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The problem.

The table has m places of capacity b to hash (park) from 0 to
m — 1, and n inserted elements (cars).

Each element is given a hash value (preferred parking lot).
If place is not full, then the element is stored there.
Otherwise, looks sequentially for an empty place.

If no empty place up to the end of the table, the search follows
at location 0.

Several R.V. to study, mainly related with cost of individual
searches and total construction cost.

Very important special case: Parking Problem.

In parking the car is lost if no available place to park up to the
end of the table.

Main R.V. is the number of lost cars.



Linear Probing Hashing.
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The mathematical beauty of Linear Probing!

Mathématiques discrétes et continues se rencontrent et se complétent
volontiers harmonieusement. C'est cette thése que nous voudrions illus-
trer en discutant un probléme classique aux ramifications nombreuses—
I'analyse du hachage avec essais linéaires. L’exemple est issu de I'analyse
d’algorithmes, domaine fondé par Knuth et qui se situe lui-méme « a
cheval » entre l'informatique, 'analyse combinatoire, et la théorie des
probabilités. Lors de son traitement se croisent au fil du temps des ap-
proches trés diverses, et l'on rencontrera des questions posées par Raias

un travail d’été de et qui
est & des recherches

en analyse combinatoire du statisticien [KreéWerss] diverses rencontres
avec les modeéles de graphes aléatoires au sens d'Erdis et Rényi, un peu
d’analyse complexe et d’analyse asymptotique, des arbres quon peut
voir comme issus de processus de Galton-Watson particuliers, et, pour
finir, un peu de processus, dont l'ineffable mouvement Brownien! Tout
ceci contribuant in fine A une compréhension trés précise d'un modéle
simple d'aléa discret.



1962: Summer work by Don Knuth
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Original results.

Let a hash table with m positions and n inserted elements.
Let Pp, n the probability of the last position being empty.

o Ppp= (1 — %)
Let Cpn,n the R.V. for the number of successful searches of a
random element.

o E[Cpmn] =11+ Qo((m,n—1)).
© B[Crmam] =% (1+ 45) with 0 <a< 1.
o E[Cppn]=+/% +0O(1) (proved on may 20, 1965).

Let Up,,n the R.V. for the number of unsuccessful searches of
a random element.

o E[Unn] =3 (1+@Q1((m,n—1)).
© B[Unam] = 1 (1+ ) with 0<a < 1

The Ramanujan Q function is the special case Qo(n,n) of

n k
Q'r’(m;n):z <k:—]L—'r> n

mn’



Linear Probing and the Symbolic Method ().

Linear Probing and Graphs
Donald E. Knuth, Stanford University

DEDICATED TO PHILIPPE PATRICK MIcHEL FLAJOLET

Abstract. Mallows and Riordan showed in 1968 that labeled trees with a small number of
inversions are related to labeled graphs that are connected and sparse. Wright enumerated
sparse connected graphs in 1977, and Kreweras related the inversions of trees to the
so-called “parking problem” in 1980. A combination of these three results leads to a
surprisingly simple analysis of the behavior of hashing by linear probing, including higher

moments of the cost of successful search.



Linear Probing and the Symbolic Method ().

The purpose of this note is to exhibit a surprisingly simple solution to a problem that appears
in arecent book by Sedgewick and Flajolet [9):

Exercise 8.39 Use the _to derive the EGF of the number of probes
required by linear probing in a successful search, for fixed M.

The authors admitted that they did not know how to solve the problem, in spite of the fact that a
“symbolic method” was the key to the analysis of all the other algorithms in their book. Indeed,
the second moment of the distribution of successful search by linear probing was unknown when
[9] was published in 1996.



Conclusions (Knuth).

7. Personal remarks. The problem of linear probing is near and dear to my heart, because
I found it immensely satisfying to deduce {5.4) when 1 first studied the problem in 1962, Linear
probing was the first algorithm that I was able to analyze successfully, and the experience had a
significant effect on my future career as a computer scientist. None of the methods available in 1962
were powerful enough to deduce the expected square displacement, much less the higher moments,
80 it is an even greater pleasure to be able to derive such results today from other work that has
enriched the field of combinatorial mathematics during a period of 35 years.

