
Searching in Random Partially Ordered Sets

(Extended Abstract)

R. Carmo1,2?, J. Donadelli2??, Y. Kohayakawa2? ? ?, and E. Laber3

1 Departamento de Informática
Universidade Federal do Paraná

Centro Politécnico da UFPR, 81531–990, Curitiba PR, Brazil
http://www.inf.ufpr.br

renato@inf.ufpr.br

2 Instituto de Matemática e Estat́ıstica
Universidade de São Paulo

Rua do Matão 1010, 05508–900 São Paulo SP, Brazil
http://www.ime.usp.br/mac

{renato,jair,yoshi}@ime.usp.br

3 Departamento de Informática
Pontif́ıcia Universidade Católica do Rio de Janeiro

R. Marquês de São Vicente 225, Rio de Janeiro RJ, Brazil
http://www.inf.puc-rio.br/

laber@info.puc-rio.br

Abstract. We consider the problem of searching for a given element
in a partially ordered set. More precisely, we address the problem of
computing efficiently near-optimal search strategies for typical partial
orders. We consider two classical models for random partial orders, the
random graph model and the uniform model.

We shall show that certain simple, fast algorithms are able to produce
nearly-optimal search strategies for typical partial orders under the two
models of random partial orders that we consider. For instance, our al-
gorithm for the random graph model produces, in linear time, a search

strategy that makes O
(

(logn)1/2 log logn
)

more queries than the opti-

mal strategy, for almost all partial orders on n elements. Since we need
to make at least lgn = log2 n queries for any n-element partial order,
our result tells us that one may efficiently devise near-optimal search
strategies for almost all partial orders in this model (the problem of
determining an optimal strategy is NP-hard, as proved recently in [1]).

? Partially supported by PICDT/CAPES.
?? Supported by a CNPq doctorate Studentship (Proc. 141633/1998-0).

? ? ? Partially supported by MCT/CNPq through ProNEx Programme (Proc. CNPq
664107/1997–4) and by CNPq (Proc. 300334/93–1 and 468516/2000–0).

1 Introduction

A fundamental problem in data structures is the problem of representing a dy-
namic set S in such a way that we may efficiently search for arbitrary elements u
in S. Perhaps the most common assumption about S is that its elements belong
to some totally ordered set U . Here, we are interested in examining a certain
variant of this problem, where the ‘universe’ U from which our elements are
drawn is a partially ordered set. In fact, we address the basic problem of effi-
ciently computing near-optimal search strategies for typical partial orders under
two classical models for random partial orders: the random graph model and the
uniform model.

The problem we consider is, intuitively speaking, as follows: suppose we are
given a partial order S = (S,≺), where S ⊂ U and ≺ is a partial order on U . We
wish to construct a search strategy T that, given an arbitrary u ∈ U , determines
whether or not u ∈ S. We suppose that T has access to an oracle that, given s ∈
S, replies whether or not s = u, and if this is not the case then tells T whether
or not u ≺ s. We measure the efficiency of T by the number of queries that it
needs to send to the oracle in the worst case (we maximize over all u ∈ U). Our
problem may then be summarized as follows:

1. an instance is a partial order (S,≺), its size given by the size of a directed
acyclic graph representing its Hasse diagram;

2. a solution is a search strategy T ;
3. the aim is to minimize number of queries in the worst-case performance of T ,

and
4. the number of steps needed to compute T is to be kept as low as possible.

We shall show that certain simple, fast algorithms are able to produce nearly-
optimal search strategies for typical instances under the two models of random
partial orders.

1. Random graph model. In the random graph model, we randomly select a
graph on the vertex set [n] = {1, . . . , n} and say that i ≺ j in our partial
order if i < j and one may reach j from i along an ‘increasing path’ in the
graph. (We in fact consider random graphs of density p, for constant p.) We
present an algorithm that, in time linear in the size of the instance (S,≺),
produces a search strategy that makes at most

lg n+O
(

(log n)1/2 log log n
)

queries in the worst case, for almost all n-element partial orders in this model
(that is, with probability tending to 1 as n→∞).

2. Uniform model. In the uniform model, we simply consider all partial orders
on [n] equiprobable. The situation here is somewhat different: it is easy
to show that almost all n-element partial orders are such that any search
strategy makes at least (

1
4

+ o(1)
)
n

2

queries in the worst case. However, if we consider a slightly more ‘generous’
oracle, then almost all partial orders admit search strategies that require
only

O(log n)

queries. Moreover, this search strategy may be computed in time O(n2). For
this result, we suppose that, presented with the query s ∈ S, the oracle replies
whether or not s = u, and if this is not the case then it tells us whether u ≺ s,
s ≺ u, or u is not comparable with s. Thus, our more generous oracle tells
us exactly which of the three possibilities holds when u 6= s, whereas the
previous oracle only told us whether or not u ≺ s holds.

