Extremal combinatorics in random discrete structures

Mathias Schacht

Fachbereich Mathematik Universität Hamburg

December 2014

Extremal results in random structures

Mathias Schacht

Given	
• property \mathcal{P}	containing no cycle, K_t -free
parameter	number of edges

Find

maximal and "almost" maximal structures with that property

Given	
• property \mathcal{P}	containing no cycle, K_t -free
parameter	number of edges

- maximal and "almost" maximal structures with that property
- number of structures with that property

Given	
• property \mathcal{P}	containing no cycle, K_t -free
parameter	number of edges

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures

Given	
• property \mathcal{P}	containing no cycle, K_t -free
parameter	number of edges

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures
- typical structure with that property

Given	
• property \mathcal{P}	containing no cycle, K_t -free
parameter	number of edges

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures
- typical structure with that property
- typical structure with additional restrictions

Given	
• property \mathcal{P}	containing no cycle, K_t -free
parameter	number of edges

Find

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures
- typical structure with that property
- typical structure with additional restrictions

Today \$\mathcal{P}\$: F-free

For a graph *F* and $n \in \mathbb{N}$ set

```
ex(n, F) := \max \{ e(H) \colon H \subseteq K_n \text{ and } H \text{ is } F \text{-free} \}
```

For a graph F and $n \in \mathbb{N}$ set

$$ex(n, F) := max \{ e(H) : H \subseteq K_n \text{ and } H \text{ is } F \text{-free} \}$$

and

$$\pi_F = \lim_{n \to \infty} \frac{ex(n, F)}{\binom{n}{2}} \,.$$

For a graph *F* and $n \in \mathbb{N}$ set

$$ex(n, F) := max \{ e(H) : H \subseteq K_n \text{ and } H \text{ is } F \text{-free} \}$$

and

$$\pi_F = \lim_{n \to \infty} \frac{ex(n, F)}{\binom{n}{2}} \,.$$

Theorem (Mantel, Turán, Erdős, Stone, Simonovits) For every F

$$\pi_F = 1 - \frac{1}{\chi(F) - 1} \,.$$

For a graph F and $n \in \mathbb{N}$ set

$$ex(n, F) := \max \{ e(H) \colon H \subseteq K_n \text{ and } H \text{ is } F \text{-free} \}$$

and

$$\pi_F = \lim_{n \to \infty} \frac{ex(n, F)}{\binom{n}{2}} \,.$$

Theorem (Mantel, Turán, Erdős, Stone, Simonovits) For every F

$$\pi_F = 1 - \frac{1}{\chi(F) - 1} \,.$$

extremal graphs are known for cliques and color-critical graphs

For a graph F and $n \in \mathbb{N}$ set

$$ex(n, F) := \max \{ e(H) \colon H \subseteq K_n \text{ and } H \text{ is } F \text{-free} \}$$

and

$$\pi_F = \lim_{n \to \infty} \frac{ex(n, F)}{\binom{n}{2}} \,.$$

Theorem (Mantel, Turán, Erdős, Stone, Simonovits) For every F

$$\pi_F = 1 - \frac{1}{\chi(F) - 1} \,.$$

extremal graphs are known for cliques and color-critical graphsonly very few results for hypergraphs are known

Mathias Schacht

Extremal results in random structures

Turán's theorem: extremal K_t -free graph is complete (t-1)-partite

Turán's theorem: extremal K_t -free graph is complete (t - 1)-partite

Turán's theorem: extremal K_t -free graph is complete (t-1)-partite

Questions

■ What about extremal *F*-free graphs?

Turán's theorem: extremal K_t -free graph is complete (t-1)-partite

Questions

- What about extremal *F*-free graphs?
- What about "almost" extremal *F*-free graphs?

Turán's theorem: extremal K_t -free graph is complete (t - 1)-partite

Questions

- What about extremal F-free graphs?
- What about "almost" extremal *F*-free graphs?

Theorem (Erdős '67, Simonovits '68)

If H is an n-vertex, F-free graph and $e(H) \ge ex(n, F) - o(n^2)$,

Turán's theorem: extremal K_t -free graph is complete (t-1)-partite

Questions

- What about extremal F-free graphs?
- What about "almost" extremal *F*-free graphs?

Theorem (Erdős '67, Simonovits '68)

If H is an n-vertex, F-free graph and $e(H) \ge ex(n, F) - o(n^2)$, then one can remove of $o(n^2)$ edges to obtain a $(\chi(F) - 1)$ -partite graph.

Turán's theorem: extremal K_t -free graph is complete (t-1)-partite

Turán's theorem: extremal K_t -free graph is complete (t-1)-partite

Questions

Turán's theorem: extremal K_t -free graph is complete (t-1)-partite

Turán's theorem: extremal K_t -free graph is complete (t-1)-partite

Questions

- What about "typical" K_t -free graph?
- How many K_t -free graphs on *n* vertices are not (t-1)-partite?

