
Searching in Random Partially Ordered Sets

R. Carmo a,b,1,∗ J. Donadelli a,2 Y. Kohayakawa b,3 E. Laber c,4

a Departamento de Informática — Universidade Federal do Paraná
Centro Politécnico da UFPR, 81531–990, Curitiba PR, Brazil

b Instituto de Matemática e Estat́ıstica — Universidade de São Paulo
Rua do Matão 1010, 05508–090 São Paulo SP, Brazil

c Departamento de Informática — Pontif́ıcia Univ. Católica do Rio de Janeiro
R. Marquês de São Vicente 225, Rio de Janeiro RJ, Brazil

Abstract

We consider the problem of searching for a given element in a partially ordered set.
More precisely, we address the problem of computing efficiently near-optimal search
strategies for typical partial orders under two classical models for random partial
orders, the random graph model and the uniform model.

We shall show that the problem of determining an optimal strategy is NP-hard,
but there are simple, fast algorithms able to produce nearly-optimal search strate-
gies for typical partial orders under the two models of random partial orders that
we consider. We present a (1+o(1))-approximation algorithm for typical partial or-
ders under the random graph model (constant p) and present a 6.34-approximation
algorithm for typical partial orders under the uniform model. Both algorithms run
in polynomial time.

Key words: Searching, search trees, random partial orders

∗ Corresponding author
Email addresses: renato@ime.usp.br (R. Carmo), jair@inf.ufpr.br

(J. Donadelli), yoshi@ime.usp.br (Y. Kohayakawa), laber@inf.puc-rio.br
(E. Laber).
1 Partially supported by PICDT/CAPES.
2 Supported by a CNPq doctorate Studentship (Proc. 141633/1998–0).
3 Partially supported by MCT/CNPq through ProNEx Programme (Proc. CNPq
664107/1997–4) and by CNPq (Proc. 300334/93–1 and 468516/2000–0).
4 Partially supported by FAPERJ through “Jovem Cientista” Program (E-
26/150.362/2002) and CNPq.

Preprint submitted to Theoretical Computer Science 20 October 2003

1 Introduction

A fundamental problem in data structures is the problem of representing a
dynamic set S in such a way that we may perform search operations efficiently.

Perhaps the most common assumption about the set S is that its elements
belong to some totally ordered set U . In this paper, we are interested in ex-
amining a certain variant of this problem, where the ‘universe’ U from which
our elements are drawn is a partially ordered set. The reader is referred to [4]
for the motivation for considering this problem (see also Section 2 below).

Our first result will be negative: we shall prove that this problem isNP-hard in
general, answering a question raised in [4]. We shall then address the problem
of efficiently computing near-optimal search strategies for typical partial orders
under two classical models for random partial orders: the random graph model
and the uniform model. For these ‘relaxed’ versions of the problem, one is able
to prove fairly strong results quite easily.

The problem we consider generalizes the problem of searching through a totally
ordered domain, for which the well known binary search strategy is the optimal
solution. The best way to formulate our problem is perhaps by making use of
a 2-player game, which we now describe.

A 2-player game. Let a partial order U = (U,≺) and a set S ⊆ U be
given. The two players of our game Γ(U , S) are the hider and the seeker. The
hider initially chooses an element u ∈ U and the seeker has to search for this
element until he finds it.

A move of the seeker is simply to pick an element s from S, which is interpreted
as the question “is s the chosen element u?”. On being presented this question,
the hider replies either hit, meaning “Yes, it is”, smaller, meaning “No, but
u ≺ s”, or no, meaning “No, and u � s”. A sequence of moves, or queries,
made by the seeker along the game will be called a search, and an algorithm
that decides the next query based on the past will be called a search strategy.

The game ends when the seeker finds the chosen element, that is, the seeker
receives a hit as the answer, or else he is in position to declare that u 6∈ S with
certainty. The goal of the seeker is to finish the game as soon as possible, and
the goal of the hider is to delay the end of the game for as long as possible, by
choosing “his best u”. (In fact, since u does not have to be disclosed until the
very end, the hider does not have to make up his mind about which u to pick
at the beginning; he may answer the queries as the game evolves, just making
sure that his answers are consistent with some choice of u.)

2

We define an optimal search strategy for Γ(U , S) as a search strategy in which
the longest search is as short as possible.

Let us recall that our game Γ(U , S) is defined based on an order U = (U,≺) and
a set S ⊆ U . The reason to have both U and S, instead of having just S (with
the induced order), goes back to the motivation of our game: with this slightly
more cumbersome definition, we are able to model the case of unsuccessful
searches in data structures. However, the reader will see below that, in fact,
the larger set U will not really play any rôle once the problem is suitably
formalized.

The computational problem. Having introduced the game Γ(U , S), we
may now state a related computational problem. The problem of searching
through a partially ordered set (SPOS) is the problem of devising an opti-
mal search strategy for Γ(U , S). More precisely, given a directed graph GP

representing the Hasse diagram of the order P induced by U on S, we wish
to compute an optimal search strategy for Γ(U , S). Problem SPOS may be
summarized as follows:

(1) an instance is a directed graph GP , representing the Hasse diagram of a
partial order P = (S,≺), and

(2) a solution is an optimal search strategy for Γ(U , S).

The results. We shall first prove that SPOS is NP-hard, in answer to the
main question raised in [4]. Then we shall show that certain simple, fast al-
gorithms are able to produce nearly-optimal search strategies for typical in-
stances under the random graph and the uniform models of random partial
orders (see Sections 4 and 5 for definitions). The reader is referred to [7] for
an excellent survey on these models.

