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Abstract. We consider quasirandom properties for Cayley graphs of finite

abelian groups. We show that having uniform edge-distribution (i.e., small

discrepancy) and having large eigenvalue gap are equivalent properties for
Cayley graphs, even if they are sparse. This positively answers a question of

Chung and Graham [“Sparse quasi-random graphs”, Combinatorica 22 (2002),

no. 2, 217–244] for the particular case of Cayley graphs, while in general the
answer is negative.

1. Introduction

Our aim in this paper is to investigate certain delicate aspects of a well known
connection between the eigenvalue gap property and quasirandomness of graphs.

Thanks to the work of Tanner [20], Alon and Milman [3] and Alon [1] (see also
Alon and Spencer [4, Chapter 9]) it is well known that a gap between the largest
and the second largest eigenvalue of a graph G is related to the quasirandomness
of G. Here, the concept of “quasirandomness” will be that of Chung, Graham, and
Wilson [9].

Let an n-vertex graph G be given. Recall that the eigenvalues of G are simply the
eigenvalues of the n by n, 0–1 adjacency matrix of G, with 1 indicating edges. As
usual, let λk = λk(G) be the kth largest eigenvalue of G, in absolute value. Recall
that G is said to be “quasirandom” if the edges of G are “uniformly distributed”
(we postpone the precise definition, see Definition 1). A fundamental result relating
the λi to quasirandomness states that there is a large gap between λ1 and λk (k ≥ 2)
if and only if G is quasirandom.

The assertion above may be turned precise in different ways. We are interested
in the form given by Chung, Graham, and Wilson [9]. Recall that [9] presents a
“theory of quasirandomness” for graphs, exhibiting several, quite disparate almost
sure properties of graphs that are, quite surprisingly, equivalent in a deterministic
sense. Earlier work in this direction is due to Thomason [21] (see also [22]), and also
Alon [1], Alon and Chung [2], Frankl, Rödl and Wilson [10], and Rödl [18]. One
of the so-called “quasirandom properties” that is presented in [9] is the eigenvalue
gap between λ1 and λk (k ≥ 2).
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More recently, Chung and Graham [8] set out to investigate the extension of
the results in [9] to sparse graphs, that is, graphs with vanishing edge-density. As
it turns out, a näıve approach to such a project is doomed to fail, as the results
in [9] do not generalise to the “sparse case” in the expected manner (for a thorough
discussion on this point, the interested reader is referred to [8] and also to [13,
14]). In particular, having succeeded in proving that eigenvalue gap does imply
uniform distribution of edges in the sparse case, Chung and Graham ask whether
the converse also holds (see [8, p. 230]). An affirmative answer to this question
would fully generalise the relationship between these two concepts to the sparse
case.

However, Krivelevich and Sudakov [15] discovered that, unfortunately, the an-
swer to the question posed by Chung and Graham is negative, by constructing a
suitable family of counterexamples (see Section 3 for a different construction). Here,
our aim is to show that the answer is positive if one considers Cayley graphs of fi-
nite abelian groups, regardless of the density of the graph. We leave the non-abelian
case as an open question. It is worth noting that several explicit constructions of
quasirandom graphs are indeed Cayley graphs (see, e.g., [22] and [15, Section 3]).

Before we proceed to state our result precisely, we mention that our proof method
also sheds some light on the investigation of quasirandom subsets of Zn = Z/nZ,
in the spirit of Chung and Graham [7], in the sparse case (and for general abelian
groups, as suggested in [7, p. 85]). We shall come back to this topic in the near
future.

1.1. Statement of the main result. We use the following notation. IfG = (V,E)
is a graph, we write e(G) for the number of edges |E| in G. If U ⊂ V is a set of
vertices of G, then G[U ] denotes the subgraph of G induced by U . Furthermore,
if W ⊂ V is disjoint from U , then we write G[U,W ] for the bipartite subgraph
of G naturally induced by the pair (U,W ). We also sometimes write E(U,W ) =
EG(U,W ) for the edge set of G[U,W ].

If δ > 0, we write x ∼δ y to mean that

(1− δ)y ≤ x ≤ (1 + δ)y.

Moreover, sometimes it will be convenient to write O1(δ) for any term β that
satisfies |β| ≤ δ. Observe that, clearly x ∼δ y is equivalent to x = (1 +O1(δ))y.

Definition 1 (DISC(δ)). Let 0 < δ ≤ 1 be given. We say that an n-vertex graph G
(n ≥ 2) satisfies property DISC(δ) if the following assertion holds: for all U ⊂ V (G)
with |U | ≥ δn, we have

e(G[U ]) ∼δ e(G)
(
|U |
2

)/(
n

2

)
.

The concept of DISC2 is very much related to DISC, as we shall see next.

Definition 2 (DISC2(δ′)). Let 0 < δ′ ≤ 1 be given. We say that an n-vertex
graph G (n ≥ 2) satisfies property DISC2(δ′) if the following assertion holds: for
all disjoint U and W ⊂ V (G) with |U |, |W | ≥ δn, we have

e(G[U,W ]) ∼δ′ e(G)|U ||W |
/(

n

2

)
.

The following fact is very easy to prove and we omit its proof.
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Fact 3. For any 0 < δ′ ≤ 1, there is 0 < δ = δ(δ′) ≤ 1 such that any graph that
satisfies DISC(δ) must also satisfy DISC2(δ′).

Given a graph G, let A = (aγγ′)γ,γ′∈Γ be the 0–1 adjacency matrix of G, with 1
denoting edges. The eigenvalues of G are simply the eigenvalues of A. Since A is
symmetric, its eigenvalues are real. As usual, we adjust the notation so that these
eigenvalues are such that

λ1 ≥ |λ2| ≥ · · · ≥ |λn| (1)
(the fact that λ1 ≥ 0 follows, for instance, from the fact that A has no negative
entries and, as it turns out, λ1 = max{〈Av,v〉 : ‖v‖ = 1}).
Definition 4 (EIG(ε)). Let 0 < ε ≤ 1 be given. We say that an n-vertex graph G
satisfies property EIG(ε) if the following holds. Let d̄ = d̄(G) = 2e(G)/n be the
average degree of G, and let λ1, . . . , λn be the eigenvalues of G, with the notation
adjusted in such a way that (1) holds. Then

(i) λ1 ∼ε d̄,
(ii) |λi| ≤ εd̄ for all 1 < i ≤ n.

Finally, we define Cayley graphs.

Definition 5 (Cayley graph G = G(Γ, A)). Let Γ be an abelian group, and sup-
pose A ⊂ Γ \ {0} is symmetric, that is, A = −A. The Cayley graph G = G(Γ, A) is
defined to be the graph on Γ, with two vertices γ and γ′ ∈ Γ adjacent in G if and
only if γ′ − γ ∈ A.

In this paper, we only consider finite graphs and finite abelian groups.
The main aim of this paper is to answer a question of Chung and Graham from [8]

in the positive for an interesting class of graphs.

Theorem 6. For any ε > 0, there are constants δ > 0 and n0 ≥ 1 for which the
following holds. If G = G(Γ, A) is a Cayley graph for some abelian group Γ and
symmetric set A = −A ⊆ Γ \ {0}, the number of vertices n = |Γ| of G satisfies n ≥
n0, and G satisfies property DISC(δ), then G satisfies EIG(ε).

We give the proof of this theorem in Section 2.

1.2. Remarks on the main result. Before we proceed, let us discuss some points
concerning Theorem 6; more technical details are given in Section 3.

We first observe that Theorem 6, together with the results of Chung and Gra-
ham [8], imply that properties DISC and EIG are equivalent for Cayley graphs.
We say that DISC implies EIG for Cayley graphs if for every ε > 0 there is a
δ = δ(ε) > 0 such that, for any sequence of n-vertex dn-regular Cayley graphs Gn

with dn tending to infinity as n→∞, the following holds: if all but finitely many
graphs Gn satisfy DISC(δ), then all but finitely many Gn satisfy EIG(ε). Theorem 6
tells us that DISC implies EIG for sequences of Cayley graphs. In [8, Theorem 1]
it is proved that EIG implies DISC in the same sense for sequences of arbitrary
graphs with average degree tending to infinity.

