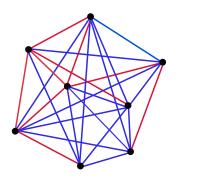
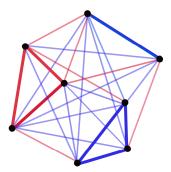
Monochromatic path/cycle partitions

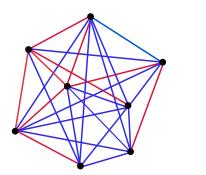

Maya Stein University of Chile

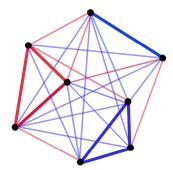

based on joint work with David Conlon, Richard Lang, Oliver Schaudt

FoCM Graphs and Combinatorics Session, Montevideo December 11, 2014

OVERVIEW OF THE PROBLEM

How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured K_n ?

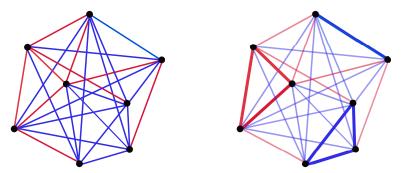




Cycles may be empty, singletons, single edges.

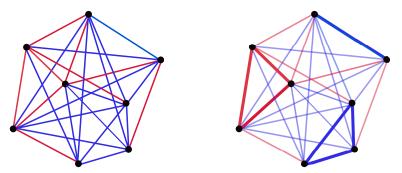
How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured K_n ?

function of n?



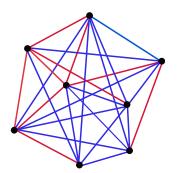
Cycles may be empty, singletons, single edges.

How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured K_n ?


function of $n? \rightarrow \text{actually } 2$

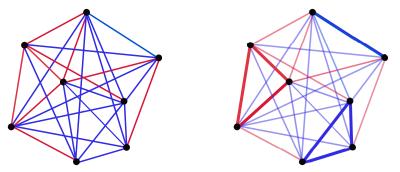
Cycles may be empty, singletons, single edges.

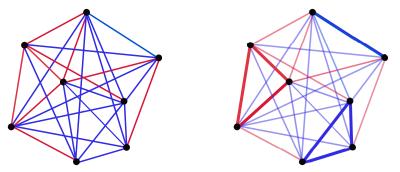
How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured K_n ?


function of $n? \rightarrow$ actually 2

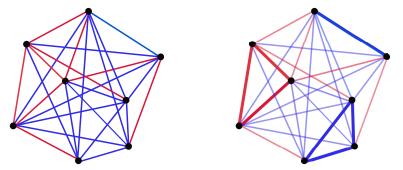
Cycles may be empty, singletons, single edges.

How many disjoint monochromatic cycles do we need to cover any r-edge-coloured K_n ?

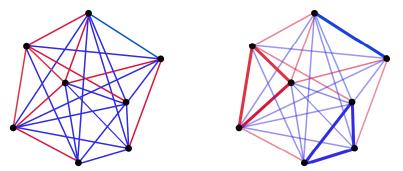

function of n and r?


Cycles may be empty, singletons, single edges.

How many disjoint monochromatic cycles do we need to cover any r-edge-coloured K_n ?

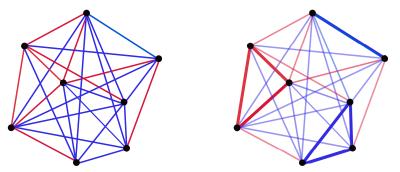

Cycles may be empty, singletons, single edges.

How many disjoint monochromatic cycles do we need to cover any r-edge-coloured K_n ?

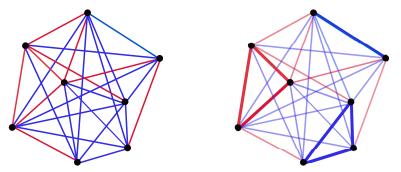

Cycles may be empty, singletons, single edges.

How many disjoint monochromatic paths do we need to cover any r-edge-coloured K_n ?

Cycles may be empty, singletons, single edges.


How many disjoint monochromatic paths do we need to cover any r-edge-coloured K_n ?

Cycles may be empty, singletons, single edges.