We write n for the number of elements in the order P = (S,≺) and, as usual,
we use the expression “almost surely” to mean “with probability tending to 1
as n→∞”. We also use the common terms “almost every” and “almost all”.

We shall consider the random graph model with constant p. We present a
polynomial time algorithm that produces a search strategy that makes at
most

log2 n + O
(
(log n)1/2 log log n

)
queries in the worst case for almost every n-element order P in this model.

In the uniform model, the situation is somewhat different: with the help of the
fundamental result of [12], it is easy to see that almost all n-element partial
orders are such that any search strategy makes at least about n/4 queries in

3

the worst case. We therefore consider a slightly more ‘generous’ hider, who
replies whether or not s = u, and if this is not the case then tells the seeker
whether u ≺ s, s ≺ u, or that u is not comparable with s. With this more
generous hider, almost all partial orders P admit search strategies that require
at most

(6.33 . . . + o(1)) log3 n

queries. We shall present a polynomial time algorithm to produce such a strat-
egy.

Since we need to make at least log2 n queries for any n-element partial or-
der (log3 n in the ‘generous’ hider version), our results tell us that one may
efficiently devise near-optimal search strategies for almost all partial orders
in the first model, and one may efficiently devise search strategies for almost
all partial orders in the second model that are worse than the optimal by a
constant factor only.

We now introduce the notation and the formal definitions that we shall use.

1.1 Problem Statement and Notation

A partial order is a pair P = (S,≺), where S is a set and ≺ is a binary relation
on S that is irreflexive, anti-symmetric, and transitive. If x, y ∈ S then x ≺ y
stands for (x, y) ∈ ≺. If X is a subset of S, we let P (X) = (X,≺ ∩X2) and
P −X = P (S−X). For the remainder of this section, P = (S,≺) will denote
an order and X will denote a subset of S.

An ideal of P is a set I ⊆ S such that, for all i ∈ I, if s ≺ i then s ∈ I. We
write IP (X) for the minimal ideal I of P such that X ⊆ I and write I−P (X)
for IP (X) − X. Dualizing, we obtain the notion of filters. Let P ∗ = (S,≺′)
be the dual order to P , that is, the order with x ≺′ y if and only if y ≺ x.
An ideal in P ∗ is called a filter of P . Moreover, we let FP (X) = IP ∗(X)
and F−

P (X) = I−P ∗(X). When the order P is clear from the context, we omit
the subscript P .

A query about u ∈ U to s ∈ S has three possible outcomes, namely, hit, smaller
and no, meaning, respectively, u = s, u ≺ s and u � s. A search for u ∈ U
through S is a sequence of queries terminating with hit, or else with a situation
in which one may deduce that u /∈ S.

Consider a search for u through S as above. At any given point of the search,
we have a set X ⊆ S of ‘candidates’ and we must choose some s ∈ S to query
about u. Suppose an s 6= u is chosen. Then, once the query is answered, the
set of ‘candidates’ is reduced to X ∩ I−(s) in the case the answer is smaller,
and is reduced to X − I(s) in the case the answer is no.

4

Our goal is to devise a search strategy in which the longest search poses
the smallest number of queries. Such a strategy may be conveniently thought
of as a binary search tree whose nodes are labelled with elements of S and
whose edges are labelled with smaller and no, and furthermore has the smallest
possible height.

In what follows we state some definitions in order to make the above more
precise. As usual, a binary tree T is either the empty tree Λ, with no nodes, or
else T = (r, TL, TR), where r is the root node of T and TL and TR are its left
and right subtrees, which are trees with fewer nodes than T . The height h(T) of
a binary tree T is 0 if T = Λ, and is 1 +max{h(TL), h(TR)} if T = (r, TL, TR).
The rightmost path of a binary tree T = (r, TL, TR) is the path starting at r,
followed by the rightmost path of TR. The rightmost path of Λ is the empty
path.

A binary search tree T for X with respect to P is the empty binary tree Λ
if X = ∅, and if X 6= ∅, then T = (s, TY , TN), where s is some element of S,
and TY and TN are binary search trees for X∩I−(s) and X−I(s), respectively.
(The set X should be thought of as the set of ‘candidate elements’ in S, as
the game between hider and seeker evolves.) See Figure 2 for an example of a
simple binary search tree.

An optimal tree for X with respect to P is a binary search tree for X with
respect to P of minimal height. If we write h∗

P (X) for the height of such a
tree, it is immediate from the above definitions that, for some s ∈ S, we have

h∗
P (X) = 1 + max

{
h∗

P (X ∩ I−(s)), h∗
P (X − I(s))

}
. (1)

A binary search tree for P = (S,≺) is a tree for S with respect to P . An
optimal tree for P is a tree of minimal height for P . Writing h∗(P) for this
minimum, as in (1), we have for some s ∈ S

h∗(P) = 1 + max
{
h∗

P (S ∩ I−P (s)), h∗
P (S − IP (s))

}
. (2)

We may restate SPOS as follows: given a directed graph GP representing the
Hasse diagram of a partial order P , compute an optimal tree for P .

We close this section with some definitions that will be useful later. Recall
that we have a fixed partial order P = (S,≺) and a fixed set X ⊆ S. Let s
and t be arbitrary elements of S.

The elements s and t are said to be comparable if s = t, s ≺ t, or t ≺ s, being
otherwise said to be incomparable; a chain in P is a set of pairwise comparable
elements and an antichain of P is a set of pairwise incomparable elements;
the height of P , denoted h(P), is the cardinality of a maximum chain in P

5

and the width of P , denoted w(P), is the cardinality of a maximum antichain
in P .