Turán's theorem: extremal K_t -free graph is complete (t-1)-partite

Questions

- What about "typical" K_t -free graph?
- How many K_t -free graphs on n vertices are not (t-1)-partite?

Theorem (Kolaitis, Prömel, Rothschild '85)

Almost every K_t -free graph on n vertices is (t-1)-partite.

Turán's theorem: extremal K_t -free graph is complete (t-1)-partite

Questions

- What about "typical" K_t-free graph?
- How many K_t -free graphs on n vertices are not (t-1)-partite?

Theorem (Kolaitis, Prömel, Rothschild '85)

Almost every K_t -free graph on n vertices is (t-1)-partite.

• t = 3 was proved by Kleitman, Rothschild and Erdős '73

Mathias Schacht

How many edges?

How many edges?

Turán's theorem

How many edges?

Turán's theorem

Precise structure of extremal graphs?

Mathias Schacht

How many edges?

Turán's theorem

Precise structure of extremal graphs?

Turán's theorem

Mathias Schacht

How many edges?

Turán's theorem

Precise structure of extremal graphs?

Turán's theorem

Approximate structure of almost extremal graphs?

Mathias Schacht

Extremal results in random structures

How many edges?

Turán's theorem

Precise structure of extremal graphs?

Turán's theorem

Approximate structure of almost extremal graphs?

Erdős-Simonovits stability theorem
Short summary for K_t -free graphs

How many edges?

Turán's theorem

Precise structure of extremal graphs?

Turán's theorem

Approximate structure of almost extremal graphs?

Erdős-Simonovits stability theorem

Typical structure of K_t-free graphs?

Short summary for K_t -free graphs

How many edges?

Turán's theorem

Precise structure of extremal graphs?

Turán's theorem

• Approximate structure of almost extremal graphs?

Erdős-Simonovits stability theorem

■ Typical structure of *K*_t-free graphs?

Kolaitis-Prömel-Rothschild theorem

Question

Can we replace K_n by other graphs and prove similar results?

Question

Can we replace K_n by other graphs and prove similar results?

For graphs F and G set $ex(G,F) := \max \left\{ e(H) \colon H \subseteq G \text{ and } H \text{ is } F \text{-free} \right\}$

Question

Can we replace K_n by other graphs and prove similar results?

For graphs F and G set $ex(G,F) := max \{e(H): H \subseteq G \text{ and } H \text{ is } F\text{-free} \}$

Question

For which sequences of graphs (G_n) holds

Question

Can we replace K_n by other graphs and prove similar results?

For graphs F and G set $ex(G,F) := max \{e(H): H \subseteq G \text{ and } H \text{ is } F\text{-free} \}$

Question

For which sequences of graphs (G_n) holds

$$\lim_{n\to\infty}\frac{\mathrm{ex}(G_n,F)}{e(G_n)}=\lim_{n\to\infty}\frac{\mathrm{ex}(K_n,F)}{e(K_n)}=\pi_F$$
?

Question

Can we replace K_n by other graphs and prove similar results?

For graphs F and G set

$$\mathsf{ex}(G,F) := \mathsf{max}\left\{\mathsf{e}(H) \colon H \subseteq \mathsf{G} \text{ and } H \text{ is } F\text{-free}
ight\}$$

Question

For which sequences of graphs (G_n) holds

$$\lim_{n\to\infty}\frac{\mathrm{ex}(G_n,F)}{e(G_n)}=\lim_{n\to\infty}\frac{\mathrm{ex}(K_n,F)}{e(K_n)}=\pi_F ?$$

First results

•
$$G(n, Cn^{-1/2})$$
 for $F = K_3$

Frankl and Rödl '86

Question

Can we replace K_n by other graphs and prove similar results?

For graphs F and G set

$$\mathsf{ex}(G,F) := \mathsf{max}\left\{\mathsf{e}(H) \colon H \subseteq \mathsf{G} \text{ and } H \text{ is } F\text{-free}
ight\}$$

Question

For which sequences of graphs (G_n) holds

$$\lim_{n\to\infty}\frac{\mathrm{ex}(G_n,F)}{e(G_n)}=\lim_{n\to\infty}\frac{\mathrm{ex}(K_n,F)}{e(K_n)}=\pi_F ?$$

First results

•
$$G(n, Cn^{-1/2})$$
 for $F = K_3$ Frankl and Rödl '86• $G(n, 1/2)$ for $F = K_t$ Babai, Simonovits, Spencer '90