The reader will note that Sedgewick and Flajolet's exercise 8.39 has not truly been solved,
strictly speaking, because we have not found the EGF E:::nl Fp(x) 2/n! as requested. However,
Sedgewick and Flajolet should be happy with any analysis of linear probing that uses symbaolic

methods associated with generating functions in an informative way.



Linear Probing and the Symbolic Method (II).

Algorithmica (1998) 22: 490-515 Algoﬁthﬁlica

£ 1998 Springer-Virlag Mew York Inc.

On the Analysis of Linear Probing Hashing'

P, Flajolet, P. Poblete,® and A. Viola*



Combinatorial interpretation.

29 69 10 24 36 77 18 58
49 79 56 97 38 78
0 1 2 3 1 5 6 7 8 9

@ Any Linear Probing Hash table can be seen as a sequence of
tables (a subtable with all but the last bucket full).

e Example: [3-3],[4-4],[5-5],[6-2].

@ This interpretation can be nicely handled by Analytic
Combinatorics, since for example, it implies that it is enough
to study almost full tables, and then use the sequence
construction.



=

ON THE ANALYSIS OF
LINEAR PROBING HASHING

Philippe Flajolet, INRIA Rocquencourt
(France)

‘My first analysis of an algorithm originally
done during Summer 1962 at Madison.”



CONSTRUCTIONS

Foe A = 1=

1 2 g
ﬁ=1+f+f 4

exp(.f):1+f+%f2+$f3+m

AUB = A(z)+B(z)
AxB —  A(z)xB(z)

1
Seq A =TT aAe a0
Set A —  exp(A(2))
CycleA +— log 1%4(:)

11




(4 L.P.H.: Generating functions

Almost-full tables 7 = m — 1 have tree decomposition.

o =1

N

|coooooo] joocoo] |
1

FICURE 1. The binary tres decomposition of almest full tables.

-k

|  <Full> := <Full> * <Last> * <Full> |

[ with Position |

Products — Products, C;, = 3 () A Bn—r
C=AxB — C(z) = A(z) - B(z)
Adding an element +— /, Cpn=A,1
C =Add(A) — C(z) = /~ A(w) dw.
0

Choosing a position — 9, C, = (n+1)A,

C = Pos(A) —
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A nonlinear ODE translates Linear Probing

F = /(;F)’F

) = L withT==:F

Lemma 1.

Lemma 2. [Lagrange + Eisenstein + Cayley]

2 ST

.3
2 — ~ 497 i — n-12_
T(~)7~+22!+93!+ 7277 ol

Defines the T(z)
Tree = Root * Set(Tree)

[Knuth63] The number of almost full tables (n keys)

E,=(n+1)""b

.




Distributional equations (almost full tables)

e construction cost = total displacement

|  <Full> := <Full> * <Last> * <Full> |

[ with Position |

Rw=3 (") @i+ es R

e ¢—Calculus: The construction cost is worst-case

2 2
z:qn 22
n

quadratic

e
©



" = [71]:1+q+02+...qn—1:11*_4(1"
n! — [n]! = [1] . [2] . [n]

Y+ D)faz" = Yln+1faz"

0 i) = Hf()= TP
;1) HIfG) = =

Many “combinatorial identities” survive in the g-world, with
¢ —1
EXAMPLE. [Euler] (exp(z))~! = (exp(—=2))

(CF) (5o 5)

18



F(z,q) — qF(q2,9) F(z0)
1—¢q -
0.F=HF-F

0.-F(z,q) = (

Moments result from
— 0y, differentiation w.r.t. ¢
— U, setting ¢ =1

For the r-th moment, apply ('0&' to difference-differential

equation
Lemma. Commutation rule with Z[f] = z - f
UH = 0.Z
1, ..
U9,H = Ud.Z9,+ ;Zf)fZ‘
UOgH = Z):ZUag +Z0?ZU 9, + %ZZOfZU

Proof. 9,[n + 1], Leibniz, &c.

.

19



Decomposition.

Let Fp;14 be the number of ways to construct an almost full
table of length 7 + 1 and size b2 + d with 0 < d < b — 1. Then,

b1,+d —1—

b—s
F Z bH_dm Z F Z'LU

>0

Ny(z,w) is the generating function for the number of almost
full tables with more than d empty locations in the last bucket
[Blake and Konheim 1977], [V. 2010].

bil Fy(bz)z? = b — lﬁ <a: - T(az)jz)> ,

— 7=0
. T(w? zw) _b_l _T(wjz'w)
I L
(bz,w) [:z: } T ,

where T is the Tree function and w is a b-th root of unity.