A post of P = (S,≺) is an element of S that is comparable to every element
of S. We denote the set of posts of P by πP and note that πP is a chain in P .

An element s is maximal if there is no t such that s ≺ t. The set of maximal
elements in P will be called the first layer of P and will be denoted L1(P).
For each 1 < k ≤ h(P), the k-th layer of P , denoted Lk(P), is defined as the
first layer of P − ⋃k−1

i=1 Li(P).

A usual, we let [n] = {1, . . . , n} for any integer n. The set of n-element subsets

of a given set X will be denoted
(

X
n

)
. We write lg for log2 and log for the natural

logarithm.

Recall that an instance to SPOS is a directed graph GP representing the Hasse
diagram of P = (S,≺). Given an algorithm for SPOS, we focus on the maximal
height of the trees computed by this algorithm as a function of the number of
elements in the input order P .

We note that when P is a total order (that is, when S is a chain), an optimal
tree for P is the usual binary search tree for S. In this case, the height of the
corresponding tree is blg nc + 1 and such a tree may be built in polynomial
time. On the other extreme, if S is an antichain, the height of the optimal tree
is n.

Organization. This paper is organized as follows. In Section 2 we men-
tion some related results concerning searching in partially ordered sets. In
Section 3 we show that SPOS is NP-hard, by showing that the correspond-
ing decision problem is NP-complete. In Section 4 we present a polynomial
time algorithm for building a tree that has height almost surely bounded by
lg n+O

(
(log n)1/2 log log n

)
under the random graph model for n-element par-

tial orders. In Section 5 we present a polynomial time algorithm for building
a tree that has height almost surely bounded by 6.34 log3 n under the uni-
form model for n-element partial orders (assuming the search model with the
‘generous’ hider).

In Section 6 we make some general remarks and discuss some connections
between our results and a related problem studied in [14].

6

2 Related Work

As mentioned above, we show in Section 3 that the problem of searching
through a partially ordered set is NP-hard. We note that our proof may be
easily modified so as to encompass the case in which the given order P has
a maximum element. The more restricted case in which P has a maximum
element and GP is a tree (the so called rooted tree case) may be solved in
polynomial time, as proved in [4], where the authors give a O(n4(log n)3) time
algorithm for computing an optimal tree (as before, n denotes the number of
elements in P). This algorithm does not yield an easy way to estimate the
height of the computed tree, except in a few cases; for instance, when GP is a
complete binary tree, the search tree built by their algorithm has height lg n+
lg∗ n + Θ(1).

A much simpler algorithm for the rooted tree case is presented in [9]. This
algorithm computes in time O(n log n) a search tree whose height exceeds
the optimum by at most lg n. Since the optimal tree must have height at least
lg n, this algorithm constitutes a 2-approximation algorithm for SPOS for such
instances.

Concerning the approximability in the worst case of the general problem, there
is a polynomial time O(log n)-approximation algorithm, since one can easily
check that SPOS is a restriction of the decision tree problem for which a simple
greedy algorithm with such an approximation ratio is known [2]. Optimized
exponential time algorithms for building search trees for partial orders are
presented in [15]. However, that work considers the minimization of the path
length of the tree, instead of its height.

A different although related problem is considered in [14], motivated by the
following setting: suppose we are given an m×n real matrix M whose distinct
entries are known to be increasing along the rows and along the columns, and
suppose we wish to decide whether a given real number u occurs in M . The
goal is to devise a search strategy which minimizes the number of inspections
of entries of M in the worst case.

If one looks at the matrix as the product of two chains of length m and n, the
problem may be thought of as a problem of searching in a partially ordered
set. However, the underlying assumption that the entries of M come from a
totally ordered set actually turns it into a different problem, which we discuss
in Section 6. The work in [13] and [14] determines bounds for arbitrary orders
and studies in detail the case in which P is a product of chains and the case
in which GP is a rooted tree.

7

3 Computational Complexity

In this section, we prove that SPOS is NP-hard, answering the main question
raised in [4]. We shall reduce the exact cover by 3-sets problem, which is NP-
complete (see [16, p. 201]), to a decision problem version of SPOS. We start
by stating precisely the problems involved in the reduction.

Exact Cover by 3-Sets (EC)
Input: A finite set X of size 3n and a family ∆ ⊆

(
X
3

)
.

Question: Is there a set Γ ⊆ ∆ with |Γ| = n such that
⋃

γ∈Γ γ = X?

The decision problem version of SPOS that we consider is as follows.

Search in Partially Ordered Set (SPOSd)
Input: A graph GP , representing the Hasse diagram of an order P , and an

integer k.
Question: Is there a tree for P with height at most k?

We now describe a polynomial reduction from E3C to SPOSd. Let an in-
stance (X, ∆) for E3C be given, where |X| = 3n and ∆ ⊆

(
X
3

)
. We define an in-

stance (PX,∆, k) to SPOSd from (X, ∆) as follows. We let k = |X|/3+2|∆|+3.
To define PX,∆, we first let x̄1, x̄2, x̄3 /∈ X be three new elements, and let X̄ =
{x̄1, x̄2, x̄3}. The partial order PX,∆ = (SX,∆,≺X,∆) is defined as follows. The
set SX,∆ is given by

SX,∆ = ∆ ∪X ∪ X̄ ∪ Q̄,

where
Q̄ = (X ∪ X̄)× {1, . . . , 2|∆|}.

The relation ≺X,∆, which we henceforth denote simply by ≺, is the smallest
order relation such that x ≺ δ for all x ∈ δ ∈ ∆ and (x, j) ≺ x for all x ∈ X∪X̄
and all j ∈ {1, . . . , 2|∆|} (see Figure 1).

