Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREES

► BSTs

deletion

ordered operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

insert G

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

- A Key and a Value.
- A reference to the left and right subtree.

Key and Value are generic types; Key is Comparable

BST implementation (skeleton)

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Cost. Number of compares is equal to 1 + depth of node.

Put. Associate value with key.

Search for key, then two cases:

- Key in tree \Rightarrow reset value.
- Key not in tree \Rightarrow add new node.

Insertion into a BST

Put. Associate value with key.

```
recursive code;
public void put(Key key, Value val)
                                           read carefully!
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
   if (x == null) return new Node(key, val);
   int cmp = key.compareTo(x.key);
   if (cmp < 0)
      x.left = put(x.left, key, val);
   else if (cmp > 0)
      x.right = put(x.right, key, val);
   else if (cmp == 0)
     x.val = val;
   return x;
}
```

concise, but tricky,

Cost. Number of compares is equal to 1 + depth of node.

Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to 1 + depth of node.

Bottom line. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.

- Q. What is this sorting algorithm?
 - 0. Shuffle the array of keys.
 - 1. Insert all keys into a BST.
 - 2. Do an inorder traversal of BST.

A. It's not a sorting algorithm (if there are duplicate keys)!

- Q. OK, so what if there are no duplicate keys?
- Q. What are its properties?

Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1–1 if array has no duplicate keys.

Proposition. If *N* distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is $\sim 2 \ln N$. Pf. 1–1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If *N* distinct keys are inserted in random order, expected height of tree is ~ $4.311 \ln N$.

How Tall is a Tree?

Bruce Reed CNRS, Paris, France reed@moka.ccr.jussieu.fr

ABSTRACT

Let H_n be the height of a random binary search tree on n nodes. We show that there exists constants $\alpha = 4.31107...$ and $\beta = 1.95...$ such that $\mathbf{E}(H_n) = \alpha \log n - \beta \log \log n + O(1)$, We also show that $\operatorname{Var}(H_n) = O(1)$.

But... Worst-case height is N.

[exponentially small chance when keys are inserted in random order]

implementation	guarantee		averag	e case	operations		
	search	insert	search hit	insert	on keys		
sequential search (unordered list)	N	Ν	½ N	Ν	equals()		
binary search (ordered array)	lg N	Ν	lg N	½ N	compareTo()		
BST	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	compareTo()		

Why not shuffle to ensure a (probabilistic) guarantee of 4.311 ln N?

3.2 BINARY SEARCH TREES

ordered operations

BSTs

deletion

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Minimum and maximum

Minimum. Smallest key in table. Maximum. Largest key in table.

Q. How to find the min / max?

Floor and ceiling

Floor. Largest key \leq a given key. Ceiling. Smallest key \geq a given key.

Q. How to find the floor / ceiling?

Case 1. [k equals the key in the node] The floor of k is k.

Case 2. [k is less than the key in the node] The floor of k is in the left subtree.

Case 3. [k is greater than the key in the node] The floor of k is in the right subtree (if there is any key $\leq k$ in right subtree); otherwise it is the key in the node.

Computing the floor

}

```
public Key floor(Key key)
{
   Node x = floor(root, key);
   if (x == null) return null;
   return x.key;
}
private Node floor(Node x, Key key)
{
   if (x == null) return null;
   int cmp = key.compareTo(x.key);
   if (cmp == 0) return x;
   if (cmp < 0) return floor(x.left, key);</pre>
   Node t = floor(x.right, key);
   if (t != null) return t;
   else
                   return x;
```


Q. How to implement rank() and select() efficiently?

A. In each node, we store the number of nodes in the subtree rooted at that node; to implement size(), return the count at the root.

BST implementation: subtree counts

}

Rank

Rank. How many keys < *k*?

```
Easy recursive algorithm (3 cases!)
```



```
public int rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{
    if (x == null) return 0;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return rank(key, x.left);
    else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
    else if (cmp == 0) return size(x.left);
}
```

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

```
public Iterable<Key> keys()
{
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}
private void inorder(Node x, Queue<Key> q)
{
    if (x == null) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```


Property. Inorder traversal of a BST yields keys in ascending order.

order of growth of running time of ordered symbol table operations

3.2 BINARY SEARCH TREES

ordered operations

BSTs

deletion

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

implementation	guarantee			average case			ordered	operations
	search	insert	delete	search hit	insert	delete	ops?	on keys
sequential search (linked list)	N	N	Ν	½ N	Ν	½ N		equals()
binary search (ordered array)	lg N	Ν	Ν	lg N	½ N	½ N	~	compareTo()
BST	Ν	Ν	Ν	1.39 lg <i>N</i>	1.39 lg <i>N</i>	???	~	compareTo()

BST deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide search (but don't consider it equal in search).

Cost. ~ $2 \ln N'$ per insert, search, and delete (if keys in random order), where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

Deleting the minimum

To delete the minimum key:

- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```
public void deleteMin()
{ root = deleteMin(root); }
```

```
private Node deleteMin(Node x)
```

```
if (x.left == null) return x.right;
x.left = deleteMin(x.left);
x.count = 1 + size(x.left) + size(x.right);
return x;
```


To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

- Find successor x of t.
- Delete the minimum in t's right subtree.
- Put x in t's spot.

still a BST

_____ but don't garbage collect x

Hibbard deletion: Java implementation

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) $\Rightarrow \sqrt{N}$ per op. Longstanding open problem. Simple and efficient delete for BSTs.

implementation	guarantee			average case			ordered	operations
	search	insert	delete	search hit	insert	delete	ops?	on keys
sequential search (linked list)	Ν	Ν	N	½ N	Ν	½ N		equals()
binary search (ordered array)	lg N	Ν	Ν	lg N	½ N	½ N	~	compareTo()
BST	Ν	Ν	Ν	1.39 lg N	1.39 lg N	\sqrt{N}		compareTo()
	other operations also become \sqrt{N}							
	IT deletions allowed							

Next lecture. Guarantee logarithmic performance for all operations.