How many disjoint monochromatic paths do we need to cover any r-edge-coloured $K_{n,n}$?

function of *n* and r? \rightarrow actually a function of r

Cycles may be empty, singletons, single edges.

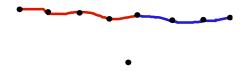
How many disjoint monochromatic paths do we need to cover any r-edge-coloured K_n^k ?

Cycles may be empty, singletons, single edges.

COMPLETE GRAPHS

An observation of Gerencser and Gyárfás '67:

An observation of Gerencser and Gyárfás '67:


Take a longest red/blue path

Does it cover all vertices?


An observation of Gerencser and Gyárfás '67:

Take a longest red/blue path

An observation of Gerencser and Gyárfás '67:

Take a longest red/blue path

An observation of Gerencser and Gyárfás '67:

Take a longest red/blue path

An observation of Gerencser and Gyárfás '67:

Take a longest red/blue path

An observation of Gerencser and Gyárfás '67:

Take a longest red/blue path

Does it cover all vertices? \rightarrow yes it does!

An observation of Gerencser and Gyárfás '67:

Take a longest red/blue path

Does it cover all vertices? \rightarrow yes it does!

$$\Rightarrow \exists$$
 partition of K_n into \checkmark

Footnote (Gerencser and Gyárfás '67): Any 2-coloured K_n has a partition into two monochromatic paths, of distinct colours.

Footnote (Gerencser and Gyárfás '67): Any 2-coloured K_n has a partition into two monochromatic paths, of distinct colours.

Thm (Bessy and Thomassé '10): Any 2-coloured K_n has a partition into two monochromatic cycles, of distinct colours.

Footnote (Gerencser and Gyárfás '67): Any 2-coloured K_n has a partition into two monochromatic paths, of distinct colours.

Thm (Bessy and Thomassé '10): Any 2-coloured K_n has a partition into two monochromatic cycles, of distinct colours.

• conjectured by Lehel ('79)

Footnote (Gerencser and Gyárfás '67): Any 2-coloured K_n has a partition into two monochromatic paths, of distinct colours.

Thm (Bessy and Thomassé '10): Any 2-coloured K_n has a partition into two monochromatic cycles, of distinct colours.

- conjectured by Lehel ('79)
- \bullet proved for very large n by Łuczak, Rödl, Szemerédi '98, and for large n by Allen '08

Footnote (Gerencser and Gyárfás '67): Any 2-coloured K_n has a partition into two monochromatic paths, of distinct colours.

Thm (Bessy and Thomassé '10): Any 2-coloured K_n has a partition into two monochromatic cycles, of distinct colours.

- conjectured by Lehel ('79)
- \bullet proved for very large n by Łuczak, Rödl, Szemerédi '98, and for large n by Allen '08

Generalization:

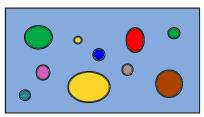
Thm (Conlon, St '14+): The same holds for 2-local colourings.

$E(K_n)$ locally coloured with 2 colours

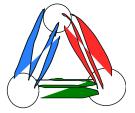
Thm (Conlon, St '14+): Any 2-local coloured K_n has a partition into 2 cycles.

r-local colouring:

arbitrary many colours, but each vertex sees $\leq r$ colours.



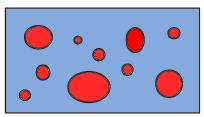
$E(K_n)$ locally coloured with 2 colours


Thm (Conlon, St '14+): Any 2-local coloured K_n has a partition into 2 cycles.

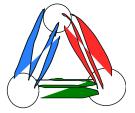
proof idea:

we get one of the following two:

1) \exists colour that sees all vertices

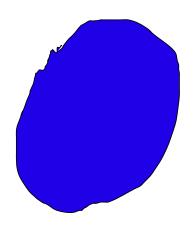

2) there is no such colour

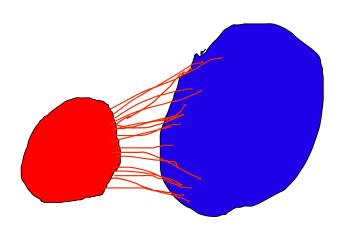
$E(K_n)$ locally coloured with 2 colours

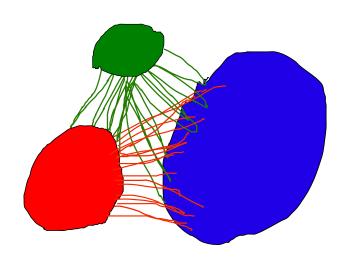

Thm (Conlon, St '14+): Any 2-local coloured K_n has a partition into 2 cycles.