δ1 δ2

x1 x2 x3 x3n

1 2 · · · 2|∆| 1 2 · · · 2|∆| 1 2 · · · 2|∆| 1 2 · · · 2|∆| 1 2 · · · 2|∆| 1 2 · · · 2|∆|1 2 · · · 2|∆|

δ|∆|

x̄1 x̄2 x̄3

Fig. 1. A schematic view of the order PX,∆

We shall now prove that there is an exact cover for (X, ∆) if and only if there
is a tree for PX,∆ of height at most k = |X|/3 + 2|∆| + 3. We start with a
simple fact.

8

Lemma 1 Let δ ∈ ∆ be given. The height of an optimal tree for I−(δ) is at
most 3 + 2|∆|.

PROOF. It suffices to present a search strategy for the seeker that makes
at most 3 + 2|∆| queries. Suppose δ = {xa, xb, xc}. The seeker first queries
whether u, the hider’s choice, is xa, xb, or xc. If he gets a hit for any of these
queries, or else if he gets three no answers, then he is done. If the answer is
smaller for some xα (α ∈ {a, b, c}), then he queries the 2|∆| elements strictly
below xα in PX,∆. Clearly, at worst, 3 + 2|∆| queries will be required.

The above informal description of the search strategy should suffice, but we
include a brief description of a binary search tree T that formalizes the strat-
egy. The rightmost path of T has nodes xa, xb, and xc. Furthermore, the left
subtree of xα (α ∈ {a, b, c}) is a tree for I−(xα) with height 2|∆|. Clearly,
h(T) = 3 + 2|∆| (see Figure 2). 2

1 2 · · · 2|∆|

xb smaller

smaller

smaller

1 2 · · · 2|∆|

xa

1 2 · · · 2|∆|

xc

u not in I−(δ)

no

Tree for I−(xa)

Tree for I−(xb)

Tree for I−(xc)

xa

xb

xc

no

no

Fig. 2. The order induced by I−(δ) and the search tree for I−(δ)

Lemma 2 If there is an exact cover for (X, ∆), then there is a tree for PX,∆

of height at most k = |X|/3 + 2|∆|+ 3 = n + 2|∆|+ 3.

PROOF. We suppose that (X, ∆) has an exact cover, and describe a search
strategy for the seeker that makes at most n + 2|∆|+ 3 queries. Let {δi : 1 ≤
i ≤ n} ⊆ ∆ be an exact cover for X. The seeker proceeds as follows. He first
queries whether u is δ1, . . . , δn, x̄1, x̄2, x̄3, in this order. If he gets a hit, or else
if he gets n + 3 no answers, he is done.

Suppose the answer is smaller for the query δi for some 1 ≤ i ≤ n. Then
he uses the search strategy of Lemma 1, which will require at most 3 + 2|∆|
further queries, giving a total of at most n + 2|∆|+ 3 queries, as required.

Suppose now that the answer is smaller for the query x̄j for some 1 ≤ j ≤ 3.
Then with 2|∆| further queries to the elements strictly below x̄j in PX,∆, he
will be done. 2

9

Suppose x ∈ X ∪X̄. It is easy to devise a ‘hiding strategy’ that forces 2|∆|+1
queries of the seeker in a search for an element u ∈ I(x). The following fact,
which will be used in the proof of Lemma 4, is a generalization of this remark.

Fact 3 Let x ∈ X ∪ X̄ and S ′ ⊆ SX,∆ be given. If I(x) ⊆ S ′, then the height
of the optimal tree for S ′ is at least 2|∆|+ 1. 2

Lemma 2 and Lemma 4 below prove that our reduction from E3C to SPOSd
works.

Lemma 4 If PX,∆ admits a tree of height at most k = |X|/3 + 2|∆| + 3 =
n + 2|∆|+ 3, then there is an exact cover for (X, ∆).

PROOF. Let T be an optimal tree for PX,∆, and suppose

h(T) ≤ k = n + 2|∆|+ 3. (3)

The first observation is that the rightmost path R of T has at least n+3 nodes.
To see this, first observe that each of the 3n + 3 elements in X ∪ X̄ is either
in R, or else is smaller than some element in R. However, an element s in PX,∆

has below it either at most 3 elements of X or else at most 1 element of X̄,
that is, |I(s)∩X| ≤ 3 and I(s)∩X̄ = ∅, or else I(s)∩X = ∅ and |I(s)∩X̄| ≤ 1.
Therefore, R must have at least n + 3 nodes.

Let a1, . . . , an+3 be the first n + 3 nodes in R. More precisely, let a1 be the
root of T , and let ai be the right child of ai−1 (1 < i ≤ n + 3). We put A =
{a1, . . . , an+3}.

Given x ∈ X ∪ X̄, we say that x is good if it is not comparable in PX,∆ to any
element in A, that is, x /∈ I(A) ∪ F (A).

We claim that if x ∈ X∪X̄ is good, then I(x) is contained in the right subtree
of an+3. To see this, fix y ∈ I(x), and suppose y is not in the right subtree
of an+3. Then y is in A, or else it is in the left subtree of some aj ∈ A. Since x
is comparable with y and x is good, we cannot have y ∈ A. Therefore, y is in
the left subtree of some aj, that is, y ≺ aj. Since y ∈ I(x) and x ∈ X ∪ X̄, we
must have aj = x, or else aj = δ for some δ ∈ ∆ with x ≺ δ. In either case, we
have x comparable to some element in A, contradicting the hypothesis that x
is good. This contradiction shows that I(x) is indeed contained in the right
subtree of an+3, as claimed.