Decomposition.

o Let Qm,n,q be the number of ways of inserting n elements into
m buckets, where the last bucket has more than d empty slots.

@ By a direct application of the sequence construction we have

)” b Nqa(bz,w)
Ag(bz,w) and Wt =14+ —=1 <
mz>07;] 1 — Ny(bz,w)

@ Ag(z,w) is the generating function for the number of ways to
construct hash tables such that their last bucket is not full.

n

n—bi ﬂ\ d

m—i—1 i+1

Fig. 1: A decomposition for b = Jandd = 2.




Decomposition.

o Let P be a property (e.g. cost of a successful search or block
length).

n

n— bi —/\#— d

m—it—1 i+1

Fig. 1: A decomposition for b = $and d = 2.

o Let ppi14(g) be the probability generating function of P
calculated in the last cluster. Then

b—1

n
Prnl@) =D <bi N d> Qm-—i—1,n-bi—d,0 Fritd Pri+d(q)-

d=04>0



Decomposition.

As a consequence,

z‘n, No(Z,'lU,q) .
P(z,w,q) P — = with
mzn:>0 mun n!  1— No(z,w)’
b d )bz+d
(2,w,q) Zw ZF’bz+d b Gitdl Pri+a(9),

>0

which could be directly derived with the sequence construction.
o Ny(z,w,1) = No(z,w), P(z,w,1) = Ao(z,w) — 1.
Yhem,q) aty =1,
b(l —a)
b—1 T(wiae—)\ *
[l (1 - %)

e Moreover, by singularity analysis of Ag(a,y

n1'1—1>noo Pm[Qm,n,O/mn; ba] =To (ba) =

As a consequence,

lim Pr[pmn(g)/m™ba] = To(ba)No(ba,e™*,q).



Summary of the g-calculus.

Marking a position — 8,

Contd = (n+ 1)Apnia

C = Pos(A) C(z,w) = 22 (A(z,w))
Adding a key — [ Cont+d = Abntd—1
C = Add(A) C(z,w) = J§ A(u, w)du

Bucketing — exp
C = Bucket(Z)

Crmn =0(m,1)
C(z,w) = w® exp(2)

Marking a key — 8,

Cm,n = nAm,n

C = Mark(A) C(z,w) = Z%A(z,w)
T
Z(n+1)fnz” > Z[n—i—l]fnz”.
%%A(z,w) —  HA(z, w)] := A(Z’w)l—_A;z,wqb)
ro Azw) o FlAg )] = 2BV A

1-g¢



Two models to analyze the problem.

e Exact filling model.
o A fixed number of keys n, are distributed among m locations,
and all m™ possible arrangements are equally likely to occur.

e Poisson model.

o Each location receives a number of keys that is Poisson
distributed with parameter ba, and is independent of the
number of keys going elsewhere. This implies that the total
number of keys, N, is itself a Poisson distributed random
variable with parameter bam:




Parking, random graphs and random trees.

3] [EG0
2317|135
B[Z[3[7[1]2

[Spencer 1997].

BFS traversal of a random graph -y with vertices {0, 1, ..., n}.
Induces a queue (H;(7T))1<i<n and a spanning tree 7.

BFS induces a parking sequence (X;(7))1<i<n.

Ex: (Xi(7)) = {{6,8},{2,3}, ¢, {7}, {1,4}, {5}, {9} 4, ¢}.
(1) = | X:(7)]. Ex: (z4(7)) ={2,2,0,1,2,1,1,0,0}.

z;(T)
Yi(T) = z1(7) + z2(7) + ... + zi(7) — 1 + 1, size of queue
(H(T)) before step 7. Ex: (yi(7)) ={2,3,2,2,3,3,3,2,1}.

@ y1(7) + ... Yn(7) — n is the total displacement. Ex: 12.

@ BFS induces a random walk excursion. Ex: b.



Ideas about the probabilistic approach.

Let X; be the number of elements that have hash address 2.
Let H; be the total number of elements that try bucket 1.
let @Q; be the overflow from bucket 1.

We thus have the equations
Hy =X+ Qi1, Qi = (H; — b)4.