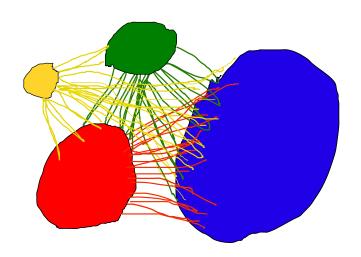
proof idea:

we get one of the following two:




1) \exists colour that sees all vertices




2) there is no such colour

• need at least *r* paths/cycles

- need at least *r* paths/cycles
- cannot hope for paths of distinct colours

- need at least r paths/cycles
- cannot hope for paths of distinct colours

Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths.

- need at least r paths/cycles
- cannot hope for paths of distinct colours

Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths.

ullet inspired by a result of Rado '78 for K_{∞}

- need at least r paths/cycles
- cannot hope for paths of distinct colours

Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths.

ullet inspired by a result of Rado '78 for K_{∞}

Conjecture (Erdős, Gyárfas, Pyber '91): Any r-coloured K_n has a partition into r monochromatic cycles.

- need at least *r* paths/cycles
- cannot hope for paths of distinct colours

Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths.

ullet inspired by a result of Rado '78 for K_{∞}

Conjecture (Erdős, Gyárfas, Pyber '91): Any r-coloured K_n has a partition into r monochromatic cycles.

• they show that \exists partition into $cr^2 \log r$ cycles

- need at least r paths/cycles
- cannot hope for paths of distinct colours

Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths.

ullet inspired by a result of Rado '78 for K_{∞}

Conjecture (Erdős, Gyárfas, Pyber '91): Any r-coloured K_n has a partition into r monochromatic cycles.

• they show that \exists partition into $cr^2 \log r$ cycles

SPOILER ALERT

- need at least r paths/cycles
- cannot hope for paths of distinct colours

Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths.

ullet inspired by a result of Rado '78 for K_{∞}

Conjecture (Erdős, Gyárfas, Pyber '91): Any r-coloured K_n has a partition into r monochromatic cycles.

• they show that \exists partition into $cr^2 \log r$ cycles

SPOILER ALERT

• second conjecture not true

- need at least *r* paths/cycles
- cannot hope for paths of distinct colours

Conjecture (Gyárfas '89): Any r-coloured K_n has a partition into r monochromatic paths.

ullet inspired by a result of Rado '78 for K_{∞}

Conjecture (Erdős, Gyárfas, Pyber '91): Any r-coloured K_n has a partition into r monochromatic cycles.

• they show that \exists partition into $cr^2 \log r$ cycles

Conjecture (EGP '91): \exists partition into r mono χ cycles.

Conjecture (EGP '91): \exists partition into r mono χ cycles.

Partitions into f(r) cycles (for large n):

• \exists partition into $O(r^2 \log r)$ cycles (EGP '91)

Conjecture (EGP '91): \exists partition into r mono χ cycles.

Partitions into f(r) cycles (for large n):

- \exists partition into $O(r^2 \log r)$ cycles (EGP '91)
- \bullet \exists partition into $100r\log r$ cycles (Gyárfas, Ruszinkó, Sarközy, Szemerédi '06)

Conjecture (EGP '91): \exists partition into r mono χ cycles.

Partitions into f(r) cycles (for large n):

- \exists partition into $O(r^2 \log r)$ cycles (EGP '91)
- \bullet \exists partition into $100r \log r$ cycles (Gyárfas, Ruszinkó, Sarközy, Szemerédi '06)
- for r-local colourings, \exists partition into $O(r^2 \log r)$ cycles (Conlon, St '14+)

Conjecture (EGP '91): \exists partition into r mono χ cycles.

Partitions into f(r) cycles (for large n):

- \exists partition into $O(r^2 \log r)$ cycles (EGP '91)
- \bullet \exists partition into $100r\log r$ cycles (Gyárfas, Ruszinkó, Sarközy, Szemerédi '06)
- for *r*-local colourings, \exists partition into $O(r^2 \log r)$ cycles (Conlon, St '14+)

Three colours:

• cover all but o(n) vertices with ≤ 3 disjoint cycles (GRSS '12)

Conjecture (EGP '91): \exists partition into r mono χ cycles.

