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Definition.  A BST is a binary tree in symmetric order.

A binary tree is either:

・Empty.

・Two disjoint binary trees (left and right).

Symmetric order.  Each node has a key,

and every node’s key is:

・Larger than all keys in its left subtree.

・Smaller than all keys in its right subtree.
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Anatomy of a binary search tree



Search.  If less, go left; if greater, go right; if equal, search hit.
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree demo
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Java definition.  A BST is a reference to a root Node.

A Node is composed of four fields:

・A Key and a Value.

・A reference to the left and right subtree.

6

BST representation in Java

smaller keys larger keys

private class Node
{
   private Key key;
   private Value val;
   private Node left, right;
   public Node(Key key, Value val)
   {
      this.key = key;
      this.val = val;
   }
}

Key and Value are generic types; Key is Comparable

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node



public class BST<Key extends Comparable<Key>, Value>
{
    private Node root;

   private class Node
   {  /* see previous slide */  }
 
   public void put(Key key, Value val) 
   {  /* see next slides */  }

   public Value get(Key key)
   {  /* see next slides */  }

   public void delete(Key key)
   {  /* see next slides */  }

   public Iterable<Key> iterator()
   {  /* see next slides */  }

}
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BST implementation (skeleton)

root of BST



Get.  Return value corresponding to given key, or null if no such key.

Cost.  Number of compares is equal to 1 + depth of node.
8

BST search:  Java implementation

 public Value get(Key key)
 {
    Node x = root;
    while (x != null)
    {
       int cmp = key.compareTo(x.key);
       if      (cmp  < 0) x = x.left;
       else if (cmp  > 0) x = x.right;
       else if (cmp == 0) return x.val;
    }
    return null;
 }



Put.  Associate value with key.

Search for key, then two cases:

・Key in tree  ⇒  reset value.

・Key not in tree ⇒  add new node.
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Put.  Associate value with key. 

Cost.  Number of compares is equal to 1 + depth of node.
10

BST insert:  Java implementation

 public void put(Key key, Value val)
 {  root = put(root, key, val);  }

 private Node put(Node x, Key key, Value val)
 {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if      (cmp  < 0)
       x.left  = put(x.left,  key, val);
    else if (cmp  > 0)
       x.right = put(x.right, key, val);
    else if (cmp == 0)
       x.val = val;
    return x;
 }

concise, but tricky, 
recursive code;
read carefully!



・Many BSTs correspond to same set of keys.

・Number of compares for search/insert is equal to 1 + depth of node.

Bottom line.  Tree shape depends on order of insertion.
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BST insertion:  random order visualization

Ex.  Insert keys in random order.
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Sorting with a binary heap

Q.  What is this sorting algorithm?

A.  It's not a sorting algorithm (if there are duplicate keys)!

Q.  OK, so what if there are no duplicate keys?

Q.  What are its properties?

0. Shuffle the array of keys.

1. Insert all keys into a BST.

2. Do an inorder traversal of BST.



Remark.  Correspondence is 1–1 if array has no duplicate keys.
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Correspondence between BSTs and quicksort partitioning
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Proposition.  If N distinct keys are inserted into a BST in random order,

the expected number of compares for a search/insert is ~ 2 ln N.

Pf.  1–1 correspondence with quicksort partitioning.

Proposition.  [Reed, 2003]  If N distinct keys are inserted in random order,

expected height of tree is ~ 4.311 ln N.

But…   Worst-case height is N.

[ exponentially small chance when keys are inserted in random order ]
15

BSTs:  mathematical analysis

How Tall is a Tree? 

Bruce Reed 
CNRS, Paris, France 

reed@moka.ccr.jussieu.fr 

ABSTRACT 
Let H~ be the height of a random binary search tree on n 
nodes. We show that  there exists constants a = 4.31107.. .  
and/3 = 1.95.. .  such that E(H~) = c~logn - / 3 1 o g l o g n  + 
O(1), We also show that  Var(H~) = O(1). 

Categories and Subject Descriptors 
E.2 [Data  S t ruc tu res ] :  Trees 

1. THE RESULTS 
A binary search tree is a binary tree to each node of which 
we have associated a key; these keys axe drawn from some 
totally ordered set and the key at v cannot be larger than 
the key at its right child nor smaller than the key at its left 
child. Given a binary search tree T and a new key k, we 
insert k into T by traversing the tree starting at the root 
and inserting k into the first empty position at which we 
arrive. We traverse the tree by moving to the left child of the 
current node if k is smaller than the current key and moving 
to the right child otherwise. Given some permutation of 
a set of keys, we construct a binary search tree from this 
permutation by inserting them in the given order into an 
initially empty tree. 
The height Hn of a random binary search tree T,~ on n 
nodes, constructed in this manner starting from a random 
equiprobable permutation of 1 , . . . ,  n, is known to be close 
to a l o g n  where a = 4.31107...  is the unique solution on 
[2, ~ )  of the equation a log((2e)/a) = 1 (here and elsewhere, 
log is the natural logarithm). First, Pittel[10] showed that  
H,~/log n --~ 3' almost surely as n --+ c~ for some positive 
constant 7. This constant was known not to exceed c~ [11], 
and Devroye[3] showed that "7 = a, as a consequence of the 
fact that E(Hn) ~ c~logn. Robson[12] has found that Hn 
does not vary much from experiment to experiment, and 
seems to have a fixed range of width not depending upon n. 
Devroye and Reed[5] proved that  Var(Hn) = O((log log n)2), 
but this does not quite confirm Robson's findings. It is the 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
STOC 2000 Portland Oregon USA 
Copyright ACM 2000 1-58113-184-4/00/5...$5.00 