The number of elements stored in bucket 7 is ¥; = min(H;, b).
The bucket is full if and only if H; > b.



Finite and infinite hash tables.

Lemma

Let X;, © € T, be given non-negative integers. If T =4{1,...,m}
or N, then the equations (77?), for all i € T, have a unique solution
given by, considering 3 > 0,

H; = Xi —b) +b, pe X —b
Tfsz (Xe —b) + Q o Z (Xx —b)
—j+1 k=j+1

@ Properly defined, the result can be extended to infinite tables.



Convergence to an infinite hash table.

@ We are interested in hashing on Z,, with n elements having
independent uniformly random hash addresses.

e Xi,...,Xm have a multinomial distribution with parameters
n and (1/m,...,1/m). (We denote these X; by Xy, n.;.)

@ We denote the profile of this hash table by Hy, .;, where as
above ¢ € Z,,, but we also can allow ¢ € Z in the obvious way.

e We consider a limit with m,n — o0 and n/bm — a € (0, 1).

o The appropriate limit object is an infinite hash table on Z with
X; = Xqy that are independent and identically distributed
(i.i.d.) with the Poisson distribution X; ~ Po(ab).

e We denote the profile of this hash table by H, ;.

Lemma

Let m,n — oo with n/bm — a for some a with 0 < a < 1. Then

d
(Hm,ni’i)?i—oo - (Ha;i)?i—oo'




Poisson Transform.

@ Results in one model can be transfered into the other model
by the Poisson Transform:

m[frmn;ba] = Y Pr[N =n|fmn =€ *b"‘mz

n>0 n>0

f‘mn

n!

Inversion Theorem:
[Gonnet and Munro 1984]

If Pp[fmn;ba] = Z am,k(bma)k then frmn = Z m k
k>0 k>0

@ The Poisson model is an approximation of the exact filling
model when n,m — oo with n/m = b with 0 < a < 1.



Diagonal Poisson Transform.

[Munro, Poblete, Viola 1997]
n+1
n—i it+1

‘ (@ OO‘ ‘O0.00‘ ‘

m—i—2 i+2

Let a hash table of size m, with n 4+ 1 keys, and let P be a
property for e (chosen uniformily at random).

Let fm n be the result of applying a linear operator (e.g. an
expected value) to the probability generating function of P.

fmn = Z Pr[e € cluster of size 2 + 1] fita,

>0 o
:Z: (7:) . 75171 Aex2) fiva.
Then Profim,n; @] = Da[fri2,0; @] with
Dc[fn; OL] = (1 - OL) Z e(n—}—c)ann'

n>0



Decomposition.

As a consequence,

z‘n, No(Z,'lU,q) .
P(z,w,q) P — = with
mzn:>0 mun n!  1— No(z,w)’
b d )bz+d
(2,w,q) Zw ZF’bz+d b Gitdl Pri+a(9),

>0

which could be directly derived with the sequence construction.
o Ny(z,w,1) = No(z,w), P(z,w,1) = Ao(z,w) — 1.
Yhem,q) aty =1,
b(l —a)
b—1 T(wiae—)\ *
[l (1 - %)

e Moreover, by singularity analysis of Ag(a,y

n1'1—1>noo Pm[Qm,n,O/mn; ba] =To (ba) =

As a consequence,

lim Pr[pmn(g)/m™ba] = To(ba)No(ba,e™*,q).



Generating Functions and the Poisson Transform.

o Let Pp, »(g) be the generating function of a cumulated value
of a RV % in a hash table of size m with n elements. Let

Z wb™ Prn(g )(bmz)”.

P(z,w,q) mn n!

m>0 n>0
@ Then, for a fixed 0 < a < 1,

P(a,yl/be_a,Q) _ Z y™ ( —bma Z b7:7’7’a) )

m>0 n>0

= > y"Pn {P’:r’;l(q);ba} .

m>0

@ Results for the probability generating function in the Poisson
Model (n,m — 00,0 < n/bm = a < 1) can be found by
singularity analysis from P(a,y%e=2,q). In our problems,
the dominant singularity is at y = 1.



