Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

~

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

LINEAR PROGRAMMING

brewer's problem

simplex algorithm

implementations

reductions

Linear programming

What is it? Problem-solving model for optimal allocation of scarce resources, among a number of competing activities that encompasses:

• Shortest paths, maxflow, MST, matching, assignment, ...

can take an entire course on LP

• *A x* = *b*, 2-person zero-sum games, ...

maximize	13A	+	23B		
subject	5A	+	15B	≤	480
to the	4A	+	4B	≤	160
constraints	35A	+	20B	≤	1190
	А	,	В	≥	0

Why significant?

- Fast commercial solvers available.
- Widely applicable problem-solving model.
- Key subroutine for integer programming solvers.

Ex: Delta claims that LP saves \$100 million per year.

Applications

Agriculture. Diet problem.

Computer science. Compiler register allocation, data mining.

Electrical engineering. VLSI design, optimal clocking.

Energy. Blending petroleum products.

Economics. Equilibrium theory, two-person zero-sum games.

Environment. Water quality management.

Finance. Portfolio optimization.

Logistics. Supply-chain management.

Management. Hotel yield management.

Marketing. Direct mail advertising.

Manufacturing. Production line balancing, cutting stock.

Medicine. Radioactive seed placement in cancer treatment.

Operations research. Airline crew assignment, vehicle routing.

Physics. Ground states of 3-D Ising spin glasses.

Telecommunication. Network design, Internet routing.

Sports. Scheduling ACC basketball, handicapping horse races.

LINEAR PROGRAMMING

brewer's problem

simplex algorithm

implementations

reductions

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

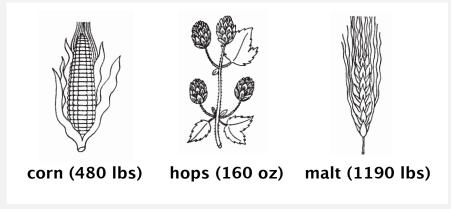
http://algs4.cs.princeton.edu

Allocation of Resources by Linear Programming by Robert Bland Scientific American, Vol. 244, No. 6, June 1981 SCIENTIFIC AMERICAN

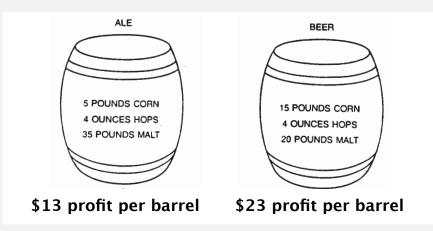
Toy LP example: brewer's problem

Small brewery produces ale and beer.

• Production limited by scarce resources: corn, hops, barley malt.



• Recipes for ale and beer require different proportions of resources.



Toy LP example: brewer's problem

Brewer's problem: choose product mix to maximize profits.

34 barrels × 35 lbs malt = 1190 lbs [amount of available malt]

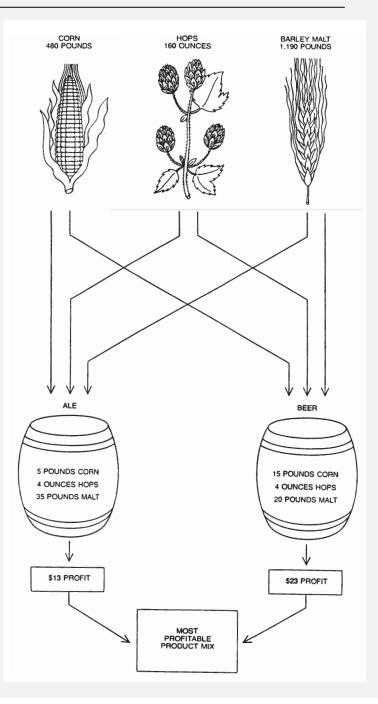
		ale	beer	corn	hops	malt	profit	
		34	0	179	136	1190	\$442	
goods are divisible		0	32	480	128	640	\$736	
		19.5	20.5	405	160	1092.5	\$725	
		12	28	480	160	980	\$800	
		?	?				> \$800 ?	
						ALE 5 POUNDS CORN 4 OUNCES HOPS 35 POUNDS MALT	BEE 15 POUNDS 4 OUNCES 20 POUNDS	CORN HOPS
corn (4	(480 lbs) hops (160 oz) i		160 oz) malt	t (1190 lbs)	\$13 p	profit per barrel	\$23 profit p	er barrel

Brewer's problem: linear programming formulation

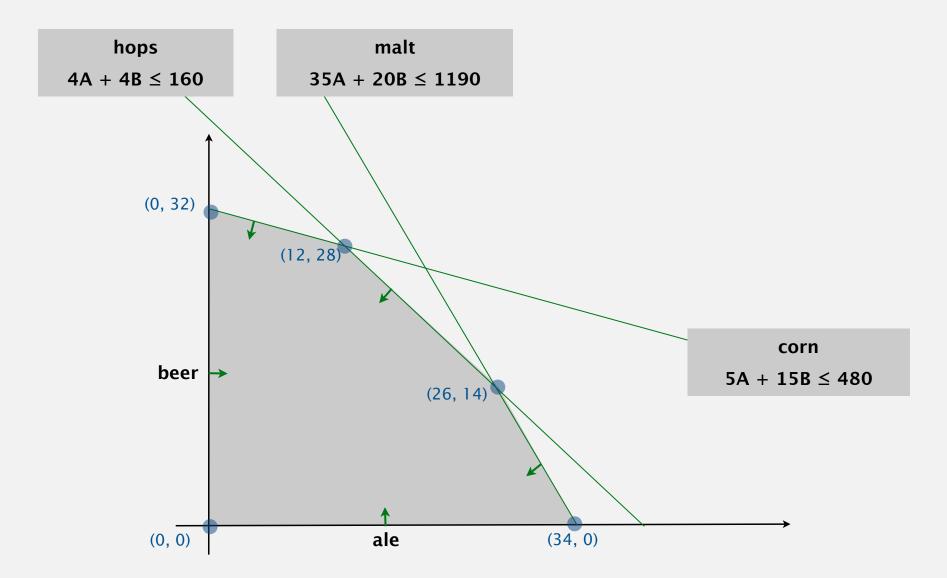
Linear programming formulation.

