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The problem.

The table has m places of capacity b to hash (park) from 0 to
m� 1, and n inserted elements (cars).

Each element is given a hash value (preferred parking lot).

If place is not full, then the element is stored there.

Otherwise, looks sequentially for an empty place.

If no empty place up to the end of the table, the search follows
at location 0.

Several R.V. to study, mainly related with cost of individual
searches and total construction cost.

Very important special case: Parking Problem.

In parking the car is lost if no available place to park up to the
end of the table.

Main R.V. is the number of lost cars.



Linear Probing Hashing.



The mathematical beauty of Linear Probing!



1962: Summer work by Don Knuth ...



Original results.

Let a hash table with m positions and n inserted elements.

Let Pm;n the probability of the last position being empty.
Pm;n =

�
1� n

m

�
.

Let Cm;n the R.V. for the number of successful searches of a
random element.

E [Cm;n] =
1
2 (1 +Q0((m;n� 1)).

E [Cm;�m] = 1
2

�
1 + 1

1��

�
with 0 � � < 1.

E [Cn;n] =
p

�n
8 +O(1) (proved on may 20, 1965).

Let Um;n the R.V. for the number of unsuccessful searches of
a random element.

E [Um;n] =
1
2 (1 +Q1((m;n� 1)).

E [Um;�m] = 1
2

�
1 + 1

(1��)2

�
with 0 � � < 1.

The Ramanujan Q function is the special case Q0(n; n) of

Qr(m;n) =
nX

k=0

 
k + r

k

!
nk

mn
:



Linear Probing and the Symbolic Method (I).



Linear Probing and the Symbolic Method (I).



Conclusions (Knuth).



Linear Probing and the Symbolic Method (II).



Combinatorial interpretation.

Any Linear Probing Hash table can be seen as a sequence of
almost full tables (a subtable with all but the last bucket full).

Example: [3-3],[4-4],[5-5],[6-2].

This interpretation can be nicely handled by Analytic
Combinatorics, since for example, it implies that it is enough
to study almost full tables, and then use the sequence

construction.





CONSTRUCTIONSDictionary (I)F 7! ffng 7! f(z) =Xn fn znn! :11� f = 1 + f + f2 + f3 + � � �exp(f) = 1 + f + 12!f2 + 13!f3 + � � �A[B 7! A(z)+B(z)A�B 7! A(z)�B(z)SeqA 7! 11�A(z)SetA 7! exp(A(z))CycleA 7! log 11�A(z)
11



4 L.P.H.: Generating functions

Almost-full tables n = m� 1 have tree decomposition.

-------------------------------------

| <Full> := <Full> * <Last> * <Full> |

| ^^^^^^ with Position |

--------------------------------------

Dictionary: Products 7! Products, C

n

=

P

�

n

k

�

A

k

B

n�k

C = A ? B 7! C(z) = A(z) �B(z)

Dictionary: Adding an element 7!

Z

, C

n

= A

n�1

C = Add(A) 7! C(z) =

Z

z

0

A(w) dw:

Dictionary: Choosing a position 7! @, C

n

= (n+ 1)A

n

C = Pos(A) 7!

@

@z

(z A(z)) :

19



A nonlinear ODE translates Linear ProbingTable = Table `?' TableF = Z (zF )0FT 0(1� 1T ) = 1z with T = zFLemma 1. F (z) = 1z T (z) where T = zeTLemma 2. [Lagrange + Eisenstein + Cayley]T (z) = z + 2z22! + 9z33! + � � � =Xn nn�1 znn!De�nes the Tree function T (z)Tree = Root * Set(Tree)[Knuth63] The number of almost full tables (n keys)Fn = (n+ 1)(n�1)15



Distributional equations (almost full tables)

� construction cost = total displacement

-------------------------------------

| <Full> := <Full> * <Last> * <Full> |

| ^^^^^^ with Position |

--------------------------------------

F

n

(q) =

n�1

X

k=0

�

n� 1

k

�

F

k

(q)(1 + q + � � �+ q

k

)F

n�1�k

(q):

