The Regularity Lemma of Szemerédi for Sparse Graphs

Y. Kohayakawa

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England

Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 20570, 01452–990 São Paulo, SP, Brazil

Abstract. In this note we present a new version of the well-known lemma of Szemerédi [17] concerning regular partitions of graphs. Our result deals with subgraphs of pseudo-random graphs, and hence may be used to partition sparse graphs that do no contain dense subgraphs.

1. Introduction

Our aim in this note is to give a simple extension of the beautiful regularity lemma of Szemerédi [17]. As is well known, a version of this lemma for bipartite graphs was one of the ingredients in Szemerédi's celebrated proof [16] of the Erdős–Turán conjecture on arithmetic progressions in dense subsets of integers. Furthermore, this bipartite version was also used by Ruzsa and Szemerédi [15] to solve an extremal problem concerning set systems.

The regularity lemma for generic graphs given in Szemerédi [17] has been used by many authors, and it has proved to play a crucial rôle in extremal graph theory. A few papers in which this lemma is important are Alon and Yuster [1], Bollobás, Erdős, Simonovits, and Szemerédi [2], Chvátal, Rödl, Szemerédi, and Trotter [4], Chvátal and Szemerédi [5], Erdős, Frankl, and Rödl [6], Füredi [8], Rödl [12], and Rödl and Duke [14]. (We do not attempt to compile an exhaustive list here.)

More recently, generalisations of Szemerédi's lemma have been found and used by several authors. We mention Chung [3], Frankl and Rödl [7], and Prömel and Steger [11]. The novelty in these generalisations resides in that Szemerédi's result is extended to hypergraphs. Our aim here is to present a generalisation of this lemma to sparse graphs. Roughly speaking, we are concerned here in finding regular partitions of subgraphs of pseudo-random graphs. We remark that this new version of the regularity lemma is used in [9] and [10]. Moreover, we have been kindly informed that Professor Rödl [13] has also observed that this version of the regularity lemma holds.

The necessary definitions and the statement of our result, Theorem 1, is given in Section 2 below. We stress that our proof of Theorem 1, which we give in Section 3, is simply an adaptation of Szemerédi's original proof [17] to our context. Finally, we note that suitable generalisations of Theorem 1 to subhypergraphs of pseudo-random hypergraphs can be readily proved. Here, however, we restrict ourselves to the simplest case.

2. The regularity lemma for pseudo-random graphs

Let a graph $G = G^n$ of order |G| = n be fixed. For $U, W \subset V = V(G)$, we write $E(U, W) = E_G(U, W)$ for the set of edges of G that have one endvertex in U and the other in W. We set $e(U, W) = e_G(U, W) = |E(U, W)|$. Now, let a partition $P_0 = (V_i)_1^\ell$ ($\ell \ge 1$) of V be fixed. For convenience, let us write $(U, W) \prec P_0$ if $U \cap W = \emptyset$ and either $\ell = 1$ or else $\ell \ge 2$ and for some $i \ne j$ $(1 \le i, j \le \ell)$ we have $U \subset V_i, W \subset V_j$. We may now define the pseudo-random property that we shall be interested in.

Suppose $0 \le \eta \le 1$. We say that G is (P_0, η) -uniform if, for some $0 \le p \le 1$, we have that for all $U, W \subset V$ with $(U, W) \prec P_0$ and $|U|, |W| \ge \eta n$, we have

$$|e_G(U,W) - p|U||W|| \le \eta p|U||W|.$$
 (1)

We remark that the partition P_0 is introduced to handle the case of ℓ -partite graphs ($\ell \geq 2$). If $\ell = 1$, that is if the partition P_0 is trivial, then we are thinking of the case of ordinary graphs. In this case, we shorten the term (P_0, η) -uniform to η -uniform. The prime example of an η -uniform graph is of course a random graph G_p . Note that for $\eta > 0$ a random graph $G_p \in \mathcal{G}(n,p)$ with p = p(n) = C/n is almost surely η -uniform provided $C \ge C_0 = C_0(\eta)$, where $C_0(\eta)$ depends only on η .

