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E(K,) coloured with 2 colours

Footnote (Gerencser and Gyarfas '67): Any 2-coloured K, has
a partition into two monochromatic paths, of distinct colours.

Thm (Bessy and Thomassé '10): Any 2-coloured K|, has a
partition into two monochromatic cycles, of distinct colours.

e conjectured by Lehel ('79)
e proved for very large n by tuczak, Rodl, Szemerédi '98, and for
large n by Allen '08

Generalization:

Thm (Conlon, St '14+): The same holds for 2-local
colourings.
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partition into 2 cycles.

r-local colouring:
arbitrary many colours, but each vertex sees < r colours.
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e second conjecture not true
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Bounds for cycles: E(K,) coloured with r colours

Conjecture (EGP '91): 3 partition into r monoy cycles.

Partitions into f(r) cycles (for large n):

e 3 partition into O(r?log r) cycles (EGP '91)

e 7 partition into 100r log r cycles (Gyérfas, Ruszinkd, Sarkozy,
Szemerédi '06)

e for r-local colourings, 3 partition into O(r?logr) cycles (Conlon,
St '14+)

Three colours:
e cover all but o(n) vertices with < 3 disjoint cycles (GRSS '12)
e cover all vertices with 17 disjoint cycles, for large n (GRSS '12)

r cycles are not enough:
e counterexample, for all r > 3 (Pokrovskiy '14)




Cycles: E(K,) coloured with r colours

Conjecture (EGP '91): There is a partition of all vertices of
K, into r monochromatic cycles.
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Cycles: E(K,) coloured with r colours

Coni (EGP 101} T . "  all : ‘

(still possible) Conjecture: There is a partition of all
vertices of K|, into cr monochromatic cycles.

‘...into 100r log r cycles’ is known [GRSS '06].



Cycles: E(K,) coloured with r colours
o £GP 101): There T TE—

(still possible) Conjecture: There is a partition of all
vertices of K, into f(r) monochromatic cycles.

Conjecture (Gy '89): There is a partition of all vertices of K,
into r monochromatic paths.

true for r < 3, open for r > 3



Partitioning with paths/cycles

paths ‘ Kn
r colours | r?
2 colours | 2
3 colours | 3
4 colours | 8

cycles K, K, ‘local’
r colours | 100rlogr O(rlogr)
2 colours 2 2
3 colours 17

cycles: all but o(n) ‘ Kn
r colours r?
3 colours 3
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Complete bipartite graphs K, , with 2 colours:

Can we cover Kj, , with 2 cycles (or paths)?
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The split colouring:

In a split colouring, we might need 3 paths/cycles.

Thm (Pok '14): 3 partition into 2 paths, if the colouring is
not a split colouring.

e 3 paths are always enough
e 3 paths suffice also for 2-local colourings (Lang, St. '15+)
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A split colouring
for r colours:

In a such a colouring, we might need 2r — 1 paths.

Conjecture (Pok '14): 3 a partition into 2r — 1 paths
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Complete bipartite graphs K, ,: cycle partitions

with r colours:
e Thm (Haxell '97): 3 partition into O((r log r)?) monoy cycles
e Thm (Peng, R&dl, Ruciniski '02): O(r?log r) cycles suffice

r=2:
e Cor (Schaudt, St '14+): 3 partition of all but o(n) vertices into
3 monochromatic cycles and a partition of all the vertices into 12
cycles.

r=3:

e Thm (Lang, Schaudt, St '144): 3 partition of all but o(n)
vertices into 5 monochromatic cycles and a partition of all the
vertices into 18 cycles.

e (improving on Haxell '97: 1695 monochromatic cycles.)
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bipartite graph multipartite graph

need balanced?
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bipartite graph multipartite graph

fair

fair multipartite graph: no class has more than half of V(G)
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Fair complete k-partite graphs, kK > 2, with 2 colours:

Thm (Schaudt, St '14+):

e can partition all but dn vertices into 2 monoy cycles of
distinct colours, if the colouring is d-far from a split colouring.
e can partition all but o(n) vertices into 3 monoy cycles.

e 14 monoy cycles partition all the vertices.
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Partitioning with paths/cycles
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Proof ideas (for cycles):

take out cycles using density

V=
J =0

Use: Erdés—Gallai theorem for cycles.



Proof ideas (for cycles):

what to do with the leftover vertices?

(e

o(n)




Proof ideas (for cycles):

Start again: First, take out a ‘robust hamiltonian’ subgraph

Use: Ramsey number of the triangle cycle.



Proof ideas (for cycles):

Take out cycles as before




Proof ideas (for cycles):

Finish by absorbing the leftover vertices.

&
OO

" 050

Use: ‘one sided covering lemma for bipartite graphs’.



Proof ideas (for cycles):

The ‘one sided covering lemma’:

certain
sity
implies

larg




Proof ideas (for cycles):

Finish by absorbing the leftover vertices.

S

OO
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Proof ideas (for cycles):

Finish by absorbing the leftover vertices.

=680
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Proof ideas (for cycles):

Finish by absorbing the leftover vertices.

=680

=
o(n) D
Do |




Proof ideas (for cycles):

This gives a bound of O(rlogr) monochromatic cycles.



Proof ideas: small r

K, with three colours




Proof ideas: small r

apply regularity lemma

O OO
Q@QQQ

Use: Regularity lemma.



Proof ideas: small r

take majority colouring

(O OO
SO




Proof ideas: small r

find 3 disjoint monoy connected matchings covering almost all

/ll/“, ///‘/,
WA
W /\V

e

N
A —

Here we have to work.



Proof ideas: small r

blow them up to get 3 cycles

tuczak's blow-up technique.



Proof ideas: small r

only o(n) vertices left




Proof ideas: small r

This gives a partition of all but o(n) vertices into 3 monochromatic
cycles.



Proof ideas: small r

find a large ‘robustly hamiltonian’ monoy graph




Proof ideas: small r

in the rest, apply the previous result




Proof ideas: small r

leftover very small compared to the first subgraph




Proof ideas: small r

absorb the leftover




=

@




Proof ideas: small r

This gives a partition of all vertices into 17 monochromatic cycles.



Proof ideas: small r

Problems:
-how to find the connected monochromatic matchings

-how to find the path partitions
-how to deal with local colourings.
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OTHER DIRECTIONS

» partitions into trees [EGP '91 conjecture r — 1 trees, Haxell,
Kohayakawa '97 prove r|

> partitions into k-regular graphs and isolated vertices —
function f(k, r) [Sarkozy, Selkow '99]

> partitions into members of an co family of bounded degree
graphs — function f(A, r) [Grinshpun, Sarkozy '14+]

» partitions of arbitrary graphs G instead of K, K, , —
function f(a(G), r) [Sarkozy '11, Balogh, Barat, Gerbner,
Gyarfés, Sarkozy '13+]

» improvements for r-local colourings

» r-mean colourings

» covers instead of partitions [Gyarfas '83,...]



Thank you!



