
COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

10. Programming
Languages

10. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.10.A.Languages.Popular

3

The Tower of Babel

A story about the origins of multiple languages

• [After the flood] 
“The whole earth was of one language and
one speech.”

• They built a city and tower at Babel,
believing that with a single language, people
will be able to do anything they imagine.

• Yahweh disagrees and 
“confounds the language of all the earth”

• Why?

Proliferation of cultural differences (and multiple languages) is one basis of civilization.

4

Several ways to solve a transportation problem

5

Several ways to solve a programming problem

public class ThreeSum
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int[] a = new int[N];
 for (int i = 0; i < N; i++)  
 a[i] = StdIn.readInt();
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 StdOut.println(a[i] + " " + a[j] + " " + a[k]);
 }
}

Java

6

You can write Java code.

You can write a Java program.

ThreeSum.java

3-sum

• Read int values from StdIn.

• Print triples that sum to 0.

• [See Performance lecture]

% more 8ints.txt
30 -30 -20 -10 40 0 10 5
% javac ThreeSum.java
% java ThreeSum 8 < 8ints.txt
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
 int N = atoi(argv[1]);
 int *a = malloc(N*sizeof(int));
 int i, j, k;
 for (i = 0; i < N; i++)
 scanf("%d", &a[i]);
 for (i = 0; i < N; i++)
 for (j = i+1; j < N; j++)
 for (k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 printf("%d %d %d\n", a[i], a[j], a[k]);
}

C

7

You can also write C code.

You can write a Java program.

ThreeSum.c

Noticeable differences

• library conventions

• array creation idiom

• standard input idiom

• pointer manipulation 
(stay tuned for Part 2)

% more 8ints.txt
30 -30 -20 -10 40 0 10 5

% cc ThreeSum.c
% a.out 8 < 8ints.txt
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

A big difference between C and Java (there are many!)

8

C++ (Stroustrup 1989)

• Adds data abstraction to C.

• "C with classes".

• Embodies many OOP innovations.

NO DATA ABSTRACTION

• No objects in C.

• A C program is a set of static methods.

“ There are only two kinds of programming
languages: those people always [gripe]
about and those nobody uses.”

− Bjarne Stroustrup

#include <iostream>
#include <cstdlib>
int main(int argc, char *argv[])
{
 int N = atoi(argv[1]);
 int *a = new int[N];
 int i, j, k;
 for (i = 0; i < N; i++)
 std::cin >> a[i];
 for (i = 0; i < N; i++)
 for (j = i+1; j < N; j++)
 for (k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 std::cout << a[i] << " " << a[j] << " " << a[k] << std::endl;
}

C++

9

You can also write C++ code.

You can write a Java program.

ThreeSum.cxx

Noticeable differences

• library conventions

• standard input idiom

• standard output idiom

• pointer manipulation 
(stay tuned for Part 2)

% cpp ThreeSum.cxx
% a.out 8 < 8ints.txt
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

Example 1. Use C++ like C.

template <class Item, class Key>
class ST
{
 private:
 struct node
 { Item item; node *left, *right;
 node(Item x)
 { item = x; left = 0; right = 0;}
 };
 typedef node *link;
 link head;

 Item searchR(link x, Key key)
 { if (x == 0) return 0;
 Key t = x->item.key();
 if (key == t) return x->item;
 if (key < t) return searchR(x->left, key);
 else return searchR(x->right, key);
 }
...
}

C++

10

You can also write C++ code.

You can write a Java program.

BST.cxx

Challenges

• libraries/idioms

• pointer manipulation

• templates (generics)

Example 2. Use C++ like Java to
implement the symbol table ADT
(details in Part 2).

1990

A big difference between C/C++ and Java (there are many!)

11

C/C++: YOU are responsible for memory allocation

• Programs manipulate pointers.

• System provides memory allocation library.

• Programs explicitly call methods that “allocate”
and “free” memory for objects.

• Pitfall: “memory leaks”.

double arr[] = calloc(5,sizeof(double));
...
free(arr);
arr = calloc(10, sizeof(double));

C code that reuses an array name

Java: Automatic "garbage collection"

• System keeps track of references.