Now let us go back to some definitions. Recall a graph $G = G^n$ is fixed. Let $H \subset G$ be a spanning subgraph of G. For $U, W \subset V$, let

$$d_{H,G}(U,W) = \begin{cases} e_H(U,W)/e_G(U,W) & \text{if } e_G(U,W) > 0\\ 0 & \text{if } e_G(U,W) = 0. \end{cases}$$

Suppose $\varepsilon > 0$, U, $W \subset V$, and $U \cap W = \emptyset$. We say that the pair (U, W) is (ε, H, G) regular, or simply ε -regular, if for all $U' \subset U$, $W' \subset W$ with $|U'| \ge \varepsilon |U|$ and $|W'| \ge \varepsilon |W|$, we have

$$|d_{H,G}(U',W') - d_{H,G}(U,W)| \le \varepsilon.$$

We say that a partition $Q = (C_i)_0^k$ of V = V(G) is (ε, k) -equitable if $|C_0| \leq \varepsilon n$, and $|C_1| = \dots = |C_k|$. Also, we say that C_0 is the exceptional class of Q. When the value of ε is not relevant, we refer to an (ε, k) -equitable partition as a k-equitable partition. Similarly, Q is an equitable partition of V if it is a k-equitable partition for some k. If P and Q are two equitable partitions of V, we say that Q refines P if every non-exceptional class of Q is contained in some non-exceptional class of P. If P' is an arbitrary partition of V, then Q refines P' if every non-exceptional class of Q is contained in some non-exceptional class of Q is contained in some block of P'. Finally, we say that an (ε, k) -equitable partition $Q = (C_i)_0^k$ of V is (ε, H, G) -regular, or simply ε -regular, if at most $\varepsilon {k \choose 2}$ pairs (C_i, C_j) with $1 \leq i < j \leq k$ are not ε -regular. We can now state the extension of Szemerédi's lemma to subgraphs of (P_0, η) -uniform graphs.

Theorem 1. Let $\varepsilon > 0$ and k_0 , $\ell \ge 1$ be fixed. Then there are constants $\eta = \eta(\varepsilon, k_0, \ell) > 0$ and $K_0 = K_0(\varepsilon, k_0, \ell) \ge k_0$ satisfying the following. For any (P_0, η) -uniform graph $G = G^n$, where $P_0 = (V_i)_1^{\ell}$ is a partition of V = V(G), if $H \subset G$ is a spanning subgraph of G, then there exists an (ε, H, G) -regular (ε, k) -equitable partition of V refining P_0 with $k_0 \le k \le K_0$.

3. The proof of Theorem 1

We now proceed to give the proof Theorem 1. As in [17], the following 'defect' form of the Cauchy–Schwarz inequality is used in the proof.

Lemma 2. Let $y_1, \ldots, y_v \ge 0$ be given. Suppose $0 \le \rho = u/v < 1$, and $\sum_{1 \le i \le u} y_i = \alpha \rho \sum_{1 \le i \le v} y_i$. Then

$$\sum_{1 \le i \le v} y_i^2 \ge \frac{1}{v} \left(1 + (\alpha - 1)^2 \frac{\rho}{1 - \rho} \right) \left\{ \sum_{1 \le i \le v} y_i \right\}^2.$$

We now fix $G = G^n$ and put V = V(G). Also, we assume that $P_0 = (V_i)_1^{\ell}$ is a fixed partition of V, and that G is (P_0, η) -uniform for some $0 \leq \eta \leq 1$. Moreover, we let p = p(G) be as in (1).

Lemma 3. Let $0 < \delta \leq 10^{-2}$ be fixed. Let $U, W \subset V(G)$ be such that $(U, W) \prec P_0$, and $\delta|U|, \delta|W| \geq \eta n$. If $U^* \subset U, W^* \subset W, |U^*| \geq (1-\delta)|U|$, and $|W^*| \geq (1-\delta)|W|$, then

(i) $|d_{H,G}(U^*, W^*) - d_{H,G}(U, W)| \le 5\delta$, (ii) $|d_{H,G}(U^*, W^*)^2 - d_{H,G}(U, W)^2| \le 9\delta$.

