Extremal combinatorics in random discrete structures

Mathias Schacht

Fachbereich Mathematik
Universität Hamburg
December 2014

Extremal graph theory

Extremal graph theory

Given

- property \mathcal{P}

Extremal graph theory

Given

- property \mathcal{P}
containing no cycle, K_{t}-free

Extremal graph theory

Given

- property \mathcal{P}
containing no cycle, K_{t}-free
- parameter

Extremal graph theory

Given

- property \mathcal{P}
containing no cycle, K_{t}-free
- parameter number of edges

Extremal graph theory

Given

- property \mathcal{P}
containing no cycle, K_{t}-free
- parameter number of edges

Find

■ maximal and "almost" maximal structures with that property

Extremal graph theory

Given

- property \mathcal{P}
containing no cycle, K_{t}-free
- parameter number of edges

Find

- maximal and "almost" maximal structures with that property
- number of structures with that property

Extremal graph theory

Given

- property \mathcal{P}
- parameter
containing no cycle, K_{t}-free number of edges

Find

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures

Extremal graph theory

Given

- property \mathcal{P}
- parameter
containing no cycle, K_{t}-free number of edges

Find

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures

■ typical structure with that property

Extremal graph theory

Given

- property \mathcal{P}
- parameter containing no cycle, K_{t}-free number of edges

Find

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures
- typical structure with that property

■ typical structure with additional restrictions

Extremal graph theory

Given

- property \mathcal{P}
- parameter
containing no cycle, K_{t}-free number of edges

Find

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures
- typical structure with that property
- typical structure with additional restrictions

Today
$\mathcal{P}: F$-free

Turán's problem

For a graph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n} \text { and } H \text { is } F \text {-free }\right\}
$$

Turán's problem

For a graph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n} \text { and } H \text { is } F \text {-free }\right\}
$$

and

$$
\pi_{F}=\lim _{n \rightarrow \infty} \frac{e x(n, F)}{\binom{n}{2}}
$$

Turán's problem

For a graph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n} \text { and } H \text { is } F \text {-free }\right\}
$$

and

$$
\pi_{F}=\lim _{n \rightarrow \infty} \frac{e x(n, F)}{\binom{n}{2}}
$$

Theorem (Mantel, Turán, Erdős, Stone, Simonovits)
For every F

$$
\pi_{F}=1-\frac{1}{\chi(F)-1}
$$

Turán's problem

For a graph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n} \text { and } H \text { is } F \text {-free }\right\}
$$

and

$$
\pi_{F}=\lim _{n \rightarrow \infty} \frac{e x(n, F)}{\binom{n}{2}}
$$

Theorem (Mantel, Turán, Erdős, Stone, Simonovits)
For every F

$$
\pi_{F}=1-\frac{1}{\chi(F)-1}
$$

- extremal graphs are known for cliques and color-critical graphs

Turán's problem

For a graph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n} \text { and } H \text { is } F \text {-free }\right\}
$$

and

$$
\pi_{F}=\lim _{n \rightarrow \infty} \frac{e x(n, F)}{\binom{n}{2}}
$$

Theorem (Mantel, Turán, Erdős, Stone, Simonovits)
For every F

$$
\pi_{\digamma}=1-\frac{1}{\chi(F)-1}
$$

- extremal graphs are known for cliques and color-critical graphs
- only very few results for hypergraphs are known

Stability theorem

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Stability theorem

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Questions

Stability theorem

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Questions

- What about extremal F-free graphs?

Stability theorem

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Questions

- What about extremal F-free graphs?
- What about "almost" extremal F-free graphs?

Stability theorem

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Questions

- What about extremal F-free graphs?
- What about "almost" extremal F-free graphs?

Theorem (Erdös '67, Simonovits '68)
If H is an n-vertex, F-free graph and $e(H) \geq e x(n, F)-o\left(n^{2}\right)$,

Stability theorem

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Questions

- What about extremal F-free graphs?
- What about "almost" extremal F-free graphs?

Theorem (Erdős '67, Simonovits '68)

If H is an n-vertex, F-free graph and $e(H) \geq e x(n, F)-o\left(n^{2}\right)$, then one can remove of o $\left(n^{2}\right)$ edges to obtain a $(\chi(F)-1)$-partite graph.

Typical $K_{t}-$ free graphs

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Typical $K_{t}-$ free graphs

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Questions

Typical K_{t}-free graphs

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Questions

■ What about "typical" K_{t}-free graph?

Typical $K_{t}-$ free graphs

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Questions

■ What about "typical" K_{t}-free graph?
■ How many K_{t}-free graphs on n vertices are not $(t-1)$-partite?

Typical $K_{t}-$ free graphs

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Questions

■ What about "typical" K_{t}-free graph?
■ How many K_{t}-free graphs on n vertices are not $(t-1)$-partite?

Theorem (Kolaitis, Prömel, Rothschild '85)
Almost every K_{t}-free graph on n vertices is $(t-1)$-partite.

