5 05

6 08

A5

05

1

26

2

0D

3

C7

0D7
4

00

R WRITE

IR WRITE

 PC WRITE

MEMORY WRITE

 PC INCREMENT

 PC LOAD

ALU ADD

ALU XOR

ALU AND

ADDR MUX IR

ADDR MUX PC

R MUX ALU

R MUX MEM

R MUX IR

CONTROL

PC

MEMORY

R

IR

ALU FETCH

FETCH WRITE
EXECUTE

EXECUTE WRITE

RUN

HALT

CLOCK

TOY-8 CPU

41

MEMORY

ALU

R

IR

PC

CONTROL

R MUX
3-way

addr MUX
2-way

CLOCK

TOY-8 CPU

42

R WRITE

IR WRITE

 PC WRITE

MEMORY WRITE

 PC INCREMENT

 PC LOAD

ALU ADD

ALU XOR

ALU AND

ADDR MUX IR

ADDR MUX PC

R MUX ALU

R MUX MEM

R MUX IR

CONTROL

PC

MEMORY

R

IR

ALU FETCH

FETCH WRITE
EXECUTE

EXECUTE WRITE

RUN

HALT

CLOCK

43

Scanning electron microscope image of a real microprocessor

Memory bits per square cm

modern
microprocessor

25 billion

TOY-8 1

44

How does your computer work?

A not-so-short answer, in case someone asks...

• A circuit known as the CPU is built from 
switches connected by wires.

• The CPU performs operations on information 
encoded in binary, including its own instructions.

• Circuits with feedback implement memories.

• Instructions move information among memories, 
specify the next operation, or implement 
mathematical functions based on Boolean logic.

• Clock pulses activate sequences of control signals, which  
cause state changes that implement machine instructions.

• Virtually everything else is implemented as layers of software,  
each layer adding additional power and scope.

R WRITE

IR WRITE

 PC WRITE

MEMORY WRITE

 PC INCREMENT

 PC LOAD

ALU ADD

ALU XOR

ALU AND

ADDR MUX IR

ADDR MUX PC

R MUX ALU

R MUX MEM

R MUX IR

CONTROL

PC

MEMORY

R

IR

ALU FETCH

FETCH WRITE
EXECUTE

EXECUTE WRITE

RUN

HALT

CLOCK

45

What is this course about?  

Goals

• Empower you to exploit available technology.

• Build awareness of intellectual underpinnings.

• Demystify computer systems.

 A broad introduction to computer science.

✓
✓

✓

46

What is this course about?  

Goals

• Empower you to exploit available technology.

• Build awareness of intellectual underpinnings.

• Demystify computer systems.

 A broad introduction to computer science.

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

✓
✓

✓ Next: Algorithms.

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.20.D.CPU.Components

Image sources
 http://download.intel.com/pressroom/images/corefamily/Westmere4.jpg

 http://www.sciencefoto.de/detail.php?rubrik=Nano&id=214956&lang=en&q=&qrubrik=

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

20. Central Processing
Unit

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, MAC HINES , and THEORY

Sections 6.3�4