Secondly, we note that in general it is not true that DISC implies EIG for arbi-
trary sequences of graphs. This was already pointed out by Krivelevich and Sudakov
in [15]. For every ε > 0 and every δ > 0, they constructed an infinite sequence of
graphs that satisfy DISC(δ) but fail to satisfy (i) in the definition of EIG(ε) (see
Definition 4). A different construction to be presented in Section 3 (see Fact 25)
gives additional control over a constant number of the largest eigenvalues.
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At last, we wish to compare our main result, Theorem 6, with the earlier work
of Chung and Graham [8]. Let us consider the following property.

Definition 7 (CIRCUITt(ξ)). Let 0 < ξ ≤ 1 and an integer t ≥ 3 be given. We say
that an n-vertex graph G with average degree d̄(G) satisfies property CIRCUITt(ξ)
if the number of t-circuits C∗t in G, i.e., closed walks of length t, satisfies

#{C∗t ↪→ G} ∼ξ d̄(G)t .

In [8], it is proved that, under some additional conditions, DISC implies EIG (see
Theorem 6 in [8]). These additional conditions, combined with DISC, also imply
CIRCUIT2` for some ` > 1. The following fact shows that Theorem 6 in [8] does
not imply our main result, as it says that there are sequences of Cayley graphs that
satisfy both DISC and EIG, but fail to meet CIRCUIT2` for every ` > 1.

Fact 8. There is an infinite sequence GN of N -vertex Cayley graphs (N →∞) for
which the following holds:

(i) for every δ > 0 all but finitely many graphs GN satisfy DISC(δ),
(ii) for every ε > 0 all but finitely many graphs GN satisfy EIG(ε),

and

(iii) for every integer ` > 1 and every ξ > 0 only finitely many graphs GN satisfy
CIRCUIT2`(ξ).

We outline the proof of Fact 8 in the last section, Section 3.

2. Proof of the main result

2.1. Eigenvalues of Cayley graphs of abelian groups. The eigenvalues of
Cayley graphs of abelian groups may be determined easily, as shows Theorem 9
below. Theorem 9 follows from a more general result due to Lovász [16] (see also [17,
Exercise 11.8] and [5]).

Before we state Theorem 9, we recall some basic facts about group characters
(for more details see, e.g., Serre [19]). Let Γ be a finite abelian group. In this
case, an irreducible character χ of Γ may be viewed as a group homomorphism
χ : Γ → S1, where S1 is the multiplicative group of complex numbers of absolute
value 1. If Γ has order n, then there are n irreducible characters, say, χ1, . . . , χn,
and these characters satisfy the following orthogonality property :∑

γ∈Γ

χi(γ)χj(γ) = 0 (2)

for all i 6= j. These facts and a simple computation suffice to prove the following
well known result, the short proof of which we include for completeness.

Theorem 9. Let G = G(Γ, A) for some finite abelian group Γ and symmetric
set A = −A ⊆ Γ \ {0}. For any character χ : Γ → S1 of Γ, put

λ(χ) =
∑
a∈A

χ(a). (3)

Then the eigenvalues of G are the λ(χ), where the χ runs over all n = |Γ| irreducible
characters of Γ.
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Proof. Let χ : Γ → S1 be an irreducible character of Γ. Let λ(χ) be as defined
in (3). Consider the vector v(χ) = (χ(γ))T

γ∈Γ, with entries indexed by the elements
of Γ = V (G). Let A = (aγγ′)γ,γ′∈Γ be the adjacency matrix of G.

Fix γ ∈ Γ. Observe that the γ-entry (Av(χ))γ of the vector Av(χ) is

(Av(χ))γ =
∑
a∈A

χ(γ − a) =
∑
a∈A

χ(γ + a) =
(∑

a∈A

χ(a)
)
χ(γ) = λ(χ)χ(γ) ,

and hence Av(χ) = λ(χ)v(χ); that is, v(χ) is an eigenvector of A with eigen-
value λ(χ).

Let χj : Γ → S1 (1 ≤ j ≤ n) be the irreducible characters of Γ. By (2), 〈vj ,vj′〉 =
0 if j 6= j′. Therefore, the vj (1 ≤ j ≤ n) form an orthogonal basis of eigenvectors
of the matrix A and, hence, λ(χj) (j = 1, . . . , n) are indeed the eigenvalues of G. �

2.2. Proof of the main theorem. We shall now present the proof of Theorem 6.
Let a constant ε > 0 be given. The aim is to find some δ > 0 for which prop-
erty DISC(δ) implies EIG(ε) for any Cayley graph G = G(Γ, A). Let us once and
for all fix an abelian group Γ and a symmetric set A ⊆ Γ \ {0}. In what follows, we
write G for the Cayley graph G(Γ, A). We shall always write n for the number of
vertices in G, i.e., n = |Γ| = |V (G)|. We also let |A| = αn.

Clearly, our graph G is |A|-regular. Therefore, the density of the graph G is

e(G)
/(

n

2

)
=

|A|
n− 1

. (4)

Moreover, as is well known, condition (i) of Definition 4 is automatically fulfilled.
We should therefore consider condition (ii) of that definition. Because of Theo-
rem 9, our task is to estimate the λ(χ) given in (3). More precisely, we have to show
that if χ 6≡ 1, then

|λ(χ)| =
∣∣∣∑

a∈A

χ(a)
∣∣∣ ≤ ε|A|. (5)

Thus, let χ : Γ → S1 be a fixed, non-constant irreducible character of Γ. We
shall estimate λ(χ) in two different ways, according to the cardinality of imχ =
{χ(γ) : γ ∈ Γ}. In what follows, we always write m for | imχ|. We also use the
bijection eθi, mapping every θ in R/2πR to eθi in S1. We define

χarg : Γ → R/2πR

to be the homomorphism such that for every γ ∈ Γ

χarg(γ) = arg (χ(γ)) and χ(γ) = eχarg(γ)i .

Furthermore, we let Ω: Z/mZ → R/2πR be the homomorphism

Ω(s) =
2π
m
s for s ∈ Z/mZ .

We also have a homomorphism % : Γ → Z/mZ for which χarg = Ω% holds, so
that χarg(γ) = 2π%(γ)/m for every γ in Γ. Summarising the above, from now on
we will work with the following setup.

Setup 10. Let G = G(Γ, A) be the Cayley graph given by the abelian group Γ and
the symmetric set A = −A ⊆ Γ\{0}. The graph G is of order n = |Γ|, every vertex
has degree |A| = αn, and the density of the graph is |A|/(n− 1).
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Fix an irreducible character χ 6≡ 1, set m = | imχ|, and let χarg, Ω, and % (de-
pending on χ) be group homomorphisms such that the following diagram commutes:

Γ

%

��

χarg

((QQQQQQQQQQQQQQQ
χ // S1 ⊂ C

Z/mZ
Ω

// R/2πR

eθi

OO

As mentioned above we consider two cases for the proof of Theorem 6. In the
first case m will be small. The following lemma will handle that case.

Lemma 11. For every δ′ > 0 there is an n0 ≥ 0 such that if |Γ| = n ≥ n0,
m ≤ 1/δ′, and G = G(Γ, A) satisfies DISC2(δ′), then

|λ(χ)| ≤ 2δ′|A| .

For the other case (m large), we shall need three auxiliary lemmas to verify (5).
The proofs of these three lemmas, as well as the proof of Lemma 11, are given in
Sections 2.3.2–2.3.4. We start with two definitions.

Definition 12 (Z -INT-DISC(%; η, σ)). For positive reals η and σ, we say that A
satisfies Z -INT-DISC(%; η, σ) if for all integers 0 ≤ D1 < D2 ≤ bm/2c + 1 such
that D2 −D1 ≥ ηm we have∣∣A ∩ %−1

(
[D1, D2)

)∣∣ ∼σ
D2 −D1

m
|A|. (6)

Roughly speaking, a set A satisfies Z -INT-DISC if its image under % intersects
“large” intervals uniformly. Next we define a very similar property for A with
respect to χarg and intervals in R/2πR.