The overflow (parking problem).

o Let Ny, i be the number of tables of length m with n
elements and overflow k and

qu ZZZNmnkw Z' k

m>0n>0k>0

Theorem ([Seitz and Panholzer 2009])
1 H-l;;é (q . T(wjzw))

Q = : L.
(bz,w, Q) qb — whegbz l—[?;]d (1 _ T(w;zw))

Proof.
[Sketch] wheza b=l

Q(Z,‘w, q) =1+ Q(Z,w,Q)T + Z(l - qs_b)os(z;'w);

s=0

ith b—s

wi O, (2, w) = Fs(zw)w

1 — No(z,w)




The overflow (parking problem).

o Let Q@ n denote the overflow in a random hash table with m
buckets and n keys.

Corollary

EQmn=m " zn: (?) (j — kb)kI 1 (m — k)™




The parking problem.

Theorem

Let 0 < a < 1. The probability generating functions Y (z) and
1Yo(2) extend to meromorphic functions given by

b(1 — a)(z - 1) H 1(z = T(wae ) /a)
Yu(z) = 2beab(l—2) 11 - T(whae)/a)’

b(1 - a)(z — 1) H (2~ T(w'ae™®)/a)
Yo(z) = 20 — e [10-1(1 - T(wlae2)/a)’

Corollary

In the infinite Poisson model, the probability of no overflow from a
given bucket is
Pr(Q; = 0) = e**Ty_1 (ba).

This is the asymptotic probability of success in the parking
problem, as m,n — oo with n/m — a,




The parking problem.

Corollary

Fork=0,...,b—1,

PT(Y%:’C):Pr(Hizk):—b(l—a)[ i (= — Tw'ae?) /g

=

M1 (1 — T (wae @) /a)
Furthermore, the probability that a bucket is not full is given by

b(l — )

Pr(Y; <b) = Pr(H; <b) = To(ba) = (1 - T(wtae @) /a)

and thus

Pr(Y; =b) = Pr(H; > b) =1 — Ty(bar).




Robin Hood: an example (b=2).

Keys inserted:

e 36, 77, 24, 79, 56, 69, 49, 18, 38, 97, 78, 10, 58.
Hash function

e h(z) =z mod 10.

49|79 24 36| 77| 18| 58
69|10 56 |97 (38|78
01 2 3 45 6 7 8 9

@ What happens when 29 is inserted?

29169( 10 24 36| 77| 18| 58
49|79 56|97 (38|78
01 2 3 4 5 6 7 8 9




Properties of Robin Hood Hashing.

29169(10 24 36| 77| 18| 58
49179 56 |97 (38|78
01 2 3 45 6 7 8 9

@ At least one record is in its home bucket.

@ The keys are stored in nondecreasing order by hash value,
starting at some location k and wrapping around. In our
example, k = 5 (the first slot of the third bucket).

@ If a fixed rule is used to break ties among the candidates to
probe their next probe bucket (eg: by sorting these keys in
increasing order), then the resulting table is independent of the
order in which the records were inserted. Then, we may insert
the elements in any order, and study the behavior of the last
one inserted!.



Robin Hood displacement.

W.l.o.g. we search for a record that hashes to bucket 0.

We have to probe buckets occupied by the elements that
would have gone to the overflow area.

Then consider collisions with all the elements that hash to 0.
Let DRH be the displacement of a given element z.

Let CRH be the number of elements that win over z in the
competition for slots in the buckets. Then DRH — |CRH /p|.

The specification is
CRH = Q_1 + V = Overflow * Mark(Bucket)

of the number Q_1 = Qm_1 of keys that overflow into 0 and
the number V' of keys that hash to 0 that win over z.

The number @, 1 of keys that overflow does not change
when the keys that hash to 0 are removed. This is thus
independent of V.



Robin Hood displacement.

o We consider the displacement DRH of a marked key .

RH(z,w,q) ZZZCRHmnkw iqk

m>0n>0 k>0

where CRHpy, 1 1 is the number of hash tables of length m
with 1 keys (one of them marked as ) such that e hashes to
the first bucket and the displacement DR of e equals .

Theorem
= b—1 .
H(bz,w,q) = - Z C (bz,w,wdql/b) Z (wdql/b) ,
b d=0 p=0
with
b—1 T(wizw)
g ) T (o= )

_ b _ 4 bpbz _ wizw)\ "
(1= q)(g® —whea) [P (1 - Terzv))




Robin Hood displacement.

o Note that the expectation of the displacement (but not the
variance) is the same for any insertion heuristic. We let D, ,
denote the displacement of a random element in a hash table
with m buckets and n keys.