� q{Calculus: The construction cost is worst-case

quadratic

X

n

q

n

2

z

2
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Q-calculusn 7! [n] = 1 + q + q2 + � � � qn�1 = 1� qn1� qn! 7! [n]! = [1] � [2] � � � [n]P(n+ 1)fnzn 7! P[n+ 1]fnzn@@z (zf(z)) 7! H[f(z)] = F (z)� qF (qz)1� qMany \combinatorial identities" survive in the q-world, withq? 7! 1Example. [Euler] (exp(z))�1 = (exp(�z))�X znn! ��1 = �X (�z)nn! ��X zn[n]!��1 = �X qn(n�1)=2 (�z)n[n]! �
18



@zF (z) = @z(zF (z)) � F (z)@zF (z; q) = �F (z; q) � qF (qz; q)1� q � � F (z; q)@zF = HF � FMoments result from| @q, di�erentiation w.r.t. q| U , setting q = 1For the r-th moment, apply U @rq to di�erence-di�erentialequationLemma. Commutation rule with Z[f ] = z � fUH = @zZU@q H = U @zZ@q + 12Z@2zZ;U@2q H = @zZU @2q + Z@2zZU @q + 13Z2@3zZUProof. @q[n+ 1], Leibniz, &c.
19



Decomposition.

Let Fbi+d be the number of ways to construct an almost full
table of length i+ 1 and size bi+ d with 0 � d � b� 1. Then,

Fd(u) :=
X
i�0

Fbi+d
ubi+d

(bi+ d)!
; Nd(z;w) :=

b�1�dX
s=0

wb�sFs(zw):

Nd(z;w) is the generating function for the number of almost
full tables with more than d empty locations in the last bucket
[Blake and Konheim 1977], [V. 2010].

b�1X
d=0

Fd(bz)x
d = xb �

b�1Y
j=0

 
x�

T (!jz)

z

!
;

Nd(bz; w) =
h
xd
i
b�1Y
j=0

 
1� x

T (!jzw)

z

!
�

b�1Y
j=0

 
1�

T (!jzw)

z

!

1� x
;

where T is the Tree function and ! is a b-th root of unity.



Decomposition.

Let Qm;n;d be the number of ways of inserting n elements into
m buckets, where the last bucket has more than d empty slots.

By a direct application of the sequence construction we have

�d(bz; w) :=
X
m�0

X
n�0

Qm;n;d
(bz)n

n!
wbm = 1 +

Nd(bz; w)

1�N0(bz; w)
:

�0(z;w) is the generating function for the number of ways to
construct hash tables such that their last bucket is not full.



Decomposition.

Let P be a property (e.g. cost of a successful search or block
length).

Let pbi+d(q) be the probability generating function of P
calculated in the last cluster. Then

pm;n(q) =
b�1X
d=0

X
i�0

 
n

bi+ d

!
Qm�i�1;n�bi�d;0 Fbi+d pbi+d(q):



Decomposition.

As a consequence,

P (z;w; q) :=
X

m;n�0

pm;n(q) w
bm z

n

n!
=

N̂0(z;w; q)

1�N0(z;w)
; with

N̂0(z;w; q) :=
b�1X
d=0

wb�d
X
i�0

Fbi+d
(zw)bi+d

(bi+ d)!
pbi+d(q);

which could be directly derived with the sequence construction.

N̂0(z;w; 1) = N0(z;w), P (z;w; 1) = �0(z;w)� 1.

Moreover, by singularity analysis of �0(�; y
1=be��; q) at y = 1,

lim
m!1

Pm[Qm;n;0=m
n; b�] = T0(b�) =

b(1� �)Qb�1
j=1

�
1� T (!j�e��)

�

� :
As a consequence,

lim
m!1

Pm[pm;n(q)=m
n; b�] = T0(b�)N̂0(b�; e

��; q):



Summary of the q-calculus.

Marking a position 7! @w Cbn+d = (n+ 1)Abn+d

C = Pos(A) C(z;w) = w
b

@
@w (A(z;w))

Adding a key 7!
R

Cbn+d = Abn+d�1

C = Add(A) C(z;w) =
R z
0 A(u;w)du

Bucketing 7! exp Cm;n = �(m; 1)
C = Bucket(Z) C(z;w) = wb exp(z)

Marking a key 7! @z Cm;n = nAm;n

C = Mark(A) C(z;w) = z @
@zA(z;w)

n 7! [n] = 1 + q + q2 + : : :+ qn�1 =
1� qn

1� q
:X

(n+ 1)fnz
n 7!

