A 1 g Or 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

COMBINATORIAL SEARCH

» introduction
» permutations

» backiracking

Algorithms

» counting

» subsets

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu } Pafhs in a graph

COMBINATORIAL SEARCH

» infroduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Implications of NP-completeness

GINLLLL L
(I IRE

ﬁ o/

hv

“T can’t find an efficient algorithm, but neither can all these famous people.”

Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size =
effectiveness may be limited to relatively small instances.

Backtracking. Systematic method for examining feasible solutions
to a problem, by systematically pruning infeasible ones.

Warmup: enumerate N-bit strings

Goal. Process all 2V bit strings of length M.
e Maintain array a[] where a[i] represents bit 1.

« Simple recursive method does the job. N=3
00O
001
// enumerate bits in al[k] to a[N-1]
private void enumerate(int k) 010
011
{
if (k == N)
{ process(); return; } 100
enumerate(k+1); 101
enumerate(k+1); 111
alk] = 0; < clean up
}

Remark. Equivalent to counting in binary from 0 to 2¥ - 1.

Z
I
D

RRRROOOORRRROOOO

QO
—

OC—D> RPRRHRRRRRROOOOOOOO

FROORROO|RROORROO
—b|roRrRORrRORO|RORORORO

a[N-1]

Warmup: enumerate N-bit strings

public BinaryCounter(int N)
{

this.N = N;
this.a = new int[N];
enumerate(0);

R

java BinaryCounter 4
0

private void process()
{
for (int i = 0; i < N; i++)
StdOut.printCal[i]l) + " ";
StdOut.printin();
}

private void enumerate(int k)
{

if (k == N)

{ process(); return; }

enumerate(k+1) ;
alk] = 1; on this theme

all programs in this
lecture are variations

enumerate(k+1);
alk] = 0;

P RPRRRPRRRPRRPRPOOOOOOOO
P PR PRPOOOORRRLRROOOO
PR OORMHLOORROORLRO

R OROROROROROR OR O

COMBINATORIAL SEARCH

» permutations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Traveling salesperson problem

Euclidean TSP. Given N points in the plane, find the shortest tour.
Proposition. Euclidean TSP is NP-hard.

135009 cities in the USA and an optimal tour

Brute force. Design an algorithm that checks all tours.

N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that
no rook can attack any other?

L elrEEEEEE
E
E

a[4] = 6 means the rook

z / from row 4 is in column 6

E

-|nt[] a={2, O, 1, 3, 6, 75 4; 5 };

Representation. No two rooks in the same row or column = permutation.

Challenge. Enumerate all N! permutations of N integers 0 to N 1.

Enumerating permutations

Recursive algorithm to enumerate all N! permutations of N elements.

« Start with permutation a[0] to a[N-1].

e For each value of 1:

— swap a[i] into position 0

— enumerate all (V- 1)! permutations of a[1] to a[N-1]

— clean up (swap a[i] back to original position)

N

o
N

= N w

=
N O
O N

R O

)

0 followed by 1 followed by
permsofl 2 3 permsof0 2 3
! |
O(1 2 3 1(0 2 3
0/1 32 110 3 2
0(2 13 112 0 3
0(2 31 112 30
0|3 21 11320
0|3 12 13 0 2

cleanup swaps that bring
permutation back to original

2 followed by
permsof1 0 3

NN NN NN
w w o o B B
R O w Rk woO
O R K wWwOWwW

!

3 followed by
permsofl 2 0

!