Typical $K_{t}-$ free graphs

Turán's theorem: extremal K_{t}-free graph is complete $(t-1)$-partite

Questions

■ What about "typical" K_{t}-free graph?
■ How many K_{t}-free graphs on n vertices are not $(t-1)$-partite?

Theorem (Kolaitis, Prömel, Rothschild '85)
Almost every K_{t}-free graph on n vertices is $(t-1)$-partite.

■ $t=3$ was proved by Kleitman, Rothschild and Erdős '73

Short summary for K_{t}-free graphs

Short summary for K_{t}-free graphs

■ How many edges?

Short summary for K_{t}-free graphs

■ How many edges?
Turán's theorem

Short summary for K_{t}-free graphs

■ How many edges?

Turán's theorem

■ Precise structure of extremal graphs?

Short summary for K_{t}-free graphs

■ How many edges?

Turán's theorem

■ Precise structure of extremal graphs?

Turán's theorem

Short summary for K_{t}-free graphs

■ How many edges?

Turán's theorem

- Precise structure of extremal graphs?

Turán's theorem

- Approximate structure of almost extremal graphs?

Short summary for K_{t}-free graphs

■ How many edges?

Turán's theorem

- Precise structure of extremal graphs?

Turán's theorem

- Approximate structure of almost extremal graphs?

Erdős-Simonovits stability theorem

Short summary for K_{t}-free graphs

■ How many edges?

Turán's theorem

- Precise structure of extremal graphs?

Turán's theorem

- Approximate structure of almost extremal graphs?

Erdős-Simonovits stability theorem

■ Typical structure of K_{t}-free graphs?

Short summary for K_{t}-free graphs

■ How many edges?

Turán's theorem

- Precise structure of extremal graphs?

Turán's theorem

- Approximate structure of almost extremal graphs?

Erdős-Simonovits stability theorem

■ Typical structure of K_{t}-free graphs?
Kolaitis-Prömel-Rothschild theorem

Main question

Main question

Question

Can we replace K_{n} by other graphs and prove similar results?

Main question

Question

Can we replace K_{n} by other graphs and prove similar results?
For graphs F and G set

$$
\operatorname{ex}(G, F):=\max \{e(H): H \subseteq G \text { and } H \text { is } F \text {-free }\}
$$

Main question

Question

Can we replace K_{n} by other graphs and prove similar results?
For graphs F and G set

$$
\operatorname{ex}(G, F):=\max \{e(H): H \subseteq G \text { and } H \text { is } F \text {-free }\}
$$

Question

For which sequences of graphs $\left(G_{n}\right)$ holds

Main question

Question

Can we replace K_{n} by other graphs and prove similar results?
For graphs F and G set

$$
\operatorname{ex}(G, F):=\max \{e(H): H \subseteq G \text { and } H \text { is } F \text {-free }\}
$$

Question

For which sequences of graphs $\left(G_{n}\right)$ holds

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}\left(G_{n}, F\right)}{e\left(G_{n}\right)}=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}\left(K_{n}, F\right)}{e\left(K_{n}\right)}=\pi_{F} ?
$$

Main question

Question

Can we replace K_{n} by other graphs and prove similar results?
For graphs F and G set

$$
\operatorname{ex}(G, F):=\max \{e(H): H \subseteq G \text { and } H \text { is } F \text {-free }\}
$$

Question

For which sequences of graphs $\left(G_{n}\right)$ holds

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}\left(G_{n}, F\right)}{e\left(G_{n}\right)}=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}\left(K_{n}, F\right)}{e\left(K_{n}\right)}=\pi_{F} ?
$$

First results

- $G\left(n, C n^{-1 / 2}\right)$ for $F=K_{3}$

Main question

Question

Can we replace K_{n} by other graphs and prove similar results?
For graphs F and G set

$$
\operatorname{ex}(G, F):=\max \{e(H): H \subseteq G \text { and } H \text { is } F \text {-free }\}
$$

Question

For which sequences of graphs $\left(G_{n}\right)$ holds

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}\left(G_{n}, F\right)}{e\left(G_{n}\right)}=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}\left(K_{n}, F\right)}{e\left(K_{n}\right)}=\pi_{F} ?
$$

First results

- $G\left(n, C n^{-1 / 2}\right)$ for $F=K_{3}$
- $G(n, 1 / 2)$ for $F=K_{t}$

Frankl and Rödl '86
Babai, Simonovits, Spencer '90

1st Poznań Seminar on Random Graphs 1983

Erdős-Nešetřil problem

Does there exist a K_{t+1}-free graph G with

$$
\operatorname{ex}\left(G, K_{t}\right)=\left(\pi_{K_{t}}+o(1)\right) e(G) ?
$$

1st Poznań Seminar on Random Graphs 1983

Erdős-Nešetřil problem

Does there exist a K_{t+1}-free graph G with

$$
\operatorname{ex}\left(G, K_{t}\right)=\left(\pi_{K_{t}}+o(1)\right) e(G) ?
$$

