Monochromatic path/cycle partitions Maya Stein University of Chile based on joint work with David Conlon, Richard Lang, Oliver Schaudt FoCM Graphs and Combinatorics Session, Montevideo December 11, 2014 #### OVERVIEW OF THE PROBLEM How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured K_n ? Cycles may be empty, singletons, single edges. How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured K_n ? #### function of n? Cycles may be empty, singletons, single edges. How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured K_n ? function of $n? \rightarrow \text{actually } 2$ Cycles may be empty, singletons, single edges. How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured K_n ? function of $n? \rightarrow$ actually 2 Cycles may be empty, singletons, single edges. How many disjoint monochromatic cycles do we need to cover any r-edge-coloured K_n ? #### function of n and r? Cycles may be empty, singletons, single edges. How many disjoint monochromatic cycles do we need to cover any r-edge-coloured K_n ? Cycles may be empty, singletons, single edges. How many disjoint monochromatic cycles do we need to cover any r-edge-coloured K_n ? Cycles may be empty, singletons, single edges. How many disjoint monochromatic paths do we need to cover any r-edge-coloured K_n ? Cycles may be empty, singletons, single edges. How many disjoint monochromatic paths do we need to cover any r-edge-coloured K_n ? Cycles may be empty, singletons, single edges. How many disjoint monochromatic paths do we need to cover any r-edge-coloured $K_{n,n}$? function of *n* and r? \rightarrow actually a function of r Cycles may be empty, singletons, single edges. How many disjoint monochromatic paths do we need to cover any r-edge-coloured K_n^k ? Cycles may be empty, singletons, single edges. #### **COMPLETE GRAPHS** An observation of Gerencser and Gyárfás '67: An observation of Gerencser and Gyárfás '67: Take a longest red/blue path Does it cover all vertices? An observation of Gerencser and Gyárfás '67: Take a longest red/blue path An observation of Gerencser and Gyárfás '67: Take a longest red/blue path An observation of Gerencser and Gyárfás '67: Take a longest red/blue path An observation of Gerencser and Gyárfás '67: Take a longest red/blue path An observation of Gerencser and Gyárfás '67: Take a longest red/blue path Does it cover all vertices? \rightarrow yes it does! An observation of Gerencser and Gyárfás '67: Take a longest red/blue path Does it cover all vertices? \rightarrow yes it does! $$\Rightarrow \exists$$ partition of K_n into \checkmark Footnote (Gerencser and Gyárfás '67): Any 2-coloured K_n has a partition into two monochromatic paths, of distinct colours. Footnote (Gerencser and Gyárfás '67): Any 2-coloured K_n has a partition into two monochromatic paths, of distinct colours. Thm (Bessy and Thomassé '10): Any 2-coloured K_n has a partition into two monochromatic cycles, of distinct colours. Footnote (Gerencser and Gyárfás '67): Any 2-coloured K_n has a partition into two monochromatic paths, of distinct colours. Thm (Bessy and Thomassé '10): Any 2-coloured K_n has a partition into two monochromatic cycles, of distinct colours. • conjectured by Lehel ('79) Footnote (Gerencser and Gyárfás '67): Any 2-coloured K_n has a partition into two monochromatic paths, of distinct colours. Thm (Bessy and Thomassé '10): Any 2-coloured K_n has a partition into two monochromatic cycles, of distinct colours. - conjectured by Lehel ('79) - \bullet proved for very large n by Łuczak, Rödl, Szemerédi '98, and for large n by Allen '08 Footnote (Gerencser and Gyárfás '67): Any 2-coloured K_n has a partition into two monochromatic paths, of distinct colours. Thm (Bessy and Thomassé '10): Any 2-coloured K_n has a partition into two monochromatic cycles, of distinct colours. - conjectured by Lehel ('79) - \bullet proved for very large n by Łuczak, Rödl, Szemerédi '98, and for large n by Allen '08 #### Generalization: Thm (Conlon, St '14+): The same holds for 2-local colourings. ### $E(K_n)$ locally coloured with 2 colours Thm (Conlon, St '14+): Any 2-local coloured K_n has a partition into 2 cycles. #### r-local colouring: arbitrary many colours, but each vertex sees $\leq r$ colours. # $E(K_n)$ locally coloured with 2 colours Thm (Conlon, St '14+): Any 2-local coloured K_n has a partition into 2 cycles. #### proof idea: we get one of the following two: 1) \exists colour that sees all vertices 2) there is no such colour # $E(K_n)$ locally coloured with 2 colours Thm (Conlon, St '14+): Any 2-local coloured K_n has a partition into 2 cycles. #### proof idea: we get one of the following two: 1) \exists colour that sees all vertices 2) there is no such colour • need at least *r* paths/cycles - need at least *r* paths/cycles - cannot hope for paths of distinct colours - need at least r paths/cycles - cannot hope for paths of distinct colours Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths. - need at least r paths/cycles - cannot hope for paths of distinct colours Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths. ullet inspired by a result of Rado '78 for K_{∞} - need at least r paths/cycles - cannot hope for paths of distinct colours Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths. ullet inspired by a result of Rado '78 for K_{∞} Conjecture (Erdős, Gyárfas, Pyber '91): Any r-coloured K_n has a partition into r monochromatic cycles. - need at least *r* paths/cycles - cannot hope for paths of distinct colours Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths. ullet inspired by a result of Rado '78 for K_{∞} Conjecture (Erdős, Gyárfas, Pyber '91): Any r-coloured K_n has a partition into r monochromatic cycles. • they show that \exists partition into $cr^2 \log r$ cycles - need at least r paths/cycles - cannot hope for paths of distinct colours Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths. ullet inspired by a result of Rado '78 for K_{∞} Conjecture (Erdős, Gyárfas, Pyber '91): Any r-coloured K_n has a partition into r monochromatic cycles. • they show that \exists partition into $cr^2 \log r$ cycles **SPOILER ALERT** - need at least r paths/cycles - cannot hope for paths of distinct colours Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths. ullet inspired by a result of Rado '78 for K_{∞} Conjecture (Erdős, Gyárfas, Pyber '91): Any r-coloured K_n has a partition into r monochromatic cycles. • they show that \exists partition into $cr^2 \log r$ cycles #### SPOILER ALERT • second conjecture not true - need at least *r* paths/cycles - cannot hope for paths of distinct colours Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths. ullet inspired by a result of Rado '78 for K_{∞} Conjecture (Erdős, Gyárfas, Pyber '91): Any r-coloured K_n has a partition into r monochromatic cycles. • they show that \exists partition into $cr^2 \log r$ cycles Conjecture (EGP '91): \exists partition into r mono χ cycles. Conjecture (EGP '91): \exists partition into r mono χ cycles. Partitions into f(r) cycles (for large n): • \exists partition into $O(r^2 \log r)$ cycles (EGP '91) Conjecture (EGP '91): \exists partition into r mono χ cycles. Partitions into f(r) cycles (for large n): - \exists partition into $O(r^2 \log r)$ cycles (EGP '91) - \bullet \exists partition into $100r\log r$ cycles (Gyárfas, Ruszinkó, Sarközy, Szemerédi '06) Conjecture (EGP '91): \exists partition into r mono χ cycles. #### Partitions into f(r) cycles (for large n): - \exists partition into $O(r^2 \log r)$ cycles (EGP '91) - \bullet \exists partition into $100r \log r$ cycles (Gyárfas, Ruszinkó, Sarközy, Szemerédi '06) - for r-local colourings, \exists partition into $O(r^2 \log r)$ cycles (Conlon, St '14+) Conjecture (EGP '91): \exists partition into r mono χ cycles. #### Partitions into f(r) cycles (for large n): - \exists partition into $O(r^2 \log r)$ cycles (EGP '91) - \bullet \exists partition into $100r\log r$ cycles (Gyárfas, Ruszinkó, Sarközy, Szemerédi '06) - for *r*-local colourings, \exists partition into $O(r^2 \log r)$ cycles (Conlon, St '14+) #### Three colours: • cover all but o(n) vertices with ≤ 3 disjoint cycles (GRSS '12) Conjecture (EGP '91): \exists partition into r mono χ cycles. #### Partitions into f(r) cycles (for large n): - \exists partition into $O(r^2 \log r)$ cycles (EGP '91) - \bullet \exists partition into $100r\log r$ cycles (Gyárfas, Ruszinkó, Sarközy, Szemerédi '06) - for r-local colourings, \exists partition into $O(r^2 \log r)$ cycles (Conlon, St '14+) #### Three colours: - cover all but o(n) vertices with ≤ 3 disjoint cycles (GRSS '12) - cover all vertices with 17 disjoint cycles, for large n (GRSS '12) Conjecture (EGP '91): \exists partition into r mono χ cycles. #### Partitions into f(r) cycles (for large n): - \exists partition into $O(r^2 \log r)$ cycles (EGP '91) - \bullet \exists partition into $100r\log r$ cycles (Gyárfas, Ruszinkó, Sarközy, Szemerédi '06) - for r-local colourings, \exists partition into $O(r^2 \log r)$ cycles (Conlon, St '14+) #### Three colours: - cover all but o(n) vertices with ≤ 3 disjoint cycles (GRSS '12) - cover all vertices with 17 disjoint cycles, for large n (GRSS '12) #### r cycles are not enough: • counterexample, for all $r \ge 3$ (Pokrovskiy '14) Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles. Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles. Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles. (still possible) Conjecture: There is a partition of all but 1 vertices of K_n into r monochromatic cycles. Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles. (still possible) Conjecture: There is a partition of all but c vertices of K_n into r monochromatic cycles. Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles. (still possible) Conjecture: There is a partition of all but c_r vertices of K_n into r monochromatic cycles. Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles. (still possible) Conjecture: There is a partition of all but o(n) vertices of K_n into r monochromatic cycles. This is known for r = 3. Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles. (still possible) Conjecture: There is a partition of all vertices of K_n into r + 1 monochromatic cycles. Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles. (still possible) Conjecture: There is a partition of all vertices of K_n into cr monochromatic cycles. Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles. (still possible) Conjecture: There is a partition of all vertices of K_n into cr monochromatic cycles. '...into $100r \log r$ cycles' is known [GRSS '06]. Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles. (still possible) Conjecture: There is a partition of all vertices of K_n into f(r) monochromatic cycles. Conjecture (Gy '89): There is a partition of all vertices of K_n into r monochromatic paths. true for $r \le 3$, open for r > 3 # Partitioning with paths/cycles | paths | K _n | |-----------|----------------| | r colours | r ? | | 2 colours | 2 | | 3 colours | 3 | | 4 colours | 8 | | cycles | K_n | K_n 'local' | |-----------|---------------------------|-----------------| | r colours | 100 <i>r</i> log <i>r</i> | $O(r^2 \log r)$ | | 2 colours | 2 | 2 | | 3 colours | 17 | | | cycles: all but $o(n)$ | K _n | |------------------------|----------------| | r colours | r ? | | 3 colours | 3 | #### COMPLETE BIPARTITE GRAPHS Can we cover $K_{n,n}$ with 2 cycles (or paths)? The split colouring: The split colouring: In a split colouring, we might need 3 paths/cycles. The split colouring: In a split colouring, we might need 3 paths/cycles. Thm (Pok '14): \exists partition into 2 paths, if the colouring is not a split colouring. The split colouring: In a split colouring, we might need 3 paths/cycles. Thm (Pok '14): \exists partition into 2 paths, if the colouring is not a split colouring. • 3 paths are always enough The split colouring: In a split colouring, we might need 3 paths/cycles. Thm (Pok '14): \exists partition into 2 paths, if the colouring is not a split colouring. - 3 paths are always enough - 3 paths suffice also for 2-local colourings (Lang, St. '15+) A split colouring for *r* colours: A split colouring for *r* colours: In a such a colouring, we might need 2r-1 paths. # Complete bipartite graphs $K_{n,n}$ with r colours: A split colouring for *r* colours: In a such a colouring, we might need 2r - 1 paths. Conjecture (Pok '14): \exists a partition into 2r - 1 paths with *r* colours: #### with *r* colours: - Thm (Haxell '97): \exists partition into $O((r \log