Proof. Note first that we have $\eta \leq \delta$, as $\eta n \leq \delta |U|$, $\delta |W| \leq \delta n$. Let U^* , W^* be as given in the lemma. We first check (i).

(i) We start by noticing that

$$d_{H,G}(U^*, W^*) \ge \frac{e_H(U, W) - 2(1+\eta)p\delta|U||W|}{e_G(U, W)}$$
$$\ge d_{H,G}(U, W) - 2\delta \frac{1+\eta}{1-\eta} \ge d_{H,G}(U, W) - 3\delta.$$

Moreover,

$$d_{H,G}(U^*, W^*) \le \frac{e_H(U, W)}{e_G(U^*, W^*)} \le \frac{e_H(U, W)}{(1 - \eta)p|U^*||W^*|} \le \frac{e_H(U, W)}{(1 - \eta)p(1 - \delta)^2|U||W|} \le \frac{1 + \eta}{(1 - \eta)(1 - \delta)^2} d_{H,G}(U, W) \le d_{H,G}(U, W) + 5\delta.$$

Thus (i) follows.

(ii) The argument here is similar. First

$$d_{H,G}(U^*, W^*) \ge \frac{\left(e_H(U, W) - 2(1+\eta)p\delta|U||W|\right)^2}{e_G(U, W)^2}$$

$$\ge d_{H,G}(U, W)^2 - \frac{4(1+\eta)p\delta|U||W|e_H(U, W)}{e_G(U, W)(1-\eta)p|U||W|}$$

$$\ge d_{H,G}(U, W)^2 - 4\delta\frac{1+\delta}{1-\delta} \ge d_{H,G}(U, W)^2 - 5\delta.$$

Secondly,

$$d_{H,G}(U^*, W^*)^2 \leq \frac{e_H(U, W)^2}{e_G(U^*, W^*)^2}$$

$$\leq \frac{e_H(U, W)^2}{(1 - \eta)^2 p^2 |U^*|^2 |W^*|^2} \leq \frac{e_H(U, W)^2}{(1 - \eta)^2 (1 - \delta)^4 p^2 |U| |W|}$$

$$\leq \left(\frac{1 + \eta}{(1 - \eta)(1 - \delta)^2}\right)^2 d_{H,G}(U, W)^2 \leq d_{H,G}(U, W)^2 + 9\delta.$$

) follows.

Thus (ii) follows.

In the sequel, a constant $0 < \varepsilon \leq 1/2$ and a spanning subgraph $H \subset G$ of G is fixed. Also, we let $P = (C_i)_0^k$ be an (ε, k) -equitable partition of V = V(G) refining P_0 , where $4^k \geq \varepsilon^{-5}$. Moreover, we assume that $\eta \leq \eta_0 = \eta_0(k) = 1/k4^{k+1}$ and that $n = |G| \geq n_0 = n_0(k) = k4^{1+2k}$.

We now define an equitable partition Q = Q(P) of V = V(G) from P as follows. First, for each (ε, H, G) -irregular pair (C_s, C_t) of P with $1 \le s < t \le k$, we choose $X = X(s, t) \subset C_s$, $Y = Y(s, t) \subset C_t$ such that (i) $|X|, |Y| \ge \varepsilon |C_s| = \varepsilon |C_t|$, and (ii) $|d_{H,G}(X, Y) - d_{H,G}(C_s, C_t)| \ge \varepsilon$. For fixed $1 \le s \le k$, the sets X(s, t) in

 $\{X = X(s,t) \subset C_s : 1 \le t \le k \text{ and } (C_s, C_t) \text{ is not } (\varepsilon, H, G)\text{-regular}\}\$

define a natural partition of C_s into at most 2^{k-1} blocks. Let us call such blocks the atoms of C_s . Now let $q = 4^k$ and set $m = \lfloor |C_s|/q \rfloor$ $(1 \le s \le k)$. Note that $\lfloor |C_s|/m \rfloor = q$ as $|C_s| \ge n/2k \ge 2q^2$. Moreover, for later use, note that $m \ge \eta n$. We now let Q' be a partition of V = V(G) refining P such that (i) C_0 is a block of Q', (ii) all other blocks of Q' have cardinality m, except for possibly one, which has cardinality at most m - 1, (iii) for all $1 \le s \le k$, every atom $A \subset C_s$ contains exactly $\lfloor |A|/m \rfloor$ blocks of Q', (iv) for all $1 \le s \le k$, the set C_s contains exactly $q = \lfloor |C_s|/m \rfloor$ blocks of Q'.