3 purpose of this note to prove that  for /3 -- ½ + ~ ,  we 
have: 

THEOREM 1. E(H~) = ~ l o g n  - / 3 1 o g l o g n  + O(1) and 
Var(Hn) = O(1) . 

R e m a r k  By the definition of a,  /3 = 3~ 7"g~" The first defi- 
nition given is more suggestive of why this value is correct, 
as we will see. 
For more information on random binary search trees, one 
may consult [6],[7], [1], [2], [9], [4], and [8]. 
R e m a r k  After I announced these results, Drmota(unpublished) 
developed an alternative proof of the fact that  Var(Hn) = 
O(1) using completely different techniques. As our two 
proofs illuminate different aspects of the problem, we have 
decided to submit the journal versions to the same journal 
and asked that they be published side by side. 

2. A MODEL 
If we construct a binary search tree from a permutation 
of 1, ..., n and i is the first key in the permutation then: 
i appears at the root of the tree, the tree rooted at the 
left child of i contains the keys 1, ..., i - 1 and its shape 
depends only on the order in which these keys appear in 
the permutation, mad the tree rooted at the right child of i 
contains the keys i + 1, ..., n and its shape depends only on 
the order in which these keys appear in the permutation. 
From this observation, one deduces that  Hn is also the num- 
ber of levels of recursion required when Vazfilla Quicksort 
(i.e. the version of Quicksort in which the first element in 
the permuation is chosen as the pivot) is applied to a random 
permutation of 1, ..., n. 
Our observation also allows us to construct Tn from the top 
down. To ease our exposition, we think of T,~ as a labelling 
of a subtree of T~,  the complete infinite binary tree. 
We will expose the key associated with each node t of T~. 
To underscore the relationship with Quicksort, we refer to 
the key at t as the pivot at t. Suppose then that we have 
exposed the pivots for some of the nodes forming a subtree 
of Too, rooted at the root of T~.  Suppose further that for 
some node t of T~¢, all of the ancestors of t are in T,~ and 
we have chosen their pivots. Then, these choices determine 
the set of keys Kt which will appear at the (possibly empty) 
subtree of T,~ rooted at t, but  will have no effect on the order 
in which we expect the keys in Kt to appear. Indeed each 
permutation of Kt is equally likely. Thus, each of the keys 
in Kt will be equally likely to be the pivot. We let nt be 
the number of keys in this set and specify the pivot at t by 
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ST implementations:  summary

implementation

guaranteeguarantee average caseaverage case
operations

on keys
implementation

search insert search hit insert

operations
on keys

sequential search
(unordered list) N N ½ N N equals()

binary search
(ordered array) lg N N lg N ½ N compareTo()

BST N N 1.39 lg N 1.39 lg N compareTo()

Why not shuffle to ensure a (probabilistic) guarantee of 4.311 ln N?



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ BSTs

‣ ordered operations

‣ deletion

3.2  BINARY SEARCH TREES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu


Minimum.  Smallest key in table.

Maximum.  Largest key in table.

Q.  How to find the min / max?  

Minimum and maximum

18

Examples of BST order queries
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Floor.  Largest key ≤ a given key.

Ceiling.  Smallest key ≥ a given key.

Q.  How to find the floor / ceiling?

Floor and ceiling
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Examples of BST order queries
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Case 1.  [k equals the key in the node]

The floor of k is k.

Case 2.  [k is less than the key in the node]

The floor of k is in the left subtree.

Case 3.  [k is greater than the key in the node]

The floor of k is in the right subtree

(if there is any key ≤ k in right subtree);

otherwise it is the key in the node.

Computing the floor

20
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Computing the floor
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public Key floor(Key key)
{  
   Node x = floor(root, key);
   if (x == null) return null;
   return x.key;
}
private Node floor(Node x, Key key)
{  
   if (x == null) return null;
   int cmp = key.compareTo(x.key);

   if (cmp == 0) return x;

   if (cmp < 0)  return floor(x.left, key);

   Node t = floor(x.right, key);
   if (t != null) return t;
   else           return x;

} 

floor(G)in left
subtree is null

result

finding floor(G)

G is greater than E so 
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G is less than S so 
floor(G) must be

on the left

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the floor function



Q.  How to implement rank() and select() efficiently? 

A.  In each node, we store the number of nodes in the subtree rooted at 

that node; to implement size(), return the count at the root.