Definition 13 (S1-ARC-DISC(χarg; η, σ)). For positive reals η and σ, we say that
A satisfies S1-ARC-DISC(χarg; η, σ) if for all reals 0 ≤ θ1 < θ2 ≤ π such that θ2 −
θ1 ≥ 2πη we have ∣∣A ∩ χ−1

arg

(
[θ1, θ2]

)∣∣ ∼σ
θ2 − θ1

2π
|A|. (7)

Basically, the next three lemmas give the following implications for large m:

DISC =⇒ Z -INT-DISC =⇒ S1-ARC-DISC =⇒ EIG .

These lemmas are stated under the assumptions of Setup 10; in particular, we recall
that % and χarg depend on the fixed, non-constant character χ.

Lemma 14. For all positive reals η and σ, there are δ = δ(η, σ) > 0 and n0 ≥ 0
such that if |Γ| = n ≥ n0, m > 1/δ, and G = G(Γ, A) satisfies DISC(δ), then A
satisfies Z -INT-DISC(%; η, σ).

Lemma 15. For all positive reals η ≤ 1 and σ ≤ 1 such that mησ ≥ 3, the following
holds. If A satisfies property Z -INT-DISC(%; η/2, σ/3), then A satisfies property
S1-ARC-DISC(χarg; η, σ).

Lemma 16. For every real ε > 0, there are reals η = η(ε) > 0 and σ = σ(ε) > 0
for which the following holds. If A satisfies S1-ARC-DISC(χarg; η, σ), then

|λ(χ)| =
∣∣∣∑

a∈A

χ(a)
∣∣∣ ≤ ε|A|. (8)
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We now assume Lemma 11, 14, 15, and 16 and give the proof of Theorem 6. (We
present the proofs of those auxiliary results in Section 2.3.)

Proof of Theorem 6. Let ε > 0 be given. We apply Lemma 16, which yields the pos-
itive constants η = η(ε) and σ = σ(ε). Then Lemma 14 gives δ14 = δ14(η/2, σ/3).
We set

δ′ = min
{
δ14,

ησ

3
,
ε

2

}
.

We now choose δ promised by Theorem 6 to be

δ = min{δ3(δ′), δ14} ,

where δ3(δ′) is given by Fact 3. Finally, let n0 be as large as required by Lemmas 11
and 14. We claim that this choice for δ and n0 will do, and proceed to check this
claim.

Suppose DISC(δ) holds for some Cayley graph G = G(Γ, A) with |Γ| ≥ n0 and
let χ 6≡ 1 be given (the notation here follows the notation set out in Setup 10). We
consider two cases.

Suppose first that m ≤ 1/δ′. Fact 3 tells us that DISC2(δ′) holds for G.
Since m ≤ 1/δ′, Lemma 11 tells us that |λ(χ)| ≤ ε|A| by the choice of δ′ ≤ ε/2.
For the other case, namely, m > 1/δ′, we first observe that DISC(δ14) holds since
δ ≤ δ14 and that m > 1/δ′ ≥ 1/δ14. Moreover, the choice of δ′ ≤ ησ/3 yields
mησ > ησ/δ′ ≥ 3, making Lemma 15 applicable. Our claim is now a consequence
of the following implications coming from Lemmas 14–16:

DISC(δ14) =⇒ Z -INT-DISC
(
%;
η

2
,
σ

3

)
=⇒ S1-ARC-DISC(χarg; η, σ) =⇒ |λ(χ)| ≤ ε|A| ,

and hence Theorem 6 is proved. �

2.3. Auxiliary lemmas.

2.3.1. An auxiliary weighted graph. The homomorphism % (see Setup 10 for details),
defines a weighted graph G̃ on Z/mZ in a natural way. The symmetry of this graph
will be useful in the proofs of Lemmas 11 and 14.

Definition 17. We let (under the assumptions of Setup 10) G̃ = G̃(%) = (Z/mZ, w)
be the weighted graph on Z/mZ, with weights assigned to the edges and vertices,
with the weight function

w :
(

Z/mZ
2

)
∪ Z/mZ → Z

given by

w({r, s}) = e(G[%−1(r), %−1(s)]), (9)

for all distinct r and s ∈ Z/mZ, and

w(r) = e(G[%−1(r)]), (10)

for all r ∈ Z/mZ.

For convenience, if X and Y ⊂ Z/mZ are two disjoint sets, we put

w(X,Y ) =
∑{

w({x, y}) : (x, y) ∈ X × Y
}

= e
(
%−1(X), %−1(Y )

)
. (11)
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In Lemma 18 below, we make the definition of G̃ more concrete, computing the
values in (9) and (10). Let us observe that Lemma 18 shows that the weighted
graph G̃ has a “cyclic” structure, that is, the cyclic permutation τ : s 7→ s+ 1 is an
“automorphism” of G̃.

Lemma 18. For all distinct r and s ∈ Z/mZ, we have

w({r, s}) = e(G[%−1(r), %−1(s)]) =
n

m

∣∣A ∩ %−1(r − s)
∣∣, (12)

and for all r ∈ Z/mZ we have

w(r) = e(G[%−1(r)]) =
n

2m

∣∣A ∩ %−1(0)
∣∣. (13)

Proof. Let r and s be arbitrary, not necessarily distinct members of Z/mZ. For
every γ in %−1(s), consider the neighbourhood Nr(γ) of γ in G restricted to %−1(r).
It is easy to see that

Nr(γ) = {A ∩ %−1(r − s)}+ γ

for every γ ∈ %−1(s). Since |%−1(s)| = n/m, this implies, for s 6= r, that

e(G[%−1(r), %−1(s)]) = |%−1(s)| · |A ∩ %−1(r − s)| = n

m
|A ∩ %−1(r − s)| ,

and therefore (12) holds. Similarly, (13) follows from the case r = s. �

2.3.2. The small m case. The proof given in this section is fairly simple. It is based
on (12) combined with an application of DISC2.

Proof of Lemma 11. Let δ′ > 0 be given. We choose n0 large enough such that
n ∼δ′/2 (n− 1) for every n ≥ n0.

Now assume G = G(Γ, A) with |Γ| ≥ n0 satisfying DISC2(δ′) is given. Using
that 1/m ≥ δ′, we deduce from DISC2(δ′) and (12) that for all r ∈ Z/mZ

|A ∩ %−1(r)| = m

n
e
(
G[%−1(r), %−1(0)]

)
∼δ′

n|A|
(n− 1)m

,

and hence, by the choice of n0,

|A ∩ %−1(r)| ≤ (1 + 2δ′)
|A|
m

. (14)

We then set ω = e2πi/m and use (14) to infer

|λ(χ)| =
∣∣∣∑

a∈A

χ(a)
∣∣∣ = ∣∣∣m−1∑

r=0

(
|A ∩ %−1(r)| · ωr

) ∣∣∣ ≤ |A|
m

(∣∣∣m−1∑
r=0

ωr
∣∣∣+ 2δ′m

)
,

which yields |λ(χ)| ≤ 2δ′|A|, because

m−1∑
r=0

ωr = 0 .

�
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2.3.3. DISC implies Z -INT-DISC for m large. The aim of this section is to verify
Z -INT-DISC(%; η, σ) for a graph that satisfies DISC(δ) for sufficiently small δ. We
therefore want to link properties of the edge-distribution of G with the quantities

|A ∩ %−1(I)| =
∑
f∈I

|A ∩ %−1(f)| ,

where I is a sufficiently large interval in Z/mZ. A first step towards this goal is
the following lemma.

Lemma 19. Let `, s, and t be integers, and suppose that

0 ≤ s < s+ ` ≤ t < t+ ` ≤ m/2 .

Then for d1 = t− s− ` and d2 = t− s+ `
m

n
w
(
[s, s+ `), [t, t+ `)

)
=
∑{∣∣A ∩ %−1(f)

∣∣(f − d1) : d1 < f < t− s
}

+
∑{∣∣A ∩ %−1(f)

∣∣(d2 − f) : t− s ≤ f < d2

}
.