- Let *A* be the number of barrels of ale.
- Let *B* be the number of barrels of beer.

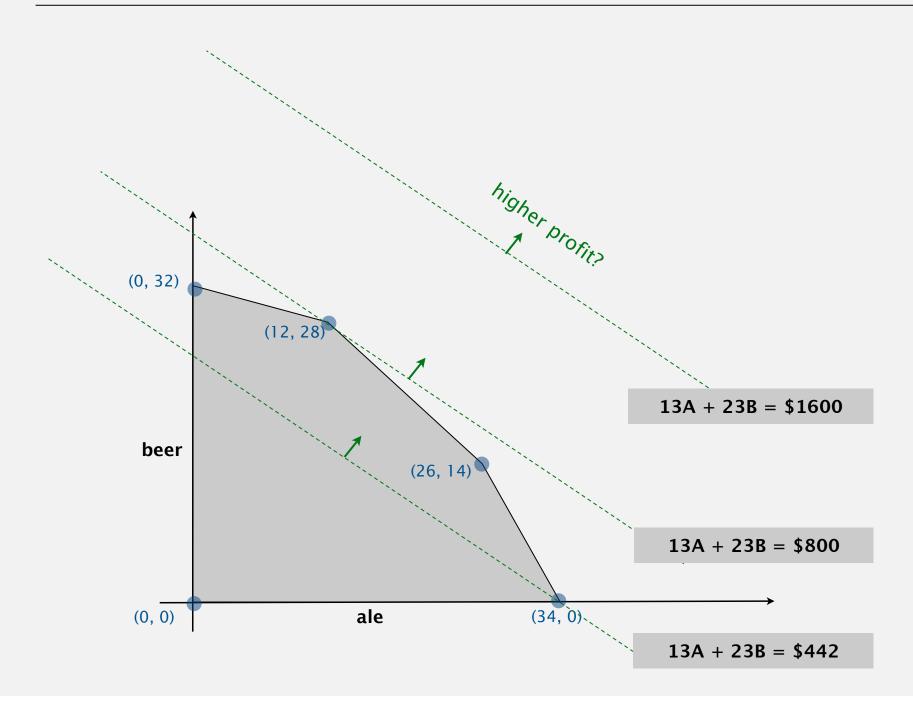
	ale		beer			
maximize	13A	+	23B			profits
subject	5A	+	15B	≤	480	corn
to the	4A	+	4B	≤	160	hops
constraints	35A	+	20B	≤	1190	malt
	А	,	В	≥	0	



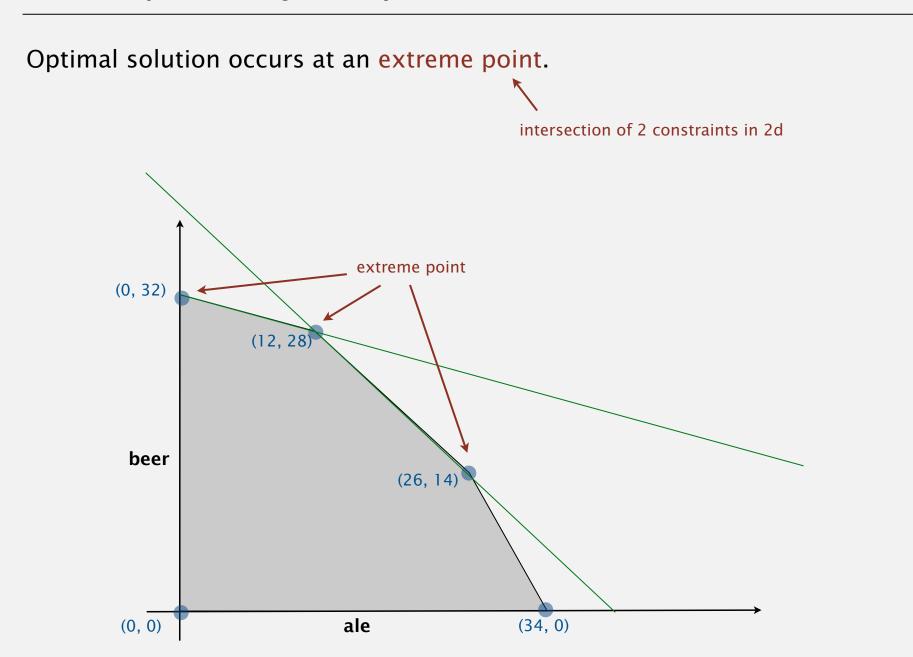
Inequalities define halfplanes; feasible region is a convex polygon.



Brewer's problem: objective function



Brewer's problem: geometry



Standard form linear program

Goal. Maximize linear objective function of *n* nonnegative variables, subject to *m* linear equations.

• Input: real numbers *a*_{*ij*}, *c*_{*j*}, *b*_{*i*}.

linear means no x², xy, arccos(x), etc.

• Output: real numbers x_j.

primal problem (P)												
maximize	C ₁ X ₁	+	C ₂ X ₂	+ +	C _n X _n							
	$a_{11} x_1$	+	$a_{12} x_2$	+ +	a _{ln} x _n	=	bı					
subject to the	$a_{21} x_{1}$	+	a 22 x 2	+ +	a 2n X n	=	b ₂					
constraints	÷		÷	÷	÷		:					
	a m1 X 1	+	a m2 X 2	+ +	amn Xn	=	bm					
	X 1	,	X 2	, ,	Xn	≥	0					

matrix version

maximize	с ^т х
subject to the	A x = b
constraints	$x \ge 0$

Caveat. No widely agreed notion of "standard form."