• System manages memory use.

• System reclaims memory that is no longer
accessible from your program.

double[] arr = new double[5];
...
arr = new double[10];

Java code that reuses an array name

Fundamental challenge. C/C++ code that manipulates pointers is inherently unsafe.

% python
Python 2.7.1 (r271:86832, Jun 16 2011, 16:59:05)
Type "help" for more information.
>>> 2+2
4
>>> (1 + sqrt(5))/2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'sqrt' is not defined
>>> import math
>>> (1 + math.sqrt(5))/2
1.618033988749895

Python

12

You can also use Python.

You can write a Java program.

Example 1. Use Python like a calculator.

Throw out
your calculator

(please)

import sys
import stdio
N = int(sys.argv[1])
a = [0]*N
for i in range(N):
 a[i] = stdio.readInt()
for i in range(N):
 for j in range(i+1, N):
 for k in range(j+1, N):
 if (a[i] + a[j] + a[k]) == 0:
 print '%d %d %d\n', a[i], a[j], a[k]

Python

13

You can also write Python code.

You can write a Java program.

threesum.py

Example 2. Use Python like Java.

% python threesum.py 8 < 8ints.txt
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

Noticeable differences

• No braces (indents instead).

• No type declarations.

• Array creation idiom.

• I/O idioms.

• for (iterable) idiom.

range(8) is [0,1,2,3,4,5,6,7]

our stdio library (like the Java one)

could use Python's sys.stdin

could use stdio

Compilation vs. Interpretation

14

Definition. A compiler translates your entire program to (virtual) machine code.

Definition. An interpreter simulates the operation of a (virtual) machine running your code.

"java"

INTERPRETER

ThreeSum.class
"javac"

COMPILER JVM code

ThreeSum.java

Java source codeJava

threesum.c

C source code COMPILER machine code

"cc"

C

a.out

threesum.py

Python source code INTERPRETER

"python"

Python

A big difference between Python and C/C++/Java (there are many!)

15

NO COMPILE-TIME TYPE CHECKING

• No need to declare types of variables.

• System checks for type errors only at RUN time.

Implications

• Easier to write small programs.

• More difficult to debug large programs.

Typical (nightmare) scenario

• Scientist/programmer makes a small type error in a big program.

• Program runs for hours or days (because Python might be 10-100 times slower than Java).

• Program crashes without writing results.

Reasonable approaches

• Throw out your calculator; use Python.

• Prototype in Python, then convert to Java for "production" use.

Using Python for large problems is playing with fire.

fileID = fopen('8ints.txt','r');
a = fscanf(fileID, '%d');
N = length(a);
for i = 1:N
 for j = i+1:N
 for k = j+1:N
 if (a(i) + a(j) + a(k)) == 0:
 fprintf('%4d %4d %4d\n', a(i), a(j), a(k))
 end
 end
 end
end

Matlab

16

You can write Matlab code.

You can write a Java program.

Example 1. Use Matlab like Java.

Example 2 (more typical). Use Matlab for matrix processing.

A = [1 3 5; 2 4 7]
B = [-5 8; 3 9; 4 0]
C = A*B
C =
 24 35
 30 52

-5 8

 3 9

 4 0

 24 35
 30 52* = 1 3 5

 2 4 7

Big differences between Matlab and C/C++/Java/Python (there are many!)

17

1. MATLAB IS NOT FREE.
2. Most Matlab programmers use only ONE data type (matrix).

Notes

• Matlab is written in Java.

• The Java compiler and interpreters are written in C.  
[Modern C compilers are written in C.]

• Good matrix libraries are available for C/C++/Java/Python.

Reasonable approaches

• Use Matlab as a "matrix calculator" and data analysis (if you own it).

• Convert to or use Java/C/C++ if you want to do anything else.