O O NDNPREFE R

R N O R ON

Enumerating permutations

Recursive algorithm to enumerate all N! permutations of N elements.
« Start with permutation a[0] to a[N-1].
« For each value of 1:
— swap a[1i] into position 0
— enumerate all (V- 1)! permutations of a[1] to a[N-1]
— clean up (swap a[i] back to original position)

// place N-k rooks in a[k] to a[N-1]
private void enumerate(int k)

{
if (k == N)
{ process(); return; }

for (int i = k; 1 < N; i++)
{
exch(k, 1);
enumerate(k+1);
exch(i, k); <«—— clean up

Enumerating permutations

public Rooks(int N)
{
this.N = N;
a = hew int[N];
for (int i = 0; i < N; i++)
a[i] = 1; <«—— initial permutation
enumerate(0);

private void enumerate(int k)
{ /* see previous slide */ }

private void exch(int i, int j)
{ dint t = ali]; al[i] = a[j]; a[j] = t; }

4-rooks search tree

\\\

solutions

=

COMBINATORIAL SEARCH

Algorithms » backtracking

ROBERT SEDGEWICK | KEviN WAYNE

http://algs4.cs.princeton.edu

N-queens problem

Q. How many ways are there to place N queens on an N-by-N board so that
no queen can attack any other?

a[1] = 6 means the queen

.n-n from row 1 is in column 6
W
W

IE

IE

W

int[] a={2, 7,3, 6, 0,5, 1, 43};

Representation. No 2 queens in the same row or column = permutation.
Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions.«—

unlike N-rooks problem,
nobody knows answer for N > 30

15

4-queens search tree

diagonal conflict
on partial solution:
no point going deeper

i)

N/

solutions

4-queens search tree (pruned)

"backtrack” on
diagonal conflicts

)

)

@

N/

solutions

Backtracking

Backtracking paradigm. Iterate through elements of search space.
« When there are several possible choices, make one choice and recur.
« If the choice is a dead end, backtrack to previous choice,
and make next available choice.

Benefit. Identifying dead ends allows us to prune the search tree.

Ex. [backtracking for N-queens problem]
« Dead end: a diagonal conflict.

e Pruning: backtrack and try next column when diagonal conflict found.

Applications. Puzzles, combinatorial optimization, parsing, ...

N-queens problem: backtracking solution

private boolean canBacktrack(int | % java Queens 4
{ 13
for (int i = 0; i < k; i++) 2 0
{
if ((a[i] - a[k]l) (k - 1)) return true;

=N

IS

java Queens 5

if (Ca[k] - a[il) (k - 1)) return true; 02413

h 03142
return false; 13024
14203

20314

24130

31420

30241

41302

42031

X

ava Queens 6

if (!canBacktrack(k)) enumerate(k+1l);

j
3
5
0
2

N wWwN R

a[o0] a[N-1]

N-queens problem: effectiveness of backiracking

Pruning the search tree leads to enormous time savings.

8 92 -

40,320
9 352 362,880 -
10 724 3,628,800 -
11 2,680 39,916,800 -
12 14,200 479,001,600 1.1
13 73,712 6,227,020,800 5.4
14 365,596 87,178,291,200 29
15 2,279,184 1,307,674,368,000 210
16 14,772,512 20,922,789,888,000 1352

Conjecture. O(N) ~ N! / ¢V, where ¢ is about 2.54.

Hypothesis. Running time is about (V! / 2.5V)/ 43,000 seconds.

20

Some backtracking success stories

TSP. Concorde solves real-world TSP instances with ~ 85K points.

 Branch-and-cut.

Combinatorial

e Linear programming.

Optimization and

Networked
Combinatorial
Optimization
Research and
Development
Environment

SAT. Chaff solves real-world instances with ~ 10K variable.

e Davis-Putnam backtracking.
« Boolean constraint propagation.

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz Conor F. Madigan
Department of EECS Department of EECS
UC Berkeley MIT

moskewcz @alumni.princeton.edu cmadigan@mit.edu
ABSTRACT

Boolean Satisfiability is probably the most studied of
combinatorial optimization/search problems. Significant effort
has been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Artificial Intelligence (AI). This study has culminated in the

Ying Zhao, Lintao Zhang, Sharad Malik
Department of Electrical Engineering
Princeton University

{yingzhao, lintaoz, sharad}@ee.princeton.edu

Many publicly available SAT solvers (e.g. GRASP [8],
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been
developed, most employing some combination of two main
strategies: the Davis-Putnam (DP) backtrack search and heuristic
local search. Heuristic local search techniques are not
guaranteed to be complete (i.e. they are not guaranteed to find a
satisfying assignment if one exists or prove unsatisfiability); as a

21

COMBINATORIAL SEARCH

Algorithms

» counting

ROBERT SEDGEWICK | KEviN WAYNE

http://algs4.cs.princeton.edu

Counting: Java implementation

Goal. Enumerate all N-digit base-R numbers.
Solution. Generalize binary counter in lecture warmup.