r)^2)$ mono χ cycles - Thm (Peng, Rödl, Ruciński '02): $O(r^2 \log r)$ cycles suffice #### with r colours: - Thm (Haxell '97): \exists partition into $O((r \log r)^2)$ mono χ cycles - Thm (Peng, Rödl, Ruciński '02): $O(r^2 \log r)$ cycles suffice #### r = 2: • Cor (Schaudt, St '14+): \exists partition of all but o(n) vertices into 3 monochromatic cycles and a partition of all the vertices into 12 cycles. #### with r colours: - Thm (Haxell '97): \exists partition into $O((r \log r)^2)$ mono χ cycles - Thm (Peng, Rödl, Ruciński '02): $O(r^2 \log r)$ cycles suffice #### r = 2: • Cor (Schaudt, St '14+): \exists partition of all but o(n) vertices into 3 monochromatic cycles and a partition of all the vertices into 12 cycles. #### r = 3: • Thm (Lang, Schaudt, St '14+): \exists partition of all but o(n) vertices into 5 monochromatic cycles and a partition of all the vertices into 18 cycles. #### with r colours: - Thm (Haxell '97): \exists partition into $O((r \log r)^2)$ mono χ cycles - Thm (Peng, Rödl, Ruciński '02): $O(r^2 \log r)$ cycles suffice ### r = 2: • Cor (Schaudt, St '14+): \exists partition of all but o(n) vertices into 3 monochromatic cycles and a partition of all the vertices into 12 cycles. #### r = 3: - Thm (Lang, Schaudt, St '14+): \exists partition of all but o(n) vertices into 5 monochromatic cycles and a partition of all the vertices into 18 cycles. - (improving on Haxell '97: 1695 monochromatic cycles.) | paths | K _n | $K_{n,n}$ | $K_{n,n}$ 'local' | |------------------------|----------------|-----------|-------------------| | r colours | r ? | 2r - 1 ? | | | 2 colours
3 colours | 2 | 3 | 3 | | 3 colours | 3 | | | | cycles | K_n | K_n 'local' | $K_{n,n}$ | |-----------|---------------------------|-----------------|-----------------| | r colours | 100 <i>r</i> log <i>r</i> | $O(r^2 \log r)$ | $O(r^2 \log r)$ | | 2 colours | 2 | 2 | 12 | | 3 colours | 17 | | 18 | | cycles: all but $o(n)$ | K _n | $K_{n,n}$ | |------------------------|----------------|-----------| | r colours | r ? | 2r - 1 ?? | | 2 colours | 2 | 3 | | 3 colours | 3 | 5 | | paths | K _n | $K_{n,n}$ | $K_{n,n}$ 'local' | |-----------|----------------|-----------|-------------------| | r colours | <i>r</i> ? | 2r - 1 ? | | | 2 colours | 2 | 3 | 3 | | 3 colours | 3 | | | | cycles | K_n | K_n 'local' | $K_{n,n}$ | |-----------|---------------------------|-----------------|-----------------| | r colours | 100 <i>r</i> log <i>r</i> | $O(r^2 \log r)$ | $O(r^2 \log r)$ | | 2 colours | 2 | 2 | 12 | | 3 colours | 17 | | 18 | | cycles: all but $o(n)$ | K _n | $K_{n,n}$ | |------------------------|----------------|-----------| | r colours | r ? | 2r - 1 ?? | | 2 colours | 2 | 3 | | 3 colours | 3 | 5 | | paths | | $K_{n,n}$ | $K_{n,n}$ 'local' | |-----------|-----|-----------|-------------------| | r colours | r ? | 2r - 1? | | | 2 colours | 2 | 3 | 3 | | 3 colours | 3 | | | | cycles | K_n | K_n 'local' | $K_{n,n}$ | |-----------|---------------------------|-----------------|-----------------| | r colours | 100 <i>r</i> log <i>r</i> | $O(r^2 \log r)$ | $O(r^2 \log r)$ | | 2 colours | 2 | 2 | 12 | | 3 colours | 17 | | 18 | | cycles: all but $o(n)$ | K _n | $K_{n,n}$ | |------------------------|----------------|-----------| | r colours | r ? | 2r - 1 ?? | | 2 colours | 2 | 3 | | 3 colours | 3 | 5 | ### COMPLETE MULTIPARTITE GRAPHS bipartite graph multipartite graph bipartite graph multipartite graph ### bipartite graph balanced ### multipartite graph ### bipartite graph balanced #### multipartite graph need balanced? ### bipartite graph balanced ### multipartite graph fair multipartite graph: no class has more than half of V(G) Thm (Schaudt, St '14+): \exists partition into two monochromatic paths of distinct colours, if $k \geq 3$. Thm (Schaudt, St '14+): \exists partition into two monochromatic paths of distinct colours, if $k \ge 3$. I.e.: there is no 'split colouring' for k-partite graphs with $k \geq 3$. Thm (Schaudt, St '14+): \exists partition into two monochromatic paths of distinct colours, if $k \ge 3$. I.e. : there is no 'split colouring' for k-partite graphs with $k \ge 3$. Thm (Schaudt, St '14+): ullet can partition all but δn vertices