X
[n+ 1]fnz

n:

w

b

@

@w
A(z;w) 7! H[A(z;w)] :=

A(z;w)� A(z;wq
1

b )

1� q

z
@

@z
A(z;w) 7! Ĥ[A(z;w)] :=

A(z;w)� A(qz; w)

1� q
:



Two models to analyze the problem.

Exact �lling model.
A �xed number of keys n, are distributed among m locations,
and all mn possible arrangements are equally likely to occur.

Poisson model.
Each location receives a number of keys that is Poisson
distributed with parameter b�, and is independent of the
number of keys going elsewhere. This implies that the total
number of keys, N , is itself a Poisson distributed random
variable with parameter b�m:

Pr[N = n] =
e�b�m(b�m)n

n!
:



Parking, random graphs and random trees.

[Spencer 1997].

BFS traversal of a random graph  with vertices {0, 1, . . . , n}.

Induces a queue (Hi(� ))1�i�n and a spanning tree � .

BFS induces a parking sequence (Xi(� ))1�i�n.

Ex: (Xi(� )) = ff6; 8g; f2; 3g; �; f7g; f1; 4g; f5g; f9g; �; �g.

xi(� ) = jXi(� )j. Ex: (xi(� )) = f2; 2; 0; 1; 2; 1; 1; 0; 0g.

yi(� ) = x1(� ) + x2(� ) + : : :+ xi(� )� i+ 1, size of queue
(H(� )) before step i. Ex: (yi(� )) = f2; 3; 2; 2; 3; 3; 3; 2; 1g.

y1(� ) + : : : yn(� )� n is the total displacement. Ex: 12.

BFS induces a random walk excursion. Ex: b.



Ideas about the probabilistic approach.

Let Xi be the number of elements that have hash address i.

Let Hi be the total number of elements that try bucket i.

let Qi be the over�ow from bucket i.

We thus have the equations

Hi = Xi +Qi�1; Qi = (Hi � b)+:

The number of elements stored in bucket i is Yi = min(Hi; b).

The bucket is full if and only if Hi � b.



Finite and in�nite hash tables.

Lemma

Let Xi, i 2 T, be given non-negative integers. If T = f1; : : : ;mg
or N, then the equations (??), for all i 2 T, have a unique solution

given by, considering j � 0,

Hi = max
j<i

iX
k=j+1

(Xk � b) + b; Qi = max
j�i

iX
k=j+1

(Xk � b)

Properly de�ned, the result can be extended to in�nite tables.



Convergence to an in�nite hash table.

We are interested in hashing on Zm with n elements having
independent uniformly random hash addresses.

X1; : : : ; Xm have a multinomial distribution with parameters
n and (1=m; : : : ; 1=m). (We denote these Xi by Xm;n;i.)

We denote the pro�le of this hash table by Hm;n;i, where as
above i 2 Zm but we also can allow i 2 Z in the obvious way.

We consider a limit with m;n!1 and n=bm! � 2 (0; 1).

The appropriate limit object is an in�nite hash table on Z with
Xi = X�;i that are independent and identically distributed
(i.i.d.) with the Poisson distribution Xi � Po(�b).

We denote the pro�le of this hash table by H�;i.

Lemma

Let m;n!1 with n=bm! � for some � with 0 < � < 1. Then

(Hm;n;i)
1
i=�1

d
�! (H�;i)

1
i=�1.



Poisson Transform.

Results in one model can be transfered into the other model
by the Poisson Transform:

Pm[fm;n; b�] =
X
n�0

Pr[N = n]fm;n = e�b�m
X
n�0

(b�m)n

n!
fm;n:

Inversion Theorem:
[Gonnet and Munro 1984]

If Pm[fm;n; b�] =
X
k�0

am;k(bm�)
k then fm;n =

X
k�0

am;k
nk

(bm)k
:

The Poisson model is an approximation of the exact �lling
model when n;m!1 with n=m = b� with 0 � � < 1.



