
Connectivity Properties of
Random Subgraphs of the Cube

B. Bollobás1, Y. Kohayakawa2, and T.  Luczak3, 4

1 Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England
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Abstract. The n-dimensional cube Qn is the graph whose vertices are the subsets of {1, . . . , n}
where two such vertices are adjacent if and only if their symmetric difference is a singleton.

Clearly Qn is an n-connected graph of diameter and radius n. Write M = n2n−1 = e(Qn) for

the size of Qn. Let Q̃ = (Qt)
M
0 be a random Qn-process. Thus Qt is a spanning subgraph of Qn

of size t, and Qt is obtained from Qt−1 by the random addition of an edge of Qn not in Qt−1.

Let t(k) = τ(Q̃; δ ≥ k) be the hitting time of the property of having minimal degree at least k.

It is shown in [5] that, almost surely, at time t(1) the graph Qt becomes connected and that in

fact the diameter of Qt at this point is n+ 1. Here we generalise this result by showing that, for

any fixed k ≥ 2, almost surely at time t(k) the graph Qt acquires the extremely strong property

that any two of its vertices are connected by k internally vertex-disjoint paths each of length at

most n, except for possibly one, which may have length n + 1. In particular, the hitting time of

k-connectedness is almost surely t(k).
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1. Introduction

Let Qn be the n-dimensional cube, the graph whose vertices are the subsets of [n] =

{1, . . . , n} and where two such vertices are adjacent if and only if their symmetric difference

is a singleton. Note that Qn is an n-connected graph and that both the diameter and the

radius of Qn are n. Write N = 2n = |Qn| for the order of Qn and M = n2n−1 = e(Qn)

for the size of Qn. Let Q̃ = (Qt)M
0 be a random Qn-processes. This is a Markov chain

whose states are spanning subgraphs of Qn and Qt (1 ≤ t ≤M) is obtained from Qt−1 by

the addition of an edge of Qn not in Qt, with this edge chosen uniformly at random from

all the possibilities. We are interested in the behaviour of Q̃ for large n and, as is usual in

the theory of random graphs, we use the terms ‘almost surely’ and ‘almost every’ to mean

‘with probability tending to 1 as n→∞’.

If P is a non-trivial monotone increasing property of spanning subgraphs of Qn we

let τP = τ(P ) = τ(Q̃;P ) be the hitting time of P in the process Q̃ = (Qt)M
0 , that is

τP = τ(P ) = τ(Q̃;P ) = min{t : Qt has P}.

Some basic properties P we shall consider here are (i) the property {δ ≥ k} that the

minimal degree should be at least k, (ii) the property {diam <∞} that the graph should

be connected, (iii) the property {rad ≤ r} that the radius should be at most r, (iv) the

property {diam ≤ d} that the diameter should be at most d, and (v) the property that the

graph should be k-connected. In fact, we shall deal with a much stronger property than

k-connectedness but to describe it we need to introduce some definitions.

For two vertices x, y of a graph G and an integer k ≥ 1, let the k-distance d(k)(x, y)

between x and y in G be the infimum of the natural numbers ` such that x and y are

joined in G by k internally vertex-disjoint paths, each of length at most `. Define the

k-diameter diam(k)(G) of G by setting

diam(k)(G) = max{d(k)(x, y) : x, y ∈ G, x 6= y}

when G is k-connected, and diam(k)(G) = ∞ otherwise. Clearly diam(G) = diam(1)(G).

Here we shall consider the property {diam(k) ≤ `} for spanning subgraphs H of Qn

where k ≥ 1 will be fixed, independent of n, and ` ∈ {n, n + 1}. Thus, we shall be

interested in finding a large number of short, internally vertex-disjoint paths between any

pair of vertices of H.
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Thus, generally speaking, our central problem here concerns a strong variant of the

concept of connectivity. The reader is referred to Faudree [8] for a very recent survey

on this variant and related topics. We remark that problems concerning the existence of

families of internally vertex-disjoint paths of bounded length were first studied by Lovász,

Neumann-Lara, and Plummer [11].