Partitions into f(r) cycles (for large n):

- \exists partition into $O(r^2 \log r)$ cycles (EGP '91)
- \bullet \exists partition into $100r\log r$ cycles (Gyárfas, Ruszinkó, Sarközy, Szemerédi '06)
- for r-local colourings, \exists partition into $O(r^2 \log r)$ cycles (Conlon, St '14+)

Three colours:

- cover all but o(n) vertices with ≤ 3 disjoint cycles (GRSS '12)
- cover all vertices with 17 disjoint cycles, for large n (GRSS '12)

Conjecture (EGP '91): \exists partition into r mono χ cycles.

Partitions into f(r) cycles (for large n):

- \exists partition into $O(r^2 \log r)$ cycles (EGP '91)
- \bullet \exists partition into $100r\log r$ cycles (Gyárfas, Ruszinkó, Sarközy, Szemerédi '06)
- for r-local colourings, \exists partition into $O(r^2 \log r)$ cycles (Conlon, St '14+)

Three colours:

- cover all but o(n) vertices with ≤ 3 disjoint cycles (GRSS '12)
- cover all vertices with 17 disjoint cycles, for large n (GRSS '12)

r cycles are not enough:

• counterexample, for all $r \ge 3$ (Pokrovskiy '14)

Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles.

Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles.

Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all but 1 vertices of K_n into r monochromatic cycles.

Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all but c vertices of K_n into r monochromatic cycles.

Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all but c_r vertices of K_n into r monochromatic cycles.

Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all but o(n) vertices of K_n into r monochromatic cycles.

This is known for r = 3.

Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all vertices of K_n into r + 1 monochromatic cycles.

Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all vertices of K_n into cr monochromatic cycles.

Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all vertices of K_n into cr monochromatic cycles.

'...into $100r \log r$ cycles' is known [GRSS '06].

Conjecture (EGP '91): There is a partition of all vertices of K_n into r monochromatic cycles.

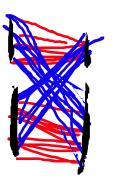
(still possible) Conjecture: There is a partition of all vertices of K_n into f(r) monochromatic cycles.

Conjecture (Gy '89): There is a partition of all vertices of K_n into r monochromatic paths.

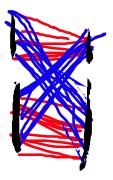
true for $r \le 3$, open for r > 3

Partitioning with paths/cycles

paths	K _n
r colours	r ?
2 colours	2
3 colours	3
4 colours	8

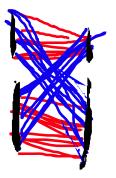

cycles	K_n	K_n 'local'
r colours	100 <i>r</i> log <i>r</i>	$O(r^2 \log r)$
2 colours	2	2
3 colours	17	

cycles: all but $o(n)$	K _n
r colours	r ?
3 colours	3


COMPLETE BIPARTITE GRAPHS

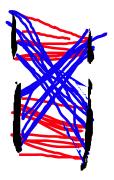
Can we cover $K_{n,n}$ with 2 cycles (or paths)?

The split colouring:



The split colouring:

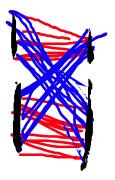
In a split colouring, we might need 3 paths/cycles.


The split colouring:

In a split colouring, we might need 3 paths/cycles.

Thm (Pok '14): \exists partition into 2 paths, if the colouring is not a split colouring.

The split colouring:

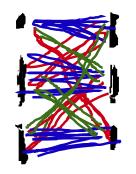


In a split colouring, we might need 3 paths/cycles.

Thm (Pok '14): \exists partition into 2 paths, if the colouring is not a split colouring.

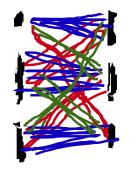
• 3 paths are always enough

The split colouring:



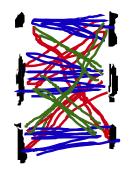
In a split colouring, we might need 3 paths/cycles.

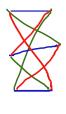
Thm (Pok '14): \exists partition into 2 paths, if the colouring is not a split colouring.