Let C'_0 be the union of the blocks of Q' that are not contained in any class C_s $(1 \le s \le k)$, and let C'_i $(1 \le i \le k')$ be the remaining blocks of Q'. We are finally ready to define our equitable partition Q = Q(P): we let $Q = (C'_i)_1^{k'}$.

Lemma 4. The partition $Q = Q(P) = (C'_i)_0^{k'}$ defined from P as above is a k'-equitable partition of V = V(G) refining P, where $k' = kq = k4^k$, and $|C'_0| \le |C_0| + n4^{-k}$.

Proof. Clearly Q refines P. Moreover, clearly $m = |C'_1| = \ldots = |C'_{k'}|$ and, for all $1 \le s \le k$,

draft of 21 January, 1993

we have $|C'_0| \le |C_0| + k(m-1) \le |C_0| + k|C_s|/q \le |C_0| + n4^{-k}$.

In what follows, for $1 \leq s \leq k$, we let $C_s(i)$ $(1 \leq i \leq q)$ be the classes of Q' that are contained in the class C_s of P. Also, for all $1 \leq s \leq k$, we set $C_s^* = \bigcup_{1 \leq i \leq q} C_s(i)$. Now let $1 \leq s \leq k$ be fixed. Note that $|C_s^*| \geq |C_s| - (m-1) \geq |C_s| - q^{-1}|C_s| \geq |C_s|(1-q^{-1})$. As $q^{-1} \leq 10^{-2}$ and $q^{-1}|C_s| \geq m \geq \eta n$, by Lemma 3 we have, for all $1 \leq s < t \leq k$,

$$|d_{H,G}(C_s^*, C_t^*) - d_{H,G}(C_s, C_t)| \le 5q^{-1}$$
(2)

and

$$|d_{H,G}(C_s^*, C_t^*)^2 - d_{H,G}(C_s, C_t)^2| \le 9q^{-1}$$
(3)

Similarly to [17], we define the *index* $\operatorname{ind}(R)$ of an equitable partition $R = (V_i)_0^r$ of V = V(G) to be

$$\operatorname{ind}(R) = \frac{2}{r^2} \sum_{1 \le i < j \le \ell} d_{H,G}(V_i, V_j)^2.$$

Note that trivially $0 \leq \operatorname{ind}(R) < 1$. Our aim now is to show that, for Q = Q(P) defined as above, we have $\operatorname{ind}(Q) \geq \operatorname{ind}(P) + \varepsilon^5/100$. We start with the following lemma.

Lemma 5. Suppose $1 \le s < t \le k$. Then

$$\frac{1}{q^2} \sum_{i,j=1}^q d_{H,G}(C_s(i), C_t(j))^2 \ge d_{H,G}(C_s, C_t)^2 - \frac{\varepsilon^5}{100}$$

Proof. By the (P_0, η) -uniformity of G and the fact that $(C_s, C_t) \prec P_0$, we have

$$\frac{1}{q^2} \sum_{1 \le i \le q} \sum_{1 \le j \le q} d_{H,G}(C_s(i), C_t(j)) = \frac{1}{q^2} \sum_{i,j} \frac{e_H(C_s(i), C_t(j))}{e_G(C_s(i), C_t(j))}$$
$$\geq \sum_{i,j} \frac{e_H(C_s(i), C_t(j))}{(1+\eta)q^2 p |C_s(i)||C_t(j)|} = \frac{e_H(C_s^*, C_t^*)}{(1+\eta)p |C_s^*||C_t^*|}$$
$$\geq \frac{1-\eta}{1+\eta} d_{H,G}(C_s^*, C_t^*) \ge d_{H,G}(C_s^*, C_t^*) - 2\eta.$$