Extremal results in random structures

Erdős-Nešetřil problem

Does there exist a K_{t+1} -free graph G with

$$ex(G, K_t) = (\pi_{K_t} + o(1))e(G)?$$

Erdős-Nešetřil problem

Does there exist a K_{t+1} -free graph G with

$$ex(G, K_t) = (\pi_{K_t} + o(1))e(G)?$$

similar Ramsey-type questions were studied before

Erdős-Nešetřil problem

Does there exist a K_{t+1} -free graph G with

$$ex(G, K_t) = (\pi_{K_t} + o(1))e(G)?$$

similar Ramsey-type questions were studied before

Frankl-Rödl: answers for t = 3 is YES

Erdős-Nešetřil problem

Does there exist a K_{t+1} -free graph G with

$$ex(G, K_t) = (\pi_{K_t} + o(1))e(G)?$$

similar Ramsey-type questions were studied before

Frankl-Rödl: answers for t = 3 is YES, e.g., $G(n, Cn^{-1/2})$ +Deletion,

Erdős-Nešetřil problem

Does there exist a K_{t+1} -free graph G with

 $ex(G, K_t) = (\pi_{K_t} + o(1))e(G)?$

similar Ramsey-type questions were studied before

Frankl-Rödl: answers for t = 3 is YES, e.g., $G(n, Cn^{-1/2})$ +Deletion, but all such graphs are sparse

Positive result:

Positive result:

• for
$$p = Cn^{-1/2}$$
 a.a.s. $ex(G(n, p), K_3) \le (1/2 + o(1))p\binom{n}{2}$

Positive result:

• for $p = Cn^{-1/2}$ a.a.s. $ex(G(n, p), K_3) \le (1/2 + o(1))p\binom{n}{2}$

• and a.a.s. G(n, p) contains $o(pn^2)$ copies of K_4

Positive result:

• for
$$p = Cn^{-1/2}$$
 a.a.s. $ex(G(n, p), K_3) \le (1/2 + o(1))p\binom{n}{2}$

• and a.a.s. G(n, p) contains $o(pn^2)$ copies of K_4

 $\Rightarrow\,$ removing one edge from each ${\it K}_4$ yields graph with desired properties

Positive result:

• for
$$p = Cn^{-1/2}$$
 a.a.s. $ex(G(n, p), K_3) \le (1/2 + o(1))p\binom{n}{2}$

• and a.a.s. G(n, p) contains $o(pn^2)$ copies of K_4

 $\Rightarrow\,$ removing one edge from each ${\it K}_4$ yields graph with desired properties

Positive result:

• for
$$p = Cn^{-1/2}$$
 a.a.s. $ex(G(n, p), K_3) \le (1/2 + o(1))p\binom{n}{2}$

• and a.a.s. G(n, p) contains $o(pn^2)$ copies of K_4

 $\Rightarrow\,$ removing one edge from each ${\it K}_4$ yields graph with desired properties

• Suppose
$$d(G) = d > 0$$
 and $ex(G, K_3) \le (1/2 + o(1))d\binom{n}{2}$

Positive result:

• for
$$p = Cn^{-1/2}$$
 a.a.s. $ex(G(n, p), K_3) \le (1/2 + o(1))p\binom{n}{2}$

• and a.a.s. G(n, p) contains $o(pn^2)$ copies of K_4

 $\Rightarrow\,$ removing one edge from each ${\it K}_4$ yields graph with desired properties

- Suppose d(G) = d > 0 and $ex(G, K_3) \le (1/2 + o(1))d\binom{n}{2}$
- \Rightarrow every balanced cut contains at most $(d + o(1))n^2/4$ edges

Positive result:

• for
$$p = Cn^{-1/2}$$
 a.a.s. $ex(G(n, p), K_3) \le (1/2 + o(1))p\binom{n}{2}$

• and a.a.s. G(n, p) contains $o(pn^2)$ copies of K_4

 $\Rightarrow\,$ removing one edge from each ${\it K}_4$ yields graph with desired properties

- Suppose d(G) = d > 0 and $ex(G, K_3) \le (1/2 + o(1))d\binom{n}{2}$
- \Rightarrow every balanced cut contains at most $(d + o(1))n^2/4$ edges
- \implies G contains quasirandom subgraph

Positive result:

• for
$$p = Cn^{-1/2}$$
 a.a.s. $ex(G(n, p), K_3) \le (1/2 + o(1))p\binom{n}{2}$

• and a.a.s. G(n, p) contains $o(pn^2)$ copies of K_4

 $\Rightarrow\,$ removing one edge from each ${\it K}_4$ yields graph with desired properties

- Suppose d(G) = d > 0 and $ex(G, K_3) \le (1/2 + o(1))d\binom{n}{2}$
- \Rightarrow every balanced cut contains at most $(d + o(1))n^2/4$ edges
- \implies G contains quasirandom subgraph
 - \Rightarrow G contains K₄

"⇒"

 $" \Longrightarrow "$

Extremal results in random structures

 $" \Longrightarrow "$

Extremal results in random structures

 \implies

Mathias Schacht

Extremal results in random structures

"____ \Rightarrow "

Extremal results in random structures

"⇒"

Mathias Schacht

Extremal results in random structures

"⇒"

• Expected number of triangles: $\approx p^3 n^3 \approx n^{3/2}$

- Expected number of triangles: $\approx p^3 n^3 \approx n^{3/2}$
- Expected number of edges: $\approx pn^2 \approx n^{3/2}$

■ Expected number of triangles: ≈ p³n³ ≈ n^{3/2}
 ■ Expected number of edges: ≈ pn² ≈ n^{3/2}

• for $p = o(n^{-1/2})$ we a.a.s. have

$$\#\{K_3 \subseteq G(n,p)\} = o(e(G(n,p)))$$
What is special about $p = \Theta(n^{-1/2})$?