- 3 paths are always enough
- 3 paths suffice also for 2-local colourings (Lang, St. '15+)

A split colouring for *r* colours:

A split colouring for *r* colours:





In a such a colouring, we might need 2r-1 paths.

Complete bipartite graphs $K_{n,n}$ with r colours:

A split colouring for *r* colours:

In a such a colouring, we might need 2r - 1 paths.

Conjecture (Pok '14): \exists a partition into 2r - 1 paths

with *r* colours:

with *r* colours:

- Thm (Haxell '97): \exists partition into $O((r \log r)^2)$ mono χ cycles
- Thm (Peng, Rödl, Ruciński '02): $O(r^2 \log r)$ cycles suffice

with r colours:

- Thm (Haxell '97): \exists partition into $O((r \log r)^2)$ mono χ cycles
- Thm (Peng, Rödl, Ruciński '02): $O(r^2 \log r)$ cycles suffice

r = 2:

• Cor (Schaudt, St '14+): \exists partition of all but o(n) vertices into 3 monochromatic cycles and a partition of all the vertices into 12 cycles.

with r colours:

- Thm (Haxell '97): \exists partition into $O((r \log r)^2)$ mono χ cycles
- Thm (Peng, Rödl, Ruciński '02): $O(r^2 \log r)$ cycles suffice

r = 2:

• Cor (Schaudt, St '14+): \exists partition of all but o(n) vertices into 3 monochromatic cycles and a partition of all the vertices into 12 cycles.

r = 3:

• Thm (Lang, Schaudt, St '14+): \exists partition of all but o(n) vertices into 5 monochromatic cycles and a partition of all the vertices into 18 cycles.

with r colours:

- Thm (Haxell '97): \exists partition into $O((r \log r)^2)$ mono χ cycles
- Thm (Peng, Rödl, Ruciński '02): $O(r^2 \log r)$ cycles suffice

r = 2:

• Cor (Schaudt, St '14+): \exists partition of all but o(n) vertices into 3 monochromatic cycles and a partition of all the vertices into 12 cycles.

r = 3:

- Thm (Lang, Schaudt, St '14+): \exists partition of all but o(n) vertices into 5 monochromatic cycles and a partition of all the vertices into 18 cycles.
- (improving on Haxell '97: 1695 monochromatic cycles.)

paths	K _n	$K_{n,n}$	$K_{n,n}$ 'local'
r colours	r ?	2r - 1 ?	
2 colours 3 colours	2	3	3
3 colours	3		

cycles	K_n	K_n 'local'	$K_{n,n}$
r colours	100 <i>r</i> log <i>r</i>	$O(r^2 \log r)$	$O(r^2 \log r)$
2 colours	2	2	12
3 colours	17		18

cycles: all but $o(n)$	K _n	$K_{n,n}$
r colours	r ?	2r - 1 ??
2 colours	2	3
3 colours	3	5

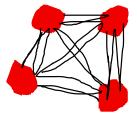
paths	K _n	$K_{n,n}$	$K_{n,n}$ 'local'
r colours	<i>r</i> ?	2r - 1 ?	
2 colours	2	3	3
3 colours	3		

cycles	K_n	K_n 'local'	$K_{n,n}$
r colours	100 <i>r</i> log <i>r</i>	$O(r^2 \log r)$	$O(r^2 \log r)$
2 colours	2	2	12
3 colours	17		18

cycles: all but $o(n)$	K _n	$K_{n,n}$
r colours	r ?	2r - 1 ??
2 colours	2	3
3 colours	3	5

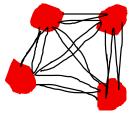
paths		$K_{n,n}$	$K_{n,n}$ 'local'
r colours	r ?	2r - 1?	
2 colours	2	3	3
3 colours	3		

cycles	K_n	K_n 'local'	$K_{n,n}$
r colours	100 <i>r</i> log <i>r</i>	$O(r^2 \log r)$	$O(r^2 \log r)$
2 colours	2	2	12
3 colours	17		18


cycles: all but $o(n)$	K _n	$K_{n,n}$
r colours	r ?	2r - 1 ??
2 colours	2	3
3 colours	3	5