Thus, by the Cauchy–Schwarz inequality, we have

$$\frac{1}{q^2} \sum_{1 \le i \le q} \sum_{1 \le j \le q} d_{H,G}(C_s(i), C_t(j))^2 \ge d_{H,G}(C_s^*, C_t^*)^2 - 4\eta.$$

Furthermore, by (3), we have $d_{H,G}(C_s^*, C_t^*)^2 \ge d_{H,G}(C_s, C_t)^2 - 9q^{-1}$. Since $9q^{-1} + 4\eta \le \varepsilon^5/100$, the lemma follows.

The inequality in Lemma 5 may be improved if (C_s, C_t) is an (ε, H, G) -irregular pair, as shows the following result.

Lemma 6. Let $1 \le s < t \le k$ be such that (C_s, C_t) is not (ε, H, G) -regular. Then

$$\frac{1}{q^2} \sum_{i, j=1}^q d_{H,G}(C_s(i), C_t(j))^2 \ge d_{H,G}(C_s, C_t)^2 + \frac{\varepsilon^4}{40} - \frac{\varepsilon^5}{100}.$$

Proof. Let $X = X(s,t) \subset C_s$, $Y = Y(s,t) \subset C_t$ be as in the definition of Q. Let $X^* \subset X$ be the maximal subset of X that is the union of blocks of Q, and similarly for $Y^* \subset Y$. Without loss of generality, we may assume that $X^* = \bigcup_{1 \leq i \leq q_s} C_s(i)$, and $Y^* = \bigcup_{1 \leq j \leq q_t} C_t(j)$. Note that $|X^*| \geq |X| - 2^{k-1}(m-1) \geq |X|(1-2^{k-1}m/|X|) \geq |X|(1-2^{k-1}/q\varepsilon) =$ $|X|(1-1/\varepsilon 2^{k+1})$, and similarly $|Y^*| \geq |Y|(1-1/\varepsilon 2^{k+1})$. However, we have $1/\varepsilon 2^{k+1} \leq$ 10^{-2} and $|X|/\varepsilon 2^{k+1}$, $|Y|/\varepsilon 2^{k+1} \geq \eta n$. Thus, by Lemma 3, we have $|d_{H,G}(X^*,Y^*) - d_{H,G}(X,Y)| \leq 5/\varepsilon 2^{k+1}$. Moreover, by (2), we have $|d_{H,G}(C_s^*,C_t^*) - d_{H,G}(C_s,C_t)| \leq 5q^{-1}$. Since $|d_{H,G}(X,Y) - d_{H,G}(C_s,C_t)| \geq \varepsilon$ and $5q^{-1} + 5/\varepsilon 2^{k+1} \leq \varepsilon/2$, we have

$$|d_{H,G}(X^*, Y^*) - d_{H,G}(C^*_s, C^*_t)| \ge \varepsilon/2.$$
(4)

For later reference, let us note that $q_s m = |X^*| \ge |X| - 2^{k-1}m \ge \varepsilon |C_s| - 2^{k-1}m \ge \varepsilon qm - 2^{k-1}m$, and hence $q_s \ge \varepsilon q - 2^{k-1} \ge \varepsilon q/2$. Similarly, we have $q_t \ge \varepsilon q/2$. Let us now set $y_{ij} = d_{H,G}(C_s(i), C_t(j))$ for $i, j = 1, \ldots, q$. In the proof of Lemma 5 we checked that

$$\sum_{1 \le i \le q} \sum_{1 \le j \le q} y_{ij} \ge \frac{1 - \eta}{1 + \eta} q^2 d_{H,G}(C_s^*, C_t^*) \ge (1 - 2\eta) q^2 d_{H,G}(C_s^*, C_t^*).$$