Since we need to make at least lgn queries for any n-element partial order, our
result tells us that one may efficiently devise near-optimal search strategies for
almost all partial orders in the first model, and we may devise search strategies
for almost all partial orders in the second model that are only worse than the
optimal by a constant factor. We remark that the constants hidden in the big-O
notation and in the discussion above are not at all large.

Summarizing, (i) one may compute an essentially best possible search strat-
egy for almost all random graph orders and (ii) one may compute a constant
factor approximation for almost all partial orders. This is in pleasant constrast
to the fact that determining an optimal strategy is NP-hard, as recently proved
in [1]. Finally, as the reader will see, it will be quite surprisingly simple to prove
our results.

1.1 Definitions and Notation

A partial order is a pair (U,≺) where U is a set and ≺ a binary relation on U
which is anti-symmetric, transitive and irreflexive. If x, y ∈ U then x ≺ y stands
for (x, y) ∈≺. The elements u, v ∈ U are said to be comparable in (U,≺) if u ≺ v
or v ≺ u, being otherwise said to be incomparable; a chain in (U,≺) is a set
X ⊆ U of pairwise comparable elements; an antichain of (U,≺) is a set X ⊆ U
of pairwise incomparable elements; the height of (U,≺) is the size of a maximum
chain and the width is the size of a maximum antichain. An element u ∈ U is
maximal in (U,≺) if there is no x ∈ U such that u ≺ x.

An ideal of (U,≺) is a set I ⊆ U such that u ≺ i⇒ u ∈ I for all i ∈ I and a
filter of (U,≺) is a set F ⊆ U such that f ≺ u⇒ u ∈ F for all f ∈ F ; if X ∈ U ,
we denote by I(X) (resp. F (X)) the minimal ideal I (resp. filter F) of (U,≺)
such X ⊆ I (resp. X ⊆ F).

Thoughout the text, we denote a set of integers {z ∈ N : x ≤ z ≤ y} by
[x, y] and define [n] = [1, n] for any integer n ≥ 1. Also, ω will denote a function
ω : N→ R satisfying limn→∞ ω(n) =∞.

The problem of searching through a partially ordered set can be stated as
follows. We are given a partially ordered set (U,≺) and a finite set S ⊆ U with
the partial order induced by ≺. Our goal is to determine whether a given u ∈ U
is an element of S and we are allowed to pose queries about u to the elements
of S.

3

A query about u ∈ U to s ∈ S has three possible outcomes, namely, hit,
smaller and no, meaning u = s, u ≺ s and u 6≺ s, respectively. A search for
u ∈ U through S is a sequence of queries allowing to decide whether u ∈ S or
not. The goal is to devise a strategy for querying the elements of S in such a
way that the longest search through S poses the smallest number of queries.

Such a strategy can be conveniently thought of as a binary decision tree
whose internal nodes are labelled with elements of S, whose external nodes are
labelled with pairs (smin, smax) ∈ (S ∪ {−∞}) × (S ∪ {+∞}) and whose edges
are labelled with ≺ and 6≺.

A path in the decision tree from its root to an internal node labelled s
represents a successful search whose outcome is u = s, while a path from the
root to an external node labelled (smin, smax) represents an unsuccessful search
whose outcome is u 6∈ S with the additional information that smin ≺ u ≺ smax.
We define the height of a binary decision tree as the length of a longest path
from its root to an external node.

We can then restate our problem as follows: given a partial order (S,≺),
compute a binary decision tree of minimum height for S.

We will denote by n the number of elements of S and will assume that
the partial order (S,≺) is given as a directed acyclic graph G≺ of m edges
and n vertices , representing its Hasse diagram. Then, given an algorithm A for
computing such a decision tree, we focus on the height HA(n,m) of the tree that
we construct and on the number of steps TA(n,m) required by A to construct
such tree.

We note that when ≺ is a total order on S, the optimum decision tree for S
is the usual binary search tree for S. In this case we have m = n− 1, H(n,m) =
dlg ne+1 and T (n,m) = O(n), these being the best possible values for H and T .