- similar Ramsey-type questions were studied before

1st Poznań Seminar on Random Graphs 1983

Erdős-Nešetřil problem

Does there exist a K_{t+1}-free graph G with

$$
\operatorname{ex}\left(G, K_{t}\right)=\left(\pi_{K_{t}}+o(1)\right) e(G) ?
$$

- similar Ramsey-type questions were studied before

■ Frankl-Rödl: answers for $t=3$ is YES

1st Poznań Seminar on Random Graphs 1983

Erdős-Nešetřil problem

Does there exist a K_{t+1}-free graph G with

$$
\operatorname{ex}\left(G, K_{t}\right)=\left(\pi_{K_{t}}+o(1)\right) e(G) ?
$$

- similar Ramsey-type questions were studied before

■ Frankl-Rödl: answers for $t=3$ is YES, e.g., $G\left(n, \mathrm{Cn}^{-1 / 2}\right)+$ Deletion,

1st Poznań Seminar on Random Graphs 1983

Erdős-Nešetřil problem

Does there exist a K_{t+1}-free graph G with

$$
\operatorname{ex}\left(G, K_{t}\right)=\left(\pi_{K_{t}}+o(1)\right) e(G) ?
$$

- similar Ramsey-type questions were studied before

■ Frankl-Rödl: answers for $t=3$ is YES, e.g., $G\left(n, \mathrm{Cn}^{-1 / 2}\right)+$ Deletion, but all such graphs are sparse

Erdős-Nešetřil problem for $t=3$

Positive result:

Erdős-Nešetřil problem for $t=3$

Positive result:

- for $p=C n^{-1 / 2}$ a.a.s. $\operatorname{ex}\left(G(n, p), K_{3}\right) \leq(1 / 2+o(1)) p\binom{n}{2}$

Erdős-Nešetřil problem for $t=3$

Positive result:

- for $p=C n^{-1 / 2}$ a.a.s. $\operatorname{ex}\left(G(n, p), K_{3}\right) \leq(1 / 2+o(1)) p\binom{n}{2}$
- and a.a.s. $G(n, p)$ contains $o\left(p n^{2}\right)$ copies of K_{4}

Erdős-Nešetřil problem for $t=3$

Positive result:

- for $p=C n^{-1 / 2}$ a.a.s. $\operatorname{ex}\left(G(n, p), K_{3}\right) \leq(1 / 2+o(1)) p\binom{n}{2}$

■ and a.a.s. $G(n, p)$ contains $o\left(p n^{2}\right)$ copies of K_{4}
\Rightarrow removing one edge from each K_{4} yields graph with desired properties

Erdős-Nešetřil problem for $t=3$

Positive result:

- for $p=C n^{-1 / 2}$ a.a.s. $\operatorname{ex}\left(G(n, p), K_{3}\right) \leq(1 / 2+o(1)) p\binom{n}{2}$

■ and a.a.s. $G(n, p)$ contains $o\left(p n^{2}\right)$ copies of K_{4}
\Rightarrow removing one edge from each K_{4} yields graph with desired properties

Negative result:

Erdős-Nešetřil problem for $t=3$

Positive result:

- for $p=C n^{-1 / 2}$ a.a.s. $\operatorname{ex}\left(G(n, p), K_{3}\right) \leq(1 / 2+o(1)) p\binom{n}{2}$

■ and a.a.s. $G(n, p)$ contains $O\left(p n^{2}\right)$ copies of K_{4}
\Rightarrow removing one edge from each K_{4} yields graph with desired properties

Negative result:

- Suppose $d(G)=d>0$ and $\operatorname{ex}\left(G, K_{3}\right) \leq(1 / 2+o(1)) d\binom{n}{2}$

Erdős-Nešetřil problem for $t=3$

Positive result:

- for $p=C n^{-1 / 2}$ a.a.s. $\operatorname{ex}\left(G(n, p), K_{3}\right) \leq(1 / 2+o(1)) p\binom{n}{2}$
- and a.a.s. $G(n, p)$ contains $o\left(p n^{2}\right)$ copies of K_{4}
\Rightarrow removing one edge from each K_{4} yields graph with desired properties

Negative result:

- Suppose $d(G)=d>0$ and $\operatorname{ex}\left(G, K_{3}\right) \leq(1 / 2+o(1)) d\binom{n}{2}$
\Rightarrow every balanced cut contains at most $(d+o(1)) n^{2} / 4$ edges

Erdős-Nešetřil problem for $t=3$

Positive result:

- for $p=C n^{-1 / 2}$ a.a.s. $\operatorname{ex}\left(G(n, p), K_{3}\right) \leq(1 / 2+o(1)) p\binom{n}{2}$

■ and a.a.s. $G(n, p)$ contains $o\left(p n^{2}\right)$ copies of K_{4}
\Rightarrow removing one edge from each K_{4} yields graph with desired properties

Negative result:

- Suppose $d(G)=d>0$ and $\operatorname{ex}\left(G, K_{3}\right) \leq(1 / 2+o(1)) d\binom{n}{2}$
\Rightarrow every balanced cut contains at most $(d+o(1)) n^{2} / 4$ edges
$\Longrightarrow G$ contains quasirandom subgraph