A simple corollary of the main results of [5] is that

τ(Q̃; δ ≥ 1) = τ(Q̃; connectedness) = τ(Q̃; diam ≤ n+ 1) = τ(Q̃; rad = n), (1)

and that

τ(Q̃; diam = n) = τ(Q̃; δ ≥ 2), (2)

for almost every Q̃. Our main results here assert that much more general identities than (1)

and (2) hold almost surely. Indeed, for fixed k ≥ 2, we show that

τ(Q̃; δ ≥ k) = τ(Q̃; diam(k) ≤ n+ 1), (3)

and that

τ(Q̃; δ ≥ k + 1) = τ(Q̃; diam(k) ≤ n), (4)

for almost every Q̃ = (Qt)M
0 . Thus, typically, at time t(k) = τ(Q̃; δ ≥ k) the graph Qt

acquires the rather strong property that any two of its vertices are connected by k internally

vertex-disjoint paths each of length at most n+1, and at time t(k+1) = τ(Q̃; δ ≥ k+1) the

graph Qt almost surely acquires the property that any two of its vertices are connected

by k internally vertex-disjoint paths each of length at most n.

Note that, trivially, if H ⊂ Qn is a subgraph of Qn with minimal degree δ(H) < k,

then H is not k-connected and hence diam(k)(H) =∞. Thus τ(Q̃; δ ≥ k) ≤ τ(Q̃; diam(k) <

∞) ≤ τ(Q̃; diam(k) ≤ n+ 1) holds for every Q̃. Thus the fact that (3) holds almost surely

tells us that, in a typical Qn-process Q̃ = (Qt)M
0 , the property of Qt having minimal

degree at least k, a trivially necessary condition for Qt having finite k-diameter, is almost

always sufficient to guarantee that Qt becomes such that diam(k)(Qt) ≤ n+ 1. Similarly,

if a spanning subgraph H ⊂ Qn of Qn has a vertex x of degree k and y ∈ ΓH(x), then

the k-distance d(k)(x, yc) between x and yc = [n] \ y is at least n + 1. Thus, clearly, we

have that τ(Q̃; δ ≥ k + 1) ≤ τ(Q̃; diam(k) ≤ n). Here we prove that the reverse inequality

almost always holds (cf. (4)). In fact, we prove a little more. Namely, we show that,
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when t = τ(Q̃; δ ≥ k + 1), our random graph Qt is almost surely such that any two of

its vertices are connected by k internally vertex-disjoint paths all of which have length at

most n, except for possibly one, which may have length n+ 1.

Clearly, our results above imply that for almost every Q̃ we have

τ(Q̃; k-connectedness) = τ(Q̃; δ ≥ k), (5)

which is in itself a pleasant result, although in view of the analogous result for ordinary

random graph processes (se Bollobás and Thomason [6]), and a result of Dyer, Frieze,

and Foulds [7], it is not too unexpected. In [7], the authors study the connectivity of

random subgraphs of the n-cube obtained by the random deletion of vertices and edges.

An immediate corollary of their main result is that the limit distribution for the probability

that Qt should be k-connected is the same as the limit distribution for the probability

that Qt should have minimal degree at least k. Clearly (5) above extends this result.

This note is organised as follows. In the next section we state the basic lemma,

Lemma 1, which is at the heart of our method. This lemma is proved in [5]. In this section

we also give a technical lemma, Lemma 2, which follows from Lemma 1. In Section 3 we

state and prove our main result, Theorem 5. For undefined terms and notation, the reader

is referred to [2]. Moreover, we remark that this note is a sequel to [5], from where some of

the techniques used here are drawn. Finally, for other work concerning random subgraphs

of Qn we refer the reader to [1, 3, 4, 9, 10] and the references therein.

2. The fundamental lemma

For the study of random Qn-processes it is often convenient to look first at the binomial

model Qp of a random spanning subgraph of the cube Qn. As usual, given a graph H

and 0 ≤ p ≤ 1, we write G(H, p) for the space of random spanning subgraphs Hp of H

such that every edge of H belongs to Hp independently with probability p. Moreover,

if 0 ≤ t ≤ e(H) is an integer, we let G(H, t) be the space of all spanning subgraphs of H

with exactly t edges, all such subgraphs being equiprobable. We write Ht for a typical

element of G(H, t). For a set X and r ≥ 0 we let X(r) denote the set of all r-subsets of X.