On the other extreme, if the whole of S is an antichain, then we have m = 0,
H(n,m) = n and T (n,m) = O(n).

1.2 Organization

This extended abstract is organized as follows. In Section 2 we mention some
relevant results in the context of searching in partially ordered sets. In Section 3
we present a linear time algorithm for building a decision tree which has height
almost surely bounded by lgn+O

(
(log n)1/2 log log n

)
under the random graph

model for n-element partial orders.
In Section 4 we present a O(n2 log n) time algorithm for building a decision

tree which has height almost surely bounded by O(log n) under the uniform
model for n-element partial orders (assuming the search model with the ‘gener-
ous’ oracle).

In Section 5 we make some general ramarks and briefly discuss some connec-
tions among our results and a related problem proposed in [2].

4

2 Related Work

It is shown in [1] that the problem of searching through a partially ordered
set is NP-hard, even when restricted to the case in which (S,≺) has a maxi-
mum element. The more restricted case in which the given partial order has a
maximum element and G≺ is a tree (the so called rooted tree variant) can be
solved in polynomial time as shown in [3], where an algorithm for computing a
minimum height decision tree is presented with T (n,m) = O(n4(log n)3). Their
algorithm does not yield an easy way to estimate H(n,m), except in a few cases:
for instance, when G≺ is a complete binary tree, the decision tree built by their
algorithm has H(n,m) = lg n+ lg∗ n+Θ(1).

The work in [1] presents a much simpler algorithm for the case in which G≺
is a rooted tree, which computes in time T (n,m) = O(n log n) a decision tree
whose height is at most lg n greater than the height of the optimum decision tree.
Since the optimum decision tree must have height at least lg n, their algorithm
constitutes a 2-approximation algorithm for the problem.

The case in which (S,≺) has a maximum element and the maximum degree
of G≺ is d is also studied in [1], where it is shown that d logd n is an upper bound
for the height of an optimum decision tree, which improves to the best possible
a previous bound from [4].

Lipman and Abrahams [5] present optimized exponential time algorithms
for building decision trees for searching in general partially ordered sets. Nev-
ertheless, they considered the minimization of the expected path length of the
decision tree.

Linial and Saks consider in [2] a different although related problem, motivated
by the following setting: suppose we are given an m × n real matrix M whose
(say, distinct) entries are known to be increasing along the rows and along the
columns and suppose we wish to decide whether a given real number x occurs
in M . The goal is to devise a search strategy which minimizes the number of
inspections of entries of M in the worst case.

If one looks at the matrix as the product of two chains of length m and n,
the problem may be thought of as a problem of searching in a partially ordered
set. However, the underlying assumption that the entries of M come from a
totally ordered set actually turns it into a different problem, which we discuss
in Section 5.

Linial and Saks (see [2] and [6]) have determined bounds for arbitrary or-
ders ≺ and have studied in detail the case in which ≺ is a product of chains and
the case in which G≺ is a rooted tree.

3 The Random Graph Model

Let (S,≺) be a partial order and denote by max≺X the set of maximal elements
of X ⊆ S. Consider the following recursive decomposition of S into antichains:
let L1 = max≺ S, and let Li = max≺

(
S −

⋃i−1
j=1 Lj

)
for i > 1. Let h be the

5

height of (S,≺) and let w = max1≤i≤h |Li|. We will call each set Li the layer i
of S.

A possible adaptation of the usual binary search strategy to the case of partial
orders may be described as follows.

Algorithm B

1. Let m be the index of the layer which divides S in two parts, each of them
with less than |S|/2 elements, that is, m is such that |

⋃m−1
i=1 Li| < |S|/2 and

|
⋃h
i=m+1 Li| < |S|/2. Denote these halves of S by L↓ and L↑, respectively.

2. Perform a query about u to each s ∈ Lm:
(a) if the outcome of one of these queries is hit, the search is over;
(b) if the outcome of one of these queries is smaller, restart the search, re-

stricted to L↓;
(c) if the outcome to all these queries is no, restart the search, restricted

to L↑.

Let us call the above strategy an extended binary search, and denote the
algorithm which computes the respective decision tree by B(S,≺). We clearly
have HB(n,m) ≤ w dlg he; moreover, as the layering of S can be produced in
time O(m) and the building of the tree takes one step per element of S, we have
TB(n,m) = O(n+m).