Similarly, one has $\sum_{1 \le i \le q} \sum_{1 \le j \le q} y_{ij} \le (1+3\eta)q^2 d_{H,G}(C_s^*, C_t^*)$, $\sum_{1 \le i \le q_s} \sum_{1 \le j \le q_t} y_{ij} \ge (1-2\eta)q_s q_t d_{H,G}(X^*, Y^*)$, and $\sum_{1 \le i \le q_s} \sum_{1 \le j \le q_t} y_{ij} \le (1+3\eta)q_s q_t d_{H,G}(X^*, Y^*)$. Let us set $\rho = q_s q_t/q^2 \ge \varepsilon^2/4$, and $d_{s,t}^* = d_{H,G}(C_s^*, C_t^*)$. We now note that by (4) we either have

$$\sum_{1 \le i \le q_s} \sum_{1 \le j \le q_t} y_{ij} \ge \frac{1 - 2\eta}{1 + 3\eta} \cdot \frac{q_s q_t}{q^2} \left(1 + \frac{\varepsilon}{2(d_{s,t}^*)^2} \right) \sum_{1 \le i \le q} \sum_{1 \le j \le q} y_{ij}$$
$$\ge \rho \left(1 + \frac{\varepsilon}{3(d_{s,t}^*)^2} \right) \sum_{1 \le i \le q} \sum_{1 \le j \le q} y_{ij}$$

or else

$$\sum_{1 \le i \le q_s} \sum_{1 \le j \le q_t} y_{ij} \le \frac{1+3\eta}{1-2\eta} \cdot \frac{q_s q_t}{q^2} \left(1 - \frac{\varepsilon}{2(d_{s,t}^*)^2} \right) \sum_{1 \le i \le q} \sum_{1 \le j \le q} y_{ij}$$
$$\le \rho \left(1 - \frac{\varepsilon}{3(d_{s,t}^*)^2} \right) \sum_{1 \le i \le q} \sum_{1 \le j \le q} y_{ij}.$$

We may now apply Lemma 2 to conclude that

$$\begin{split} \sum_{1 \le i \le q} \sum_{1 \le j \le q} y_{ij}^2 &\ge \frac{1}{q^2} \left(1 + \frac{\varepsilon^2}{9(d_{s,t}^*)^2} \cdot \frac{\rho}{1-\rho} \right) \left\{ \sum_{1 \le i \le q} \sum_{1 \le j \le q} y_{ij} \right\}^2 \\ &\ge \frac{1}{q^2} \left(1 + \frac{\varepsilon^2 \rho}{9(d_{s,t}^*)^2} \right) \left\{ q^2 (1-2\eta) d_{s,t}^* \right\}^2 \\ &\ge q^2 (1-4\eta) \left((d_{s,t}^*)^2 + \frac{\varepsilon^2 \rho}{9} \right) \ge q^2 \left((d_{s,t}^*)^2 + \frac{\varepsilon^2 \rho}{10} - 4\eta \right). \end{split}$$

Therefore

$$\frac{1}{q^2} \sum_{1 \le i \le q} \sum_{1 \le j \le q} d_{H,G}(C_s(i), C_t(j))^2 \ge d_{H,G}(C_s^*, C_t^*)^2 + \frac{\varepsilon^2 \rho}{10} - 4\eta$$
$$\ge d_{H,G}(C_s, C_t)^2 + \frac{\varepsilon^4}{40} - (9\eta^{-1} + 4\eta) \ge d_{H,G}(C_s, C_t)^2 + \frac{\varepsilon^4}{40} - \frac{\varepsilon^5}{100},$$

as required.

We are now ready to prove the main lemma needed in the proof of Theorem 1.

Lemma 7. Suppose $k \ge 1$ and $0 < \varepsilon \le 1/2$ are such that $4^k \ge 1800\varepsilon^{-5}$. Let $G = G^n$ be a (P_0, η) -uniform graph of order $n \ge n_0 = n_0(k) = k4^{2k+1}$, where $P_0 = (V_i)_1^\ell$ is a partition of V = V(G), and assume that $\eta \le \eta_0 = \eta_0(k) = 1/k4^{k+1}$. Let $H \subset G$ be a spanning subgraph of G. If $P = (C_i)_0^k$ is an (ε, H, G) -irregular (ε, k) -equitable partition of V = V(G) refining P_0 , then there is a k'-equitable partition $Q = (C'_i)_0^{k'}$ of V such that (i) Q refines P, (ii) $k' = k4^k$, (iii) $|C'_0| \le |C_0| + n4^{-k}$, and (iv) $\operatorname{ind}(Q) \ge \operatorname{ind}(P) + \varepsilon^5/100$.