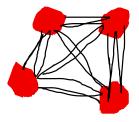
COMPLETE MULTIPARTITE GRAPHS

bipartite graph


multipartite graph

bipartite graph

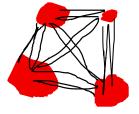
multipartite graph



bipartite graph

balanced

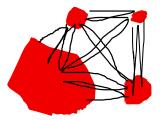
multipartite graph

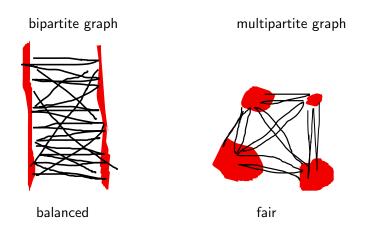


bipartite graph

balanced

multipartite graph


need balanced?


bipartite graph

balanced

multipartite graph

fair multipartite graph: no class has more than half of V(G)

Thm (Schaudt, St '14+): \exists partition into two monochromatic paths of distinct colours, if $k \geq 3$.

Thm (Schaudt, St '14+): \exists partition into two monochromatic paths of distinct colours, if $k \ge 3$.

I.e.: there is no 'split colouring' for k-partite graphs with $k \geq 3$.

Thm (Schaudt, St '14+): \exists partition into two monochromatic paths of distinct colours, if $k \ge 3$.

I.e. : there is no 'split colouring' for k-partite graphs with $k \ge 3$.

Thm (Schaudt, St '14+):

ullet can partition all but δn vertices into 2 mono χ cycles of distinct colours, if the colouring is δ -far from a split colouring.

Thm (Schaudt, St '14+):

ullet can partition all but δn vertices into 2 mono χ cycles of distinct colours, if the colouring is δ -far from a split colouring.

Thm (Schaudt, St '14+):

- can partition all but δn vertices into 2 mono χ cycles of distinct colours, if the colouring is δ -far from a split colouring.
- can partition all but o(n) vertices into 3 mono χ cycles.

Thm (Schaudt, St '14+):

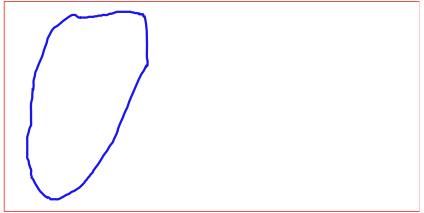
- ullet can partition all but δn vertices into 2 mono χ cycles of distinct colours, if the colouring is δ -far from a split colouring.
- can partition all but o(n) vertices into 3 mono χ cycles.
- 14 mono χ cycles partition all the vertices.

paths	K _n	$K_{n,n}$	fair K_{n_1,n_ℓ} , $\ell \geq 3$
r colours	r ?	2r - 1 ?	r ??
r colours 2 colours	2	(2 or) 3	2
3 colours	3		

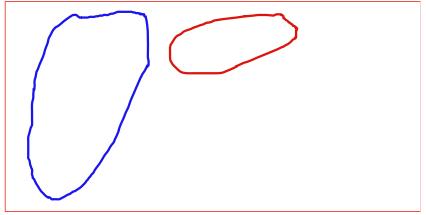
cycles	K_n	$K_{n,n}$	fair K_{n_1,n_ℓ}
r colours	$100r \log r$	$O(r^2 \log r)$	$O(r^2 \log r)$
2 colours	2	12	14
3 colours	17	18	

cycles: all but $o(n)$	K_n	$K_{n,n}$	fair K_{n_1,n_ℓ}
r colours	r ?	2r - 1 ??	??
2 colours	2	(2 or) 3	(2 or) 3
3 colours	3	5	

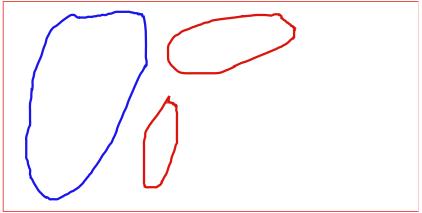
paths	K _n	$K_{n,n}$	fair $K_{n_1,\dots n_\ell}$, $\ell \geq 3$
r colours	<i>r</i> ?	2r - 1 ?	r ??
r colours 2 colours	2	(2 or) 3	2
3 colours	3		