Furthermore, let Qn[−l] denote a graph obtained from Qn by the deletion of some vertices

in such a way that both ∅ and [n] are left in Qn[−l] and, for every r (1 ≤ r < n), no more

than l vertices from [n](r) are missing. This section is devoted to the study of asymptotic
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properties of the probability space G(Qn[−l], p), where 0 ≤ p = p(n) ≤ 1. The key lemma

in this note is Lemma 1 below, which roughly states that the probability that two large

sets of vertices should not be connected by a short path in Q[−l]
p = Q

n[−l]
p ∈ G(Qn[−l], p) is

superexponentially small. The proof of this lemma appears in [5], and therefore is omitted.

Lemma 1. Let l ∈ N be fixed, and suppose that 0 < ε = ε(n) ≤ 1 and that (log log n)/n <

p = p(n) < 1. Then, for all S ⊂ [n](1) and T ⊂ [n](n−1) with |S|, |T | ≥ n(1+ε)/2, the

probability that in Q
[−l]
p ∈ G(Qn[−l], p) there is no S—T path of length n − 2 is bounded

from above by exp{−εpn(log n)/ log log n}.

A typical application of the above lemma is as follows. We consider x = ∅, y = [n] ∈
Qn and generate their neighbourhoods in Qp, obtaining ΓQp

(x) = S and ΓQp
(y) = T , say.

Then, if both S and T are large, Lemma 1 tells us that x and y fail to be connected by

a path of length n in Qp with a superexponentially small probability only. Thus most

pairs of antipodal, or in fact nearly antipodal, vertices x, y ∈ Qp of almost every Qp are

connected by paths of length dQn(x, y). However, it is technically a little harder to deal

with pairs x, y ∈ Qp that are not so far away from each other. Roughly speaking, their

neighbourhoods in Qp may be ‘facing’ the ‘wrong way’, so that we cannot apply Lemma 1

directly. Lemma 2 below is a variant of Lemma 1 that is more readily applicable.

For brevity, here and in what follows we use the following somewhat unusual termi-

nology. Suppose P ⊂ Qn is an x–y path of length ` = `(P ). We say that P is a short path

if either (i) dQn(x, y) ≥ n − n2/3 and ` = dQn(x, y), or (ii) n/20 ≤ dQn(x, y) < n − n2/3

and ` ≤ dQn(x, y) + 4, or else (iii) dQn(x, y) < n/20 and ` ≤ n/5.

Clearly, a short x–y path has length at most n, and it has length n if and only if x

and y are at distance n in Qn, that is, if and only if x = yc = [n] \ y.

Lemma 2. Let l ∈ N be fixed. Suppose x = ∅ and x 6= y ∈ Qn[−l]. Let Nx ⊂ ΓQn(x),

Ny ⊂ ΓQn(y) with |Nx|, |Ny| ≥ 2n2/3 be given. Suppose 1/ log log log n ≤ p = p(n) < 1.

Then, with probability 1 − exp{−Ω(n log log n)}, the graph Q
[−l]
p ∈ G(Qn[−l], p) contains

an Nx—Ny path P such that x, y /∈ P and such that if P ′ = xPy is the natural x–y path

extending P , then P ′ is a short x–y path and, moreover, contains at most six vertices

from [n](r) for every 0 ≤ r ≤ n.
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The above result, which may be proved by combining Lemma 1 with some arguments

from Sections 2 and 3 of [5], is all we shall need in the sequel. Let us remark in passing

that, as it can be easily seen, if dQn(x, y) = |y| ≥ n/20, then any short x–y path P ⊂ Qn

contains at most three vertices from each layer [n](r) (0 ≤ r ≤ n). Moreover, note that

above the constant implicit in the Ω-notation may depend on l. Instead of giving a detailed

proof for Lemma 2, as this would not be particularly enlightening, we only remark that

it can be derived from Lemma 1 in the same way that Lemma 4 in [5] is derived from

Lemma 1 above. In particular, one needs to use a straightforward variant of Lemma 3

of [5] for Qn[−l].