Erdős-Nešetřil problem for $t=3$

Positive result:

- for $p=C n^{-1 / 2}$ a.a.s. $\operatorname{ex}\left(G(n, p), K_{3}\right) \leq(1 / 2+o(1)) p\binom{n}{2}$

■ and a.a.s. $G(n, p)$ contains $o\left(p n^{2}\right)$ copies of K_{4}
\Rightarrow removing one edge from each K_{4} yields graph with desired properties

Negative result:

- Suppose $d(G)=d>0$ and $\operatorname{ex}\left(G, K_{3}\right) \leq(1 / 2+o(1)) d\binom{n}{2}$
\Rightarrow every balanced cut contains at most $(d+o(1)) n^{2} / 4$ edges
$\Longrightarrow G$ contains quasirandom subgraph
$\Rightarrow G$ contains K_{4}

???

$d-\delta$

What is special about $p=\Theta\left(n^{-1 / 2}\right)$?

What is special about $p=\Theta\left(n^{-1 / 2}\right)$?

- Expected number of triangles: $\approx p^{3} n^{3} \approx n^{3 / 2}$

What is special about $p=\Theta\left(n^{-1 / 2}\right)$?

- Expected number of triangles: $\approx p^{3} n^{3} \approx n^{3 / 2}$

■ Expected number of edges: $\quad \approx p n^{2} \approx n^{3 / 2}$

What is special about $p=\Theta\left(n^{-1 / 2}\right)$?

- Expected number of triangles: $\approx p^{3} n^{3} \approx n^{3 / 2}$

■ Expected number of edges: $\quad \approx p n^{2} \approx n^{3 / 2}$

- for $p=o\left(n^{-1 / 2}\right)$ we a.a.s. have

$$
\#\left\{K_{3} \subseteq G(n, p)\right\}=o(e(G(n, p)))
$$

What is special about $p=\Theta\left(n^{-1 / 2}\right)$?

- Expected number of triangles: $\approx p^{3} n^{3} \approx n^{3 / 2}$
- Expected number of edges: $\quad \approx p n^{2} \approx n^{3 / 2}$

■ for $p=o\left(n^{-1 / 2}\right)$ we a.a.s. have

$$
\#\left\{K_{3} \subseteq G(n, p)\right\}=o(e(G(n, p)))
$$

$\Rightarrow \operatorname{ex}\left(G(n, p), K_{3}\right) \geq(1-o(1)) e(G(n, p))$

What is special about $p=\Theta\left(n^{-1 / 2}\right)$?

- Expected number of triangles: $\approx p^{3} n^{3} \approx n^{3 / 2}$

■ Expected number of edges: $\quad \approx p n^{2} \approx n^{3 / 2}$

- for $p=o\left(n^{-1 / 2}\right)$ we a.a.s. have

$$
\#\left\{K_{3} \subseteq G(n, p)\right\}=o(e(G(n, p)))
$$

$\Rightarrow \operatorname{ex}\left(G(n, p), K_{3}\right) \geq(1-o(1)) e(G(n, p))$

Definition

$$
m_{F}=\max \left\{d_{F^{\prime}}: \emptyset \neq F^{\prime} \subseteq F\right\}
$$

where

$$
d_{F^{\prime}}= \begin{cases}1 / 2, & \text { if } e\left(F^{\prime}\right)=1 \\ \frac{e\left(F^{\prime}\right)-1}{v\left(F^{\prime}\right)-2}, & \text { otherwise. }\end{cases}
$$

Extremal problems for random graphs

Extremal problems for random graphs

Conjecture (Kohayakawa, Łuczak \& Rödl)
Threshold for $\operatorname{ex}(G(n, p), F)=\left(\pi_{F}+o(1)\right) p\binom{n}{2}$ is $p=n^{-1 / m_{F}}$.

Extremal problems for random graphs

Conjecture (Kohayakawa, Łuczak \& Rödl)
Threshold for $\operatorname{ex}(G(n, p), F)=\left(\pi_{F}+o(1)\right) p\binom{n}{2}$ is $p=n^{-1 / m_{F}}$.

Results:

Extremal problems for random graphs

Conjecture (Kohayakawa, Łuczak \& Rödl)
Threshold for $\operatorname{ex}(G(n, p), F)=\left(\pi_{F}+o(1)\right) p\binom{n}{2}$ is $p=n^{-1 / m_{F}}$.

Results:

■ for K_{3}, \ldots, K_{6} Frankl, Rödl; KŁR; Gerke, Schickinger, Steger; Gerke

- for cycles
- for all graphs Haxell, Kohayakawa, Łuczak Conlon and Gowers (balanced), Sch.

Extremal problems for random graphs

Conjecture (Kohayakawa, Łuczak \& Rödl)
Threshold for $\operatorname{ex}(G(n, p), F)=\left(\pi_{F}+o(1)\right) p\binom{n}{2}$ is $p=n^{-1 / m_{F}}$.