(15)

We later may control the left-hand side of (15) by DISC (or, more precisely, by
DISC2). On the other hand, we may interpret the right-hand side as a “weighted
version” of |A∩ %−1([d1, d2])| where the “multiplicity” for each f in [d1, d2] is given
by a piecewise linear function depending on d1 and d2 (see Figure 1).

“multiplicities”

2`

f − d1

d2 − f ′

f f ′t− sd1 d2

Figure 1. Distribution of “multiplicities”

Proof of Lemma 19. We have

w
(
[s, s+ `), [t, t+ `)

)
=
∑{

w(e) : e ∈ EG̃

(
[s, s+ `), [t, t+ `)

)}
. (16)

The integers f that arise as differences t′ − s′ with t′ ∈ [t, t+ `) and s′ ∈ [s, s+ `)
are in the interval

d1 = t− s− ` < f < t− s+ ` = d2. (17)
Intuitively speaking, these are the “lengths” of the edges in EG̃

(
[s, s+ `), [t, t+ `)

)
.

A moment’s thought (see Figure 2) shows that assertions (I) and (II) given below
hold.

(I) If f is in the interval d1 = t − s − ` < f < t − s, then f − d1 edges
in EG̃

(
[s, s+ `), [t, t+ `)

)
have length f .
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0

s

t+ `

s+ `
td1

d2

bm/2c

t− f

s+ `+ f

edges of “length” f

Figure 2. Edges in G̃ of “length” d1 < f < t− s appear between
[t− f, s+ `) and [t, s+ `+ f)

(II) If f is in the interval t − s ≤ f < d2 = t − s + `, then d2 − f edges
in EG̃

(
[s, s+ `), [t, t+ `)

)
have length f .

In other words, the lengths f in the interval (d1, t− s) occur f − d1, times and the
lengths f in the interval [t − s, d2) occur d2 − f times in the sum in (16). Each
occurrence of f contributes to (16) a weight of

n

m
|A ∩ %−1(f)| (18)

(see (12)). Therefore, putting (I), (II), and (18) together, identity (15) follows. �

The next step towards verifying Z -INT-DISC is to dispose of the “multiplici-
ties” of type d1 − f and d2 − f in (15). For this we use Lemma 19, and com-
pare w

(
[s−d, s+`), [t−d, t+`)

)
with w

(
[s, s+`), [t, t+`)

)
. By (15) these two terms

(appropriately scaled) correspond to two “weighted versions” of |A ∩ %−1([d′1, d
′
2])|

and |A∩%−1([d1, d2])|, for some appropriate d′1, d
′
2, d1, and d2 depending on d, s, t,

and `. As it turns out, the difference between these two “weighted versions” yields
a “weighted version” of |A∩%−1([d′1, d

′
2])| with constant multiplicity d for the main

part of the interval [d′1, d
′
2], i.e., in between d1 and d2 (see Figure 3). This way we

derive a useful estimate for |A ∩ %−1([d1, d2])|.

Lemma 20. Let d, `, s, and t be positive integers, δ′ a real number such that
0 < δ′ ≤ 1, and suppose that

(i) 0 ≤ s− d < s+ ` ≤ t− d < t+ ` ≤ m/2,
(ii) DISC2(δ′) holds for G = G(Γ, A),
(iii) `− d ≥ δ′m, and
(iv) n ∼δ′/2 (n− 1).

Then, for d1 = t− s− ` and d2 = t− s+ `, we have∣∣∣∣|A ∩ %−1
(
[d1, d2)

)
| − 2`

|A|
m

∣∣∣∣ ≤ |A|
m

(
d+

2δ′

d

(
(`+ d)2 + `2

))
. (19)
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d2d1 t− sd′
1 d′

2f

f − d1

f − d′
1

2`

` + d ` + d

“multiplicities”

d

Figure 3. Difference between “multiplicities”

Proof. Let d′1 = (t− d)− s− ` = d1− d and d′2 = t+ `− (s− d) = d2 + d. Applying
Lemma 19 to w

(
[s− d, s+ `), [t− d, t+ `)

)
, we get that

m

n
w
(
[s− d, s+ `), [t− d, t+ `)

)
=
∑{∣∣A ∩ %−1(f)

∣∣(f − d′1) : d′1 < f < t− s
}

+
∑{∣∣A ∩ %−1(f)

∣∣(d′2 − f) : t− s ≤ f < d′2
}
.

We then apply Lemma 19 again, now to w
(
[s, s+ `), [t, t+ `)

)
, and observe that

m

n

(
w
(
[s− d, s+ `), [t− d, t+ `)

)
− w

(
[s, s+ `), [t, t+ `)

))
= d

∑{∣∣A ∩ %−1(f)
∣∣ : d1 ≤ f < d2

}
+
∑{∣∣A ∩ %−1(f)

∣∣(f − d′1) : d′1 < f < d1

}
+
∑{∣∣A ∩ %−1(f)

∣∣(d′2 − f) : d2 ≤ f < d′2
}
.

(20)

The “main term” on the right-hand side of (20) will turn out to be

d
∑{∣∣A ∩ %−1(f)

∣∣ : d1 ≤ f < d2

}
= d
∣∣A ∩ %−1

(
[d1, d2)

)∣∣. (21)

We now use DISC2(δ′) to estimate the left-hand side of (20). By the definition
of w (see Definition 17), we have

w([s, s+ `), [t, t+ `)) = e
(
G[%−1([s, s+ `)), %−1([t, t+ `))]

)
.

Therefore, by DISC2(δ′), using that∣∣%−1
(
[s, s+ `)

)∣∣ = ∣∣%−1
(
[t, t+ `)

)∣∣ = n

m
` ≥ δ′n,
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we have that

w
(
[s, s+ `), [t, t+ `)

)
= e

(
G[%−1([s, s+ `)

)
, %−1

(
[t, t+ `))]

)
(22)

∼δ′
|A|
n− 1

∣∣∣%−1
(
[s, s+ `)

)∣∣∣∣∣∣%−1
(
[t, t+ `)

)∣∣∣ = |A|
n− 1

( n
m
`
)2

.

Similarly, we have that

w
(
[s− d, s+ `), [t− d, t+ `)

)
∼δ′

|A|
n− 1

( n
m

(`+ d)
)2

. (23)

From (22), (23), and (iv) we deduce that the left-hand side of (20) satisfies

m

n

(
w
(
[s− d, s+ `), [t− d, t+ `)

)
− w

(
[s, s+ `), [t, t+ `)

))
= (1 +O1(2δ′))

|A|
m

(`+ d)2 − (1 +O1(2δ′))
|A|
m
`2

=
|A|
m

(
2`d+ d2 +O1(2δ′)

(
(`+ d)2 + `2

))
. (24)

Therefore, replacing the left-hand side of (20) by (24) and using (21) immediately
yields

d
∣∣A ∩ %−1

(
[d1, d2)

)∣∣
+
∑{∣∣A ∩ %−1(f)

∣∣(f − d′1) : d′1 < f < d1

}
+
∑{∣∣A ∩ %−1(f)

∣∣(d′2 − f) : d2 ≤ f < d′2
}

=
|A|
m

(
2`d+ d2 +O1(2δ′)

(
(`+ d)2 + `2

))
.