3. The main result

Our aim here is to state and prove the main result of this note, Theorem 5. Before we

start, for tidiness, we introduce some further definitions and notation. Let H ⊂ Qn be a

spanning subgraph of Qn, let x, y ∈ Qn be two given vertices, and let an integer k ≥ 1

be fixed. Suppose X ⊂ ΓQn(x) and Y ⊂ ΓQn(y) are k-element sets of vertices. Then we

define the properties L(x, y) = Lk(x, y), L(x, Y ) = Lk(x, Y ) = Lk(x, y, Y ), and L(X,Y ) =

Lk(X,Y ) = Lk(x, y,X, Y ) as follows.

(i) We say that H has L(x, y) if there are k short, internally vertex-disjoint x–y paths

in H.

(ii) We say that H has L(x, Y ) if there are k short x–Y paths P1, . . . , Pk in H − y satis-

fying V (Pi) ∩ V (Pj) = {x} for 1 ≤ i < j ≤ k.

(iii) We say that H has property L(X,Y ) if there are k short, vertex-disjoint X—Y paths

in H − {x, y}.

Let us now define some events concerning H = Qp and Qt. First, let k ≥ 1 and d ≥ 1 be

given, and let Wd = Wd(H) = {w ∈ Qn : dH(w) ≥ d}. We say that event A(d) = Ak(d)

holds in H if for all x, y ∈Wd the graph H has L(x, y). Event B(d) = Bk(d) holds in H if,

for all x ∈Wd, y ∈ Qn, and any k-set of vertices Y ⊂Wd∩ΓQn(y), the graphH has L(x, Y ).

Event C(d) = Ck(d) holds in H if, for any two vertices x, y ∈ Qn with dQn(x, y) ≥ 10

and any two k-sets of vertices X ⊂ Wd ∩ ΓQn(x), Y ⊂ Wd ∩ ΓQn(y), the graph H has

property L(X,Y ).

The key lemma in the proof of our main result, Lemma 3, asserts that for suitably

large 0 < p = p(n) < 1 and quite small d = d(n) ≥ 1 the events Ak(d), Bk(d), and Ck(d)
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hold with superexponential probability for any fixed k ≥ 1.

In what follows, we shall often condition on the event that a certain fixed pair of

vertices of Qn should have large degree in Qp. Thus, for convenience, we introduce the

following notation. Let x, y ∈ Qn be fixed. For all 0 ≤ d ≤ n and 0 < p = p(n) <

1, we write Gx,y,d(Qn, p) for the conditional probability space obtained from G(Qn, p)

by conditioning on the event {dQp(x), dQp(y) ≥ d}. Similarly, given a graph H, two

vertices x, y ∈ H in H, and S ⊂ ΓH(x), T ⊂ ΓH(y), we let GS,T (H, p) = Gx,y;S,T (H, p)

be the conditional space obtained from G(H, p) by conditioning on the event {ΓHp
(x) =

S, ΓHp
(y) = T}. We may now state and prove Lemma 3. (The constants in the Ω-notation

below are allowed to depend on k.)

Lemma 3. Suppose an integer k ≥ 1 is fixed, and let .498 < p = p(n) < 1 and d = d(n) =

3n2/3. Then

(i) the probability that Ak(d) holds in Qp ∈ G(Qn, p) is 1− exp{−Ω(n log log n)},
(ii) the probability that Bk(d) holds in Qp ∈ G(Qn, p) is 1− exp{−Ω(n log log n)},

(iii) the probability that Ck(d) holds in Qp ∈ G(Qn, p) is 1− exp{−Ω(n log log n)}.

Proof. (i) Fix two vertices x, y ∈ Qn of Qn. Consider the conditional space Gx,y,d(Qn, p).

To prove (i), it is enough to show that the probability that Qp ∈ Gx,y,d(Qn, p) fails to

have L(x, y) = Lk(x, y) is exp{−Ω(n log log n)}.
Without loss of generality, we may assume that x = ∅. Let S ⊂ ΓQn(x), T ⊂ ΓQn(y)

with |S|, |T | ≥ d = d(n) = 3n2/3 be fixed and consider the conditional space GS,T (Qn, p).