Original formulation.							
enginal termatation	maximize	13A	+	23B			
	subject	5A	+	15B	≤	480	
	to the	ubject to the 4A + Instraints	+	4B	≤	160	
	constraints	35A	+	20B	≤	1190	
		А	,	В	≥	0	

Standard form.

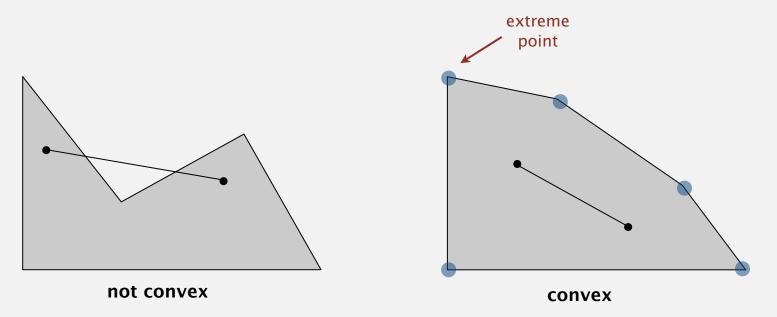
- Add variable Z and equation corresponding to objective function.
- Add slack variable to convert each inequality to an equality.
- Now a 6-dimensional problem.

maximize	Ζ												
	13A	+	23B							_	Ζ	=	0
subject to the	5A	+	15B	+	Sc							=	480
constraints	4A	+	4B			+	Sн					=	160
	35A	+	20B					+	S_M			=	1190
	А	,	В	,	Sc	,	S_{C}	,	Sм			≥	0

Inequalities define halfspaces; feasible region is a convex polyhedron.

A set is convex if for any two points *a* and *b* in the set, so is $\frac{1}{2}(a+b)$.

An extreme point of a set is a point in the set that can't be written as $\frac{1}{2}(a+b)$, where *a* and *b* are two distinct points in the set.

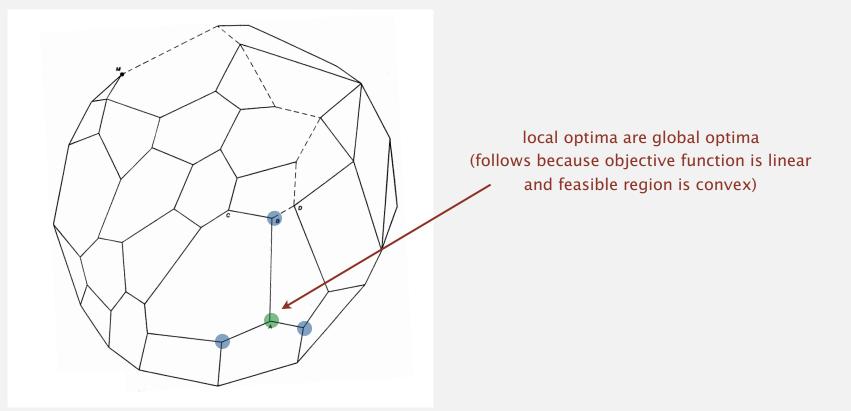


Warning. Don't always trust intuition in higher dimensions.

Geometry (continued)

Extreme point property. If there exists an optimal solution to (P), then there exists one that is an extreme point.

- Good news: number of extreme points to consider is finite.
- Bad news : number of extreme points can be exponential!



Greedy property. Extreme point optimal iff no better adjacent extreme point.

LINEAR PROGRAMMING

brewer's problem

simplex algorithm

implementations

reductions

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

LINEAR PROGRAMMING

brewer's problem simplex algorithm

implementations

reductions

Algorithms

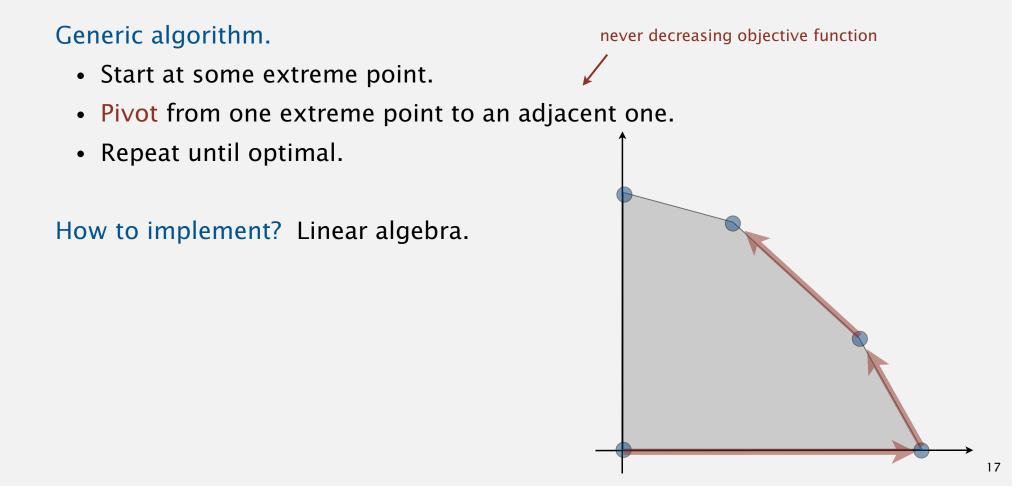
Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Simplex algorithm

Simplex algorithm. [George Dantzig, 1947]

- Developed shortly after WWII in response to logistical problems, including Berlin airlift.
- Ranked as one of top 10 scientific algorithms of 20th century.