Proof. Let P be as in the lemma. We show that the k'-equitable partition $Q = (C'_i)_0^{k'}$ defined from P as above satisfies (i)-(iv). In view of Lemma 4, it only remains to check (iv). By Lemmas 5 and 6, we have

$$\operatorname{ind}(Q) = \frac{2}{(kq)^2} \sum_{1 \le i \le q} \sum_{1 \le j \le q} d_{H,G}(C'_i, C'_j)^2$$

$$\geq \frac{2}{k^2} \sum_{1 \le s < t \le k} \frac{1}{q^2} \sum_{1 \le i \le q} \sum_{1 \le j \le q} d_{H,G}(C_s(i), C_t(j))^2$$

$$\geq \frac{2}{k^2} \Biggl\{ \sum_{1 \le s < t \le k} \left(d_{H,G}(C_s, C_t)^2 - \frac{\varepsilon^5}{100} \right) + \varepsilon \binom{k}{2} \frac{\varepsilon^4}{40} \Biggr\}$$

$$\geq \operatorname{ind}(P) - \frac{\varepsilon^5}{100} + \frac{\varepsilon^5}{50} \ge \operatorname{ind}(P) + \frac{\varepsilon^5}{100}.$$

This completes the proof of the lemma.

Proof of Theorem 1. Let $\varepsilon > 0$, $k_0 \ge 1$, and $\ell \ge 1$ be given. We may assume that $\varepsilon \le 1/2$. Pick $s \ge 1$ such that $4^{s/4\ell} \ge 1800\varepsilon^{-5}$, $s \ge \max\{2k_0, 3\ell/\varepsilon\}$, and $\varepsilon 4^{s-1} \ge 1$. Let f(0) = s, and put inductively $f(t) = f(t-1)4^{f(t-1)}$ $(t \ge 1)$. Let $t_0 = \lfloor 100\varepsilon^{-5} \rfloor$ and set $N = \max\{n_0(f(t)) : 0 \le t \le t_0\} = f(t_0)4^{2f(t_0)+1}$, $K_0 = \max\{6\ell/\varepsilon, N\}$, and $\eta = \eta(\varepsilon, k_0, \ell) = \min\{\eta_0(f(t)) : 0 \le t \le t_0\} = 1/4f(t_0+1) > 0$. We claim that η and K_0 as defined above will do.

To prove our claim, let $G = G^n$ be a fixed (P_0, η) -uniform graph, where $P_0 = (V_i)_{1}^{\ell}$ is a partition of V = V(G). Furthermore, let $H \subset G$ be a spanning subgraph of G. Note that we may clearly assume that $n \geq K_0$. Suppose $t \geq 0$. Let us say that an equitable partition $P^{(t)} = (C_i)_0^k$ of V is t-valid if (i) $P^{(t)}$ refines P_0 , (ii) $s/4\ell \leq k \leq f(t)$, (iii) ind $\{P^{(t)}\} \geq t\varepsilon^5/100$, and (iv) $|C_0| \leq \varepsilon n(1-2^{-(t+1)})$. We now verify that a 0-valid partition $P^{(0)}$ of V does exist. Let $m = \lceil n/s \rceil$, and let Q be a partition of V with all blocks of cardinality m, except for possibly one, which has cardinality at most m-1, and moreover such that each V_i $(1 \leq i \leq \ell)$ contains $\lfloor |V_i|/m \rfloor$ blocks of Q. Grouping at most ℓ blocks of Q into a single block C_0 , we arrive at an equitable partition $P^{(0)} = (C_i)_0^k$ of Vthat is 0-valid. Indeed, (i) is clear, and to check (ii) note that $k \leq n/m \leq s = f(0)$, and that there is $1 \leq i \leq \ell$ such that $|V_i| \geq n/\ell$, and so $k \geq \lfloor |V_i|/m \rfloor \geq \lfloor (n/\ell)/\lceil n/s \rceil \rfloor \geq$ $(1/2)\{(n/\ell)/(2n/s)\} = s/4\ell$. Also, (iii) is trivial and (iv) does follow, since $|C_0| < \ell m \leq$ $\ell \lceil n\varepsilon/3\ell \rceil \leq n\varepsilon/2$ as $n \geq K_0 \geq 6\ell/\varepsilon$.