into 2 mono χ cycles of distinct colours, if the colouring is δ -far from a split colouring. Thm (Schaudt, St '14+): ullet can partition all but δn vertices into 2 mono χ cycles of distinct colours, if the colouring is δ -far from a split colouring. #### Thm (Schaudt, St '14+): - can partition all but δn vertices into 2 mono χ cycles of distinct colours, if the colouring is δ -far from a split colouring. - can partition all but o(n) vertices into 3 mono χ cycles. ### Thm (Schaudt, St '14+): - ullet can partition all but δn vertices into 2 mono χ cycles of distinct colours, if the colouring is δ -far from a split colouring. - can partition all but o(n) vertices into 3 mono χ cycles. - 14 mono χ cycles partition all the vertices. | paths | K _n | $K_{n,n}$ | fair K_{n_1,n_ℓ} , $\ell \geq 3$ | |---------------------|----------------|-----------|---------------------------------------| | r colours | r ? | 2r - 1 ? | r ?? | | r colours 2 colours | 2 | (2 or) 3 | 2 | | 3 colours | 3 | | | | cycles | K_n | $K_{n,n}$ | fair K_{n_1,n_ℓ} | |-----------|---------------|-----------------|-----------------------| | r colours | $100r \log r$ | $O(r^2 \log r)$ | $O(r^2 \log r)$ | | 2 colours | 2 | 12 | 14 | | 3 colours | 17 | 18 | | | cycles: all but $o(n)$ | K_n | $K_{n,n}$ | fair K_{n_1,n_ℓ} | |------------------------|-------|-----------|-----------------------| | r colours | r ? | 2r - 1 ?? | ?? | | 2 colours | 2 | (2 or) 3 | (2 or) 3 | | 3 colours | 3 | 5 | | | paths | K _n | $K_{n,n}$ | fair $K_{n_1,\dots n_\ell}$, $\ell \geq 3$ | |---------------------|----------------|-----------|---| | r colours | <i>r</i> ? | 2r - 1 ? | r ?? | | r colours 2 colours | 2 | (2 or) 3 | 2 | | 3 colours | 3 | | | | cycles | K_n | $K_{n,n}$ | fair K_{n_1,n_ℓ} | |-----------|---------------------------|-----------------|-----------------------| | r colours | 100 <i>r</i> log <i>r</i> | $O(r^2 \log r)$ | $O(r^2 \log r)$ | | 2 colours | 2 | 12 | 14 | | 3 colours | 17 | 18 | | | cycles: all but $o(n)$ | K_n | $K_{n,n}$ | fair K_{n_1,n_ℓ} | |------------------------|-------|-----------|-----------------------| | r colours | r ? | 2r - 1 ?? | ?? | | 2 colours | 2 | (2 or) 3 | (2 or) 3 | | 3 colours | 3 | 5 | | #### **PROOF IDEAS** K_n with r colours take out cycles using density what to do with the leftover vertices? Start again: First, take out a 'robust hamiltonian' subgraph Use: Ramsey number of the triangle cycle. Take out cycles as before Finish by absorbing the leftover vertices. Use: 'one sided covering lemma for bipartite graphs'. The 'one sided covering lemma': Finish by absorbing the leftover vertices. Finish by absorbing the leftover vertices. Finish by absorbing the leftover vertices. This gives a bound of $O(r \log r)$ monochromatic cycles. | K_n with thre | e colours | | |-----------------|-----------|--| V | | | | K_n | | | | • • • | apply regularity lemma Use: Regularity lemma. take majority colouring find 3 disjoint mono χ connected matchings covering almost all Here we have to work. blow them up to get 3 cycles Łuczak's blow-up technique. only o(n) vertices left This gives a partition of all but o(n) vertices into 3 monochromatic cycles. find a large 'robustly hamiltonian' mono χ graph in the rest, apply the previous result leftover very small compared to the first subgraph This gives a partition of all vertices into 17 monochromatic cycles. #### Problems: - -how to find the connected monochromatic matchings - -how to find the path partitions - -how to deal with local colourings. #### OTHER DIRECTIONS #### OTHER DIRECTIONS - ▶ partitions into trees [EGP '91 conjecture r-1 trees, Haxell, Kohayakawa '97 prove r] - ▶ partitions into k-regular graphs and isolated vertices \rightarrow function f(k, r) [Sárközy, Selkow '99] - ▶ partitions into members of an ∞ family of bounded degree graphs \rightarrow function $f(\Delta, r)$ [Grinshpun, Sárközy '14+] - ▶ partitions of arbitrary graphs G instead of K_n , $K_{n,n} \rightarrow$ function $f(\alpha(G), r)$ [Sárközy '11, Balogh, Bárát, Gerbner, Gyárfás, Sárközy '13+] - ▶ improvements for *r*-local colourings - ▶ r-mean colourings - covers instead of partitions [Gyárfás '83,...] Thank you!