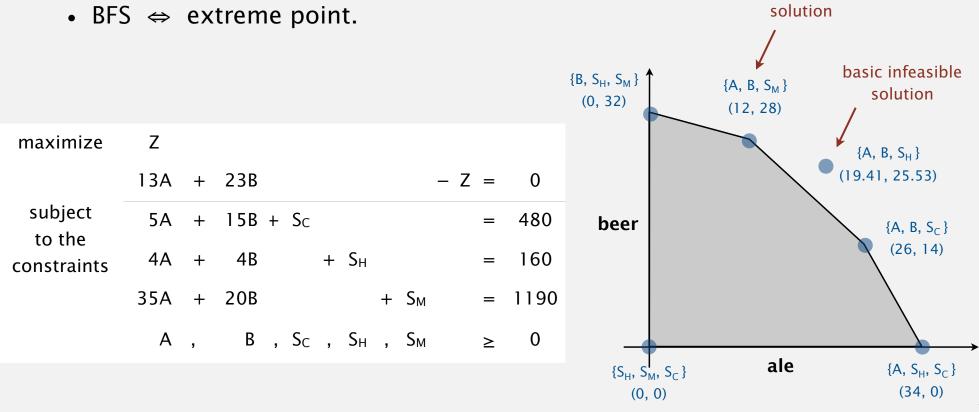


Simplex algorithm: basis

A basis is a subset of *m* of the *n* variables.

Basic feasible solution (BFS).

- Set n m nonbasic variables to 0, solve for remaining *m* variables.
- Solve *m* equations in *m* unknowns.
- If unique and feasible \Rightarrow BFS.



basic feasible

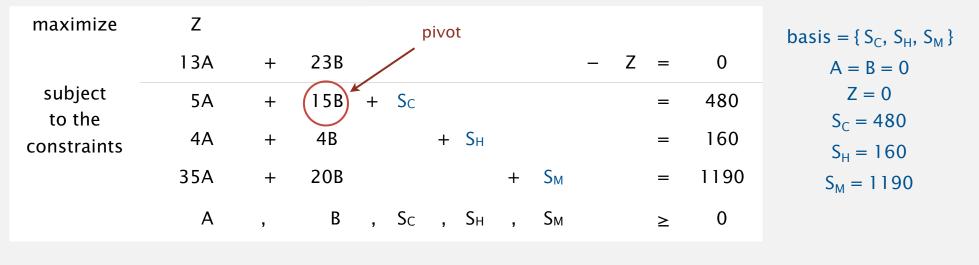
maximize	Z												basis = { S_C , S_H , S_M }
	13A	+	23B						_	Ζ	=	0	A = B = 0
subject to the	5A	+	15B	+ Sc							=	480	Z = 0
constraints	4A	+	4B		+	- Sн					=	160	$S_{C} = 480$ $S_{H} = 160$
	35A	+	20B				+	S _M			=	1190	$S_{M} = 1190$
	А	,	В	, Sc	,	, Sн	,	Sм			≥	0	

one basic variable per row

Initial basic feasible solution.

- Start with slack variables $\{S_C, S_H, S_M\}$ as the basis.
- Set non-basic variables *A* and *B* to 0.
- 3 equations in 3 unknowns yields $S_C = 480$, $S_H = 160$, $S_M = 1190$.

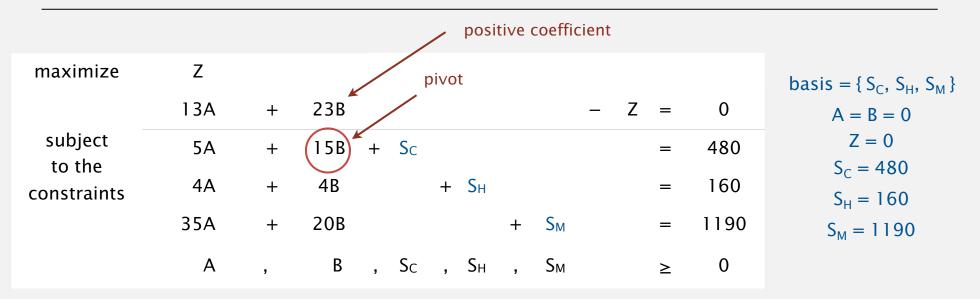
no algebra needed



substitute $B = (1/15) (480 - 5A - S_C)$ and add B into the basis (rewrite 2nd equation, eliminate B in 1st, 3rd, and 4th equations) which basic variable does B replace?

maximize	Z			basis = { B, S_H , S_M }
	(16/3) A	– (23/15) S _C	- Z = -736	$A = S_C = 0$
subject to the	(1/3) A + B	+ (1/15) S _C	= 32	Z = 736
constraints	(8/3) A	— (4/15) S _C + S _H	= 32	B = 32 S _H = 32
	(85/3) A	- (4/3) S _C + S _M	= 550	$S_{M} = 550$
	Α, Β	, S _C , S _H , S _M	≥ 0	

Simplex algorithm: pivot 1



Q. Why pivot on column 2 (corresponding to variable *B*)?

- Its objective function coefficient is positive.
 (each unit increase in *B* from 0 increases objective value by \$23)
- Pivoting on column 1 (corresponding to A) also OK.
- Q. Why pivot on row 2?
 - Preserves feasibility by ensuring RHS ≥ 0 .
 - Minimum ratio rule: min { 480/15, 160/4, 1190/20 }.

maximize	Z (16/3) A	pivot	– (23/15) S _C		– Z =	-736	basis = { B, S _H , S _M } A = S _C = 0
subject to the constraints	(1/3) A + (8/3) A (85/3) A A ,	- B B	 + (1/15) S_C - (4/15) S_C - (4/3) S_C , S_C 	+	= = S _M = S _M ≥	32 32 550 0	Z = 736 B = 32 $S_{H} = 32$ $S_{M} = 550$
			L5) S _C - S _H) and te A in 1st, 2nd				iich basic variable does A replace?
maximize	Z						basis = { A, B, S_M }

			_	Sc	_	2 S _H		– Z	=	-800	$S_C = S_H = 0$
subject to the		В	+	(1/10) S _C	+	(1/8) S _H			=	28	Z = 800
constraints	А		_	(1/10) S _C	+	(3/8) S _H			=	12	B = 28 $A = 12$
			_	(25/6) S _C	_	(85/8) S _H +	S _M		=	110	$S_{M} = 110$
	Α,	В	,	Sc	,	Sн ,	Ѕм		≥	0	