Example. Matlab code "i = 0" means  
 "redefine the value of the complex number i to be a 1-by-1 matrix whose entry is 0"

Matrix calculator
Android app

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.10.A.Languages.Popular

Image sources

 http://commons.wikimedia.org/wikipedia/commons/a/a8/Marten_van_Valckenborch_the_Elder_-_The_Tower_of_Babel_-_Google_Art_Project.jpg

 http://en.wikipedia.org/wiki/Stealth_aircraft#/media/File:F-117_Nighthawk_Front.jpg

 http://commons.wikimedia.org/wiki/File:Boeing_787_Dreamliner_N787BX.jpg

 http://commons.wikimedia.org/wiki/File:Bjarne-stroustrup.jpg

10. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.10.B.Languages.Context

20

Why Java? (revisited)

Java features

• Widely used.

• Widely available.

• Continuously under development since early 1990s.

• Embraces full set of modern abstractions.

• Variety of automatic checks for mistakes in programs. James Gosling

Java economy

• Mars rover.

• Cell phones.

• Blu-ray Disc.

• Web servers.

• Medical devices.

• Supercomputing.

•…

millions of developers
billions of devices

Why do we use Java in this course?

21

language widely
used

widely
available

full set of
modern

abstractions

modern
libraries

and systems

automatic
checks

for bugs

✓ ✓ ✗ ✗ ✓ ✗

✓ ✓ ✓ maybe ✓ ✗

✓ ✓ ✓ ✓ ✓

✓ $ maybe* ✓ ✗

✓ ✓ maybe ✓ ✗

* OOP recently added but not embraced by most users

not memory
leaks

Why learn another programming language?

Good reasons to learn a programming language

• Offers something new.

• Need to interface with co-workers.

• Better than Java for the application at hand.

• Provides an intellectual challenge

• Opportunity to learn something about computation.

• Introduces a new programming style.

22

Something new: a few examples

1960s: Assembly language
• symbolic names
• relocatable code

1970s: C
• “high-level” language
• statements, conditionals, loops
• machine-independent code
• functions and libraries  

1990s: C++/Java
• data abstraction (OOP)
• extensive libraries

2000s: AJAX/PHP/Python/Ruby/Flash
• scripting
• libraries for web development

23

Programming styles

24

style execution model examples

procedural step-by-step instruction execution
usually compiled

scripted step-by-step command execution
usually interpreted

special-purpose optimized around certain data types

object-oriented focus on objects that do things

functional treats computation as the evaluation of functions,
avoiding side effects and mutable types

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.10.B.Languages.Context

Image sources

 http://commons.wikimedia.org/wiki/File:James_Gosling_2005.jpg

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.10.C.Languages.OOP

Object-oriented programming

27

Procedural programming

• Tell the computer to do this.

• Tell the computer to do that.

Objected oriented programming (OOP)

• Programming paradigm based on data types.

• Identify things that are part of the problem domain or solution.

• Things in the world know something: instance variables.

• Things in the world do something: methods.

A different philosophy

• Software is a simulation of the real world.

• We know (approximately) how the real world works.

• Design software to (approximately) model the real world.

 VERB-oriented

 NOUN-oriented

C A T A G C G C

Why OOP?

28

Essential features of OOP

• Encapsulation to hide information to make programs robust.

• Type checking to avoid and find errors in programs.

• Libraries to reuse code.

• Immutability to guarantee stability of program data.

Essential questions

• Is my program easy to write?

• Is it easy to find errors and maintain my program?

• Is it correct and efficient?

Does OOP make it easy to write and maintain correct and efficient programs?

• Difficult for you to know, because you haven't programmed in another style.

• Ongoing debate among experts intensifies as time goes on.

• Meanwhile, millions of people (including YOU) are reaping the benefits of OOP.

Warning: OOP involves deep, difficult,
and controversial issues. Further study

may be fruitful, but is likely to raise
more questions than answers!

OOP pioneers

29

Kristen Nygaard and O.J. Dahl. (U. Oslo 1960s)

• Invented OOP for simulation.

• Developed Simula programming language.

• Studied formal reasoning about OO programs.

Alan Kay. (Xerox PARC 1970s)

• Developed Smalltalk programming language.

• Promoted OOP for widespread use.