We now turn our attention to another strategy: suppose we have {di}ki=1 ⊆ S
such that {d1} = I(d1) ⊂ I(d2) ⊂ I(d3) ⊂ . . . ⊂ I(dk) ⊆ S. In this case we define
the segments Si (0 ≤ i ≤ k) of (S,≺) by

Si =

{d1} if i = 0,
I(di+1)− I(di) if 0 < i < k,

S − I(dk) if i = k.

We can then formulate the following algorithm which takes advantage of the
above structure.

Algorithm A

1. Perform a (usual) binary search of u through {di}ki=1; if u is found stop,
otherwise let i be the minimum index such that u ≺ di (or k, if there is no
such index).

2. Perform an extended binary search through the segment Si.

We have

HA(n,m) ≤ dlg ke+ max
1≤i≤k

HB(|Si|,m) ≤ lg n+ w lg
(

max
1≤i≤k

|Si|
)
,

and this tree can be built in TB(n,m) = O(n+m) steps.

6

In the following sections we introduce the random graph order model for
partial orders and show that, in this model, we almost surely have

HA(n,m) = lg n+O(
√

log n log log n).

3.1 The Random Graph Model

The random graph order probability space, denoted Pn,p, is the probability space
of all partial orders ([n],≺) obtained by independently choosing each pair of
{(i, j) ∈ [n]2 : i < j} with probability p and taking the transitive closure of the
resulting relation. We denote a generic partial order ([n],≺) in Pn,p by Pn,p.

We say that d ∈ [n] is k-dominating if [d − k, d − 1] ⊆ I(d) and call d
a dominating element of [n] if d is (d − 1)-dominating (that is, if x ≺ d for
all 1 ≤ x < d). The conditional probability that d should be k-dominating, given
that d is (k − 1)-dominating, is 1− (1− p)k, which leads us to

P(d is k-dominating) = (1− (1− p)k)P(d is (k − 1)-dominating).

By induction on k, we have

P(d is k-dominating) = η(k, p),

where η(k, p) =
∏k
i=1(1 − (1 − p)i). We note that η is a strictly decreasing

function of k and define η(p) = limk→∞ η(k, p); then, for all k ≥ 1, we have
η(p) < η(k, p) ≤ p.

Lemma 1. The probability that d ∈ [n] is dominating is η(d− 1, p).

As a consequence, we note that the expected number of dominating elements
in Pn,p is greater than nη(n, p). By setting {di}ki=1 to be the dominating elements
in Pn,p, we meet the necessary conditions for applying algorithm A on Pn,p.

In what follows, we will show that the decision tree built by A(Pn,p) almost
surely has “small height”, by showing that both the size of each segment Si and
the size of each layer Lj are suitably small.

To show that the size of each segment is not too large we show that we have
no large intervals of [n] free of dominating elements in Pn,p; to show that the
size of each layer is not too large, we use that we cannot have large antichains
in Pn,p.

On the Size of the Segments. Let us consider the case in which d is not dom-
inating. In this case, there must be a minimum b such that d is (b−1)-dominating
but it is not b-dominating. If we call such b a barrier for (the domination of) d,
then we have, for each 0 < b < d− 1,

P(b is a barrier for d) = P(d− b 6≺ d and d is (b− 1)-dominating)
= P(d− b 6≺ d | d is (b− 1)-dominating)

× P(d is (b− 1)-dominating)

= (1− p)bη(b− 1, p).

7

Thus, for any 0 < s < d−1, we have that the probability that d is not dominating
but d is s-dominating is

P

(
d−2∨
b=s+1

{
b is a barrier for d

})
=

d−2∑
b=s+1

P(b is a barrier for d)

=
d−s−3∑
j=0

P(j + s+ 1 is a barrier for d) =
d−s−3∑
j=0

(1− p)j+s+1η(j + s, p)

≤ η(s, p)(1− p)s+1
∑
j≥0

(1− p)j =
η(s, p)
p

(1− p)s+1 ≤ (1− p)s+1.

Now, if M ⊆ [n] and d = min{|m−m′| : m, m′ ∈M}, then the events “m is
d-dominating” are mutually independent for all m ∈ M . For convenience, let D
and Dd denote the set of dominating and d-dominating elements in Pn,p. We
have

P(D ∩M = ∅) = P(D ∩M = ∅ | Dd ∩M = ∅)P(Dd ∩M = ∅)
+ P(D ∩M = ∅ and Dd ∩M 6= ∅)

≤ P

(∧
m∈M

{
m /∈ Dd

})
+ P

(∨
m∈M

{
m /∈ D and m ∈ Dd

})
≤ (1− η(d, p))|M | +

∑
m∈M

(1− p)d+1

= (1− η(d, p))|M | + |M |(1− p)d+1.