(25)

Clearly, (25) implies that

d
∣∣A ∩ %−1

(
[d1, d2)

)∣∣ ≤ |A|
m

(
2`d+ d2 +O1(2δ′)

(
(`+ d)2 + `2

))
. (26)

Moreover, we observe that

d
∣∣A ∩ %−1

(
[d1, d2)

)∣∣ ≥ d
∣∣A ∩ %−1

(
[d1 + d, d2 − d)

)∣∣
+
∑{∣∣A ∩ %−1(f)

∣∣(f − d1) : d1 ≤ f < d1 + d
}

+
∑{∣∣A ∩ %−1(f)

∣∣(d2 − f) : d2 − d ≤ f < d2

}
=
m

n

(
w
(
[s, s+ `), [t, t+ `)

)
− w

(
[s+ d, s+ `), [t+ d, t+ `)

))
,

where the last identity follows from Lemma 19 in the same way that equation (20)
follows from that lemma. Then essentially the same calculations as in (24) give

m

n

(
w
(
[s, s+ `), [t, t+ `)

)
− w

(
[s+ d, s+ `), [t+ d, t+ `)

))
=
|A|
m

(
2(`− d)d+ d2 +O1(2δ′)

(
`2 + (`− d)2

))
,

and hence

d
∣∣A ∩ %−1

(
[d1, d2)

)∣∣ ≥ |A|
m

(
2`d− d2 +O1(2δ′)

(
`2 + (`− d)2

))
. (27)

Inequality (19) follows from (26) and (27), and thus Lemma 20 is proved. �
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We prove a simple corollary of Lemma 20 that allows us to rewrite the conditions
of Lemma 20 in terms of d1 and d2. Moreover, the hypotheses of Lemma 20 imply
that d2 − d1 = 2` is even. The following corollary overcomes this shortcoming.

Corollary 21. Let d, d1, and d2 be positive integers, δ′ a real number such that
0 < δ′ ≤ 1, and suppose that

(i) 0 < d ≤ d1 < d2 − 1 < d2 + 1 ≤ 1
2
m− d ,

(ii) DISC2(δ′) holds for G = G(Γ, A) ,

(iii)
1
2
(d2 − d1 − 1)− d ≥ δ′m,

(iv) n ∼δ′/2 (n− 1) .

Then ∣∣∣∣|A ∩ %−1
(
[d1, d2)

)
| − d2 − d1

m
|A|
∣∣∣∣ ≤ |A|

m

(
d+ 1 +

δ′

d
· m

2

4

)
. (28)

Proof. We distinguish two cases depending on the parity of d2−d1. We later reduce
the second case (d2−d1 odd) to the first case (d2−d1 even). In order to be prepared
for this we are going to show a stronger statement for the first case.
Case 1 (d2 − d1 is even). Let us consider the following weaker conditions (i ′) and
(iii ′) instead of (i) and (iii):

(i ′) 0 < d ≤ d1 < d2 ≤
m

2
− d,

(iii ′)
1
2
(d2 − d1)− d ≥ δ′m.

We are now going to show a stronger conclusion than (28) under these weaker
assumptions. In particular, we shall verify∣∣∣∣|A ∩ %−1

(
[d1, d2)

)
| − d2 − d1

m
|A|
∣∣∣∣ ≤ |A|

m

(
d+

δ′

d
· m

2

4

)
. (29)

For this we want to apply Lemma 20 for the “right” choice of s, t, and `. First,
note that (ii) and (iv) are the same in Lemma 20 and Corollary 21. We set

s = d , ` =
1
2
(d2 − d1) , and t = s+ `+ d1 .

Simple calculations using (i ′) and (iii ′) show that

0 = s− d < s+ ` ≤ t− d < t+ ` ≤ 1
2
m and `− d ≥ δ′m,

and hence (i) and (iii) of Lemma 20 hold for this particular choice of s, t, and `.
Moreover, t− s− ` = d1 and t− s+ ` = d2, thus Lemma 20 implies∣∣∣∣|A ∩ %−1

(
[d1, d2)

)
| − 2`

m
|A|
∣∣∣∣ ≤ |A|

m

(
d+

2δ′

d

(
(`+ d)2 + `2

))
,

which, combined with

`2 ≤ (`+ d)2 =
(d2 − d1 + 2d)2

4
=

(
(d2 + d) + (d− d1)

)2
4

≤ (m/2)2

4
=
m2

16
,

gives inequality (29).
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Case 2 (d2− d1 is odd). The hypotheses of Lemma 20 unfortunately always imply
` = d2 − d1 is even. In order to get a bound for intervals [d1, d2) of odd length we
“sandwich” |A ∩ %−1([d1, d2))| as follows:

|A ∩ %−1([d1, d2 − 1))| ≤ |A ∩ %−1([d1, d2))| ≤ |A ∩ %−1([d1, d2 + 1))| . (30)

Now we apply Case 1 twice to derive the upper and lower bounds in (28). For the
upper bound, we set

dU
2 = d2 + 1 .

Then conditions (i) and (iii) of Corollary 21 are “strong” enough to imply (i ′) and
(iii ′) of Case 1, applied to dU

2 instead of d2. Thus, by (29), we may bound the
right-hand side of (30) from above by

|A ∩ %−1([d1, d2 + 1))| = |A ∩ %−1([d1, d
U
2 ))|

≤ |A|
m

(
d+

δ′

d
· m

2

4

)
+
dU
2 − d1

m
|A|

=
|A|
m

(
d+ 1 +

δ′

d
· m

2

4

)
+
d2 − d1

m
|A| .

Hence, the upper bound for |A ∩ %−1([d1, d2))| in (28) follows. The lower bound
necessary to complete the proof of Corollary 21 may be verified by the same kind
of argument applied to dL

2 = d2 − 1 instead of dU
2 .

�

Corollary 21 above gives us control over∣∣A ∩ %−1
(
[d1, d2)

)∣∣ ,
as long as d1 and d2 are bounded away from 0 and m/2. The following two lemmas
consider the quantities∣∣A ∩ %−1

(
[0, d)

)∣∣ and
∣∣∣A ∩ %−1

([⌊m
2

⌋
− d− 1,

⌊m
2

⌋
+ 1
)) ∣∣∣. (31)

Lemma 22. Suppose 0 < δ ≤ 1/3, d ≥ δm/2, and n ≥ 4. If DISC(δ) holds
for G = G(Γ, A), then ∣∣A ∩ %−1

(
[0, d)

)∣∣ ≤ 4
d

m
|A|. (32)

Proof. Let δ > 0 and d be as in the statement of the lemma, and assume that G
satisfies DISC(δ). Let us estimate from above the number of edges induced by

U = %−1
(
[0, 2d)

)
in G. We have |U | = 2dn/m ≥ δn. Invoking DISC(δ), using that 0 < δ ≤ 1/3
and n ≥ 4, and recalling that |A| = αn, we obtain that

e(G[U ]) ≤ (1 + δ)
|A|
n− 1

(
|U |
2

)
≤ 4α

(
dn

m

)2

. (33)

On the other hand, by Lemma 18, we have

e(G[U ]) =
2d−1∑
r=0

2d−1∑
s=r+1

w({r, s}) +
2d−1∑
r=0

w(r) ≥
d−1∑
r=0

r+d−1∑
s=r+1

w({r, s}) +
2d−1∑
r=0

w(r). (34)
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Now fix 0 ≤ r < d. If r < s < r+ d, then 0 < s− r < d, and, by (12) of Lemma 18,
we have

r+d−1∑
s=r+1

w({r, s}) =
n

m

r+d−1∑
s=r+1

|A ∩ %−1(s− r)|

=
n

m

d−1∑
f=1

|A ∩ %−1(f)| = n

m

∣∣A ∩ %−1
(
[1, d)

)∣∣ . (35)

Also, by (13),

w(r) =
n

2m

∣∣A ∩ %−1(0)
∣∣ ,

and we may conclude from (34) that

e(G[U ]) ≥ d
n

m

∣∣A∩%−1
(
[1, d)

)∣∣+2d
n

2m

∣∣A∩%−1(0)
∣∣ = d

n

m

∣∣A∩%−1
(
[0, d)

)∣∣. (36)

Comparing (33) and (36), inequality (32) follows and our lemma is proved. �

Our next lemma concerns the second interval in (31).