It suffices to show that

P {L(x, y) fails in Qp ∈ GS,T (Qn, p)} = exp{−Ω(n log log n)}.

To prove this estimate, first consider the subgraph H0 of Qn spanned by the edges

of the form uv, where either u = x and v ∈ S, or else u = y and v ∈ T . Find as many

internally vertex-disjoint x–y paths in H0 as possible, and suppose that there are k0 such

paths, say. Note that 0 ≤ k0 ≤ 2. Let G(1) = Qn[−2] be the graph obtained from Qn by

the deletion of the internal vertices in these k0 paths. We now proceed to find k′ = k− k0

short x–y paths in G
(1)
p ∈ GS1,T1(G(1), p) inductively, where S1 = S ∩ V (G(1)) and T1 =

T ∩ V (G(1)). To do this we use Lemma 2 in several Qn[−l]. Let p0 = p/k′.

Consider H1 = G
(1)
p0 ∈ GS,T (G(1), p0). By Lemma 2, we have that with probability

1− exp{−Ω(n log log n)}, there is a short x–y path P1 in H1 satisfying |V (P1)∩ [n](r)| ≤ 6
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for all r. Assume such a path does exist in H1. Now we consider G(2) = Qn[−8] obtained

from G(1) = Qn[−2] by the deletion of the vertices in V (P1) \ {x, y}. Let S2 = S ∩ V (G(2))

and similarly T2 = T ∩ V (G(2)).

Now let H2 = G
(2)
p0 ∈ GS2,T2(G(2), p0). Again by Lemma 2, with probability 1 −

exp{−Ω(n log log n)}, we find a short x–y path P2 in H2 with |V (P2)∩ [n](r)| ≤ 6 for all r.

Assume such a path P2 ⊂ H2 exists, and consider G(3) = Qn[−14] obtained from G(2) =

Qn[−8] by the deletion of the vertices in V (P2) \ {x, y}. Let S3 = S ∩ V (G(3)) and T3 =

T ∩ V (G(3)), and proceed as above to find P3.

Iterating the above procedure k′ times, we find the required paths P1, . . . , Pk′ with

probability 1− exp{−Ω(n log log n)} in H1 ∪ · · · ∪Hk′ . This completes the proof of (i).

(ii) A proof of Lemma 3(ii) may be obtained by coupling the above proof of (i) with

ideas from the proof of Lemma 3(iii) below. Thus we omit the proof of (ii), and proceed

to prove (iii).

(iii) Let x, y ∈ Qn be such that dQn(x, y) ≥ 10, and suppose that x1, . . . , xk ∈
ΓQn(x), y1, . . . , yk ∈ ΓQn(y) are 2k fixed vertices. We may and shall assume that x = ∅.
Let S1, . . . , Sk and T1, . . . , Tk be such that x /∈ Si ⊂ ΓQn(xi), y /∈ Ti ⊂ ΓQn(yi), and |Si|,
|Ti| ≥ 3n2/3 − 1 (1 ≤ i ≤ k). Let N be the event

{ΓQp
(xi) = Si and ΓQp

(yi) = Ti for all 1 ≤ i ≤ k}.

To prove Lemma 3(iii), it suffices to show that

P
(
C(d) fails in Qp ∈ G(Qn, p)

∣∣N ) = exp{−Ω(n log log n)}.

Let G(0) = Qn − {x, y} = Qn[−1]. We now seek k vertex-disjoint short paths in G(0),

say P1, . . . , Pk, with Pi (1 ≤ i ≤ k) connecting xi to yi in G
(0)
p ∈ G(G(0), p

∣∣ N ), the space

obtained from G(G(0), p) by conditioning on N . Let p0 = p/k.