Simplex algorithm: optimality

- Q. When to stop pivoting?
- A. When no objective function coefficient is positive.
- Q. Why is resulting solution optimal?
- A. Any feasible solution satisfies current system of equations.
 - In particular: $Z = 800 S_C 2 S_H$
 - Thus, optimal objective value $Z^* \leq 800$ since S_C , $S_H \geq 0$.
 - Current BFS has value $800 \Rightarrow$ optimal.

maximize	Z									basis = { A, B, S_M }
		-	Sc	_	2 Sh		– Z	=	-800	$S_C = S_H = 0$
subject		B +	(1/10) S _C	+	(1/8) S _H			=	28	Z = 800
to the constraints	А	_	(1/10) S _C	+	(3/8) S _H			=	12	B = 28 $A = 12$
		_	(25/6) S _C	_	(85/8) S _H +	S_M		=	110	$S_{M} = 110$
	А	, В ,	Sc	,	Sн ,	Ѕм		≥	0	

LINEAR PROGRAMMING

brewer's problem simplex algorithm

implementations

reductions

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

LINEAR PROGRAMMING

brewer's problem
 simplex algorithm

Algorithms

implementations

reductions

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Encode standard form LP in a single Java 2D array.

									Z	nize	maxin	
	0	<u> </u>	- Z				23B	+	13A			
	480	=			Sc	+	15B	+	5A	subject		
	160	=		Sh	+		4B	+	4A		to tł constra	
	1190	=	- S _M	+			20B	+	35A			
	0	≥	Sм	Sн ,	Sc ,	,	В	,	А			
					480		0		0	1	15	5
I.	А		m		160		0		1	0	4	4
					1190		1		0	0	20	35
0	С		1		0		0		0	0	23	13
					1190		1		0	0	20	35

n

initial simplex tableaux

b

0

m

Simplex algorithm transforms initial 2D array into solution.

maximize	Z															
				_		Sc	_	2	Sh			_	Ζ	=	-800	
subject to the			В	+	(1/10) S c	+	(1/8)) Sн					=	28	
constraints	А			_	(1/10) S c	+	(3/8)) Sн					=	12	
				_	(25/6) Sc	_	(85/8) Sн	+	Sм			=	110	
	А	,	В	,		Sc	,		Sн	,	Sм			≥	0	
0 1	1/10)	1/	8	0	28										

1	_	_			_			n	m
	0	0	-1	-2	0	-800	1	≤ 0	≤ 0
	0	0	-25/6	-85/8	1	110			
	1	0	-1/10	3/8	0	12	m		
	0	I	1/10	1/8	0	28			

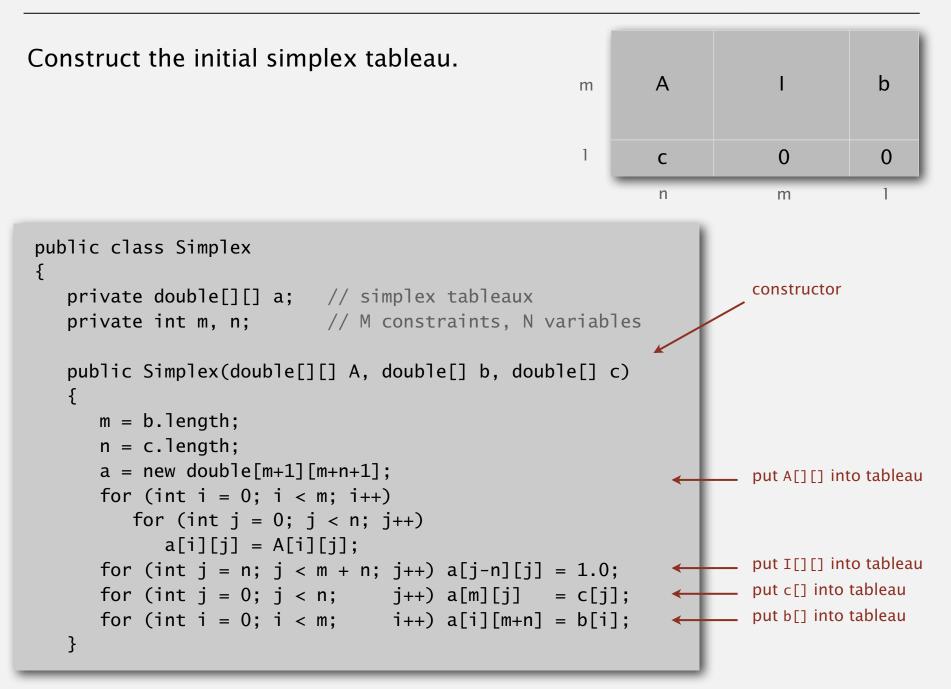
final simplex tableaux

X*

-Z*

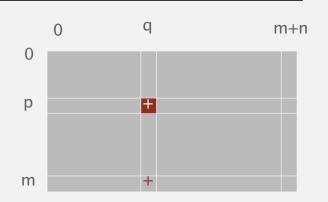
1

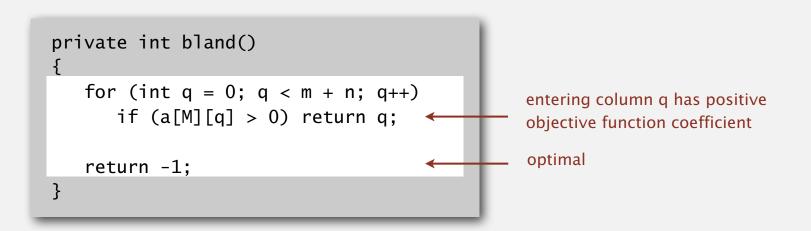
Simplex algorithm: initial simplex tableaux



Simplex algorithm: Bland's rule

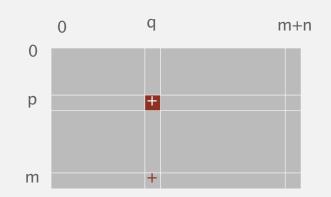
Find entering column *q* using Bland's rule: index of first column whose objective function coefficient is positive.