(1)

Let us put

β(p) = lg
1

1− p
, γ(p) = lg

1
1− η(p)

, α(p) =
2

β(p)γ(p)
.

Theorem 2. If g ≥
⌈
α(p)(lg nω(n))2

⌉
and x < n − g, the probability that the

set [x, x+ g] has no dominating element is at most 1/nω(n).

Proof. If

d ≥ γ(p)m+ lgm
β(p)

− 1, (2)

then m(1− p)d+1 ≤ (1− η(p))m, so that if |M | = m in (1) then the probability
that there is no dominating element in M is 2(1− η(p))m. If

m ≥ lg 2nω(n)
γ(p)

, (3)

then the probability that there is no dominating elements in M is ≤ (nω(n))−1.

8

We can then set M = {x + id}m−1
i=0 , with d and m satisfying (2) and (3) so

that we have M ⊆ [x, x+ g] with

g ≥ dm ≥
(lg 2nω(n))2 + (lg 2nω(n))

(
lg lg 2nω(n)−

(
1

β(p) + lg γ(p)
))

β(p)γ(p)

≥ 2(lg nω(n))2

β(p)γ(p)
= α(p)(lg nω(n))2.

ut

Corollary 3. The probability that Pn,p has a segment of size ≥ α(p)(lg nω(n))2

is at most 1/ω(n).

Proof. Let {Sj}kj=1 be the segments of Pn,p. Then

P

 k∨
j=1

{
|Sj | > α(p)(lg nω(n))2

} ≤ k∑
j=1

P(|Sj | > α(p)(lg nω(n))2)

≤
k∑
j=1

1
nω(n)

=
k

nω(n)
≤ 1
ω(n)

.

ut

On the Size of the Layers. Consider a layer Li. Since Li is an antichain in
Pn,p, we can make direct use of the following result from Barak and Erdős [7].

Theorem 4 (Barak and Erdős [7]). The probability that Pn,p has an an-
tichain of size larger than

Kn =

√
2 lgn
β(p)

+
1
4

+
1
2

(4)

tends to zero as n→∞.

The Decision Tree is not Too Tall. We are now in position to prove the
main result of this section.

Theorem 5. The decision tree built by algorithm A(Pn,p) has height almost
surely bounded by lg n+O(

√
log n log log n).

Proof. Let H be the random variable in Pn,p whose value is the height of the
decision tree built by the algorithm on the input Pn,p. As has been noted, we
have H ≤ lg n + w lg max1≤i≤h |Si|, where w is the size of the greatest layer of
Pn,p, the Si are its segments, and h is its height.

9

Corollary 3 tells us that

P

(
max

1≤i≤h
|Si| > α(p)(lg nω(n))2

)
<

1
ω(n)

,

while Theorem 4 gives

P

(
w >

1
2

+

√
2 lgn
β(p)

+
1
4

)
<

1
ω′(n)

,

for some function ω′ : N→ R satisfying limn→∞ ω′(n) =∞. Therefore

P

(
max

1≤i≤h
|Si| ≤ α(p)(lg nω(n))2 and w ≤ 1

2
+

√
2 lgn
β(p)

+
1
4

)

= 1− P

(
max

1≤i≤h
|Si| > α(p)(lg nω(n))2 or w >

1
2

+

√
2 lgn
β(p)

+
1
4

)

< 1−
(

1
ω(n)

+
1

ω′(n)

)
= 1− o(1).

We conclude that

lim
n→∞

P

(
H ≤ lg n+

(
1
2

+

√
2 lgn
β(p)

+
1
4

)
lg(α(p)(lg n)2)

)
= 1.

ut

4 The Uniform Model

In this section we study the problem of searching in a typical partial order
according to the uniform model. We start by stating some definitions and a key
auxiliary result.

Denote by P(n) the set of all partial orders on [n]. Taking P(n) with the
uniform distribution, that is, making each partial order equally likely, we have
the uniform model for random partial orders; a random element in this model
will be denoted by Un.

It is known that almost all Un have a strong structural property, which we
now describe. Let {X1, X2, X3} be a partition of [n], and let A(X1, X2, X3) be
the set of partial orders ([n],≺) satisfying the following conditions:

– whenever x ≺ y, for x ∈ Xi and y ∈ Xj , we have i < j,
– whenever x ∈ X1 and y ∈ X3 we have x ≺ y.