// enumerate base-R numbers in al[k] to a[N-1]
private static void enumerate(int k)
{
if (k == N)
{ process(); return; }
for (int r = 0; r < R; r++)
{
alk] = r;
enumerate(k+1);
}
alk] = 0; «—— cleanup not needed; why?
}

R

java Counter 2 4

w wwwmMNhNNNNNRERPREROOOO
W NPRFEPF O WNREFEOWNREOWNREO

R

java Counter 3 2

> A PR R OOOOoO
RPRRrOORR OO
— >R ORrORrORrOo

a[0] a[N-1]

23

Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains

each of the digits 1 through 9.
I

“ Sudoku is a denial of service attack on human intellect.

— Ben Laurie (founding director of Apache Software Foundation)

24

Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains
each of the digits 1 through 9.

25

Sudoku is (probably) intractable

Remark. Natural generalization of Sudoku is NP-complete.

|
[0

BINARY
SL DOkU

1

http://xkcd.com/74

26

Sudoku: brute-force solution

Goal. Fill 9-by-9 grid so that every row, column, and box contains

each of the digits 1 through 9.
l

Solution. Enumerate all 81-digit base-9 numbers (with backtracking).
all

using digits 1 t0 9 —— n n
0 1 2 3

4 5 6 7 8 80

27

Sudoku: backtracking solution

lterate through elements of search space.
« For each empty cell, there are 9 possible choices.
« Make one choice and recur.
e If you find a conflict in row, column, or box, then backtrack.

=

backtrack on 3, 4,5, 7, 8,9

u p

28

Sudoku: Java implementation

private void enumerate(int k) % more board.txt
{ 708000300
000201000
if (K == 81) | 500000000
{ pr‘ocess(); return: } <«—+— found a solution 040000026
300080000
if (a[k] '= 0) L cellkinitially filled in; 000100090
{ enumerate(k+1); return; } recur on next cell 090600004
000070500
for (ANt r = 1: r <= 9: r44) ———]tc(r)y;i)eﬁ)lo:yble digits 000000O0O0O

{ o % java Sudoku < board.txt
alk] = r; unless it V|olate'sa 728946315
if (!lcanBacktrack(k)) <1 — Sudoku Co 934251678
enumerate (k+1); (see booksite for code) 516738249
} 147593826
369482157
a[k] = 0; g 852167493
} 293615784
481379562
675824931

COMBINATORIAL SEARCH

Algorithms

» subsefs

ROBERT SEDGEWICK | KEviN WAYNE

http://algs4.cs.princeton.edu

Enumerating subsets: natural binary encoding

Given N elements, enumerate all 2V subsets.
e« Count in binary from 0 to 2V 1.

e Maintain array a[] where a[i] represents element 1.

e If 1, a[i] in subset; if 0, a[i] not in subset.

i binary subset
0 00O00O empty
1 0001 0
2 0010 1
3 0011 10
4 0100 2
5 0101 2 0
6 0110 2 1
7/ 0111 210
8 1000 3
9 1001 30
10 1010 31
11 1011 310
12 1100 3 2
13 1101 320
14 1110 321
15 1111 3210

31

Enumerating subsets: natural binary encoding

Given N elements, enumerate all 2V subsets.
e« Count in binary from 0 to 2V 1.

e Maintain array a[] where a[i] represents element 1.

e If 1, a[i] in subset; if 0, a[i] not in subset.