Results:

■ for K_{3}, \ldots, K_{6} Frankl, Rödl; KŁR; Gerke, Schickinger, Steger; Gerke

- for cycles Haxell, Kohayakawa, Łuczak
- for all graphs Conlon and Gowers (balanced), Sch.

Remark:

■ implies solution of the general Erdős-Nešetřil problem since

$$
m_{K_{t+1}}>m_{K_{t}}
$$

Turán's theorem for random graphs

Turán's theorem for random graphs

Question

When are the maximal K_{t}-free subgraphs of $G(n, p)(t-1)$-partite?

Turán's theorem for random graphs

Question

When are the maximal K_{t}-free subgraphs of $G(n, p)(t-1)$-partite?

Results:

Turán's theorem for random graphs

Question

When are the maximal K_{t}-free subgraphs of $G(n, p)(t-1)$-partite?

Results:

- for $p=1 / 2$
- for $p \geq n^{-\varepsilon_{t}}$

Babai, Simonovits, Spencer
Brightwell, Panagiotou, Steger

Turán's theorem for random graphs

Question

When are the maximal K_{t}-free subgraphs of $G(n, p)(t-1)$-partite?

Results:

- for $p=1 / 2$
- for $p \geq n^{-\varepsilon_{t}}$ Brightwell, Panagiotou, Steger
- optimal: $p \geq C n^{-\frac{1}{m_{K_{t}}}} \operatorname{poly}(\log n)$

DeMarco, Kahn

Turán's theorem for random graphs

Question

When are the maximal K_{t}-free subgraphs of $G(n, p)(t-1)$-partite?

Results:

- for $p=1 / 2$
- for $p \geq n^{-\varepsilon_{t}}$

Babai, Simonovits, Spencer
Brightwell, Panagiotou, Steger

- optimal: $p \geq C n^{-\frac{1}{m_{K_{t}}}} \operatorname{poly}(\log n)$

DeMarco, Kahn

Turán's theorem for random graphs

Question

When are the maximal K_{t}-free subgraphs of $G(n, p)(t-1)$-partite?

Results:

- for $p=1 / 2$
- for $p \geq n^{-\varepsilon_{t}}$

Babai, Simonovits, Spencer
Brightwell, Panagiotou, Steger

- optimal: $p \geq C n^{-\frac{1}{m_{K_{t}}}} \operatorname{poly}(\log n)$

DeMarco, Kahn

Remark:

- for approximate $(t-1)$-partiteness poly $(\log n)$ is not required

Stability and typical structure

Stability for $p>\mathrm{Cn}^{-1 / m_{F}}$:

Stability and typical structure

Stability for $p>C n^{-1 / m_{F}}$:
■ conjectured by Kohayakawa, Łuczak, and Rödl
■ until recently only known for K_{3}, K_{4}, and K_{5}

- for all graphs shown by Conlon and Gowers (balanced) and Samotij

Stability and typical structure

Stability for $p>C n^{-1 / m_{F}}$:
■ conjectured by Kohayakawa, Łuczak, and Rödl
■ until recently only known for K_{3}, K_{4}, and K_{5}

- for all graphs shown by Conlon and Gowers (balanced) and Samotij

Typical structure for given number of edges:

Stability and typical structure

Stability for $p>C n^{-1 / m_{F}}$:
■ conjectured by Kohayakawa, Łuczak, and Rödl
■ until recently only known for K_{3}, K_{4}, and K_{5}

- for all graphs shown by Conlon and Gowers (balanced) and Samotij

Typical structure for given number of edges:

- K_{3}
- K_{t}

Osthus, Prömel, Taraz, (Steger)
Balogh, Morris, Samotij, Warnke

Short summary for K_{t}-free subgraphs of $G(n, p)$

Short summary for K_{t}-free subgraphs of $G(n, p)$

■ How many edges approximately?

Short summary for K_{t}-free subgraphs of $G(n, p)$

■ How many edges approximately?
Conlon-Gowers, Sch.

Short summary for K_{t}-free subgraphs of $G(n, p)$

■ How many edges approximately?

Conlon-Gowers, Sch.

■ Precise structure of extremal subgraphs?

Short summary for K_{t}-free subgraphs of $G(n, p)$

■ How many edges approximately?

Conlon-Gowers, Sch.

■ Precise structure of extremal subgraphs?
DeMarco-Kahn

Short summary for K_{t}-free subgraphs of $G(n, p)$

- How many edges approximately?

Conlon-Gowers, Sch.

■ Precise structure of extremal subgraphs?
DeMarco-Kahn

- Approximate structure of almost extremal graphs?

Short summary for K_{t}-free subgraphs of $G(n, p)$

- How many edges approximately?

Conlon-Gowers, Sch.

■ Precise structure of extremal subgraphs?
DeMarco-Kahn

- Approximate structure of almost extremal graphs?

Conlon-Gowers, Samotij

Short summary for K_{t}-free subgraphs of $G(n, p)$

■ How many edges approximately?

Conlon-Gowers, Sch.

■ Precise structure of extremal subgraphs?
DeMarco-Kahn

- Approximate structure of almost extremal graphs?