Let G(1) = G(0)−{xi, yi : 2 ≤ i ≤ k}, and pick H1 = G
(1)
p0 ∈ GS1,T1(G(1), p0), the space

obtained from G(G(1), p0) by conditioning on {Γ
G

(1)
p0

(x1) = S′1, Γ
G

(1)
p0

(y1) = T ′1}, where S′1 =

S1∩V (G(1)) and T ′1 = T1∩V (G(1)). Then, with probability 1−exp{−Ω(n log log n)}, there

is a short x1–y1 path in H1 with |V (P1)∩ [n](r)| ≤ 12 for all r. Indeed, to apply Lemma 2,

we first consider the automorphism ϕ = ϕx1 of the graph Qn given by u 7→ u 4 x1 =

(u ∪ x1) \ (u ∩ x1). Then ϕ(x1) = ∅, and we may apply Lemma 2 to obtain, with large

probability, a short ϕ(x1)–ϕ(y1) path P ′1 in ϕ(H1) with |V (P ′1) ∩ [n](r)| ≤ 6 for all r. We
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then take the short x1–y1 path P1 = ϕ(P ′1) inH1, and note that indeed |V (P1)∩[n](r)| ≤ 12,

since x1 is a singleton and hence ϕ−1{[n](r)} ⊂ [n](r−1) ∪ [n](r+1) for all r. Assume we

have found such a path P1 in H1.

Now consider G(2) = G(0) − ({xi, yi : 1 ≤ i ≤ n, i 6= 2} ∪ V (P1)), S′2 = S2 ∩ V (G(2)),

T ′2 = T2 ∩ V (G(2)). We now pick H2 = G
(2)
p0 ∈ GS′

2,T ′
2
(G(2), p0) to find a suitable

short x2–y2 path P2. Iterating the procedure above k times we find, with probabil-

ity 1 − exp{−Ω(n log log n)}, the k paths P1, . . . , Pk as required. This completes the

proof (iii), and hence of Lemma 3.

We now give a result for Q̃ = (Qt)M
0 that is analogous to Lemma 3, and proceed to

state and prove our main result.

Lemma 4. Suppose an integer k ≥ 1 is fixed, and d = d(n) = 4n2/3. Then the probability

that Q̃ = (Qt)M
0 is such that Ak(d), Bk(d), and Ck(d) hold for all Qt with t ≥ .499M

is 1− exp{−Ω(n log log n)}.

Proof. The argument here is similar to the one in the proof of Corollary 6 in [5], and is based

on Lemma 3 above. Let .499 ≤ t = t(n) ≤ M and p = p(n) =
(
1− ((log n)/M)1/2

)
t/M .

Then µ = pM =
(
1− ((log n)/M)1/2

)
t = (1 + o(1))t, and, from standard estimates for

the tail of the binomial distribution, we have |e(Qp) − µ| ≤ (1/2)((log n)/M)1/2µ with

probability 1− n−1/20.

In particular, (*) t − 2(M log n)1/2 ≤ e(Qp) ≤ t holds for every fixed .499M ≤ t ≤
M with probability 1 − n−1/20. Let Gc(Qn, p) be the conditional probability space ob-

tained from G(Qn, p) conditioning on (*). Note that if A is any event concerning Qp ∈
G(Qn, p), then Pc(A) ≤ (1 + o(1))P(A), where Pc denotes the probability in Gc(Qn, p).

Let d′ = d′(n) = 3n2/3, and let A0 be the event that Ak(d′), Bk(d′), and Ck(d′) hold.

Then, by Lemma 3, we have Pc(A0) = 1 − (1 + o(1))n−1/20. Now, we may gener-

ate Qt ∈ G(Qn, t) by first picking Qp ∈ Gc(Qn, p), and then randomly adding t′ =

t − e(Qp) new edges to Qp. One may check that Qt′ ∈ G(Qn, t′) is such that its max-

imal degree ∆(Qt′) satisfies ∆(Qt′) ≤ n2/3 with probability 1 − exp{−Ω(n4/3/ log n)}.
Thus Qt satisfies Ak(d), Bk(d), and Ck(d) with probability 1− exp{−Ω(n log log n)}. Thus

these three properties hold for all Qt in Q̃ = (Qt)M
0 with t ≥ .499M with probabil-

ity 1−M exp{−Ω(n log log n)} = 1− exp{−Ω(n log log n)}.
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We have thus arrived at our main result.

Theorem 5. Let an integer k ≥ 1 be fixed. Almost every random Qn-process Q̃ = (Qt)M
0

is such that

(i) t(k) = τ(Q̃; δ ≥ k) = τ(Q̃; diam(k) ≤ n+ 1),

(ii) t(k+1) = τ(Q̃; δ ≥ k + 1) = τ(Q̃; diam(k) ≤ n).