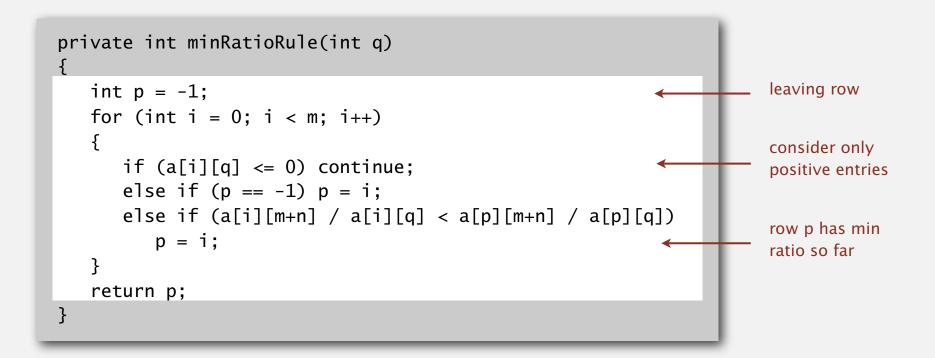




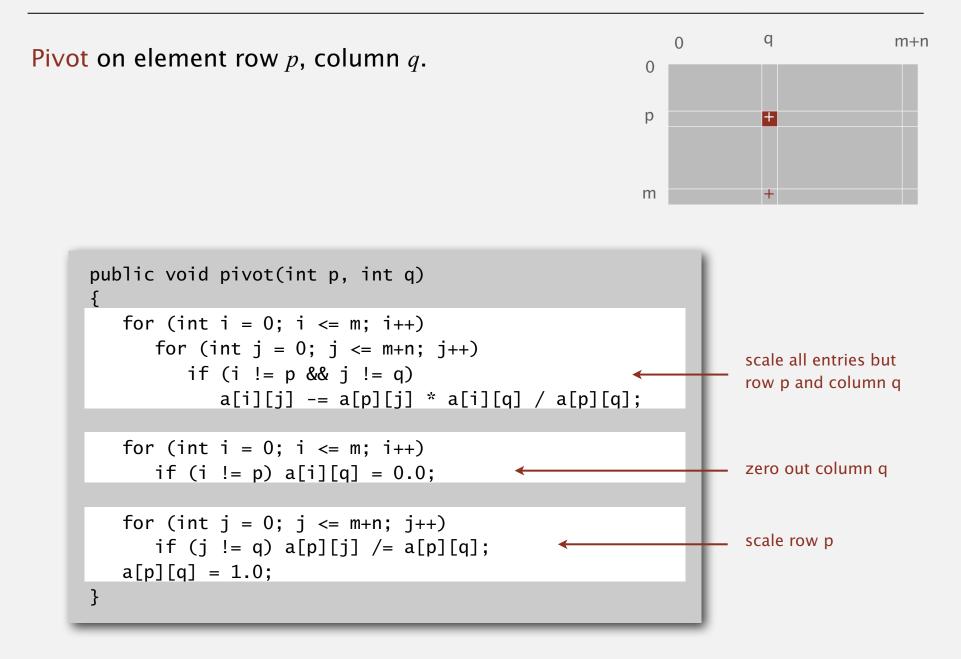
Simplex algorithm: min-ratio rule

Find leaving row *p* using min ratio rule. (Bland's rule: if a tie, choose first such row)

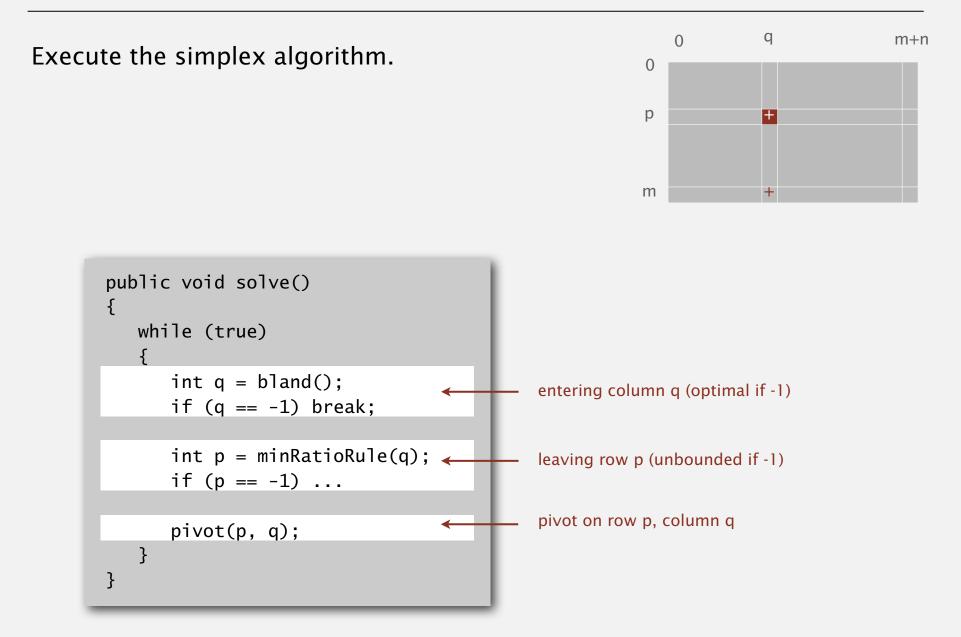




Simplex algorithm: pivot



Simplex algorithm: bare-bones implementation



Remarkable property. In typical practical applications, simplex algorithm terminates after at most 2(m + n) pivots.