The partial orders in A(X1, X2, X3) are said to be 3-layered.
Answering the question “what does a ‘typical’ partial order on [n] look like?”,

in [8] Kleitman and Rothschild proved that, rather surprisingly, almost all par-
tially ordered sets are 3-layered.

10

Theorem 6 (Kleitman and Rothschild [8]). Suppose ω(n) → ∞ as n →
∞. Almost every partial order on [n] lies in A(X1, X2, X3) for some partition
{X1, X2, X3} of [n] with

∣∣|X2| − n/2
∣∣ < ω(n) and

∣∣|X1| − n/4
∣∣ < ω(n)

√
n.

Theorem 6 makes the problem of searching in typical partial orders as posed
in Section 1 rather uninteresting, since our search model makes it unavoidable
to query each of the maximal elements of the given order. Theorem 6 tells us
that almost all orders have (1/4 + o(1))n such elements.

To make the problem more interesting, we now consider a variation of our
search model where a query to s about u has four possible outcomes: smaller,
greater, hit and no meaning, respectively, u ≺ s, s ≺ u, s = u and s is not compa-
rable to u; a strategy, accordingly, is redefined to be a decision tree as described
previously, with the difference that each internal node has three children. In this
section we shall prove that it is almost always possible, under the uniform model,
to construct a ternary decision tree of height O(log n) in time O(n2 log n).

Let us first make the following definition: given two disjoint sets X1, X2, the
set of 2-layered orders A(X1, X2) is the set of all partial orders (X1 ∪ X2,≺)
such that ≺ ⊆ X1 ×X2.

Given a partition {X1, X2, X3} of [n], there is a natural correspondence be-
tween A(X1, X2, X3) and A(X1, X2)×A(X2, X3), so that we can devise a search
strategy for a 3-layered order as a ‘composition’ of search strategies for 2-layered
orders, by applying the latter on the suborders induced by X1∪X2 and X2∪X3.

Our strategy for searching for u ∈ U in P ∈ A(X1, X2) is simple: we start
by making the assumption u ∈ X1, which we then verify by means of a series of
queries to elements of X2 in such a way that, at the end, we either have found u
in X1 or know that u 6∈ X1. In the latter case, we restart the algorithm with the
rôles of X1 and X2 exchanged, so that, after this is done, we either have found u
in X1∪X2 or can conclude that u 6∈ X1∪X2. The algorithm to search for u ∈ U
in the layer X1, say, starts by setting S = X1 and proceeds in two phases.

Algorithm C

querying phase: at each step,
1. choose x ∈ X2 such that

∣∣|S ∩ I(x)| − |S − I(x)|
∣∣ is minimal.

2. query x about u:
(a) if the answer is hit, the search is over;
(b) if the answer is smaller, replace S with |S ∩ I(x)| and restart;
(c) if the answer is no, replace S with |S − I(x)| and restart.

This procedure is repeated until we reach the point where S ∩ I(x) = ∅ or
S − I(x) = ∅ for all x ∈ X2, at which point we go to the next phase.

sweeping phase: for each s ∈ S:
1. query s about u: if the answer is hit, the search is over, otherwise, pro-

ceed.
If the search is not over after this, we can conclude that u 6∈ X1.

11

Let us call si(X1, X2) the size of the set S at the beginning of the ith step of
the querying phase, s(X1, X2) the size of the set S at the beginning of the sweep-
ing phase and q(X1, X2) the number of queries made at the querying phase. It is
clear that the height of the decision tree corresponding to the above procedure
is bounded by q(X1, X2) + s(X1, X2); moreover, we note that the choice of x at
step i of the querying phase can be accomplished in si(X1, X2)|X2| steps.

From this and the above discussion, we can conclude that it is possible to
construct a decision tree of height

HC ≤
∑

(i,j)∈J

(
q(Xi, Xj) + s(Xi, Xj)

)
, (5)

and this can be done in time

TC ≤
∑

(i,j)∈J

s(Xi, Xj) + |Xj |
q(Xi,Xj)∑
k=1

sk(Xi, Xj)

 , (6)

where J = {(1, 2), (3, 2), (2, 1)}.
At this point we define the binomial probability model A1/2(X1, X2) for 2-

layered orders, given by independently choosing each (x1, x2) ∈ X1 × X2 with
probability 1/2. We shall show that, in this model, we almost always have

1. si(X1, X2) ≤ (2/3)i|X1|,
2. q(X1, X2) ≤ log3/2 |X1|,
3. s(X1, X2) < 40,

which, along with (5), (6) and the sizes of X1, X2 and X3 in Theorem 6 show
that

HC ≤ 3 log3/2 n+ 120 and TC ≤
3
2
n|X2|+ 120.