Suppose now that a good element x ∈ X ∪ X̄ exists. The fact that I(x) is
contained in the right subtree of an+3 and Fact 3 imply that h(T) ≥ n+2|∆|+4.
As we are assuming (3), this shows that a good element does not exist, that
is, every element of X ∪ X̄ is comparable to some element in A. In particular,

10

|I(X̄) ∩ A| ≥ 3, and hence |A − I(X̄)| ≤ n. Since every element of X is
comparable to some element in A and |X| = 3n, it is easily seen that A−I(X̄)
must be an exact cover for X. 2

Problem SPOSd is inNP and E3C isNP-complete (see [16, p. 201]). Lemmas 2
and 4 tell us that (X, ∆) 7→ (PX,∆,≺) gives a polynomial time reduction
from E3C to SPOSd, and hence we are done.

Theorem 5 SPOSd is NP-complete. 2

4 The Random Graph Model

In this section, we study the case in which the instances to SPOS are generated
according to the random graph model. The random graph order probability
space, denoted Pn,p, is the probability space of all orders ([n],≺) obtained by
independently choosing each pair of {(i, j) ∈ [n]2 : i < j} with probability p
and taking the transitive closure of the resulting relation. We denote a random
element of Pn,p by Pn,p. The reader is referred to [7] for a detailed discussion
of this model. We start with some algorithmic considerations.

4.1 The Algorithm

Let P = (S,≺) be an order and let us define a median layer of P as a layer m
of P satisfying

∣∣∣∣∣
m−1⋃
i=1

Li(P)

∣∣∣∣∣ ≤ 1

2
|S| and

∣∣∣∣∣
h(P)⋃

i=m+1

Li(P)

∣∣∣∣∣ ≤ 1

2
|S|.

Consider the following version of the usual binary search strategy, adapted to
the case of partial orders.

Algorithm B̄(P)
(1) m← index of a median layer of P ;
(2) L↑ ←

⋃m−1
i=1 Li(P);

(3) L↓ ←
⋃h(P)

i=m+1 Li(P);
(4) Perform a query about u to each s ∈ Lm(P):

(a) if the outcome of one of these queries is hit, return yes;
(b) if the outcome of one of these queries is smaller, return B̄(P (L↓));
(c) if the outcome to all these queries is no, return B̄(P (L↑));

11

Let us call the above strategy the extended binary search. We write B for the
algorithm that, given a directed graph GP representing the Hasse diagram
of P , produces the binary search tree corresponding to the algorithm B̄(P)
given above. Since the decomposition of P into its layers can be computed in
polynomial time using breadth-first search, we clearly have the following fact.

Fact 6 Algorithm B computes in polynomial time a binary search tree for P
of height at most w(P)(blg h(P)c+ 1). 2

We now turn our attention to another strategy: If πP 6= ∅, then let d1 ≺ d2 ≺
. . . ≺ dk (k = |πP |) be the posts of P and define the segments Si(P) of P by

Si(P) =

I(d1), if i = 0;

I(di+1)− I(di), if 0 < i < k;

S − I(dk), if i = k.

(4)

We now consider the following search strategy.

Algorithm Ā(P)
If πP = ∅, return B̄(P);
otherwise perform the usual binary search on πP , looking for u.

If u is found, return yes;
otherwise, return B̄(P (Si−1(P))),

where i = min
(
{j : u ≺ dj} ∪ {k + 1}

)
.

Let A be the algorithm that, given a directed graph GP representing the
Hasse diagram of P , produces the binary search tree corresponding to the
algorithm Ā(P) given above.

Fact 7 If πP 6= ∅, algorithm A computes in polynomial time a binary search
tree for P of height at most lg n+1+w(P)

(
blg max0≤i≤|πP | |Si(P)|c+1

)
. 2

4.2 Analysis

In this section, we shall show that the algorithm A from Section 4.1 performs
well when run on input Pn,p, if p is a constant. In fact, this will follow eas-
ily from the fact that, for p constant, a typical Pn,p is such that w(Pn,p) =
O(
√

log n) and, for all segments Si(Pn,p) of Pn,p, we have |Si(Pn,p)| = O (log n).
The analysis in Section 4.1 will therefore imply that the height of the tree com-
puted by A is at most lg n + O((log n)1/2 log log n).

Let us first consider the cardinality of the segments of Pn,p. Recall that the

12

segments of an order are defined by its posts. The notion of post is crucial in
the investigation of the structure of Pn,p (see, for instance, [1,6]); here, it will
suffice to make use of some basic facts about them.

One may define the random graph order PZ,p = (Z,≺) on Z in the same way
that we defined Pn,p = ([n],≺) on [n]. It turns out that the distances between
consecutive posts of PZ,p are independent, identically distributed random vari-
ables [1]. Let us write L for a random variable with this distribution. Recently,
settling a question raised in [1], the following tail inequality for L has been
proved.

Theorem 8 (Kim and Pittel [11]) Let 0 < p < 1 be fixed. There exists a
constant c = c(p) > 0 such that P (L > l) ≤ exp(−cl) for all l > 0. 2

An immediate consequence of the above result is as follows.

Corollary 9 Let 0 < p < 1 be fixed and let C be a constant with C > 1/c,
where c = c(p) is as in Theorem 8. The random graph order Pn,p has almost
surely no segment with more than C log n elements.

PROOF. The cardinality of the segment Si(Pn,p) (1 ≤ i < k = |πn,p|) of Pn,p

is the distance di+1 − di between the posts di and di+1 (we follow the no-
tation introduced in Section 4.1; see (4)). Moreover, the segments S0(Pn,p)
and Sk(Pn,p) have cardinalities d1 and n− dk.