• Computer science visionary.

Barbara Liskov. (MIT 1970s)

• Developed CLU programming language.

• Pioneered focus on data abstraction.

• Research provided basis for Java, C++, ...

Kristen Nygaard and O.J. Dahl
2001 Turing Award

Barbara Liskov
2008 Turing Award

Alan Kay
2003 Turing Award

Alan Kay: a computer science visionary

30

Typical "mainframe" computer: IBM 360/50

1970s

First PC: Xerox Alto

1970s

Alan Kay's vision for the future
Dynabook prototype

Key feature: OOP software (Smalltalk)

1970s

Modern personal computer
MacBook Air

Key feature: OOP software (Objective C)

2010s

Still relevant today!

“ The best way to predict the future is to invent it." (1971)
“ The computer revolution hasn't happened yet." (1997)

− Alan Kay

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://commons.wikimedia.org/wiki/File:James_Gosling_2005.jpg

 http://commons.wikimedia.org/wiki/File:Iceberg.jpg

 http://en.wikipedia.org/wiki/Alan_Kay#/media/File:Alan_Kay_(3097597186).jpg

 http://newsoffice.mit.edu/2009/turing-liskov-0310

CS.10.C.Languages.OOP

10. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.10.D.Languages.Types

Type checking

33

Static (compile-time) type checking (e.g. Java)

• All variables have declared types.

• System checks for type errors at compile time.

Dynamic (run-time) type checking (e.g. Python)

• Values, not variables, have defined types.

• System checks for type errors at run time.

A. Religious wars ongoing!

• Static typing worth the trouble?

• Compiled code more efficient?

• Type-checked code more reliable?

• Advanced features (e.g. generics) 
too difficult to use with static typing?

Q. Which is best?

Java also does some run-time checking

Example: Diametrically opposed points of view

34

“ Program testing can be a
very effective way to show
the presence of bugs, but it is
hopelessly inadequate for
showing their absence.”

— Edsgar Dijkstra (1969)

Issue. Type checking or automated program testing?

“ Since static type checking can't
cover all possibilities, you will
need automated testing. Once
you have automated testing, static
type checking is redundant.

 — Python blogger (2009)

A letter from Dave Walker

35

Dear random python blogger:

Why don't you think of static type checking as a complementary
form of completely automated testing to augment your other
testing techniques? I actually don't know of any other testing
infrastructure that is as automated, fast and responsive as a
type checker, but I'd be happy to learn.

By the way, type checking is a special kind of testing that
scales perfectly to software of arbitrary size because it checks
that the composition of 2 modules is ok based only on their
interfaces, without re-examining their implementations.
 Conventional testing does not scale the same way. Also, did
you know that type checking is capable of guaranteeing the
absence of certain classes of bugs? That is particularly
important if you want your system to be secure. Python can't do
that.

 dpw (in mail to rs)

Programming folklore: Hungarian type system

36

Early programming languages had little support for types.

An advantage: Can “type check” while reading code.
A disadvantage: shrt vwl-lss vrbl nms.

Hungarian type system (Charles Simonyi, 1970s)

• Encode type in first few characters of variable name.

• 8 character limit? Leave out the vowels, truncate.

Used in first version of Microsoft Word (and extensively before that time).
Lesson. Type-checking has always been important in large software systems.

Example. arru8Fbn

variable name
short for Fibonacci

array of 8-bit
integers (unsigned)

Charles Simonyi
Introduced OOP to Microsoft

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.10.D.Languages.Types

Image sources

 http://en.wikipedia.org/wiki/Thirty_Years'_War#/media/File:Schlacht_am_Weißen_Berg_C-K_063.jpg

 http://en.wikipedia.org/wiki/Edsger_W._Dijkstra#/media/File:Edsger_Wybe_Dijkstra.jpg

 http://en.wikipedia.org/wiki/Charles_Simonyi

10. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.10.E.Languages.Functional

Functional programming

39

Q. Why can’t we use functions as arguments in Java programs?

A. We can, in Java 8! (Doing so is cumbersome in earlier versions.)

Functional programming treats computation as the evaluation of functions.