Lemma 23. Suppose 0 < δ′ ≤ 1/3, d ≥ δ′m, and n ≥ 4. If DISC2(δ′) holds
for G = G(Γ, A), then∣∣∣A ∩ %−1

([⌊m
2

⌋
− d− 1,

⌊m
2

⌋
+ 1
)) ∣∣∣ ≤ 4

d+ 1
m

|A|. (37)

Proof. Let δ′ > 0 and d be as in the statement of the lemma, and assume that G
satisfies DISC2(δ′). Let us estimate from above the number of edges in the bipartite
graph induced by the vertex classes

U = %−1([0, d)) and W = %−1
([
bm/2c − d− 1, bm/2c+ d

))
in G. We have |U | = dn/m ≥ δ′n and |W | = (2d + 1)n/m > δ′n. Invok-
ing DISC2(δ′) and using that 0 < δ′ ≤ 1/3 and n ≥ 4, we obtain that

e(G[U,W ]) ≤ (1 + δ′)
|A|
n− 1

|U ||W | ≤ 4α
d(d+ 1)n2

m2
. (38)

On the other hand, by Lemma 18, we have

e(G[U,W ]) ≥
d−1∑
r=0

∑{
w({r, s}) :

⌊m
2

⌋
− d− 1 + r ≤ s <

⌊m
2

⌋
+ 1 + r

}
=

d−1∑
r=0

n

m

∑{
|A ∩ %−1(f)| :

⌊m
2

⌋
− d− 1 ≤ f <

⌊m
2

⌋
+ 1
}

= d
n

m

∣∣∣A ∩ %−1
([ ⌊m

2

⌋
− d− 1,

⌊m
2

⌋
+ 1
)) ∣∣∣.

(39)

Comparing (38) and (39), we deduce (37). Lemma 23 is proved. �

We may now prove Lemma 14.

Proof of Lemma 14. Let positive reals η ≤ 1 and σ ≤ 1 be given. We may assume
that ση ≤ 1/2. We set

δ′ =
(ησ)2

240
≤ 1

3
, (40)
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and we let δ be sufficiently small (as given by Fact 3), so that DISC(δ) implies
DISC2(δ′). Again, without loss of generality, we may assume δ ≤ δ′. We let n0 ≥ 4
be sufficiently large so that n ∼δ′/2 (n − 1) for every n ≥ n0. We shall now show
that this choice of constants will do. Thus, let G = G(Γ, A) with |Γ| = n ≥ n0

and m > 1/δ be given (we follow the notation in Setup 10), and suppose that G
satisfies DISC(δ).

Let 0 ≤ D1 < D2 ≤ bm/2c+ 1 be such that D2 −D1 ≥ ηm. We fix

d =
⌊ησm

60

⌋
≥
⌊ ησ
60δ

⌋
≥
⌊

4
ησ

⌋
≥ 4,

and

d1 = max{D1, d} and d2 = min
{
D2,

⌊m
2

⌋
− d− 1

}
.

Using m > 1/δ ≥ 1/δ′ = 240/(ησ)2, 2ησ ≤ 1, and d+ 1 ≤ 3d/2, we see that

1 < δm ≤ δ′m ≤ δ′m

2ησ
=
ησm

480
≤ d < d+ 1 ≤ ησm

40
(41)

and

D2 −D1 − 2(d+ 1) ≤ d2 − d1 ≤ D2 −D1 . (42)

Now we check that the assumptions of Corollary 21, Lemma 22, and Lemma 23 hold
simultaneously. It is obvious that the conditions in Lemma 22 and 23 hold by our
choice of δ, δ′, n0, and the inequalities in (41). Moreover, conditions (ii) and (iv)
of Corollary 21 hold by the definition of δ (yielding DISC2(δ′) for G), and n0. It
remains to verify (iii) and (i) in Corollary 21. We start with condition (iii). For
this we note that, by the left-hand side of (42) and by (41),

d2 − d1 ≥ ηm− ησm

20
.

Using 1 < δm, (41), and δ ≤ δ′ ≤ η/6 (see (40)), we verify (iii):

1
2
(d2 − d1 − 1)− d ≥ 1

2

(
ηm− ησm

20
− δm− ησm

20

)
≥ 1

2

(ηm
2
− δm

)
≥ 3δ′m− δ′m

2
= δ′m.

Moreover, the last inequality implies d2 − 1− d1 > 1 (using δ′m > 1) and thus (i)
of Corollary 21 follows as well.

Having verified the assumptions of Corollary 21, Lemma 22, and Lemma 23, we
use these lemmas to verify the claim of Lemma 14, i.e.,∣∣A ∩ %−1

(
[D1, D2)

)∣∣ ∼σ
D2 −D1

m
|A| . (43)

We first derive the upper bound in (43). Note that∣∣A ∩ %−1
(
[D1, D2)

)∣∣ ≤ ∣∣A ∩ %−1
(
[0, d)

)∣∣+ ∣∣A ∩ %−1
(
[d1, d2)

)∣∣
+
∣∣A ∩ %−1

(
[bm/2c − d− 1, bm/2c+ 1)

)∣∣ .
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Applying Lemma 22, Corollary 21, and Lemma 23 to the first, second, and third
terms, of the right-hand side of the above inequality, respectively, yields∣∣A ∩ %−1

(
[D1, D2)

)∣∣ ≤ 4
d

m
|A|+

(
|A|
m

(
d+ 1 +

δ′m2

4d

)
+
d2 − d1

m
|A|
)

+ 4
d+ 1
m

|A|

≤ |A|
m

(
10(d+ 1) +

δ′m2

4d

)
+
d2 − d1

m
|A| .

Using (40), (41), and (42), we can bound this last expression further by

|A|
m

(σηm
4

+
σηm

2

)
+
D2 −D1

m
|A| ,

and, finally, D2 −D1 ≥ ηm gives∣∣A ∩ %−1
(
[D1, D2)

)∣∣ ≤ (1 + σ)
D2 −D1

m
|A| . (44)

It is left for us to show the lower bound in (43). Note∣∣A ∩ %−1
(
[D1, D2)

)∣∣ ≥ ∣∣A ∩ %−1
(
[d1, d2)

)∣∣ ,
and hence Corollary 21 implies∣∣A ∩ %−1

(
[D1, D2)

)∣∣ ≥ d2 − d1

m
|A| − |A|

m

(
d+ 1 +

δ′m2

4d

)
. (45)

Similar calculations to the ones above, based on (42), (40), and (41), show that

d2 − d1

m
|A| − |A|

m

(
d+ 1 +

δ′m2

4d

)
≥ D2 −D1

m
|A| − |A|

m

(
3(d+ 1) +

δ′m2

4d

)
≥ D2 −D1

m
|A|
(

1− σηm

10(D2 −D1)
− σηm

2(D2 −D1)

)
.

(46)

Again, since D2 −D1 ≥ ηm, it follows from (45) combined with (46) that∣∣A ∩ %−1
(
[D1, D2)

)∣∣ ≥ (1− σ)
D2 −D1

m
|A| . (47)

Finally, (44) and (47) imply (43), and therefore Lemma 14 is proved. �

2.3.4. Z -INT-DISC implies EIG. In this section we give the proofs of Lemmas 15
and 16. We start with the proof of Lemma 15, which “translates” the results of
Lemma 14 for % and Z/mZ to χarg and R/2πR.

Proof of Lemma 15. Let σ and η be as in the statement of Lemma 15, and sup-
pose A satisfies Z -INT-DISC(%; η/2, σ/3). Let 0 ≤ θ1 < θ2 ≤ π with θ2 − θ1 ≥ 2πη
be given. Our aim is to show (7), i.e.,∣∣A ∩ χ−1

arg ([θ1, θ2])
∣∣ ∼σ

θ2 − θ1
2π

|A| .

Recall we have % : Γ → Z/mZ and Ω: Z/mZ → R/2πR such that χarg = Ω% (see
Setup 10). Put

D1 =
⌈
m
θ1
2π

⌉
and D2 =

⌊
m
θ2
2π

⌋
+ 1.
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Observe that
2π
m

(⌈
mθ1
2π

⌉
− 1
)
< θ1 ≤

2π
m

⌈
mθ1
2π

⌉
,

and hence we have
2π
m

(⌈
mθ1
2π

⌉
− 1
)

= Ω(D1 − 1) < θ1 ≤ Ω(D1) =
2π
m

⌈
mθ1
2π

⌉
.

Similarily, one may check that Ω(D2 − 1) ≤ θ2 < Ω(D2), and consequently

Ω−1
(
[θ1, θ2]

)
= [D1, D2) .