It follows from Theorem 8 that the random variables |Si(Pn,p)| (0 ≤ i ≤ k)
satisfy the exponential tail inequality in that result. In particular, for any
fixed i, the probability that |Si(Pn,p)| > C log n is o(1/n). As Pn,p has at
most n segments, the probability that some segment |Si(Pn,p)| has cardinality
greater than C log n is o(1). 2

Consider now a layer Li(Pn,p) of Pn,p. Since Li(Pn,p) is an antichain of Pn,p, we
may make direct use of the following result, proved by Barak and Erdős [3].
We follow Bollobás and Brightwell [5], where an oversight in [3] is corrected.

Theorem 10 Let p be a constant with 0 < p < 1 and set q = 1− p. Let δ > 0
be a constant and set

Kn,p =

√
2 log n

log(1/q)
+

1

4
+

1

2
, (5)

so that nq(
Kn,p

2) = 1. Then, almost surely, the width w(Pn,p) of Pn,p satisfies

bKn − δc ≤ w(Pn,p) < dKn + δe. 2

13

We are now in position to prove the main result of this section, namely, we
shall now show that, almost surely, the algorithm Ā(Pn,p) from Section 4.1
makes at most lg n + O(

√
log n log log n) queries in the worst case.

Theorem 11 Let 0 < p < 1 be fixed. Almost surely, the search tree corre-
sponding to the algorithm Ā(Pn,p) has height at most lg n+O(

√
log n log log n).

PROOF. In view of Corollary 9 and Theorem 10, there are constants c1 =
c1(p) and c2 = c2(p) that depend only on p such that, almost surely, Pn,p sat-
isfies w(Pn,p) ≤ c1

√
log n and all segments Si(Pn,p) of Pn,p have cardinality at

most c2 log n. Recalling Fact 7, Theorem 11 follows. 2

5 The Uniform Model

In this section we study the problem of searching in a typical partial order
according to the uniform model. We start by stating some definitions and a
key auxiliary result.

Denote by P(n) the set of all partial orders on [n]. Taking P(n) with the
uniform distribution, that is, making each partial order equally likely, we have
the uniform model for random partial orders; a random element in this model
will be denoted Un. The reader is again referred to [7] for a detailed discussion
of this model.

It is known that almost all Un have a strong structural property, which we
now describe. Let (X1, X2, X3) be a partition of [n], and let A(X1, X2, X3) be
the set of partial orders P = ([n],≺) such that every x3 ∈ X3 is smaller than
every x1 ∈ X1, and such that if xi ∈ Xi, xj ∈ Xj, and xi ≺ xj, then i > j.
Thus, an order P in A(X1, X2, X3) is determined by arbitrarily selecting to
be in P some relations of the forms x3 ≺ x2 and x2 ≺ x1 (xi ∈ Xi, 1 ≤ i ≤ 3).
In particular, |A(X1, X2, X3)| = 2|X1||X2|+|X2||X3|.

Answering the question “what does a ‘typical’ partial order on [n] look like?”,
Kleitman and Rothschild proved the following rather surprising result.

Theorem 12 (Kleitman and Rothschild [12]) Let ω = ω(n) be an ar-
bitrary function such that ω → ∞ as n → ∞. Almost every partial or-
der on [n] lies in A(X1, X2, X3) for some partition (X1, X2, X3) of [n] with∣∣∣|X2| − n/2

∣∣∣ < ω and
∣∣∣|X3| − n/4

∣∣∣ < ω
√

n. 2

Theorem 12 makes the problem of searching in typical partial orders as stated
in Section 1 rather uninteresting, since our search model makes it unavoidable

14

to query each of the maximal elements of the given order, and Theorem 12
tells us that almost all orders have (1/4 + o(1))n such elements.

To make the problem more interesting, we now consider a variant of our search
model, where a query to s about u has four possible outcomes: smaller, greater,
hit and no meaning, respectively, u ≺ s, s ≺ u, s = u and “s is not comparable
to u”; accordingly, a strategy is redefined to be a ternary search tree (see
Section 1.1). In this section we shall prove that, under the uniform model, it
is almost always possible to construct a ternary search tree of height O(log n)
in polynomial time.

5.1 Probabilistic Preliminaries

For the remainder of Section 5, an arbitrary function ω = ω(n) with ω →∞
as n → ∞ is fixed. For convenience, we let Πn(ω) denote the set of parti-
tions (X1, X2, X3) of [n] as in the statement of Theorem 12, that is, such that∣∣∣|X2| − n/2

∣∣∣ < ω and
∣∣∣|X3| − n/4

∣∣∣ < ω
√

n. Also, let

Akr(n, ω) =
⋃

Πn(ω)

A(X1, X2, X3), (6)

where the union is taken over all (X1, X2, X3) ∈ Πn(ω). Note that Theorem 12
asserts that |Akr(n, ω)|/|P(n)| → 1 as n→∞.

A standard argument, given below for completeness, allows us to restrict our
attention to the spaces A(X1, X2, X3) ((X1, X2, X3) ∈ Πn(ω)) when proving
that a given property happens almost surely in the probability space Un.

Lemma 13 Let E ⊆ P(n) be an event such that the probability that Un ∈
E, conditional on Un ∈ A(X1, X2, X3), tends to 1 as n → ∞ uniformly on
(X1, X2, X3) ∈ Πn(ω). Then Un ∈ E almost surely.