Conlon-Gowers, Samotij

- Typical structure of K_{t}-free graphs with given number of edges?

Short summary for K_{t}-free subgraphs of $G(n, p)$

- How many edges approximately?

Conlon-Gowers, Sch.

■ Precise structure of extremal subgraphs?
DeMarco-Kahn

- Approximate structure of almost extremal graphs?

Conlon-Gowers, Samotij

- Typical structure of K_{t}-free graphs with given number of edges?

Balogh-Morris-Samotij-Warnke

Behind the scenes

Behind the scenes

■ Regularity Method for subgraphs of $G(n, p)$

Behind the scenes

■ Regularity Method for subgraphs of $G(n, p)$

Behind the scenes

■ Regularity Method for subgraphs of $G(n, p)$

- Several approaches:

Behind the scenes

■ Regularity Method for subgraphs of $G(n, p)$

■ Several approaches:

- Conlon, Gowers
- Sch. (refined by Samotij)

Behind the scenes

■ Regularity Method for subgraphs of $G(n, p)$

- Several approaches:
- Conlon, Gowers
- Sch. (refined by Samotij)
- Balogh, Morris, Samotij
- Saxton, Thomason

Behind the scenes

- Regularity Method for subgraphs of $G(n, p)$

KŁR-conjecture

- Several approaches:
- Conlon, Gowers
- Sch. (refined by Samotij)
- Balogh, Morris, Samotij
- Saxton, Thomason
- several other results can/could be transferred to subgraphs of $G(n, p)$

General Framework

■ sufficient density yields interesting substructures

General Framework

■ sufficient density yields interesting substructures

Definition (α-dense)

A sequence $\left(H_{n}=\left(V_{n}, E_{n}\right)\right)_{n \in \mathbb{N}}$ of ℓ-uniform hypergraphs is α-dense, if the following holds:
$\forall \delta>0, \exists \xi>0$ and n_{0} such that $\forall n \geq n_{0}$ we have If $U \subseteq V_{n}$ and

$$
|U| \geq(\alpha+\delta)\left|V_{n}\right|
$$

then $e\left(H_{n}[U]\right) \geq \xi\left|E_{n}\right|$.

General Framework

■ sufficient density yields interesting substructures

Definition (α-dense)

A sequence $\left(H_{n}=\left(V_{n}, E_{n}\right)\right)_{n \in \mathbb{N}}$ of ℓ-uniform hypergraphs is α-dense, if the following holds:
$\forall \delta>0, \exists \xi>0$ and n_{0} such that $\forall n \geq n_{0}$ we have If $U \subseteq V_{n}$ and

$$
|U| \geq(\alpha+\delta)\left|V_{n}\right|
$$

then $e\left(H_{n}[U]\right) \geq \xi\left|E_{n}\right|$.

- Turán type problems
π_{F}-dense, $\ell=e(F)$

General Framework

■ sufficient density yields interesting substructures

Definition (α-dense)

A sequence $\left(H_{n}=\left(V_{n}, E_{n}\right)\right)_{n \in \mathbb{N}}$ of ℓ-uniform hypergraphs is α-dense, if the following holds:
$\forall \delta>0, \exists \xi>0$ and n_{0} such that $\forall n \geq n_{0}$ we have If $U \subseteq V_{n}$ and

$$
|U| \geq(\alpha+\delta)\left|V_{n}\right|
$$

then $e\left(H_{n}[U]\right) \geq \xi\left|E_{n}\right|$.

- Turán type problems

■ Szemerédi's theorem
π_{F}-dense, $\ell=e(F)$
0 -dense, $\ell=k$

Random Versions

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

- Let $k \in \mathbb{N}, \delta>0$ and $X \subseteq[n]$ "random".

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

- Let $k \in \mathbb{N}, \delta>0$ and $X \subseteq[n]$ "random".

Does X a.a.s. have the following property: Every $A \subseteq X$ with

$$
|A| \geq \delta|X|
$$

contains an $A P_{k}$,

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

- Let $k \in \mathbb{N}, \delta>0$ and $X \subseteq[n]$ "random".

Does X a.a.s. have the following property: Every $A \subseteq X$ with

$$
|A| \geq \delta|X|
$$

contains an $A P_{k}$, i.e. $\mathbb{P}\left(r_{k}(X) \leq \delta|X|\right)=1-o(1)$?

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

- Let $k \in \mathbb{N}, \delta>0$ and $X \subseteq[n]$ "random".

Does X a.a.s. have the following property: Every $A \subseteq X$ with

$$
|A| \geq \delta|X|
$$

contains an $A P_{k}$, i.e. $\mathbb{P}\left(r_{k}(X) \leq \delta|X|\right)=1-o(1)$?

- Let F be a hypergraph, $\delta>0$ and G a "random hypergraph".

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

- Let $k \in \mathbb{N}, \delta>0$ and $X \subseteq[n]$ "random".

Does X a.a.s. have the following property: Every $A \subseteq X$ with

$$
|A| \geq \delta|X|
$$

contains an $A P_{k}$, i.e. $\mathbb{P}\left(r_{k}(X) \leq \delta|X|\right)=1-o(1)$?