■ Expected number of triangles: ≈ p³n³ ≈ n^{3/2}
■ Expected number of edges: ≈ pn² ≈ n^{3/2}

• for
$$p = o(n^{-1/2})$$
 we a.a.s. have
$$\#\{K_3 \subseteq G(n,p)\} = o(e(G(n,p))$$

$$\Rightarrow ex(G(n,p),K_3) \ge (1-o(1))e(G(n,p))$$

What is special about $p = \Theta(n^{-1/2})$?

■ Expected number of triangles: ≈ p³n³ ≈ n^{3/2}
■ Expected number of edges: ≈ pn² ≈ n^{3/2}

• for
$$p = o(n^{-1/2})$$
 we a.a.s. have $\#\{K_3 \subseteq G(n,p)\} = o(e(G(n,p)))$

$$\Rightarrow ex(G(n,p),K_3) \ge (1-o(1))e(G(n,p))$$

Definition

$$m_F = \max\{d_{F'} \colon \emptyset \neq F' \subseteq F\}$$

where

$$d_{F'} = egin{cases} 1/2, & ext{if } e(F') = 1 \ rac{e(F')-1}{v(F')-2}, & ext{otherwise.} \end{cases}$$

Mathias Schacht

Extremal results in random structures

December 2014

Mathias Schacht

Extremal results in random structures

December 2014

Conjecture (Kohayakawa, Łuczak & Rödl)

Threshold for $ex(G(n, p), F) = (\pi_F + o(1))p\binom{n}{2}$ is $p = n^{-1/m_F}$.

Conjecture (Kohayakawa, Łuczak & Rödl)

Threshold for $ex(G(n, p), F) = (\pi_F + o(1))p\binom{n}{2}$ is $p = n^{-1/m_F}$.

Results:

Conjecture (Kohayakawa, Łuczak & Rödl)

Threshold for $ex(G(n, p), F) = (\pi_F + o(1))p\binom{n}{2}$ is $p = n^{-1/m_F}$.

Results:

- for K_3, \ldots, K_6 Frankl, Rödl; KŁR; Gerke, Schickinger, Steger; Gerke
- for cycles Haxell, Kohayakawa, Łuczak
- for all graphs Conlon and Gowers (balanced), Sch.

Conjecture (Kohayakawa, Łuczak & Rödl)

Threshold for $ex(G(n, p), F) = (\pi_F + o(1))p\binom{n}{2}$ is $p = n^{-1/m_F}$.

Results:

- for K₃,..., K₆ Frankl, Rödl; KŁR; Gerke, Schickinger, Steger; Gerke
- for cycles Haxell, Kohayakawa, Łuczak
- for all graphs Conlon and Gowers (balanced), Sch.

Remark:

■ implies solution of the general Erdős-Nešetřil problem since $m_{K_{t+1}} > m_{K_t}$

Mathias Schacht

Extremal results in random structures

December 2014

Question

When are the maximal K_t -free subgraphs of G(n, p) (t-1)-partite?

Question

When are the maximal K_t -free subgraphs of G(n, p) (t-1)-partite?

Results:

Question

When are the maximal K_t -free subgraphs of G(n, p) (t-1)-partite?

Results:

- for p = 1/2
- for $p \ge n^{-\varepsilon_t}$

Babai, Simonovits, Spencer Brightwell, Panagiotou, Steger

Question

When are the maximal K_t -free subgraphs of G(n, p) (t-1)-partite?

Results:

- for p = 1/2
- for $p \ge n^{-\varepsilon_t}$
- optimal: $p \ge Cn^{-\frac{1}{m_{K_t}}} \operatorname{poly}(\log n)$

Babai, Simonovits, Spencer Brightwell, Panagiotou, Steger DeMarco, Kahn

Question

When are the maximal K_t -free subgraphs of G(n, p) (t-1)-partite?

Results:

- for *p* = 1/2
- for $p \ge n^{-\varepsilon_t}$
- optimal: $p \ge Cn^{-\frac{1}{m_{K_t}}} \operatorname{poly}(\log n)$ $\longrightarrow \#\{K_t \subseteq G(n, p)\} \ge pn^2 \log n$

Babai, Simonovits, Spencer Brightwell, Panagiotou, Steger DeMarco, Kahn

Question

When are the maximal K_t -free subgraphs of G(n, p) (t-1)-partite?