Proof. It is easily checked that if t0 = t0(n) = d.499Me, then a.e. Qt0 ∈ G(Qn, t0) is such

that any two vertices of degree less than d = d(n) = 4n2/3 are at distance at least 10 and at

most n− 10 in Qn. Thus we may condition our Qn-process Q̃ = (Qt)M
0 on being such that

(1) Qt has this property for all t ≥ t0. Now recall that by Lemma 4, for a.e. Q̃ = (Qt)M
0 ,

we have (2) the events Ak(d), Bk(d), and Ck(d) hold in Qt for all t ≥ t0. It now suffices to

notice that, in any Q̃ satisfying (1) and (2), assertions (i) and (ii) must necessarily hold.

Let us check (i). Suppose Q̃ = (Qt)M
0 satisfies (1) and (2), and let t ≥ t(k). Let x,

y ∈ Qn be two fixed vertices of Qn. We shall check that the k-distance d(k)
Qt

(x, y) between x

and y in Qt is at most n + 1. If dQt
(x), dQt

(y) ≥ d, then Ak(d) tells us that Lk(x, y)

holds, and so d
(k)
Qt

(x, y) ≤ n. Indeed, simply observe that any short path has length at

most n. Now suppose that dQt(x) ≥ d and dQt(y) < d. Pick k vertices y1, . . . , yk ∈ ΓQt(y)

and note that, by (1), we have dQt(yi) ≥ d (1 ≤ i ≤ k). Now Bk(d) tells us that Lk(x, Y )

holds, where Y = {y1, . . . , yk}, and hence d
(k)
Qt

(x, y) ≤ n + 1. In fact, more is true:

either d(k)
Qt

(x, y) ≤ n, or else y has degree k in Qt and xc ∈ ΓQt
(y), and moreover all the k

internally vertex-disjoint x–y paths naturally given by Lk(x, Y ) have length at most n,

except for one, which has length n+ 1.

Finally, assume that dQt(x), dQt(y) < d. Then by (1) we have that 10 ≤ dQn(x, y) ≤
n − 10. Pick 2k vertices x1, . . . , xk ∈ ΓQt

(x), y1, . . . , yk ∈ ΓQt
(y). Again by (1) we have

that dQt
(xi), dQt

(yi) ≥ d for all 1 ≤ i ≤ k. Now take X = {x1, . . . , xk}, Y = {y1, . . . , yk},
and note that then Ck(d) tells us that Lk(X,Y ) holds in Qt. Thus d(k)

Qt
(x, y) ≤ n. This

completes the proof of (i). The proof of (ii) is similar.

We remark that above we in fact proved a statement stronger than (i) for almost ev-

ery Q̃ = (Qt)M
0 . Indeed, we showed that when t = t(k) the graph Qt almost surely satisfies

the following property: for any pair x, y ∈ Qt of vertices of Qt, either (a) d(k)(x, y) ≤ n, or

else (b) one of x and y, say y, has degree k in Qt and xc ∈ ΓQt
(y), and moreover x and y
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are connected by k internally vertex-disjoint paths all of which have length at most n,

except for one, which has length n+ 1.

Theorem 5 has the following immediate consequence.

Corollary 6. For almost every random Qn-process Q̃ = (Qt)M
0 and fixed integer k ≥ 1,

we have

t(k) = τ(Q̃; δ ≥ k) = τ(Q̃; k-connectedness)

Clearly, one can also define the k-radius rad(k)(G) of a k-connected graph G, a gen-

eralisation of the ordinary radius, by setting

rad(k)(G) = min
x

max
y
{d(k)(x, y)}.

Then one can easily combine the arguments in the proofs of Theorem 5 above and of

Theorem 13 of [5] to show that in almost every random Qn-process Q̃ = (Qt)M
0 the hitting

time of the property of having k-radius at most n is t(k) = τ(Q̃; δ ≥ k). We omit the

details.
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Eighty , Volume 1 (Miklós, D., Sós, V.T., Szőnyi, T., eds), Keszthely (Hungary) 1993,
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