Diagonal Poisson Transform.
,

[Munro, Poblete, Viola 1997]

Let a hash table of size m, with n+ 1 keys, and let P be a
property for � (chosen uniformily at random).
Let fm;n be the result of applying a linear operator (e.g. an
expected value) to the probability generating function of P .

fm;n =
X
i�0

Pr[� 2 cluster of size i+ 1] fi+2;i

=
X
i�0

�
n

i

�
(m� i� 2)n�i�1(m� n� 2)(i+ 2)i

mn
fi+2;i:

Then Pm[fm;n;�] = D2[fn+2;n;�] with

Dc[fn;�] = (1� �)
X
n�0

e�(n+c)�
((n+ c)�)n

n!
fn:



Decomposition.

As a consequence,

P (z;w; q) :=
X

m;n�0

pm;n(q) w
bm z

n

n!
=

N̂0(z;w; q)

1�N0(z;w)
; with

N̂0(z;w; q) :=
b�1X
d=0

wb�d
X
i�0

Fbi+d
(zw)bi+d

(bi+ d)!
pbi+d(q);

which could be directly derived with the sequence construction.

N̂0(z;w; 1) = N0(z;w), P (z;w; 1) = �0(z;w)� 1.

Moreover, by singularity analysis of �0(�; y
1=be��; q) at y = 1,

lim
m!1

Pm[Qm;n;0=m
n; b�] = T0(b�) =

b(1� �)Qb�1
j=1

�
1� T (!j�e��)

�

� :
As a consequence,

lim
m!1

Pm[pm;n(q)=m
n; b�] = T0(b�)N̂0(b�; e

��; q):



Generating Functions and the Poisson Transform.

Let Pm;n(q) be the generating function of a cumulated value
of a RV � in a hash table of size m with n elements. Let

P (z;w; q) =
X
m�0

wbm
X
n�0

Pm;n(q)

mn

(bmz)n

n!
:

Then, for a �xed 0 < � < 1,

P (�; y1=be��; q) =
X
m�0

ym

0
@e�bm�

X
n�0

Pm;n(q)

mn

(bm�)n

n!

1
A

=
X
m�0

ymPm

�
Pm;n(q)

mn
; b�

�
:

Results for the probability generating function in the Poisson
Model (n;m!1; 0 � n=bm = � < 1) can be found by
singularity analysis from P (�; y1=be��; q). In our problems,
the dominant singularity is at y = 1.



The over�ow (parking problem).
Let Nm;n;k be the number of tables of length m with n
elements and over�ow k and


(z;w; q) :=
X
m�0

X
n�0

X
k�0

Nm;n;kw
bm z

n

n!
qk:

Theorem ([Seitz and Panholzer 2009])


(bz; w; q) =
1

qb � wbeqbz
�

Qb�1
j=0

�
q � T (!jzw)

z

�
Qb�1
j=0

�
1� T (!jzw)

z

� :

Proof.

[Sketch]


(z;w; q) = 1 + 
(z;w; q)
wbezq

qb
+

b�1X
s=0

(1� qs�b)Os(z;w);

with
Os(z;w) =

Fs(zw)w
b�s

1�N0(z;w)
:



The over�ow (parking problem).

Let Qm;n denote the over�ow in a random hash table with m
buckets and n keys.

Corollary

EQm;n = m�n
nX
j=0

bj=bcX
k=1

 
n

j

!
(j � kb)kj�1(m� k)n�j :



The parking problem.

Theorem

Let 0 < � < 1. The probability generating functions  H(z) and
 Q(z) extend to meromorphic functions given by

 H(z) =
b(1� �)(z � 1)

zbe�b(1�z) � 1

Qb�1
`=1

�
z � T

�
!`�e��

�
=�
�

Qb�1
`=1

�
1� T

�
!`�e��

�
=�
� ;

 Q(z) =
b(1� �)(z � 1)

zb � e�b(z�1)

Qb�1
`=1

�
z � T

�
!`�e��

�
=�
�

Qb�1
`=1

�
1� T

�
!`�e��

�
=�
� :

Corollary

In the in�nite Poisson model, the probability of no over�ow from a

given bucket is

Pr(Qi = 0) = eb�Tb�1(b�):

This is the asymptotic probability of success in the parking

problem, as m;n!1 with n=m! �,



The parking problem.