Results:

for p = 1/2 for $p \ge n^{-\varepsilon_t}$ optimal: $p \ge Cn^{-\frac{1}{m_{K_t}}} \operatorname{poly}(\log n)$ $\longrightarrow \#\{K_t \subseteq G(n, p)\} \ge pn^2 \log n$ Babai, Simonovits, Spencer
Brightwell, Panagiotou, Steger
DeMarco, Kahn

Remark:

• for approximate (t-1)-partiteness poly $(\log n)$ is not required

Stability for $p > Cn^{-1/m_F}$:

Stability for $p > Cn^{-1/m_F}$:

- conjectured by Kohayakawa, Łuczak, and Rödl
- until recently only known for K_3 , K_4 , and K_5
- for all graphs shown by Conlon and Gowers (balanced) and Samotij

Stability for $p > Cn^{-1/m_F}$:

- conjectured by Kohayakawa, Łuczak, and Rödl
- until recently only known for K_3 , K_4 , and K_5
- for all graphs shown by Conlon and Gowers (balanced) and Samotij

Typical structure for given number of edges:

Stability for $p > Cn^{-1/m_F}$:

- conjectured by Kohayakawa, Łuczak, and Rödl
- until recently only known for K_3 , K_4 , and K_5
- for all graphs shown by Conlon and Gowers (balanced) and Samotij

Typical structure for given number of edges:

■ <i>K</i> ₃	Osthus, Prömel, Taraz, (Steger)
K _t	Balogh, Morris, Samotij, Warnke

Mathias Schacht

December 2014

How many edges approximately?

How many edges approximately?

Conlon-Gowers, Sch.

How many edges approximately?

Conlon-Gowers, Sch.

Precise structure of extremal subgraphs?

How many edges approximately?

Conlon-Gowers, Sch.

Precise structure of extremal subgraphs?

DeMarco-Kahn

How many edges approximately?

Conlon-Gowers, Sch.

Precise structure of extremal subgraphs?

DeMarco-Kahn

Approximate structure of almost extremal graphs?

How many edges approximately?

Conlon-Gowers, Sch.

Precise structure of extremal subgraphs?

DeMarco-Kahn

Approximate structure of almost extremal graphs?

Conlon-Gowers, Samotij

How many edges approximately?

Conlon-Gowers, Sch.

Precise structure of extremal subgraphs?

DeMarco-Kahn

• Approximate structure of almost extremal graphs?

Conlon-Gowers, Samotij

• Typical structure of K_t -free graphs with given number of edges?

How many edges approximately?

Conlon-Gowers, Sch.

Precise structure of extremal subgraphs?

DeMarco-Kahn

• Approximate structure of almost extremal graphs?

Conlon-Gowers, Samotij

Typical structure of K_t-free graphs with given number of edges?
Balogh-Morris-Samotij-Warnke

Mathias Schacht

December 2014

• Regularity Method for subgraphs of G(n, p)

• Regularity Method for subgraphs of G(n, p) KLR-conjecture

• Regularity Method for subgraphs of G(n, p) KLR-conjecture

Several approaches:

Regularity Method for subgraphs of G(n, p) KLR-conjecture

Several approaches:

- Conlon, Gowers
- Sch. (refined by Samotij)

Regularity Method for subgraphs of G(n, p) KLR-conjecture

Several approaches:

- Conlon, Gowers
- Sch. (refined by Samotij)
- Balogh, Morris, Samotij
- Saxton, Thomason

Regularity Method for subgraphs of G(n, p) KLR-conjecture

Several approaches:

- Conlon, Gowers
- Sch. (refined by Samotij)
- Balogh, Morris, Samotij
- Saxton, Thomason

• several other results can/could be transferred to subgraphs of G(n, p)

General Framework

sufficient density yields interesting substructures

General Framework

sufficient density yields interesting substructures

Definition (α -dense)

A sequence $(H_n = (V_n, E_n))_{n \in \mathbb{N}}$ of ℓ -uniform hypergraphs is α -dense, if the following holds: $\forall \delta > 0, \exists \xi > 0 \text{ and } n_0 \text{ such that } \forall n \ge n_0 \text{ we have If } U \subseteq V_n \text{ and}$

 $|U|\geq (\alpha+\delta)|V_n|,$

then $e(H_n[U]) \ge \xi |E_n|$.
General Framework

sufficient density yields interesting substructures

Definition (α -dense)

A sequence $(H_n = (V_n, E_n))_{n \in \mathbb{N}}$ of ℓ -uniform hypergraphs is α -dense, if the following holds: $\forall \delta > 0, \exists \xi > 0$ and n_0 such that $\forall n \ge n_0$ we have if $U \subseteq V$, and

 $\forall \delta > 0, \ \exists \xi > 0 \text{ and } n_0 \text{ such that } \forall n \ge n_0 \text{ we have If } U \subseteq V_n \text{ and }$

 $|U|\geq (\alpha+\delta)|V_n|,$

then $e(H_n[U]) \ge \xi |E_n|$.