We now observe that

D2 −D1 =
⌊
m
θ2
2π

⌋
+ 1−

⌈
m
θ1
2π

⌉
=
m

2π
(θ2 − θ1) +O1(1).

Using that mη ≥ mησ ≥ 3, we deduce that

D2 −D1 ≥
m

2π
(θ2 − θ1)− 1 ≥ ηm− 1 ≥ 1

2
ηm.

Hence, by property Z -INT-DISC(%; η/2, σ/3), we have∣∣A ∩ χ−1
arg([θ1, θ2])

∣∣ = ∣∣A ∩ %−1([D1, D2))
∣∣

∼σ/3
1
m

(D2 −D1)|A|

=
1
m

(
m
θ2
2π

−m
θ1
2π

+O1(1)
)
|A|

=
1
2π

(
θ2 − θ1 +O1

(
2π
m

))
|A|,

(48)

which, using that mησ ≥ 3, is

1
2π

(
1 +O1

(σ
3

))
(θ2 − θ1)|A|. (49)

We conclude from (48) and (49) that∣∣A ∩ χ−1
arg([θ1, θ2])

∣∣ ∼σ
(θ2 − θ1)

2π
|A|,

as required. The proof of Lemma 15 is complete. �

Finally, we prove the last auxiliary lemma, Lemma 16, used in the proof of the
main theorem, Theorem 6.

Proof of Lemma 16. Let 0 < ε ≤ 1 be given. We define the constants η and σ > 0
as follows.

η =
ε

8π
<

1
16

and σ =
1
8
ε. (50)

In the remainder of the proof, we show that the above choice for the constants η
and σ > 0 will do. Thus, let us suppose that the set A ⊆ Γ \ {0} satisfies property
S1-ARC-DISC(χarg; η, σ). Our aim is to show that (8) holds, i.e.,

|λ(χ)| =
∣∣∣∑

a∈A

χ(a)
∣∣∣ ≤ ε|A| .
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For a complex number z ∈ C, in what follows, we write <(z) for the real and =(z)
for the imaginary part of z. Let us first observe that, owing to the fact that the
eigenvalues of an undirected graph are real and that A = −A, we have

λ(χ) =
∑
a∈A

χ(a) = <
(∑

a∈A

χ(a)
)

= 2<
(∑

a∈A

{χ(a) : = (χ(a)) > 0}
)

+ <
(∑

a∈A

{χ(a) : = (χ(a)) = 0}
)
.

(51)

Moreover, it follows from S1-ARC-DISC(χarg; η, σ) that

|A ∩ χ−1(1)| = |A ∩ χ−1
arg(0)| ≤ |A ∩ χ−1

arg([0, 2πη])|

≤ (1 + σ)η|A| ≤ 2η|A| ≤ 1
4
ε|A| .

Similarly, we observe that |A ∩ χ−1(−1)| = |A ∩ χ−1
arg(π)| ≤ (1/4)ε|A| and thus∣∣∣∣∣<

(∑
a∈A

{χ(a) : = (χ(a)) = 0}
)∣∣∣∣∣ = ∣∣|A ∩ χ−1(1)| − |A ∩ χ−1(−1)|

∣∣ ≤ 1
4
ε|A| .

Therefore, we infer from (51) that

|λ(χ)| ≤ 2
∣∣∣∣<(∑

a∈A

{χ(a) : = (χ(a)) ≥ 0}
)∣∣∣∣+ 1

4
ε|A| . (52)

Thus, we are interested in <(χ(a)) (a ∈ A, =(χ(a)) ≥ 0).
Put

k =
⌊
π/2
4πη

⌋
=
⌊

1
8η

⌋
and φ =

π

2k
. (53)

Observe for later reference that by (50) and (53)

4πη ≤ φ ≤ 8πη = ε. (54)

We shall subdivide the upper half of S1 into 2k arcs, symmetric with respect to
the imaginary axis (in fact, i will be left out). The endpoints of the arcs will
be 0, φ, 2φ, . . . , π. Let us in fact denote by I+

j the arc of the z = exp(θi) ∈ S1 with

(j − 1)φ ≤ θ < jφ, (55)

for all 1 ≤ j ≤ k. Similarly, we let I−j be the arc of the z = exp(θi) ∈ S1 with

π − jφ < θ ≤ π − (j − 1)φ, (56)

for all 1 ≤ j ≤ k. Clearly, if a ∈ Γ is such that χ(a) ∈ I+
j (1 ≤ j ≤ k), then

cos(jφ) < <(χ(a)) ≤ cos((j − 1)φ) . (57)

Similarly, if a ∈ Γ is such that χ(a) ∈ I−j (1 ≤ j ≤ k), then

− cos((j − 1)φ) < <(χ(a)) ≤ − cos(jφ) . (58)

We now state and prove the following claim.

Claim 24. For all 1 ≤ j ≤ k and both ∗ ∈ {+,−}, we have∣∣A ∩ χ−1(I∗j )
∣∣ ∼2σ

φ

2π
|A|. (59)
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Proof. This claim follows easily from S1-ARC-DISC(χarg; η, σ). Let 0 ≤ ψ1 < ψ2 ≤
π be such that

ψ2 − ψ1 ≥ 4πη. (60)

We shall show that ∣∣A ∩ χ−1
arg

(
[ψ1, ψ2)

)∣∣ ∼2σ
1
2π

(ψ2 − ψ1)|A|. (61)

One may similarly show that∣∣A ∩ χ−1
arg

(
(ψ1, ψ2]

)∣∣ ∼2σ
1
2π

(ψ2 − ψ1)|A|. (62)

Claim 24 follows from (61) and (62). In particular (61) with ψ1 = (j − 1)φ and
ψ2 = jφ gives the claim for intervals of the type I+

j and similarly (62) yields (59)
for intervals of the type I−j .

To prove (61), observe first that there is a ξ > 0 such that

A ∩ χ−1
arg

(
[ψ1, ψ2)

)
= A ∩ χ−1

arg

(
[ψ1, ψ2 − ξ]

)
. (63)

Moreover, we may clearly assume that

ξ

4πη
≤ σ

2
. (64)

Then ψ2 − ψ1 − ξ ≥ 2πη, and hence we may apply S1-ARC-DISC(χarg; η, σ) to
deduce that ∣∣A ∩ χ−1

arg

(
[ψ1, ψ2 − ξ]

)∣∣ ∼σ
1
2π

(ψ2 − ψ1 − ξ)|A|, (65)

and, by (60) and (64), we have

1
2π

(ψ2 − ψ1 − ξ)|A| ∼σ/2
1
2π

(ψ2 − ψ1)|A|. (66)

Relation (61) follows from (63), (65), and (66), by

A ∩ χ−1
arg

(
[ψ1, ψ2)

)
= A ∩ χ−1

arg

(
[ψ1, ψ2 − ξ]

)
∼2σ

1
2π

(ψ2 − ψ1)|A| .

�

Claim 24 and inequalities (57) and (58) may now be used to estimate the sum
in (52). We have

<
(∑

a∈A

{χ(a) : = (χ(a)) ≥ 0}
)

= <
( k∑

j=1

∑
a∈A

{χ(a) : χ(a) ∈ I+
j ∪ I−j }

)
. (67)

Fix 1 ≤ j ≤ k. We have, by Claim 24 and inequalities (57) and (58),

<
(∑

a∈A

{χ(a) : χ(a) ∈ I+
j ∪ I−j }

)
≤ φ

2π
|A|
(
(1 + 2σ) cos ((j − 1)φ)− (1− 2σ) cos (jφ)

)
.