There is a natural correspondence between the product space A1/2(X1, X2)×
A1/2(X2, X3) and the uniform probability space A(X1, X2, X3). On the other
hand, Theorem 6 and a standard argument give that if an event is almost cer-
tain in the space A(X1, X2, X3) = A1/2(X1, X2) × A1/2(X2, X3) for any fixed
partition (X1, X2, X3) as in Theorem 6, then this event must also be an almost
certain event in Un (details are given in the final version [9] of this extended
abstract).

Therefore, in the remaining of this section, we concentrate in proving the
relevant results for A1/2(X1, X2) × A1/2(X2, X3), where the Xi are as in the
Kleitman–Rothschild theorem.

In what follows, we assume S ⊆ X1, x ∈ X2 and let dS(x) = |I(x)∩S| be the
number of elements in S smaller than x. The reader may notice that it is easy
to prove analogous versions of the proposition and corollary below with X1 and
X2 interchanged. Moreover, both, proposition and corollary, obviously remain
true if we consider X3 instead of X1.

12

Proposition 7. Almost surely, for a fixed S ⊆ X1 with |S| ≥ 40, the probability
that there is no vertex x ∈ X2 with |S|/3 ≤ dS(x) ≤ 2|S|/3 is

≤
(
2 exp {−|S|/40}

)|X2|
.

Proof. Fix S ⊆ X1 and x ∈ X2. Then, by Chernoff’s inequality, we have

P (|dS(x)− µ| > |S|/6) < 2 exp {−µ/20} ,

where µ = |S|/2 is the expected value of dS(x). Thus, we have

P

(
6 ∃x ∈ X2 : |S|/3 ≤ dS(x) ≤ 2|S|/3

)
≤
(
2 exp {−|S|/40}

)|X2|
,

as required. ut

Corollary 8. For X1, X2 as above, and q, si, s be as defined in the preceding
discussion, the following almost surely holds:

1. s(X1, X2) ≤ 40,
2. si(X1, X2) ≤ (2/3)i|X1|, and so,
3. q(X1, X2) ≤ log3/2 |X1|.

Proof. To prove (1) we observe that the probability of s(S,X2) > 40, for some
S ⊂ X1 with |S| > 40, is given by

P

(
∃S ⊆ X1 ∀x ∈ X2 we have

∣∣dS(x)− |S|/2
∣∣ > |S|/6)

≤
∑

S⊆X1, |S|≥40

P

(
∀x ∈ X2 we have

∣∣dS(x)− |S|/2
∣∣ > |S|/6)

≤
|X1|∑
s=40

(
|X1|
s

)
exp {− (s/40− ln 2) |X2|}

≤
|X1|∑
s=40

exp {− (s/40− ln 2) |X2|+ s ln |X1|} = o(1).

To prove (2) and (3), it suffices to notice the following. The probability that,
at some point in step 1 of the querying phase, we cannot choose x ∈ X2 such
that |S|/3 ≤ |S ∩ I(x)| ≤ 2|S|/3 is at most

(log3/2 |X1|)P
(
∀x :

∣∣dS(x)− |S|/2
∣∣ > |S|/6) ≤ n(2

e

)|X2|

= o(1).

Thus in both cases (b) and (c) of step 2 of algorithm C, we have reduced the
search space by a factor ≤ 2/3. Therefore we have q(X1, X2) ≤ log3/2 |X1|. ut

Theorem 9. Almost every Un admits a ternary search tree of height O(log n)
which can be constructed in time O(n2).

13

5 Concluding Remarks

We observe that one may also study the uniform model conditioning on having
sparser partial orders. To carry out this investigation, the recent results in [10]
and [11] are crucial. We shall come back to this in [9].

The arguments in the proofs of Corollary 3 and preceding lemmas and theo-
rems are adapted rewritings of arguments found in [12] (Lemma 2.3 and Theo-
rems 2.10 and 2.11). The results in that paper, on the structure of random graph
orders, were what first suggested to the authors the idea of the algorithm.

In the present work we consider only the case in which p does not depend on
n. It should be noted, however, that the results in [12] imply that ours remain
valid even in the case in which p = p(n) is a decreasing function of n, as long as
p lg n→∞.