22

Rank and select
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BST implementation:  subtree counts

 private Node put(Node x, Key key, Value val)
 {
    if (x == null) return new Node(key, val, 1);
    int cmp = key.compareTo(x.key);
    if      (cmp  < 0) x.left  = put(x.left,  key, val);
    else if (cmp  > 0) x.right = put(x.right, key, val);
    else if (cmp == 0) x.val = val;
    x.count = 1 + size(x.left) + size(x.right);
    return x;
 }

private class Node
{
   private Key key;
   private Value val;
   private Node left;
   private Node right;
   private int count;
}

number of  nodes in subtree

  public int size()
  {  return size(root);  }

  private int size(Node x)
  {
     if (x == null) return 0;
     return x.count;
  }

ok to call
when x is null

initialize subtree
count to 1
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Rank

Rank.  How many keys < k ?

Easy recursive algorithm (3 cases!)

public int rank(Key key) 
{  return rank(key, root);  } 

private int rank(Key key, Node x) 
{ 
   if (x == null) return 0; 
   int cmp = key.compareTo(x.key);
   if      (cmp  < 0) return rank(key, x.left); 
   else if (cmp  > 0) return 1 + size(x.left) + rank(key, x.right); 
   else if (cmp == 0) return size(x.left); 
} 
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・Traverse left subtree.

・Enqueue key.

・Traverse right subtree.

Property.  Inorder traversal of a BST yields keys in ascending order.

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

Inorder traversal

25

public Iterable<Key> keys() 
{ 
    Queue<Key> q = new Queue<Key>(); 
    inorder(root, q); 
    return q;
}

private void inorder(Node x, Queue<Key> q) 
{ 
   if (x == null) return; 
   inorder(x.left, q); 
   q.enqueue(x.key); 
   inorder(x.right, q); 
} 
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BST:  ordered symbol table operations summary

sequential
search

binary
search

BST

search

insert

min / max

floor / ceiling

rank

select

ordered iteration

N lg N h

N N h

N 1 h

N lg N h

N lg N h

N 1 h

N log N N N

h = height of BST
(proportional to log N

if keys inserted in random order)

order of growth of running time of ordered symbol table operations
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ST implementations:  summary

Next.  Deletion in BSTs.

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered

ops?
operations

on keys
implementation

search insert delete search hit insert delete

ordered
ops?

operations
on keys

sequential search
(linked list) N N N ½ N N ½ N equals()

binary search
(ordered array) lg N N N lg N ½ N ½ N ✔ compareTo()

BST N N N 1.39 lg N 1.39 lg N ? ? ? ✔ compareTo()



To remove a node with a given key:

・Set its value to null.

・Leave key in tree to guide search (but don't consider it equal in search).

Cost.  ~ 2 ln N' per insert, search, and delete (if keys in random order),

where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution.  Tombstone (memory) overload.
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BST deletion:  lazy approach
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To delete the minimum key:

・Go left until finding a node with a null left link.

・Replace that node by its right link.

・Update subtree counts.
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Deleting the minimum

 public void deleteMin()
 {  root = deleteMin(root);  }

 private Node deleteMin(Node x)
 {
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.count = 1 + size(x.left) + size(x.right);
    return x;
 }
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To delete a node with key k:  search for node t containing key k.

Case 0.  [0 children]  Delete t by setting parent link to null.

node to delete

replace with
null link
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Hibbard deletion



To delete a node with key k:  search for node t containing key k.

Case 1.  [1 child]  Delete t by replacing parent link.
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Hibbard deletion
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To delete a node with key k:  search for node t containing key k.

Case 2.  [2 children]

・Find successor x of t.

・Delete the minimum in t's right subtree.

・Put x in t's spot.
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Hibbard deletion
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Hibbard deletion:  Java implementation

 public void delete(Key key)
 {  root = delete(root, key);  }

 private Node delete(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) x.left  = delete(x.left,  key);
    else if (cmp > 0) x.right = delete(x.right, key);
    else { 
       if (x.right == null) return x.left;
       if (x.left  == null) return x.right;

       Node t = x;
       x = min(t.right);
       x.right = deleteMin(t.right);
       x.left = t.left;
    } 
    x.count = size(x.left) + size(x.right) + 1;
    return x;
 } 

no right child

replace with 
successor

search for key

update subtree 
counts

no left child
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Hibbard deletion:  analysis

Unsatisfactory solution.  Not symmetric.

Surprising consequence.  Trees not random (!)  ⇒  √ N per op.

Longstanding open problem.  Simple and efficient delete for BSTs.



Next lecture.  Guarantee logarithmic performance for all operations.

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered

ops?
operations

on keys
implementation

search insert delete search hit insert delete

ordered
ops?

operations
on keys

sequential search
(linked list) N N N ½ N N ½ N equals()

binary search
(ordered array) lg N N N lg N ½ N ½ N ✔ compareTo()

BST N N N 1.39 lg N 1.39 lg N √ N ✔ compareTo()
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ST implementations:  summary

other operations also become √N

if deletions allowed