Binary counter from warmup does the job.

private void enumerate(int k)
{

if (k == N)

{ process(); return; }

enumerate(k+1);

alk] = 1;

enumerate(k+1);

aLlk] = 0;

32

Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit
one at a time, such that each subset of actors appears exactly once.

binary subset move
00O00O empty -
0001 0 enter 0
0011 10 enter 1
0010 1 exit O
01160 2 1 enter 2
0111 210 enter 0
0101 2 0 exit 1
0100 2 exit O
1100 3 2 enter 3
1101 320 enter 0O
1111 3210 enterl
1110 321 exit O
1010 31 exit 2
1011 310 enter 0O
1001 30 exit 1
1000 3 exit O

binary reflected Gray code ruler function

Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit

one at a time, such that each subset of actors appears exactly once.

“ faceless, emotionless one of the far future, a world where people are born,
go through prescribed movements, fear non-being even though their lives

are meaningless, and then they disappear or die.” — Sidney Homan

34

Binary reflected gray code

Def. The k-bit binary reflected Gray code is:
« The (k—1) bit code with a 0 prepended to each word, followed by

e The (k- 1) bit code in reverse order, with a 1 prepended to each word.

2-bit

3-bit

1-bit code

o]
-
=,
o~k

1-bit code
(reversed)

2-bit code

OO KK KKK OO
-
O RFHFOOKKEO

P RPRRFEPKEOOODO

}

2-bit code
(reversed)

o))
—

O—> FFRFKFFFFPKFRPFPOOOOOOOO

—_

3-bit code

cococookrRrHKFEFKHFKHKKERKEFKEHOOODO

OOk HRKFRKFROOOOKFRHRERRE OO
ORrRPRHROOKRRKFROORKRRFRKOORKKRHKHO

—_—

a[N-1]

35

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:
« Flip a[k] instead of setting it to 1.
« Eliminate cleanup.

Gray code binary counter standard binary counter (from warmup)
// all bit strings in al[k] to a[N-1] // all bit strings in al[k] to a[N-1]
private void enumerate(int k) private void enumerate(int k)
{ {
if (k == N) if (k == N)
{ process(); return; } { process(); return; }
enumerate(k+1); enumerate(k+1);
alk] = 1 - a[k]; o[0 0 alk] = 1; 000
enumerate(k+1) ; olo 1 enumerate(k+1); 001
¥ 0/11 alk] = 0; 010
ol10 ¥ 011
111 04 same values 100
1111 since no cleanup 101
110 1 110
1100 111

!

.) a[0] a[N-1]
Advantage. Only one element in subset changes at a time.

More applications of Gray codes

010 000

011 001

111 101

3-bit rotary encoder

Towers of Hanoi

(move ith smallest disk when bit i changes in Gray code)

JITT00T

8-bit rotary encoder

N

¢ ¢ & o & & &

Chinese ring puzzle (Baguenaudier)

(move ith ring from right when bit i changes in Gray code)

37

Scheduling

Scheduling (set partitioning). Given N jobs of varying length, divide among
two machines to minimize the makespan (time the last job finishes).

\

or, equivalently, difference

between finish times cost

—
0 1.41 machine 1 1 3
1 1.73
2 2.00 .
machine 0 0 3
3 2.23
machine 1 1 2
.09

Remark. This scheduling problem is NP-complete.

38

Scheduling: improvements

Brute force. Enumerate 2V subsets; compute makespan; return best.

Many opportunities to improve.

Fix first job to be on machine 0. <«—— factor of 2 speedup
Maintain difference in finish times. <«—— factor of N speedup (using Gray code order)

(and avoid recomputing cost from scratch) N
huge opportunities

Backtrack when partial schedule cannot beat best known. «—— for improvement

reduces time to 2N-k on typical inputs

Preprocess all 2¢ subsets of last & jobs;
at cost of 2k memory

cache results in memory.

private void enumerate(int k)

{
if (k == N) { process(); return; }
if (canBacktrack(k)) return;
enumerate(k+1);
alk] = 1 - a[k];
enumerate(k+1);

39

COMBINATORIAL SEARCH

Algorithms

ROBERT SEDGEWICK | KEviN WAYNE

http://algs4.cs.princeton.edu } pa/'hs in a graph

Enumerating all paths on a grid

Goal. Enumerate all simple paths on a grid of adjacent sites.

no two atoms can occupy
same position at same time

v

Application. Self-avoiding lattice walk to model polymer chains.