PROOF. Let Ec = P(n)−E and Akr(n, ω)c = P(n)−Akr(n, ω). We use the
hypothesis on E and Theorem 12 to observe that, in Un, we have

P(Ec) = P(Ec ∩ Akr(n, ω)) + P(Ec ∩ Akr(n, ω)c)

≤
∑

Πn(ω)

P(Ec | A(X1, X2, X3))P(A(X1, X2, X3)) + P(Akr(n, ω)c)

= o(1)
∑

Πn(ω)

P(A(X1, X2, X3)) + o(1) = o(1),

where the sums above are over all (X1, X2, X3) ∈ Πn(ω) (see (6)). 2

15

The binomial bipartite order. Let X and Y be two disjoint sets and
let A(X, Y) be the family of orders P on X ∪ Y defined by putting each
(y, x) ∈ Y × X in P independently, with probability 1/2. In particular, for
any fixed Q ⊆ X, if N is the number of elements y ∈ Y with a given compa-
rability/incomparability relation with all x ∈ Q, then its expectation is

E [N] = |Y |2−|Q|. (7)

It follows from the definition of the space A(X,Y) that all the 2|X||Y | bipartite
orders in A(X, Y) are equiprobable. Furthermore, if (X1, X2, X3) is a partition
of [n], then there is a natural bijection betweenA(X1, X2, X3) andA(X1, X2)×
A(X2, X3). Since all the above spaces are uniform (all orders are equiprobable),
this bijection shows that we may identify the probability spaces A(X1, X2, X3)
and A(X1, X2)×A(X2, X3) in the obvious way.

5.2 Searching 3-Layered Orders

Let P ∈ P(n) be an order, let L be a layer of P , let S be the union of the
layers adjacent to L, and let Q ⊆ L. The following simple algorithm decides
whether u ∈ S:

Algorithm C̄(Q, S)
(1) For each q ∈ Q, query q about u:

if the answer is hit, return no a;
if the answer is smaller, let S ← S ∩ I(q);
if the answer is greater, let S ← S ∩ F (q);
if the answer is no, let S ← S − (I(q) ∪ F (q)).

(2) For each s ∈ S,
query s about u and, if the answer is hit, return yes.

(3) Return no.

a Recall Q ∩ S = ∅.

The number of queries c(Q,S) made by C̄(Q,S) is clearly at most |Q| +
|r(Q,S)|, where r(Q,S) is the set of elements still remaining in S at the
beginning of line 2.

We now consider the case in which C̄(Q,S) is run on P ∈ A(X1, X2, X3), where
(X1, X2, X3) ∈ Πn(ω). In what follows, we fix a function ω′ = ω′(n) = o(log n)
with ω′ →∞ as n→∞.

Lemma 14 Let q(n) = d2 lg n + ω′e, and suppose (X1, X2, X3) ∈ Πn(ω) and P ∈

16

A(X1, X2, X3). If we run C̄(Q,S) on P , where Q ⊆ X2 has cardinality |Q| =
q(n) and S = X1∪X3, then almost surely we have c(Q, S) ≤ q(n)+1. Also, if
we run C̄(Q,S) on P , where Q ⊆ X1 has cardinality |Q| = q(n) and S = X2,
then c(Q,S) ≤ q(n) + 1.

PROOF. Both assertions follow from the fact that q(n) queries almost surely
‘separate’ all pairs in S. Let Z be the number of pairs (x, y) ∈ S × S, x 6= y,
such that {x, y} ⊂ r(Q,S). The expectation of Z is easily seen to be at
most |S|22−|Q| ≤ n22−q(n) = o(1) (recall (7)). Therefore, Z = 0 with probabil-
ity 1− o(1), and hence almost surely |r(Q,S)| ≤ 1. 2

We now consider the following search strategy D̄(P), which works well when
P ∈ A(X1, X2, X3) and (X1, X2, X3) ∈ Πn(ω). Intuitively, D̄(P) first se-
lects q(n) elements from X2 and queries them; this will locate u if u is
in X1 ∪ X3. If u /∈ X1 ∪ X3, then D̄(P) tries to locate u in X2; to do so,
D̄(P) queries q(n) elements from X1.

Algorithm D̄(P)
Let n be the number of elements in P and let q(n) = d2 lg n + ω′e.

(1) If h(P) 6= 3, |L2(P)| < q(n), or |L1(P)| < q(n), return B̄(P) a.
(2) S ← L1(P) ∪ L3(P); Q← a subset of L2(P) of size q(n)
(3) if C̄(Q,S) = yes, then return yes.
(4) S ← L2(P); Q← a subset of L1(P) of size q(n)
(5) return C̄(Q,S).

a See Section 4 for B̄(P).

Suppose P ∈ A(X1, X2, X3) and (X1, X2, X3) ∈ Πn(ω). Then, by Lemma 14,
almost surely the number of queries made by D̄(P) is at most 2(q(n) + 1) =
(4 + o(1)) lg n = (6.33 . . . + o(1)) log3 n.

Theorem 15 Almost every Un admits a ternary search tree of height at most
6.34 log3 n, and such a tree may be constructed in polynomial time. 2

6 Concluding Remarks

We remark that our reduction in Section 3 resembles the one employed in [10]
to prove that the optimal decision tree problem is NP-complete. In fact, SPOS
may be viewed as a restriction of the optimal decision tree problem.

17

In Section 4, we consider only the case in which p is a constant, independent
of n. It would be of interest to investigate the case in which p→ 0 as n→∞.
Results similar to the ones in Section 4 hold if p tends to 0 very slowly, but a
completely new approach will be required to deal with the case in which, say,
p� 1/ log n (see [5] and [6]).