• Avoids side effects and mutable types.

• On-demand execution model.

• "What" rather than "how".

Advantages of functional programming

• Functions are first-class entities 
(can be arguments and return values of other functions or stored as data).

• Often leads to more compact code than alternatives.

• More easily admits reasoning about correctness of code .

• More easily supports concurrency (programming on multiple processors).

Familiar examples:
differentiation,

integration

Functional programming example

40

A Python program that prints a tables of squares.

def square(x):

 return x*x

def table(f, sequence):

 for x in sequence:

 print x,

 print f(x)

table (square, range(10))

a function that returns the
square of its argument

a function that takes a function and
a range as arguments and prints a
table of values of the function for

every value in the range

print a table of the
squares of the numbers

from 0 to 9

% python squares.py
0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81

squares.py

Functions that operate on functions

41

Functions as first-class objects admit compact code for powerful operations.

def square(x):

 return x*x

def odd(x):

 return 2*x + 1

print map (odd, range(10))

print map (square, range(10))

a function that returns the
square of its argument

print the squares of the
numbers from 0 to 9

% python map.py
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

map.py

Example 1. The MAP operation takes a function and a list as arguments.
 MAP(f, sequence) is the result of replacing every x in sequence by f(x).

Functions that operate on functions

42

Functions as first-class objects admit compact code for powerful operations.

def plus(x, y):
 return x + y

def odd(x):
 return 2*x + 1

print reduce(plus, map(odd, range(10)))

% python reduce.py
100

reduce.py

Example 2. The REDUCE operation takes a function and a list as arguments.
 REDUCE(f, L) is f(car(L), REDUCE(f, cdr(L))).

first entry on L all but first entry on L

reduce(plus, [1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
 = reduce(plus, [1, 3, 5, 7, 9, 11, 13, 15, 17]) + 19
 = reduce(plus, [1, 3, 5, 7, 9, 11, 13, 15]) + 17 + 19
 = reduce(plus, [1, 3, 5, 7, 9, 11, 13]) + 15 + 17 + 19
 = reduce(plus, [1, 3, 5, 7, 9, 11]) + 13 + 15 + 17 + 19
 = reduce(plus, [1, 3, 5, 7, 9]) + 11 + 13 + 15 + 17 + 19
 = reduce(plus, [1, 3, 5, 7]) + 9 + 11 + 13 + 15 + 17 + 19
 = reduce(plus, [1, 3, 5]) + 7 + 9 + 11 + 13 + 15 + 17 + 19
 = reduce(plus, [1, 3]) + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19
 = reduce(plus, [1]) + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19
 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19
= 100

python does it from
the right end

Why learn functional programming?

43

Intro CS at MIT was taught in
Scheme (a functional language)

for decades

Good reasons to learn a programming language

• Offers something new.

• Need to interface with co-workers.

• Better than Java for the application at hand.

• Provides an intellectual challenge

• Opportunity to learn something about computation.

• Introduces a new programming style.

Functional Programming Jobs ?!!??!!

Modern applications

• Communications systems

• Financial systems

• Google MapReduce

Deep and direct connections to theoretical CS (stay tuned).

Warning. Functional programming may be addictive.

✓
✓
✓
✓
✓
✓

The Tower of Babel

44

An apt metaphor.

• Would a single programming language enable us to do anything that we imagine?

• Is the proliferation of languages a basis of civilization in programming?

Image from cover of Programming
Languages by Jean Sammet (1969).

Already 120+ languages!

A human being should be able to
change a diaper,

plan an invasion,
butcher a hog,

conn a ship,
design a building,

write a sonnet,
balance accounts,

build a wall,
set a bone,

comfort the dying,
take orders,

give orders,
cooperate,

act alone,
solve equations,

analyze a new problem,
pitch manure,

program a computer,
cook a tasty meal,

fight efficiently, and
die gallantly.

Specialization is for insects.
 Robert A. Heinlein
 Time Enough for Love (1973)

✓

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.10.E.Languages.Functional

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

10. Programming
Languages