Turán type problems

 π_F -dense, $\ell = e(F)$

General Framework

sufficient density yields interesting substructures

Definition (α -dense)

A sequence $(H_n = (V_n, E_n))_{n \in \mathbb{N}}$ of ℓ -uniform hypergraphs is α -dense, if the following holds:

 $\forall \delta > 0, \ \exists \xi > 0 \text{ and } n_0 \text{ such that } \forall n \ge n_0 \text{ we have If } U \subseteq V_n \text{ and }$

 $|U|\geq (\alpha+\delta)|V_n|,$

then $e(H_n[U]) \ge \xi |E_n|$.

Turán type problems

Szemerédi's theorem

 π_F -dense, $\ell = e(F)$ 0-dense, $\ell = k$

Random Versions

Mathias Schacht

Extremal results in random structures

For which random model are scaled/relative versions of the mentioned results true?

For which random model are scaled/relative versions of the mentioned results true?

```
• Let k \in \mathbb{N}, \delta > 0 and X \subseteq [n] "random".
```

For which random model are scaled/relative versions of the mentioned results true?

Let k ∈ N, δ > 0 and X ⊆ [n] "random".
Does X a.a.s. have the following property: Every A ⊆ X with

 $|A| \geq \delta |X|$

contains an AP_k ,

For which random model are scaled/relative versions of the mentioned results true?

Let k ∈ N, δ > 0 and X ⊆ [n] "random".
Does X a.a.s. have the following property: Every A ⊆ X with

 $|A| \geq \delta |X|$

contains an AP_k , i.e. $\mathbb{P}(r_k(X) \le \delta|X|) = 1 - o(1)$?

For which random model are scaled/relative versions of the mentioned results true?

Let k ∈ N, δ > 0 and X ⊆ [n] "random".
Does X a.a.s. have the following property: Every A ⊆ X with

 $|A| \geq \delta |X|$

contains an AP_k , i.e. $\mathbb{P}(r_k(X) \le \delta |X|) = 1 - o(1)$?

• Let F be a hypergraph, $\delta > 0$ and G a "random hypergraph".

For which random model are scaled/relative versions of the mentioned results true?

Let k ∈ N, δ > 0 and X ⊆ [n] "random".
Does X a.a.s. have the following property: Every A ⊆ X with

 $|A| \geq \delta |X|$

contains an AP_k , i.e. $\mathbb{P}(r_k(X) \leq \delta |X|) = 1 - o(1)$?

• Let F be a hypergraph, $\delta > 0$ and G a "random hypergraph". Does G a.a.s. have the following property: Every subhypergraph $H \subseteq G$ with

$$e(H) \ge (\pi_F + \delta)e(G)$$

contains a copy of F?

What are the asymptotics of the smallest sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities such that α -density from $(H_n)_{n \in \mathbb{N}}$ can be transferred to $(H_n[V_{n,p_n}])_{n \in \mathbb{N}}$?

What are the asymptotics of the smallest sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities such that α -density from $(H_n)_{n \in \mathbb{N}}$ can be transferred to $(H_n[V_{n,p_n}])_{n \in \mathbb{N}}$?

• Let $k \in \mathbb{N}$, $\delta > 0$.

What are the asymptotics of the smallest sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities such that α -density from $(H_n)_{n \in \mathbb{N}}$ can be transferred to $(H_n[V_{n,p_n}])_{n \in \mathbb{N}}$?

• Let $k \in \mathbb{N}$, $\delta > 0$. For which $(p_n)_{n \in \mathbb{N}}$ we have

 $\lim_{n\to\infty}\mathbb{P}\big(\forall\,A\subseteq[n]_{\rho_n}\text{ with }|A|\geq\delta|[n]_{\rho_n}|\text{ contains }\mathsf{AP}_k\big)=1\,?$

What are the asymptotics of the smallest sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities such that α -density from $(H_n)_{n \in \mathbb{N}}$ can be transferred to $(H_n[V_{n,p_n}])_{n \in \mathbb{N}}$?

• Let $k \in \mathbb{N}$, $\delta > 0$. For which $(p_n)_{n \in \mathbb{N}}$ we have

 $\lim_{n\to\infty}\mathbb{P}\big(\forall\,A\subseteq [n]_{p_n} \text{ with } |A|\geq \delta|[n]_{p_n}| \text{ contains } \mathsf{AP}_k\big)=1\,?$

• Let *F* be a *k*-uniform hypergraph, $\delta > 0$.

What are the asymptotics of the smallest sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities such that α -density from $(H_n)_{n \in \mathbb{N}}$ can be transferred to $(H_n[V_{n,p_n}])_{n \in \mathbb{N}}$?