- Let F be a hypergraph, $\delta>0$ and G a "random hypergraph".

Does G a.a.s. have the following property: Every subhypergraph $H \subseteq G$ with

$$
e(H) \geq\left(\pi_{F}+\delta\right) e(G)
$$

contains a copy of F ?

Main Question

What are the asymtotics of the smallest sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of probabilities such that α-density from $\left(H_{n}\right)_{n \in \mathbb{N}}$ can be transferred to $\left(H_{n}\left[V_{n, p_{n}}\right]\right)_{n \in \mathbb{N}}$?

Main Question

What are the asymtotics of the smallest sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of probabilities such that α-density from $\left(H_{n}\right)_{n \in \mathbb{N}}$ can be transferred to $\left(H_{n}\left[V_{n, p_{n}}\right]\right)_{n \in \mathbb{N}}$?

- Let $k \in \mathbb{N}, \delta>0$.

Main Question

What are the asymtotics of the smallest sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of probabilities such that α-density from $\left(H_{n}\right)_{n \in \mathbb{N}}$ can be transferred to $\left(H_{n}\left[V_{n, p_{n}}\right]\right)_{n \in \mathbb{N}}$?

- Let $k \in \mathbb{N}, \delta>0$.

For which $\left(p_{n}\right)_{n \in \mathbb{N}}$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\forall A \subseteq[n]_{p_{n}} \text { with }|A| \geq \delta\left|[n]_{p_{n}}\right| \text { contains } A P_{k}\right)=1 ?
$$

Main Question

What are the asymtotics of the smallest sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of probabilities such that α-density from $\left(H_{n}\right)_{n \in \mathbb{N}}$ can be transferred to $\left(H_{n}\left[V_{n, p_{n}}\right]\right)_{n \in \mathbb{N}}$?

- Let $k \in \mathbb{N}, \delta>0$.

For which $\left(p_{n}\right)_{n \in \mathbb{N}}$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\forall A \subseteq[n]_{p_{n}} \text { with }|A| \geq \delta\left|[n]_{p_{n}}\right| \text { contains } A P_{k}\right)=1 \text { ? }
$$

- Let F be a k-uniform hypergraph, $\delta>0$.

Main Question

What are the asymtotics of the smallest sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of probabilities such that α-density from $\left(H_{n}\right)_{n \in \mathbb{N}}$ can be transferred to $\left(H_{n}\left[V_{n, p_{n}}\right]\right)_{n \in \mathbb{N}}$?

- Let $k \in \mathbb{N}, \delta>0$.

For which $\left(p_{n}\right)_{n \in \mathbb{N}}$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\forall A \subseteq[n]_{p_{n}} \text { with }|A| \geq \delta\left|[n]_{p_{n}}\right| \text { contains } A P_{k}\right)=1 ?
$$

- Let F be a k-uniform hypergraph, $\delta>0$.

For which $\left(p_{n}\right)_{n \in \mathbb{N}}$ we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\forall H \subseteq G^{(k)}\left(n, p_{n}\right) \text { with }|e(H)| \geq\left(\pi_{F}+\delta\right) e\left(G^{(k)}\left(n, p_{n}\right)\right)\right. \\
&\quad \text { conatins a copy of } F)=1 ?
\end{aligned}
$$

Lower bounds

First Idea

Random subsets must contain the given structure

Lower bounds

First Idea

Random subsets must contain the given structure Example: (Szemerédi's theorem): $p^{k} n^{2} \nrightarrow 0$.

Lower bounds

First Idea

Random subsets must contain the given structure Example: (Szemerédi's theorem): $p^{k} n^{2} \leftrightarrow 0$.

Second Idea

A.a.s. we need

$$
e\left(H_{n}\left[V_{n, p_{n}}\right]\right) \gg\left|V_{n, p_{n}}\right| .
$$

Examples:

- $p^{k} n^{2} \gg p n$

Szemerédi's theorem

Lower bounds

First Idea

Random subsets must contain the given structure Example: (Szemerédi's theorem): $p^{k} n^{2} \leftrightarrow 0$.

Second Idea

A.a.s. we need

$$
e\left(H_{n}\left[V_{n, p_{n}}\right]\right) \gg\left|V_{n, p_{n}}\right| .
$$

Examples:

- $p^{k} n^{2} \gg p n$

Szemerédi's theorem

- $p^{e\left(F^{\prime}\right)} n^{v\left(F^{\prime}\right)} \gg p n^{k} \quad \forall F^{\prime} \subseteq F$

Turán

Result

Theorem
Second lower bound is asymptotically correct.

Result

Theorem
Second lower bound is asymptotically correct.

- similar results were obtained by Conlon and Gowers

Result

Theorem

Second lower bound is asymptotically correct.