Corollary

For k = 0; : : : ; b� 1,

Pr(Yi = k) = Pr(Hi = k) = �b(1� �)
[zk]

Qb�1
`=0

�
z � T

�
!`�e��

�
=�
�

Qb�1
`=1

�
1� T

�
!`�e��

�
=�
� :

Furthermore, the probability that a bucket is not full is given by

Pr(Yi < b) = Pr(Hi < b) = T0(b�) =
b(1� �)Qb�1

`=1

�
1� T

�
!`�e��

�
=�
�

and thus

Pr(Yi = b) = Pr(Hi � b) = 1� T0(b�):



Robin Hood: an example (b=2).
Keys inserted:

36, 77, 24, 79, 56, 69, 49, 18, 38, 97, 78, 10, 58.

Hash function

h(x) = x mod 10.

a

49 79 24 36 77 18 58

69 10 56 97 38 78

0 1 2 3 4 5 6 7 8 9

What happens when 29 is inserted?

a

29 69 10 24 36 77 18 58

49 79 56 97 38 78

0 1 2 3 4 5 6 7 8 9



Properties of Robin Hood Hashing.

a

29 69 10 24 36 77 18 58

49 79 56 97 38 78

0 1 2 3 4 5 6 7 8 9

At least one record is in its home bucket.

The keys are stored in nondecreasing order by hash value,
starting at some location k and wrapping around. In our
example, k = 5 (the �rst slot of the third bucket).

If a �xed rule is used to break ties among the candidates to
probe their next probe bucket (eg: by sorting these keys in
increasing order), then the resulting table is independent of the
order in which the records were inserted. Then, we may insert
the elements in any order, and study the behavior of the last
one inserted!.



Robin Hood displacement.

W.l.o.g. we search for a record that hashes to bucket 0.

We have to probe buckets occupied by the elements that
would have gone to the over�ow area.

Then consider collisions with all the elements that hash to 0.

Let DRH be the displacement of a given element x.

Let CRH be the number of elements that win over x in the
competition for slots in the buckets. Then DRH = bCRH=bc.

The speci�cation is

CRH = Q�1 + V = Overow �Mark(Bucket)

of the number Q�1 = Qm�1 of keys that over�ow into 0 and
the number V of keys that hash to 0 that win over x.

The number Qm�1 of keys that over�ow does not change
when the keys that hash to 0 are removed. This is thus
independent of V .



Robin Hood displacement.
We consider the displacement DRH of a marked key �.

RH(z;w; q) :=
X
m�0

X
n�0

X
k�0

CRHm;n;kw
bm z

n

n!
qk;

where CRHm;n;k is the number of hash tables of length m
with n keys (one of them marked as �) such that � hashes to
the �rst bucket and the displacement DRH of � equals k.

Theorem

RH(bz; w; q) =
1

b

b�1X
d=0

C
�
bz; w; !dq1=b

� b�1X
p=0

�
!dq1=b

��p
;

with

C(bz; w; q) =
wb(ebz � ebzq)

(1� q)(qb � wbebzq)

Qb�1
j=0

�
q � T (!jzw)

z

�
Qb�1
j=0

�
1� T (!jzw)

z

� :



Robin Hood displacement.

Note that the expectation of the displacement (but not the
variance) is the same for any insertion heuristic. We let Dm;n

denote the displacement of a random element in a hash table
with m buckets and n keys.

Lemma

For linear probing with the Robin Hood, FCFS or LCFS (or any

other) heuristic,

EDm;n =
m

n
EQm;n:

Proof.

For any hash table, and any linear probing insertion policy, the sum
of the n displacements of the keys equals the sum of the m
over�ows Qi. Take the expectation.



Robing Hood displacement.

Theorem

Let 0 < � < 1. In the in�nite Poisson model, the variable V�, the
number of keys that win over the new key CRH

� and its Robin Hood

displacement DRH
� have the probability generating functions

 V (q) =
1� eb�(q�1)

b�(1� q)

 C(q) =  Q(q) V (q) =
1� �

�

1� eb�(q�1)

eb�(q�1) � qb

Qb�1
`=1

�
q � �`

�
Qb�1
`=1

�
1� �`

� :
 RH(q) =

1

b

b�1X
j=0

 C
�
!jq1=b

� 1� q�1

1� !�jq�1=b
:

As m;n!1 with n=bm! �, Vm;n
d
�! V�, C

RH
m;n

d
�! CRH

� and

DRH
m;n

d
�! DRH

� , with convergence of all moments; furthermore, for

some � > 0, the corresponding probability generating functions

converge, uniformly for jqj � 1 + �.