We observe that one may also study the uniform model conditioning on having
sparser partial orders. To carry out this investigation, the recent results in [17]
and [18] would be the starting point. We also refer the reader to [8] for a
remarkable sharpening of Kleitman and Rothschild’s theorem.

As mentioned in Section 2, Linial and Saks [14] consider a different, although
related problem where the set U is totally ordered, the given partial order P =
(S,≺) is ‘compatible’ with this total order (the total order is a linear extension
of ≺), and where each query about u ∈ U to s ∈ S is made with respect to the
total order and not with respect to P , as is our case.

To see why this turns out to define a different problem, consider what informa-
tion is gained in a search through S for u ∈ U when we query s ∈ S about u
and the outcome is smaller: in our problem, such an outcome is enough to
confine the remaining of the search to S ∩ I(s); in their problem, however,
this is not the case: as the query is made with respect to the total order, the
outcome smaller leaves all elements in S−{x ∈ S : s ≺ x} as valid candidates.

While not presenting explicitly an algorithm to compute an optimal tree for
their problem, it is a consequence of the results in [13] and [14] that the
height H of an optimal tree for the problem satisfies

lg ι(P) ≤ H ≤ κ lg ι(P), (8)

where ι(P) is the number of ideals of P and κ = (2 − lg(1 + lg 5))−1 =
3.73 We note that this fact alone leads to results similar to those reached
in Section 4 when we consider their problem for random graph orders with p
constant. Let us briefly discuss this.

A possible search strategy is again to isolate one segment by means of a
binary search restricted to the posts of the order and then to search through
this segment using an extended binary search (algorithm B̄).

An ideal of a partial order is uniquely determined by the antichain of its
maximal elements. Therefore, the number of ideals in a segment R is bounded
by the number of antichains it contains, and hence

ι(P (R)) ≤
w(P)∑
i=1

(
|R|
i

)
≤ |R|w(P).

Together with the bounds in (8) and Theorem 10, this allows us to deduce

18

the existence of a tree for R of height at most κ lg ι(P (R)) = O(w(P) lg |R|).
Hence, for any partial order, there is a tree of height H ≤ lg n+O(w(P) lg r),
where r is the maximal cardinality of the segments of P . Again, by Corollary 9
and Theorem 10, we almost surely have H ≤ lg n + O((log n)1/2 log log n).

Acknowledgements. The authors are much indebted to the referees for
their thorough and most valuable comments and suggestions. In particular,
a referee simplified the reduction that we originally had for the proof of the
NP-completeness of SPOSd, suggested improvements to the algorithms in Sec-
tion 5, and also told us about [11], which simplified the exposition in Section 4.

References

[1] N. Alon, B. Bollobás, G. Brightwell, and S. Janson. Linear extensions of a
random partial order. Ann. Appl. Probab., 4:108–123, 1994.

[2] E. Arkin, H. Meijer, J. Mitchell, D. Rappaport, and S. Skiena. Decision trees
for geometric objects. Internat. J. Comput. Geom. Appl., 8:343–363, 1998.

[3] A. B. Barak and P. Erdős. On the maximal number of strongly independent
vertices in a random acyclic directed graph. SIAM Journal on Algebraic and
Discrete Methods, 5(4):508–514, 1984.

[4] Y. Ben-Asher, E. Farchi, and I. Newman. Optimal search in trees. SIAM
Journal on Computing, 28(6):2090–2102, Dec. 1999.

[5] B. Bollobás and G. Brightwell. The width of random graph orders. Math. Sci.,
20(2):69–90, 1995.

[6] B. Bollobás and G. Brightwell. The structure of random graph orders. SIAM
Journal on Discrete Mathematics, 10(2):318–335, May 1997.

[7] G. Brightwell. Models of random partial orders. In Surveys in combinatorics,
1993 (Keele), volume 187 of London Math. Soc. Lecture Note Ser., pages 53–83.
Cambridge Univ. Press, Cambridge, 1993.

[8] G. Brightwell, H. J. Prömel, and A. Steger. The average number of linear
extensions of a partial order. J. Combin. Theory Ser. A, 73(2):193–206, 1996.

[9] L. G. Holanda. Algoritmos e novos limites para busca em conjuntos
parcialmente ordenados. Master’s thesis, COPPE-UFRJ, 2001. (In Portuguese).

[10] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-
complete. Information Processing Letters, 5(1):15–17, May 1976.

[11] J. H. Kim and B. Pittel. On tail distribution of interpost distance. Journal of
Combinatorial Theory Series B, 80:49–56, 2000.

19

[12] D. J. Kleitman and B. L. Rothschild. Asymptotic enumeration of partial orders
on a finite set. Trans. Amer. Math. Soc., 205:205–220, 1975.

[13] N. Linial and M. Saks. Every poset has a central element. Journal of
Combinatorial Theory, Series A, 40:195–210, 1985.

[14] N. Linial and M. Saks. Searching ordered structures. Journal of Algorithms,
6(1):86–103, Mar. 1985.

[15] M. J. Lipman and J. Abrahams. Minimum average cost testing for partially
ordered components. IEEE Transactions on Information Theory, 41(1):287–
291, Jan 1995.

[16] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, New York,
1994.

[17] H. J. Prömel, A. Steger, and A. Taraz. Counting partial orders with a fixed
number of comparable pairs. Combin. Probab. Comput., 10(2):159–177, 2001.

[18] H. J. Prömel, A. Steger, and A. Taraz. Phase transitions in the evolution of
partial orders. J. Combin. Theory Ser. A, 94(2):230–275, 2001.

20