It is worth noting that Theorem 4 is part of a deeper investigation on the
width of random graph orders found in [7], where a much stronger result is
proven, namely, that the width of a random graph order is an almost determined
random variable whose value, rather surprisingly, is almost surely bKnc or dKne,
where Kn is given in (4).

As mentioned in Section 2, Linial and Saks [2] consider a different although
related problem where the set U is assumed to be totally ordered, the given
relation (S,≺) is a partial order compatible with this total order and where each
query about u ∈ U to s ∈ S is made with respect to the total order induced on
S and not with respect to the given relation ≺ as is our case.

To see why this turns out to define a different problem, consider what infor-
mation is gained in a search through S for u ∈ U when we query s ∈ S about
u and the outcome is smaller: in our problem, such an outcome is enough to
confine the remaining of the search to S ∩ I(s); in their problem, however, this
is not the case: as the query is made with respect to the underlying total order
in S, the outcome smaller leaves all elements in S − F (s) as valid candidates.

While not presenting explicitly an algorithm to compute an optimal decision
tree for the problem, it is a consequence of the results in [2] and [6] that the
height H of an optimal decision tree for their problem satisfies

lg ι(S,≺) ≤ H ≤ k lg ι(S,≺), (7)

where ι(S,≺) is the number of ideals in (S,≺) and k = (2−lg(1+lg 5))−1 ≈ 3.73.
We note that this fact alone can lead us to similar results to those given in

Section 3 when we consider their problem in the random graph order model.
Let us briefly discuss this. Redefine an element of S to be dominating if it is
comparable to every other element in (S,≺), and a segment to be an interval
free of dominating elements.

A possible search strategy, then, would be isolating one segment by means
of a binary search restricted to the dominant elements of the order and then
searching through this segment.

An ideal in a partial order is uniquely determined by the antichain of its
maximal elements. Therefore, the number of ideals in a segment R is bounded

14

by the number of antichains it contains, and hence if w is the width of the order,
then

ι(R,≺) ≤
w∑
i=1

(
|R|
i

)
≤ |R|w.

Together with the bounds in (7) and Theorem 4, this allows us to conclude that
there is a decision tree for R of height at most

H ≤ k lg ι(R,≺) ≤ kw lg |R|.

Therefore we can conclude that, for any partial order, there is a decision tree of
height H ≤ lg n+ w lg s, where s is the size of the largest segment in the order.

Now, the argument leading to Theorem 2 proves a result for dominating
elements as defined now (with another value for α(p), of course, say α′(p)),
which, together with Theorem 4 gives us

lim
n→∞

P

(
H ≤ lg n+ k

(
1
2

+

√
2 lg n
β(p)

+
1
4

)
lg(α′(p)(lg n)2)

)
= 1.

References

1. Laber, E.S., Nogueira, L.T.: Binary searching in posets. Submitted for publication
(2001)

2. Linial, N., Saks, M.: Searching ordered structures. Journal of Algorithms 6 (1985)
86–103

3. Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM Journal on
Computing 28 (1999) 2090–2102

4. Ben-Asher, Y., Farchi, E.: The cost of searching in general trees versus complete
binary trees. Technical Report 31905, Technical Report Research Center (1997)

5. Lipman, M.J., Abrahams, J.: Minimum average cost testing for partially order.
IEEE Transactions on Information Theory 41 (1995) 287–291

6. Linial, N., Saks, M.: Every poset has a central element. Journal of Combinatorial
Theory, Series A 40 (1985) 195–210

7. Barak, A.B., Erdős, P.: On the maximal number of strongly independent vertices
in a random acyclic directed graph. SIAM Journal on Algebraic and Discrete
Methods 5 (1984) 508–514

8. Kleitman, D.J., Rothschild, B.L.: Asymptotic enumeration of partial orders on a
finite set. Trans. Amer. Math. Soc. 205 (1975) 205–220

9. Carmo, R., Donadelli, J., Laber, E., Kohayakawa, Y.: Searching in random partially
ordered sets. In preparation (2002)

10. Prömel, H.J., Steger, A., Taraz, A.: Counting partial orders with a fixed number
of comparable pairs. Combin. Probab. Comput. 10 (2001) 159–177

11. Prömel, H.J., Steger, A., Taraz, A.: Phase transitions in the evolution of partial
orders. J. Combin. Theory Ser. A 94 (2001) 230–275

12. Bollobás, B., Brightwell, G.: The structure of random graph orders. SIAM Journal
on Discrete Mathematics 10 (1997) 318–335

15