Robing Hood displacement.

Corollary

As m;n!1 with n=bm! � 2 (0; 1),

ECRH
m;n ! ECRH

� =
1

2(1� �)
�
b

2
+

b�1X
`=1

1

1� �`
;

EDRH
m;n ! EDRH

� =
1

2b�

�
1

1� �
� b� b�

�
+

1

b�

b�1X
`=1

1

1� �`
:

with

�` := T
�
!`�e��

�
=�:



Block length.

Let Fbi+d be the number of ways to construct an almost full
table of length i+ 1 and size bi+ d with 0 � d � b� 1. Then,

Fd(u) :=
X
i�0

Fbi+d
ubi+d

(bi+ d)!
; N0(z;w) :=

b�1X
d=0

wb�dFd(zw):

In an almost full table the length of the block is marked by w
in N0(bz; w).

The generating function B(z;w; q) for the block length is

B(bz; w; q) = �0(bz; w)N0(bz; wq
1=b) =

1�
Qb�1
j=0

�
1� T (!jzwq1=b)

z

�
Qb�1
j=0

�
1� T (!jzw)

z

� :



Block length.
Let Bm;n be the length of a random block, chosen uniformly
among all blocks in all hash tables with m buckets and n keys.
This is the same as the length of the last block in a uniformly
random hash table such that the rightmost bucket is not full.
Recall that we denote the number of such hash tables by Qm;n;0.

Corollary

If 0 � n < bm, then

EBm;n =
mn

Qm;n;0
:

Proof.

The sum of the block lengths in any hash table is m, and thus the
sum of the lengths of all blocks in all tables is m �mn, while the
number of blocks ending with a given bucket is Qm;n;0 and thus
the total number of blocks is m �Qm;n;0.



Block length.

Let B be the length of the �rst block, i.e.,

B := minfi � 1 : Yi < bg = minfi � 1 : Hi < bg:

Hence, B is the �rst positive index i such that the number of
elements Si = X1 + � � �+Xi hashed to the i �rst buckets is
less than the capacity bi of these buckets, i.e.,

B = minfi � 1 : Si < big:

Theorem

The probability generating function  B(z) := E zB of B is given by

 B(z) = 1�
b�1Y
`=0

�
1� T

�
!`�e��z1=b

�
=�
�
;

for jqj � R for some R > 1.



Block length.

Corollary

The random block length B = B� de�ned above has expectation

EB� =
1

T0(b�)

and variance,

V[B]� =
1

b(1� �)2T0(b�)
�

2

bT0(b�)

b�1X
`=1

�`
(1� �`)(1� ��`)

�
1

T0(b�)2
:



Block length.
The length of the block B̂i containing a given bucket i has a
di�erent, size-biased distribution.

Theorem

In the in�nite Poisson model, B̂ = B̂� has the size-biased

distribution

Pr(B̂� = k) =
kPr(B� = k)

EB�
= T0(b�)kPr(B� = k)

and thus the probability generating function

 B̂(q) = T0(b�)q 
0
B(q) = T0(b�)q

b�1X
`=0

� 0`(q)
Y
j 6=`

(1� �j(q)):

As m;n!1 with n=bm! �, B̂m;n
d
�! B̂� with convergence of

all moments; furthermore, for some � > 0, the probability

generating function converges to  B̂(q), uniformly for jqj � 1 + �.



Block length.

Corollary

As m;n!1 with n=bm! � 2 (0; 1),

E B̂m;n ! E B̂� =
1

b(1� �)2
�

2

b

b�1X
`=1

�`
(1� �`)(1� ��`)

:

Theorem

In the exact model, B̂m;n has the size-biased distribution

Pr(B̂m;n = k) =
kPr(Bm;n = k)

EBm;n
=
Qm;n;0

mn
kPr(Bm;n = k):

Theorem

For the exact model, as m;n!1 with n=bm! �, Bm;n
d
�! B�

with convergence of all moments.



Unsuccessful search.