• Let $k \in \mathbb{N}$, $\delta > 0$. For which $(p_n)_{n \in \mathbb{N}}$ we have

 $\lim_{n\to\infty} \mathbb{P}\big(\forall A\subseteq [n]_{p_n} \text{ with } |A|\geq \delta|[n]_{p_n}| \text{ contains } \mathsf{AP}_k\big)=1?$

• Let F be a k-uniform hypergraph, $\delta > 0$. For which $(p_n)_{n \in \mathbb{N}}$ we have

$$\lim_{k \to \infty} \mathbb{P}(\forall H \subseteq G^{(k)}(n, p_n) \text{ with } |e(H)| \ge (\pi_F + \delta)e(G^{(k)}(n, p_n))$$

conatins a copy of $F) = 1$?

Extremal results in random structures

First Idea

Random subsets must contain the given structure

First Idea

Random subsets must contain the given structure **Example:** (Szemerédi's theorem): $p^k n^2 \rightarrow 0$.

First Idea

Random subsets must contain the given structure **Example:** (Szemerédi's theorem): $p^k n^2 \rightarrow 0$.

Second IdeaA.a.s. we need $e(H_n[V_{n,p_n}]) \gg |V_{n,p_n}|$.**Examples:** $p^k n^2 \gg pn$ Szemerédi's theorem

First Idea

Random subsets must contain the given structure **Example:** (Szemerédi's theorem): $p^k n^2 \rightarrow 0$.

Second IdeaA.a.s. we need $e(H_n[V_{n,p_n}]) \gg |V_{n,p_n}|$.**Examples:** $p^k n^2 \gg pn$ $p^{e(F')} n^{v(F')} \gg pn^k \quad \forall F' \subseteq F$ Szemerédi's theoremTurán

Theorem

Second lower bound is asymptotically correct.

Theorem

Second lower bound is asymptotically correct.

similar results were obtained by Conlon and Gowers

Theorem

Second lower bound is asymptotically correct.

similar results were obtained by Conlon and Gowers

Corollary (probabilistic version of Szemerédi's theorem) $\forall k \geq 3, \forall \delta > 0, \exists 0 < c < C$, such that $\forall (q_n)_{n \in \mathbb{N}}$

$$\lim_{n\to\infty} \mathbb{P}\big(r_k([n]_{q_n}) \le \delta q_n n\big) = \begin{cases} 1, & \text{if } q_n \ge Cn^{-1/(k-1)}, \\ 0, & \text{if } q_n \le cn^{-1/(k-1)}. \end{cases}$$

Theorem

Second lower bound is asymptotically correct.

similar results were obtained by Conlon and Gowers

Corollary (probabilistic version of Szemerédi's theorem) $\forall k \ge 3, \forall \delta > 0, \exists 0 < c < C$, such that $\forall (q_n)_{n \in \mathbb{N}}$

$$\lim_{n\to\infty}\mathbb{P}\big(r_k([n]_{q_n})\leq\delta q_nn\big)=\begin{cases}1, & \text{if } q_n\geq Cn^{-1/(k-1)},\\0, & \text{if } q_n\leq cn^{-1/(k-1)}.\end{cases}$$

Main result yields probabilistic versions of many extremal results

- multidimensional and polynomial variants of Szemerédi's theorem
- maximal sum-free subsets
- theorems of Turán and of Erdős and Stone for G(n, p) and $G^{(k)}(n, p)$

Mathias Schacht

Extremal results in random structures

Question (Erdős-Hajnal '67)

For every integer t does there exist a K_{t+1} -free graph H s.t.

 $H \rightarrow K_t$?

Question (Erdős-Hajnal '67)

For every integer t does there exist a K_{t+1} -free graph H s.t.

 $H \rightarrow K_t$?

Theorem (Folkman '70)

For every integer t there exists a K_{t+1} -free graph H s.t.

 $H \to K_t$.

Question (Erdős-Hajnal '67)

For every integer t does there exist a K_{t+1} -free graph H s.t.

 $H \rightarrow K_t$?

Theorem (Folkman '70)

For every integer t there exists a K_{t+1} -free graph H s.t.

 $H \to K_t$.

Theorem (Nešetřil & Rödl '76)

For all integers r and t there exists a K_{t+1} -free graph H s.t.

 $H \rightarrow (K_t)_r$.

Question (Erdős-Hajnal '67)

For every integer t does there exist a K_{t+1} -free graph H s.t.

 $H \rightarrow K_t$?

Theorem (Folkman '70)

For every integer t there exists a K_{t+1} -free graph H s.t.

 $H \to K_t$.

Theorem (Nešetřil & Rödl '76)

For all integers r and t there exists a K_{t+1} -free graph H s.t.

 $H \rightarrow (K_t)_r$.

Question (Folkman function $f_r(t)$)

How large is the smallest such H?