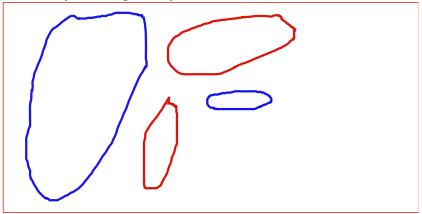

cycles	K_n	$K_{n,n}$	fair K_{n_1,n_ℓ}
r colours	100 <i>r</i> log <i>r</i>	$O(r^2 \log r)$	$O(r^2 \log r)$
2 colours	2	12	14
3 colours	17	18	

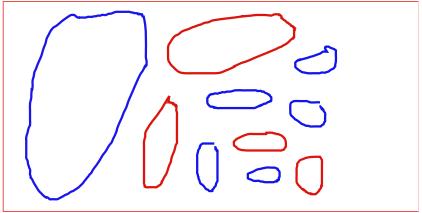
cycles: all but $o(n)$	K_n	$K_{n,n}$	fair K_{n_1,n_ℓ}
r colours	r ?	2r - 1 ??	??
2 colours	2	(2 or) 3	(2 or) 3
3 colours	3	5	


PROOF IDEAS

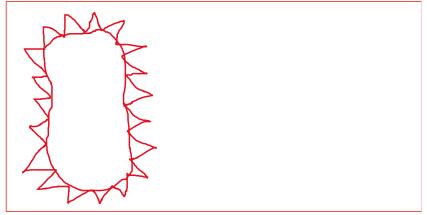
 K_n with r colours


take out cycles using density

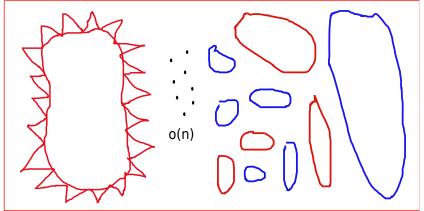

take out cycles using density


take out cycles using density

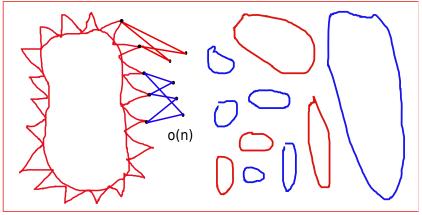
take out cycles using density



take out cycles using density

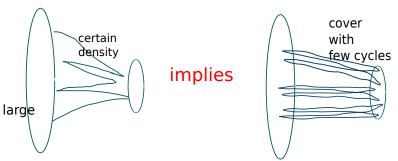

what to do with the leftover vertices?

Start again: First, take out a 'robust hamiltonian' subgraph

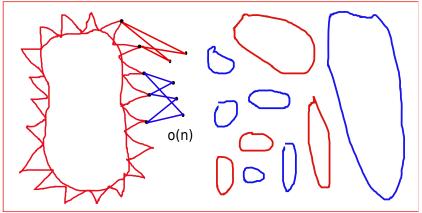


Use: Ramsey number of the triangle cycle.

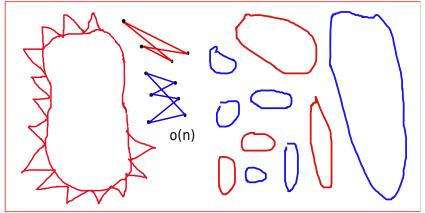
Take out cycles as before

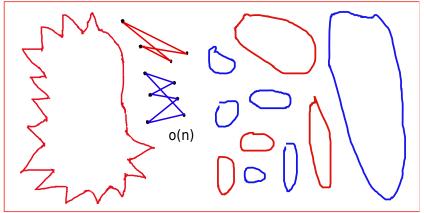


Finish by absorbing the leftover vertices.

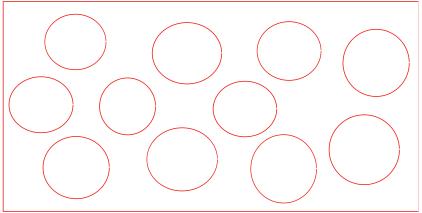


Use: 'one sided covering lemma for bipartite graphs'.

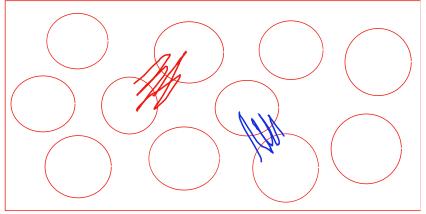

The 'one sided covering lemma':


Finish by absorbing the leftover vertices.