In a cluster with n keys, the number of visited buckets in a
unsuccessful search, is the same as the one needed to insert
the (n+ 1)st element.

Then, the speci�cation Pos(C) (marking the position of this
inserted element) leads to

U(bz; w; q) =
X
m�1

wbm
X
n�0

(bmz)n

n!
Pm;n(q)

= �0(bz; w)
N0(bz; w)�N0(bz; wq

1=b)

1� q

=

Qb�1
j=0

�
1� T (!jzwq1=b)

z

�
�
Qb�1
j=0

�
1� T (!jzw)

z

�
(1� q)

Qb�1
j=0

�
1� T (!jzw)

z

� ;

where Pm;n(q) is the probability generating function for the
displacement of the (n+ 1)st inserted element.



FCFS displacement.

We consider the displacement of a marked key �, which we by
symmetry may assume hashes to the �rst bucket.

Thus, let

FCFS(z;w; q) :=
X
m�1

X
n�1

X
k�0

FCFSm;n;kw
bm z

n

n!
qk;

where FCFSm;n;k is the number of hash tables of length m
with n keys (one of them marked as �) such that � hashes to
the �rst bucket and the displacement DFC of � equals k.

For a given m and n with 1 � n � bm, there are nmn�1 such
tables (n choices to select � and mn�1 choices to place the
other n� 1 elements).



FCFS displacement.

Thus, if dm;n(q) is the probability generating function for the
displacement of a random key

FCFS(z;w; q) =
X
m�1

bmX
n=1

nmn�1dm;n(q)w
bm z

n

n!

= z
X
m�1

bm�1X
n=0

dm;n+1(q)w
bmm

nzn

n!
:

Theorem

FCFS(bz; w; q) = b

Z z

0
U(bt; wez�t; q) dt

up to terms znwmqk with n > bm.



FCFS displacement.

Proof.

The probability generating function for the displacement of a
random key when having n keys in the table is

dm;n(q) =
1

n

n�1X
i=0

um;i(q);

Then, for all m � 1 and n � 0,

um;n(q) = (n+ 1)dm;n+1(q)� ndm;n(q);

and so,

@

@z
FCFS(bz; w; q)� w

@

@w
FCFS(bz; w; q) = bU(bz; w; q):

This di�erential equation together with the boundary condition
F (0; w; q) = 0 leads to the solution.



Speci�cation for FCFS displacement (b=1).

Let FC(z;w; q) be the generating function for the cost of a
successful search in an almost full table when n+ 1 elements
are inserted and one element � is marked.

AF (z) = T (z)
z where T (z) is the tree function.

Then, <FC> = <Add(AF)>*<AF> + <Pos(FC)>*<AF> +
<Pos(AF)>*<FC> leads to

@z(FC) = H[AF ] � AF +
@

@z
(zFC) � AF +

@

@z
(zAF ) � FC:

FCFS(z;w; q) =
((1� T (zwq))2 � (1� T (zw))2)T (zw)

2z(1� q)(1� T (zw))
:



Unsuccessful search and FCFS displacement.

Theorem

The probability generating function  U (z) := E zUi of Ui is given

by

 U (z) =
T0(b�)

1� z

b�1Y
`=0

�
1� T

�
!`�e��z1=b

�
=�
�
:

Theorem

The probability generating function  FC(z) := E zDFC
i of DFC

i is

given by

 FC(z;�) =
1

�

Z �

0
 U (z;�) d� =

1

�

Z �

0

� (�)

1� z

b�1Y
`=0

�
1� �`(z;�)

�
d�

=
1

�

Z �

0

b(1� �)
Qb�1
`=0

�
1� �`(z;�)

�
(1� z)

Qb�1
`=1(1� �`(1;�))

d�:



Some �nal considerations.

Problem with a very rich history.

Paradigm of a problem that nicely integrates analytical,
combinatorial and probabilistic approaches.

This integration (together with the use of symbolic methods!)
has allowed the understanding of deep relations with other
important problem.

A uni�ed analysis of several important random variables
related with linear probing: symbolic methods + random
walks (linked by the Poisson Transform).

Some ongoing work.

Total displacement with buckets. Relation with other problems
as for b=1?

Number of movements in deletion algorithm.