Lemma

For linear probing with the Robin Hood, FCFS or LCFS (or any
other) heuristic,
m
E Dm,n = ; E Qm,n-

Proof.

For any hash table, and any linear probing insertion policy, the sum
of the n displacements of the keys equals the sum of the m
overflows @;. Take the expectation. Ol

v



Robing Hood displacement.

Theorem

Let 0 < a < 1. In the infinite Poisson model, the variable V,,, the
number of keys that win over the new key CRH and its Robin Hood
displacement DRY have the probability generating functions

1 — eba(q—l)
Yv(g) = ba(l—q)

1—a 1—et@ ) 1071 (g - &)

Yo(a) = ¥a(9¥vie) = —— oo ¢zl -¢)

= e 1-gt
= — J =
Yru(q) 5 JZ%T/JC(W a”) 1—w g/t

: d d
Asm,n — oo with n/bm — o, Vi pn — Va, CR = CRY and

D,Bl'j'n N DRH with convergence of all moments; furthermore, for
some § > 0, the corresponding probability generating functions
converge, uniformly for |g| <1+4.




Robing Hood displacement.

Corollary

As m,n — oo with n/bm — a € (0, 1),

ECRY L ECRH = _ 1 b+b§ !
G * o 2l-a) 2 Sl

EDRH _, mpRH — L ( L b b)—i—lbil L
== —b—ba = .
mn o 2ba\1 -« ba ;= 1-(

with
(o = T(wlae @) /e




Block length.

@ Let Fy;,. 4 be the number of ways to construct an almost full
table of length 7 + 1 and size b2+ d with 0 < d < b — 1. Then,

ubitd b—1
Fy( Zsz+d No(z,w) Zwb dFd(z'w)
>0 (b (a d) d=0

@ In an almost full table the length of the block is marked by w
in No(bz,w).
@ The generating function B(z,w, q) for the block length is
— Cd‘Z’LU 1/b
)

z

B(bz)w7Q) = AO(bzx ’IU)No(bZ,’wa/b) = b—1 T(wizw)
s (1 - )



Block length.

Let By, n be the length of a random block, chosen uniformly
among all blocks in all hash tables with m buckets and n keys.
This is the same as the length of the last block in a uniformly
random hash table such that the rightmost bucket is not full.
Recall that we denote the number of such hash tables by Qm » 0.

Corollary

If 0 <n < bm, then

m?’L
D B = .
' Qm,n,O

Proof.

The sum of the block lengths in any hash table is m, and thus the
sum of the lengths of all blocks in all tables is m - m™, while the
number of blocks ending with a given bucket is Qm 0 and thus
the total number of blocks is m - Q0. O




Block length.

@ Let B be the length of the first block, i.e.,
B:=min{s > 1:Y; <b} =min{s > 1: H; < b}.

@ Hence, B is the first positive index 7 such that the number of
elements S; = X; + --- + X, hashed to the 7 first buckets is
less than the capacity bt of these buckets, i.e.,

B =min{s > 1:5; < bi}.

Theorem

The probability generating function 9 g(z) := E zB of B is given by

b—1

Ys(z) =1-]] (1 — T(wlae""zl/b)/a) ,

£=0

for |g| < R for some R > 1.




Block length.

Corollary

The random block length B = B, defined above has expectation

and variance,

o 1 2 ot ¢ 1
VIBla = b(1 — a)2Ty(ba) bTo(bor) ; (1—¢)(1—aly) To(ba)?




Block length.

@ The length of the block B; containing a given bucket  has a
different, size-biased distribution.

Theorem

In the infinite Poisson model, B = Ba has the size-biased
distribution

kPr(Bg = k)

Pr(B, =k) = EE

= Tp(ba)k Pr(By = k)

and thus the probability generating function

b—1
P5(q) = To(ba)qys(q) = To(ba)g Y Ci(a) [ [(1 — ¢i(a)).-

=0 AL

Asm,n — oo with n/bm — «, Bm,n 4, B, with convergence of
all moments; furthermore, for some § > 0, the probability
generating function converges to 1 z(q), uniformly for |g] <1 +4.




Block length.

Corollary
Asm,n — oo withn/bm — a € (0,1),

EB,, . sEB :#_gbz_:l 2
m,n o b(1—a)2 b = (1—¢o)(1— a{l).