Now note that if there is a t-valid partition $P^{(t)}$ of V, then $t \leq t_0 = \lfloor 100\varepsilon^{-5} \rfloor$, since $\operatorname{ind}\{P^{(t)}\} \leq 1$. Suppose t is the maximal integer for which there is a t-valid partition $P^{(t)}$ of V. We claim that $P^{(t)}$ is (ε, H, G) -regular. Suppose to the contrary that $P^{(t)}$ is not (ε, H, G) -regular. Then simply note that Lemma 7 gives a (t + 1)-valid equitable partition $P^{(t+1)} = Q = Q(P^{(t)})$, contradicting the maximality of t. This completes the proof of the theorem.

Acknowledgements. The author was supported by Churchill College, Cambridge, where he was a Junior Research Fellow while this work was being done.

References

- Alon, N., Yuster, R., Almost H-factors in dense graphs, Graphs and Combinatorics 8 (1992), 95–102.
- [2] Bollobás, B., Erdős, P., Simonovits, M., Szemerédi, E., Extremal graphs without large forbidden subgraphs, in *Advances in Graph Theory* (Bollobás, B., ed.), Annals of Discrete Mathematics 3, North–Holland, Amsterdam 1978, pp. 29–41.
- [3] Chung, F.R.K., Regularity lemmas for hypergraphs and quasi-randomness, *Random Structures and Algorithms* 2 (1991), 241–252.
- [4] Chvátal, V., Rödl, V., Szemerédi, E., Trotter, W.T., The Ramsey number of a graph with bounded degree, J. Combinatorial Theory (B) 34 (1983), 239–243.
- [5] Chvátal, V., Szemerédi, E., On the Erdős–Stone theorem, J. London Math. Soc. 23 (1981), 207–214.
- [6] Erdős, P., Frankl, P., Rödl, V., The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, *Graphs and Combinatorics* 2 (1986), 113–121.
- [7] Frankl, P., Rödl, V., The uniformity lemma for hypergraphs, Graphs and Combinatorics 8 (1992), 309–312.
- [8] Füredi, Z., The maximum number of edges in a minimal graph of diamter 2, J. Graph Theory 16 (1992), 81–98.
- [9] Haxell, P.E., Kohayakawa, Y., On an anti-Ramsey property of Ramanujan graphs, in preparation.
- [10] Haxell, P.E., Kohayakawa, Y., Ramsey and Turán type results for cycles in pseudorandom graphs, in preparation.
- [11] Prömel, H.-J., Steger, A., Excluding induced subgraphs III: a general asymptotic, Random Structures and Algorithms 3 (1992), 19–31.
- [12] Rödl, V., On universality of graphs with uniformly distributed edges, *Discrete Math.* 59 (1986), 125–143.
- [13] Rödl, V., Personal communication, August, 1993.
- [14] Rödl, V., Duke, R.A., On graphs with small subgraphs of large chromatic number, Graphs and Combinatorics 1 (1985), 91–96.
- [15] Ruzsa, I.Z., Szemerédi, E., Triple systems with no six points carrying three triangles, Coll. Math. Soc. János Bolyai 18 (1978), 939–945.
- [16] Szemerédi, E., On a set containing no k elements in arithmetic progression, Acta Arithmetica **XXVII** (1975), 199–245.
- [17] Szemerédi, E., Regular partitions of graphs, in *Problèmes en Combinatoire et Théorie des Graphes*, Proc. Colloque Inter. CNRS (Bermond, J.-C., Fournier, J.-C., Las Vergnas, M., Sotteau, D., eds), CNRS, Paris 1978, pp. 399–401.