"Yes. Most of the time it solved problems with m equations in 2m or 3m steps that was truly amazing. I certainly did not anticipate that it would turn out to be so terrific. I had had no experience at the time with problems in higher dimensions, and I didn't trust my geometrical intuition. For example, my intuition told me that the procedure would require too many steps wandering from one adjacent vertex to the next. In practice it takes few steps. In brief, one's intuition in higher dimensional space is not worth a damn! Only now, almost forty years from the time when the simplex method was first proposed, are people beginning to get some insight into why it works as well as it does. "

— George Dantzig 1984

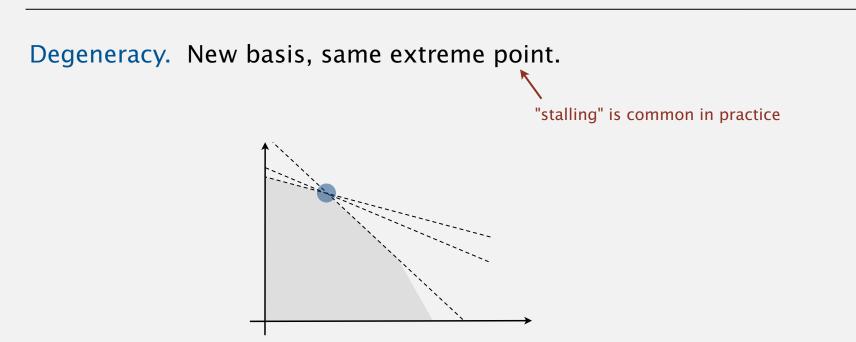
Remarkable property. In typical practical applications, simplex algorithm terminates after at most 2(m + n) pivots.

Pivoting rules. Carefully balance the cost of finding an entering variable with the number of pivots needed.

- No pivot rule is known that is guaranteed to be polynomial.
- Most pivot rules are known to be exponential (or worse) in worst-case.

Daniel A. Spielman^{*} Department of Mathematics M.I.T. Cambridge, MA 02139 spielman@mit.edu Shang-Hua Teng[†] Akamai Technologies Inc. and Department of Computer Science University of Illinois at Urbana-Champaign steng@cs.uiuc.edu

Simplex algorithm: degeneracy



Cycling. Get stuck by cycling through different bases that all correspond to same extreme point.

- Doesn't occur in the wild.
- Bland's rule guarantees finite # of pivots.

choose lowest valid index for entering and leaving columns

To improve the bare-bones implementation.

• Avoid stalling.

- requires artful engineering
- requires fancy data structures
- Numerical stability.

• Maintain sparsity.

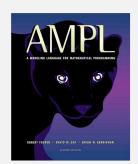
requires advanced math

run "phase I" simplex algorithm

- Detect infeasibility.
- Detect unboundedness. no leaving row

Best practice. Don't implement it yourself!

Basic implementations. Available in many programming environments. Industrial-strength solvers. Routinely solve LPs with millions of variables. Modeling languages. Simplify task of modeling problem as LP.



- " a benchmark production planning model solved using linear programming would have taken 82 years to solve in 1988, using the computers and the linear programming algorithms of the day. Fifteen years later—in 2003—this same model could be solved in roughly 1 minute, an improvement by a factor of roughly 43 million. Of this, a factor of roughly 1,000 was due to increased processor speed, whereas a factor of roughly 43,000 was due to improvements in algorithms! "
 - Designing a Digital Future

(Report to the President and Congress, 2010)

Brief history

- 1939. Production, planning. [Kantorovich]
- 1947. Simplex algorithm. [Dantzig]
- 1947. Duality. [von Neumann, Dantzig, Gale-Kuhn-Tucker]
- 1947. Equilibrium theory. [Koopmans]
- 1948. Berlin airlift. [Dantzig]
- 1975. Nobel Prize in Economics. [Kantorovich and Koopmans]
- 1979. Ellipsoid algorithm. [Khachiyan]
- 1984. Projective-scaling algorithm. [Karmarkar]
- 1990. Interior-point methods. [Nesterov-Nemirovskii, Mehorta, ...]

George Dantzig

von Neumann

Khachiyan

Karmarkar

LINEAR PROGRAMMING

brewer's problem
 simplex algorithm

Algorithms

implementations

reductions

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

LINEAR PROGRAMMING

brewer's problem

simplex algorithm

implementations

Algorithms

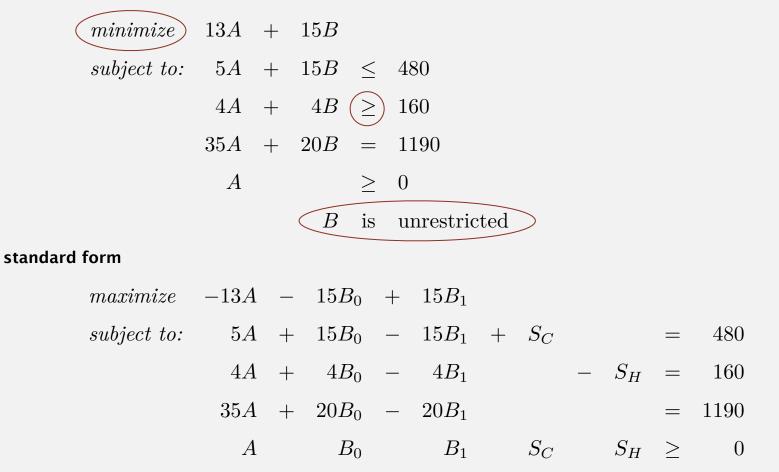
reductions

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Reductions to standard form

Minimization problem.Replace min 13A + 15B with max - 13A - 15B. \geq constraints.Replace $4A + 4B \geq 160$ with $4A + 4B - S_H = 160$, $S_H \geq 0$.Unrestricted variables.Replace B with $B = B_0 - B_1$, $B_0 \geq 0$, $B_1 \geq 0$.



Modeling

Linear "programming" (1950s term) = reduction to LP (modern term).