Mathias Schacht

 $f_r(t) := \min\{v(H): \ \omega(H) = t \text{ and } H \to (K_t)_r\}$

 $f_r(t) := \min\{v(H): \ \omega(H) = t \text{ and } H \to (K_t)_r\}$

Theorem (Rödl, Ruciński & Sch.)

$$\log f_r(t) = O(t^4 \log t + t^3 r \log r)$$

$$f_r(t) := \min\{v(H): \ \omega(H) = t \text{ and } H \to (K_t)_r\}$$

Theorem (Rödl, Ruciński & Sch.)

$$\log f_r(t) = O(t^4 \log t + t^3 r \log r)$$

Remarks:

- proof is based on recent result of Saxton and Thomasson
- similar result of Balogh, Morris and Samotij gives similar bound

$$f_r(t) := \min\{v(H): \ \omega(H) = t \text{ and } H \to (K_t)_r\}$$

Theorem (Rödl, Ruciński & Sch.)

$$\log f_r(t) = O(t^4 \log t + t^3 r \log r)$$

Remarks:

- proof is based on recent result of Saxton and Thomasson
- similar result of Balogh, Morris and Samotij gives similar bound
- double exponential bound was proved earlier by Conlon and Gowers and RRSch

$$f_r(t) := \min\{v(H): \ \omega(H) = t \text{ and } H \to (K_t)_r\}$$

Theorem (Rödl, Ruciński & Sch.)

$$\log f_r(t) = O(t^4 \log t + t^3 r \log r)$$

Remarks:

- proof is based on recent result of Saxton and Thomasson
- similar result of Balogh, Morris and Samotij gives similar bound
- double exponential bound was proved earlier by Conlon and Gowers and RRSch

• Lower bound:
$$2^{t/2} < R(t, t) \le f_2(t)$$

$$f_r(t) := \min\{v(H): \ \omega(H) = t \text{ and } H \to (K_t)_r\}$$

Theorem (Rödl, Ruciński & Sch.)

$$\log f_r(t) = O(t^4 \log t + t^3 r \log r)$$

Remarks:

- proof is based on recent result of Saxton and Thomasson
- similar result of Balogh, Morris and Samotij gives similar bound
- double exponential bound was proved earlier by Conlon and Gowers and RRSch

• Lower bound:
$$2^{t/2} < R(t, t) \le f_2(t)$$

Question

Can
$$t^4$$
 be improved to $o(t^2)$ for $r = 2$?

Sketch of Proof

Sketch of Proof

Sketch of Proof

Sketch of Proof

December 2014

Sketch of Proof

Extremal results in random structures

Sketch of Proof

$P(G \not\supset K_{t+1}) > P(G \not\rightarrow K_t)$

Extremal results in random structures

December 2014

Mathias Schacht

December 2014

What about sharp thresholds for extremal properties?

What about sharp thresholds for extremal properties?

 $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person

• What about sharp thresholds for extremal properties?

- $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person
- Which pseudorandom subsets $X \subseteq \mathbb{Z}/n\mathbb{Z}$ have the Roth-property?

What about sharp thresholds for extremal properties?

- $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person
- Which pseudorandom subsets $X \subseteq \mathbb{Z}/n\mathbb{Z}$ have the Roth-property? \rightarrow Is $\lambda(X) \ll |X|^2/n$ sufficient? $\Rightarrow |X| \gg n^{2/3}$

What about sharp thresholds for extremal properties?

- $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person
- Which pseudorandom subsets $X \subseteq \mathbb{Z}/n\mathbb{Z}$ have the Roth-property?
 - $ightarrow \, {\sf Is} \, \lambda(X) \ll |X|^2/n$ sufficient?
 - ightarrow known: $\lambda(X) \ll |X|^3/n^2$ suffices

 $\Rightarrow |X| \gg n^{2/3}$ $\Rightarrow |X| \gg n^{4/5}$

• What about sharp thresholds for extremal properties?

- $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person
- Which pseudorandom subsets $X \subseteq \mathbb{Z}/n\mathbb{Z}$ have the Roth-property?
 - $ightarrow \, {\sf Is} \, \lambda(X) \ll |X|^2/n$ sufficient?
 - ightarrow known: $\lambda(X) \ll |X|^3/n^2$ suffices

 $\Rightarrow |X| \gg n^{2/3} \\ \Rightarrow |X| \gg n^{4/5}$

Which pseudorandom graphs have the Turán-property for a given graph F?
Conlon, Fox & Zhao

• What about sharp thresholds for extremal properties?

- $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person
- Which pseudorandom subsets $X \subseteq \mathbb{Z}/n\mathbb{Z}$ have the Roth-property?
 - $ightarrow \, {\sf Is} \, \lambda(X) \ll |X|^2/n$ sufficient?
 - ightarrow known: $\lambda(X) \ll |X|^3/n^2$ suffices

 $\Rightarrow |X| \gg n^{2/3} \\ \Rightarrow |X| \gg n^{4/5}$

Which pseudorandom graphs have the Turán-property for a given graph F?
Conlon, Fox & Zhao