(68)

Using that cos((j− 1)φ)− cos(jφ) ≤ φ, we observe that the right-hand side of (68)
is smaller than

φ

2π
|A|
(
φ+ 4σ

)
. (69)
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Therefore, from (68) and (69) we deduce that the expression in (67) is, in absolute
value, at most

k
φ

2π
|A|(φ+ 4σ) =

1
4
|A|(φ+ 4σ) ≤ 1

4
|A|
(
ε+

1
2
ε

)
=

3
8
ε|A| , (70)

where in this inequality we used (50) and (54). Combining (70) with (52), we infer
that

|λ(χ)| ≤ 2
3
8
ε|A|+ 1

4
ε|A| = ε|A| ,

as claimed in Lemma 16. �

3. Further discussion on the main result

We now expand on the comments made in Section 1.2. First, we describe our
construction that shows that DISC does not imply EIG for sequences of arbitrary
graphs. We start by setting out some notation. Let integers 1 ≤ k ≤ l and reals
0 < ε < 1, 0 < δ < 1, and 0 < ϑ < 1 be given. For all integers i and j with
1 ≤ i < k < j ≤ l, let functions

Φi , φj : N → N and p : N → (0, 1)

be given, and suppose further that we have

(i) lim
m→∞

p(m) = 0 and p(m) ≥ mϑ−1,

(ii)
k−1∑
i=1

Φ2
i (m) +

l∑
i=k+1

φ2
i (m) = o

(
p(m) ·m2

)
,

and, for every integer m,

(iii) Φ1(m) ≥ · · · ≥ Φk−1(m) ≥ (1 + 2ε)p(m) ·m >

> (1− 2ε)p(m) ·m ≥ φk+1(m) ≥ · · · ≥ φl(m).

Fact 25. Let k, l, ε, δ, ϑ, Φi, and φj, and p be as above. Then there exists
an integer m0 ≥ 1 such that for every m ≥ m0 there is a graph G on n = m +∑k−1

i=1 (Φi(m) + 1)+
∑l

i=k+1 (φi(m) + 1) vertices with average degree d̄ = d̄(G) ∼ε/2

p(m)m having the following properties:

(a) G satisfies DISC(δ)

and after ordering the eigenvalues λ1 ≥ |λ2| ≥ · · · ≥ |λn|

(b) λi


= Φi(m) for 1 ≤ i < k

∼ε d̄ for i = k

= φi(m) for k < i ≤ l

≤ εd̄ for l < i ≤ n .

Fact 25 immediately implies that Theorem 6 does not hold for all graphs. Set,
e.g., k = 1, l = 2, φ2(m) = b(1/2)p(m)mc, and ε = 1/10. Then a statement such
as the one Theorem 6 fails. In particular, for every δ > 0 Fact 25 yields a graph G
that satisfies DISC(δ), but λ2(G) = φ2(m) = b(1/2)p(m)mc > εd̄.
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Proof of Fact 25. Let the numbers k, l, ε, δ, ϑ, and functions Φi, φi, and p be
given. Let m be sufficiently large and consider the binomial random graph G(m, p)
on m vertices and two vertices of G(m, p) adjacent with probability p = p(m) (for
more details about random graphs see, e.g., the excellent monographs [6] and [12]).
Let G be the disjoint union

G =
k−1⋃
i=1

KΦi(m)+1 ∪
l⋃

i=k+1

Kφi(m)+1 ∪G(m, p) ,

where Kt denotes the complete graph on t vertices. We claim the graph G satisfies
the conclusion of Fact 25 asymptotically almost surely (a.a.s.), i.e, with probability
tending to 1, as m tends to infinity.

First we observe that (ii) and the Cauchy–Schwarz inequality imply that

n ∼ε/6 m (71)

for m sufficiently large. It also follows from (ii) and the properties of the binomial
distribution that a.a.s.

e(G) ∼ε/6
1
2
p(m)m2 ,

which combined with (71) yields

d̄(G) ∼ε/2 p(m)m.

Furthermore, it is easy to check that, owing to (i) and (ii), DISC(δ) holds for
arbitrary δ ≥ 0 and sufficiently large m depending on δ.

On the other hand, G(m, p) has, a.a.s., an eigenvalue ∼ε/2 p(m)m, with multi-
plicity 1, and the remaining eigenvalues of G(m, p) are o(p(m)m). (Much stronger
estimates are known, even for smaller values of p; see, e.g., Remark 1 in Section 3
of [15], which is based on [11].) The only non-zero eigenvalues of the complete
graphs (again with multiplicity 1) are Φi(m) and φj(m) for 1 ≤ i < k < j ≤ l. This
clearly implies Fact 25 for sufficiently large m. �

We close this paper with an outline of a proof of Fact 8.

Proof of Fact 8 (sketch). Let 0 < p(n) < 1 be an arbitrary function such that
p(n) = o(1) and p(n)n/(log(1/p(n)))2 →∞ as n→∞. For every integer n let q(n)
be the prime closest to

(log(1/(p(n)))2

p(n)
and set

s(n) =
⌊

n

q(n)

⌋
and N(n) = s(n)q(n) .

We observe that q(n) and s(n) tend to infinity as n→∞. It follows that

N(n) = (1 + o(1))n . (72)

For every n consider the cyclic group Z/q(n)Z. We choose uniformly at random a
symmetric subset Aq(n) ⊆ Z/q(n)Z by including a and −a with probability p(n)/2
for 0 < a < q(n)/2. The random Cayley graph Hq(n) = G(Z/q(n)Z, Aq(n)) is a.a.s.
(1+ o(1))p(n)q(n)-regular. Let us argue that Hq(n) satisfies EIG(ε) a.a.s. for every
fixed ε > 0. Fix some irreducible character χ 6≡ 1. Note that | imχ| = q(n),
since q(n) is chosen to be a prime. Consider the corresponding homomorphism % =
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%χ : Z/q(n)Z → Z/q(n)Z (see Setup 10). By standard large deviation inequalities,
using p(n)q(n) � log(q(n)), one sees that Aq(n) satisfies Z -INT-DISC(%; η, σ) with
probability 1 − o(1/n) for any fixed positive η and σ. It follows from Lemma 15
and 16 that for every fixed ε > 0 and for all χ 6≡ 1 a.a.s. |λ(χ)| ≤ ε|A| and,
hence, Hq(n) a.a.s. has EIG(ε).

We now consider the Cayley graph

GN(n) = G
(
Z/q(n)Z⊕ Γs(n), Aq(n) × Γs(n)

)
,

where Γs(n) is any arbitrary abelian group of order s(n). One may see that GN(n)

is a “blow-up” of Hq(n), where each vertex in Hq(n) is replaced by an independent
set of size s(n) and two such independent sets are completely joined whenever the
corresponding vertices are adjacent in Hq(n). The “blow-up” of a vertex in Hq(n)

is simply its preimage under the projection map Z/q(n)Z⊕ Γs(n) � Z/q(n)Z.
It is very easy to see that GN(n) has eigenvalues s(n)λ1, . . . , s(n)λq(n), where

λ1, . . . , λq(n) are the eigenvalues of Hq(n), and the remaining (s(n)− 1)q(n) eigen-
values of GN(n) are 0. Since, Hq(n) a.a.s. satisfies EIG(ε) for every constant ε > 0,
so does GN(n). By Theorem 1, of [8], a.a.s. GN(n) also has property DISC(δ) for
every fixed δ > 0.

On the other hand, it is easy to see that for every fixed integer ` > 1 and every
positive ξ the graph GN(n) does not satisfy CIRCUIT2`(ξ) if N(n) is sufficiently
large. Indeed, counting only the circuits in which the first and every second vertex
comes from the same “blown-up” vertex, we may bound the number #{C∗2` ↪→
GN(n)} of 2`-circuits in GN(n) from below by

N(n) · d`
N(n) · s(n)`−1 ,

where dN(n) is the degree of every vertex in GN(n). By (72), p(n) = o(1), and
dN(n) = (1 + o(1))p(n)N(n) a.a.s., it follows that for some constant c = c(`) > 0,
a.a.s.,

#{C∗2` ↪→ GN(n)} ≥ c
N(n)d2`−1

N(n)

(log(1/p(n)))2(`−1)
� d2`

N(n) = d̄(GN(n))2` .

�
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10. P. Frankl, V. Rödl, and R. M. Wilson, The number of submatrices of a given type in a

Hadamard matrix and related results, J. Combin. Theory Ser. B 44 (1988), no. 3, 317–328. 1
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