- Process of formulating an LP model for a problem.
- Solution to LP for a specific problem gives solution to the problem.
- 1. Identify variables.
- 2. Define constraints (inequalities and equations).
- 3. Define objective function.
- 4. Convert to standard form. <---- software usually performs this step automatically

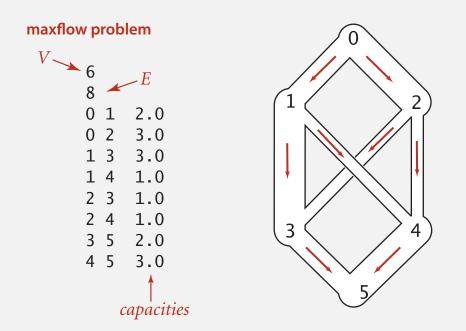
Examples.

- Maxflow.
- Shortest paths.
- Bipartite matching.
- Assignment problem.
- 2-person zero-sum games.

• • •

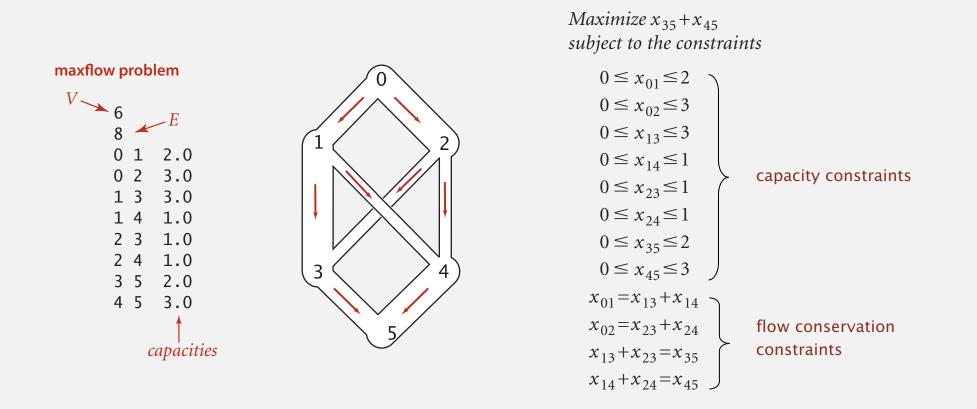
Maxflow problem (revisited)

Input. Weighted digraph *G*, single source *s* and single sink *t*. Goal. Find maximum flow from *s* to *t*.



Modeling the maxflow problem as a linear program

Variables. x_{vw} = flow on edge $v \rightarrow w$. Constraints. Capacity and flow conservation. Objective function. Net flow into *t*.



LP formulation

Maximum cardinality bipartite matching problem

Input. Bipartite graph.

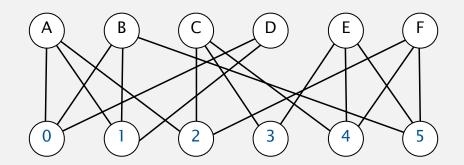
Goal. Find a matching of maximum cardinality.

set of edges with no vertex appearing twice

Interpretation. Mutual preference constraints.

- People to jobs.
- Students to writing seminars.

Alice	Adobe
Adobe, Apple, Google	Alice, Bob, Dave
Bob	Apple
Adobe, Apple, Yahoo	Alice, Bob, Dave
Carol	Google
Google, IBM, Sun	Alice, Carol, Frank
Dave	IBM
Adobe, Apple	Carol, Eliza
Eliza	Sun
IBM, Sun, Yahoo	Carol, Eliza, Frank
Frank	Yahoo
Google, Sun, Yahoo	Bob, Eliza, Frank



matching of cardinality 6: A-1, B-5, C-2, D-0, E-3, F-4

Example: job offers

Maximum cardinality bipartite matching problem

LP formulation. One variable per pair. Interpretation. $x_{ij} = 1$ if person *i* assigned to job *j*.

maximize	$X_{A0} + X_{A1} + X_{A2} + X_{B0} + X_{B1} + X_{B5} + X_{C2} + X_{C3} + X_{C4}$ + $X_{D0} + X_{D1} + X_{E3} + X_{E4} + X_{E5} + X_{F2} + X_{F4} + X_{F5}$			
subject to the constraints	at most one job per $X_{A0} + X_{A1} + X_{A2}$ $X_{B0} + X_{B1} + X_{B5}$ $X_{C2} + X_{C3} + X_{C4}$ $X_{D0} + X_{D1}$ $X_{E3} + X_{E4} + X_{E5}$ $X_{F2} + X_{F4} + X_{F5}$	≤] ≤]		≤] ≤]

Theorem. [Birkhoff 1946, von Neumann 1953]

Linear programming perspective

Q. Got an optimization problem?

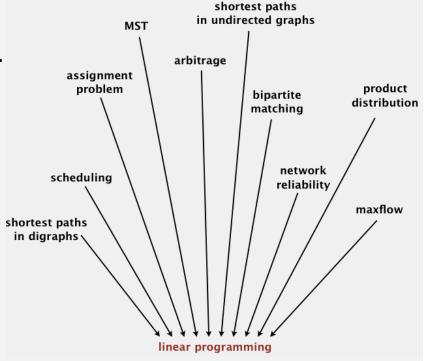
Ex. Maxflow, bipartite matching, shortest paths, ... [many, many, more]

Approach 1: Use a specialized algorithm to solve it.

- Algorithms 4/e.
- Vast literature on algorithms.

Approach 2: Use linear programming.

- Many problems are easily modeled as LPs.
- Commercial solvers can solve those LPs.
- Might be slower than specialized solution (but you might not care).



Universal problem-solving model (in theory)

Is there a universal problem-solving model?

• Maxflow.

. . .

. . .

. . .

- Shortest paths.
- Bipartite matching.
- Assignment problem.
- Multicommodity flow.
- Two-person zero-sum games.
- Linear programming.

- Factoring
- NP-complete problems.

intractable?

tractable

Does P = NP? No universal problem-solving model exists unless P = NP.

see next lecture

LINEAR PROGRAMMING

brewer's problem

simplex algorithm

implementations

Algorithms

reductions

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

 \checkmark

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

LINEAR PROGRAMMING

brewer's problem

simplex algorithm

implementations

reductions