Theorem

In the exact model, Bm,n has the size-biased distribution

Pr(Bm,n =k)=

kPI’(Bm,n = k) _ Qm,n,OkPr(B _ k)
mn mmn .

E Bmn

Theorem

: d
For the exact model, as m,n — oo with n/bm — a, By, — Bg
with convergence of all moments.




Unsuccessful search.

@ In a cluster with n keys, the number of visited buckets in a
unsuccessful search, is the same as the one needed to insert
the (n + 1)st element.

@ Then, the specification Pos(C) (marking the position of this
inserted element) leads to

Ulbz,w,q) = > w™> (ij)n Prn(q)
m>1 n>0 )
No(bz, w) — No(bz, wg'/®)
1—gq
M5 (1 - Terzee ) qpicd (1 - Tz

- (1— ) TT5s (1 - T22) ’

where P, »(gq) is the probability generating function for the
displacement of the (n + 1)st inserted element.

= AO(bz7 ’LU)




FCFS displacement.

@ We consider the displacement of a marked key e, which we by
symmetry may assume hashes to the first bucket.

@ Thus, let

FCFS(z,w,q): ZZZFC’FSmnkw z k
m>1n>1k>0 n!

where FCFSy, ,  is the number of hash tables of length m
with n keys (one of them marked as e) such that e hashes to
the first bucket and the displacement DFC of e equals k.

@ For a given m and n with 1 < n < bm, there are nm™ ! such

tables (n choices to select ® and m™~! choices to place the
other n — 1 elements).



FCFS displacement.

@ Thus, if dm n(q) is the probability generating function for the
displacement of a random key

FCFS(z,w,q) Z an dmn )wbm;—!

m>1n=1
bm—1 n,n
b M2
=z Z Z dmnt1(@)w™ o
m>1 n=0 ’

Theorem

FCFS(bz,w,q) = b / U (bt, we* ™, q) dt
0

up to terms z"w™q* with n > bm.




FCFS displacement.

Proof.

The probability generating function for the displacement of a
random key when having n keys in the table is

1 n—1
(@) = - 3 Umi(a),
=0

Then, for all m > 1 and n > 0,
um,n(Q) = (@ 4 1)dm,n+1(‘Z) - ndm,n(Q);

and so,

8 o

—FCF —w—FCF = .
52 CFS(bz,w,q) oo CFS(bz,w,q) = bU(bz,w,q)
This differential equation together with the boundary condition

F(0,w,g) = 0 leads to the solution.




Specification for FCFS displacement (b=1).

e Let FIC(z,w,q) be the generating function for the cost of a
successful search in an almost full table when n 4 1 elements

are inserted and one element e is marked.
o AF(z) = T2) where T(2) is the tree function.

z

PR w O

looo00o0] [0000g [ooeooo]| [ooood

o=k & =k [

o Then, <FC> = <Add(AF)>*<AF> + <Pos(FC)>*<AF> +
<Pos(AF)>*<FC> leads to

e) 0
8,(FC) = H[AF]*x AF + a(ZFC) x AF + a(zAF) x FC.

(1 = T(zwq))* — (1 = T(zw))*)T(2w)

FCFS(z,w,q) = 22(1 — q)(1 — T(zw))




Unsuccessful search and FCFS displacement.

Theorem

The probability generating function ¥y (z) := E zYi of U; is given
by

Yu(z) = fZ;o(_baz) Zﬁ (1 = T(wlae*“zl/b)/a> :
=0

Theorem

The probability generating function ¥rc(z) := E zP: i of DFC js
given by

b—1
wrcma) =2 [“wapas =1 [T TOTT0- e as
=0

1 ab(l—ﬁ)n‘( Ce(2;8))
-2/

(=Dl —cmB) ©




Some final considerations.

Problem with a very rich history.
Paradigm of a problem that nicely integrates analytical,
combinatorial and probabilistic approaches.

This integration (together with the use of symbolic methods!)
has allowed the understanding of deep relations with other
important problem.

A unified analysis of several important random variables
related with linear probing: symbolic methods + random
walks (linked by the Poisson Transform).

Some ongoing work.

Total displacement with buckets. Relation with other problems
as for b=17

Number of movements in deletion algorithm.