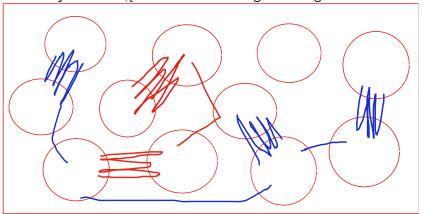
Finish by absorbing the leftover vertices.


Finish by absorbing the leftover vertices.

This gives a bound of $O(r \log r)$ monochromatic cycles.


K_n with thre	e colours	
	V	
	K_n	
	• • •	

apply regularity lemma

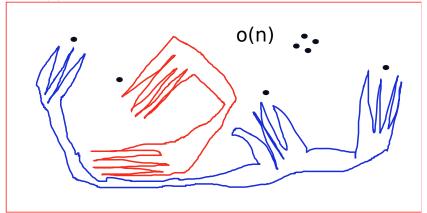


Use: Regularity lemma.

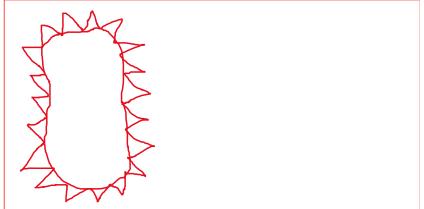
take majority colouring



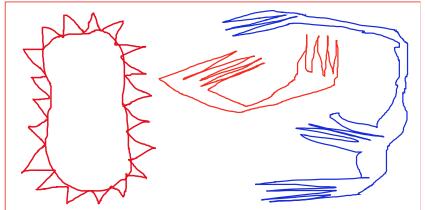
find 3 disjoint mono χ connected matchings covering almost all


Here we have to work.

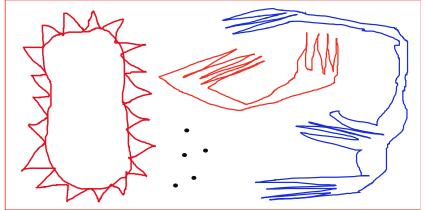
blow them up to get 3 cycles

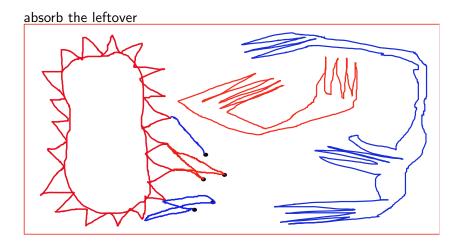

Łuczak's blow-up technique.

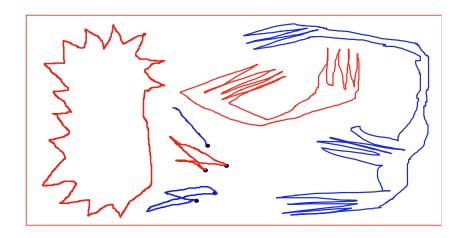
only o(n) vertices left



This gives a partition of all but o(n) vertices into 3 monochromatic cycles.


find a large 'robustly hamiltonian' mono χ graph




in the rest, apply the previous result

leftover very small compared to the first subgraph

This gives a partition of all vertices into 17 monochromatic cycles.

Problems:

- -how to find the connected monochromatic matchings
- -how to find the path partitions
- -how to deal with local colourings.

OTHER DIRECTIONS

OTHER DIRECTIONS

- ▶ partitions into trees [EGP '91 conjecture r-1 trees, Haxell, Kohayakawa '97 prove r]
- ▶ partitions into k-regular graphs and isolated vertices \rightarrow function f(k, r) [Sárközy, Selkow '99]
- ▶ partitions into members of an ∞ family of bounded degree graphs \rightarrow function $f(\Delta, r)$ [Grinshpun, Sárközy '14+]
- ▶ partitions of arbitrary graphs G instead of K_n , $K_{n,n} \rightarrow$ function $f(\alpha(G), r)$ [Sárközy '11, Balogh, Bárát, Gerbner, Gyárfás, Sárközy '13+]
- ▶ improvements for *r*-local colourings
- ▶ r-mean colourings
- covers instead of partitions [Gyárfás '83,...]

Thank you!