41

Enumerating all paths on a grid: Boggle

Boggle. Find all words that can be formed by tracing a simple path of
adjacent cubes (left, right, up, down, diagonal).

BeeA X X X

X € A=—C—K

X K R X X
- -

X ¥ X X X

X X X X X

Backtracking. Stop as soon as no word in dictionary contains string of

letters on current path as a prefix = use a trie. B
BA
BAX

Boggle: Java implementation

private void dfs(String prefix, int i, int j)

{

string of letters on current path to (i, j)

/

if (Go<O0 || d>=N) |
G <0] 3>=N []
(visited[i][j1) ||

Idictionary.containsAsPrefix(prefix))

return;

visited[1][j] = true;
prefix = prefix + board[i][j];

if (dictionary.contains(prefix))
found.add(prefix) ;

for (int ii = -1; ii <= 1; ii++)
for (Aint jj = -1; jj <= 1; jj++)
dfs(prefix, i + ii, j + jj);

visited[i][j] = false;

backtrack

add current character

add to set of found words

try all possibilities

clean up

43

Hamilton path

Goal. Find a simple path that visits every vertex exactly once

visit every edge exactly once

g

Remark. Euler path easy, but Hamilton path is NP-complete.

44

Knight's tour

Goal. Find a sequence of moves for a knight so that (starting from any
desired square) it visits every square on a chessboard exactly once.

S

A\ |7

X N AR
I

e
S

\7\

~
AN

L %g o
AN A/

\

\

N

<\

RV

A

legal knight moves a knight's tour

W T T2
(NN
88\ (4.

Solution. Find a Hamilton path in knight's graph.

Hamilton path: backtracking solution

Backtracking solution. To find Hamilton path starting at v :
« Add v to current path.
» For each vertex w adjacent to v
— find a simple path starting at w using all remaining vertices

e Clean up: remove v from current path.

Q. How to implement?
A. Depth-first search + cleanup (!)

46

Hamilton path: Java implementation

public HamiltonPath(Graph G)

{

marked = new boolean[G.V()];
for (int v = 0; v < G.VQ; v++)
dfs(G, v, 1);

private void dfs(Graph G, int v, int depth)

{

found one

length of current path
marked[v] = true; (depth of recursion)

if (depth == G.V()) count++;

for (int w : G.adj(v)) backtrack if w is
if (Imarked[w]) dfs(G, w, depth+1l); already part of path

«—
marked[v] = false; cleantip

47

Exhaustive search: summary

N-rooks

permutations

N-queens permutations yes
Sudoku base-9 numbers yes
scheduling subsets yes
Boggle paths in a grid yes

Hamilton path paths in a graph

48

The longest path

The world’s longest path (Sendero de Chile): 9,700 km.
(originally scheduled for completion in 2010; now delayed until 2038)

That's all, folks: keep searching!

<)

Woh-oh-oh-oh, find the longest path! I have been hard working for so long.
Woh-oh-oh-oh, find the longest path! I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
If you said P is NP tonight, Is more than I hope for.
There would still be papers left to write.
I have a weakness; Garey, Johnson, Karp and other men (and women)
I'm addicted to completeness, Tried to make it order N log N.
And I keep searching for the longest path. Am I a mad fool

If I spend my life in grad school,

The algorithm I would like to see Forever following the longest path?

Is of polynomial degree.

But it's elusive: Woh-oh-oh-oh, find the longest path!
Nobody has found conclusive Woh-oh-oh-oh, find the longest path!
Evidence that we can find a longest path. Woh-oh-oh-oh, find the longest path.

Written by Dan Barrett in 1988 while a student
at Johns Hopkins during a difficult algorithms take-home final