- similar results were obtained by Conlon and Gowers

Corollary (probabilistic version of Szemerédi's theorem)
$\forall k \geq 3, \forall \delta>0, \exists 0<c<C$, such that $\forall\left(q_{n}\right)_{n \in \mathbb{N}}$

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(r_{k}\left([n]_{q_{n}}\right) \leq \delta q_{n} n\right)= \begin{cases}1, & \text { if } q_{n} \geq C n^{-1 /(k-1)} \\ 0, & \text { if } q_{n} \leq c n^{-1 /(k-1)}\end{cases}
$$

Result

Theorem

Second lower bound is asymptotically correct.

- similar results were obtained by Conlon and Gowers

Corollary (probabilistic version of Szemerédi's theorem)
$\forall k \geq 3, \forall \delta>0, \exists 0<c<C$, such that $\forall\left(q_{n}\right)_{n \in \mathbb{N}}$

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(r_{k}\left([n]_{q_{n}}\right) \leq \delta q_{n} n\right)= \begin{cases}1, & \text { if } q_{n} \geq C n^{-1 /(k-1)} \\ 0, & \text { if } q_{n} \leq c n^{-1 /(k-1)}\end{cases}
$$

- Main result yields probabilistic versions of many extremal results
- multidimensional and polynomial variants of Szemerédi's theorem
- maximal sum-free subsets
- theorems of Turán and of Erdős and Stone for $G(n, p)$ and $G^{(k)}(n, p)$

Motivation for the Erdős-Nešetřil question

Motivation for the Erdős-Nešetřil question

Question (Erdős-Hajnal '67)
For every integer t does there exist a K_{t+1}-free graph H s.t.

$$
H \rightarrow K_{t} ?
$$

Motivation for the Erdős-Nešetřil question

Question (Erdős-Hajnal '67)
For every integer t does there exist a K_{t+1}-free graph H s.t.

$$
H \rightarrow K_{t} ?
$$

Theorem (Folkman '70)
For every integer t there exists a K_{t+1}-free graph H s.t.

$$
H \rightarrow K_{t} .
$$

Motivation for the Erdős-Nešetřil question

Question (Erdős-Hajnal '67)

For every integer t does there exist a K_{t+1}-free graph H s.t.

$$
H \rightarrow K_{t} ?
$$

Theorem (Folkman '70)
For every integer t there exists a K_{t+1}-free graph H s.t.

$$
H \rightarrow K_{t} .
$$

Theorem (Nešetřil \& Rödl '76)
For all integers r and t there exists a K_{t+1}-free graph H s.t.

$$
H \rightarrow\left(K_{t}\right)_{r} .
$$

Motivation for the Erdős-Nešetřil question

Question (Erdős-Hajnal '67)

For every integer t does there exist a K_{t+1}-free graph H s.t.

$$
H \rightarrow K_{t} ?
$$

Theorem (Folkman '70)
For every integer t there exists a K_{t+1}-free graph H s.t.

$$
H \rightarrow K_{t} .
$$

Theorem (Nešetřil \& Rödl '76)
For all integers r and t there exists a K_{t+1}-free graph H s.t.

$$
H \rightarrow\left(K_{t}\right)_{r} .
$$

Question (Folkman function $f_{r}(t)$)

How large is the smallest such H ?

New bounds for the Folkman number

$$
f_{r}(t):=\min \left\{v(H): \omega(H)=t \text { and } H \rightarrow\left(K_{t}\right)_{r}\right\}
$$

New bounds for the Folkman number

$f_{r}(t):=\min \left\{v(H): \omega(H)=t\right.$ and $\left.H \rightarrow\left(K_{t}\right)_{r}\right\}$
Theorem (Rädl, Ruciński \& Sch.)

$$
\log f_{r}(t)=O\left(t^{4} \log t+t^{3} r \log r\right)
$$

New bounds for the Folkman number

$f_{r}(t):=\min \left\{v(H): \omega(H)=t\right.$ and $\left.H \rightarrow\left(K_{t}\right)_{r}\right\}$
Theorem (Rödl, Ruciński \& Sch.)

$$
\log f_{r}(t)=O\left(t^{4} \log t+t^{3} r \log r\right)
$$

Remarks:

- proof is based on recent result of Saxton and Thomasson

■ similar result of Balogh, Morris and Samotij gives similar bound

New bounds for the Folkman number

$f_{r}(t):=\min \left\{v(H): \omega(H)=t\right.$ and $\left.H \rightarrow\left(K_{t}\right)_{r}\right\}$
Theorem (Rädl, Ruciński \& Sch.)

$$
\log f_{r}(t)=O\left(t^{4} \log t+t^{3} r \log r\right)
$$

Remarks:

- proof is based on recent result of Saxton and Thomasson
- similar result of Balogh, Morris and Samotij gives similar bound
- double exponential bound was proved earlier by Conlon and Gowers and RRSch

New bounds for the Folkman number

$f_{r}(t):=\min \left\{v(H): \omega(H)=t\right.$ and $\left.H \rightarrow\left(K_{t}\right)_{r}\right\}$
Theorem (Rödl, Ruciński \& Sch.)

$$
\log f_{r}(t)=O\left(t^{4} \log t+t^{3} r \log r\right)
$$

Remarks:

- proof is based on recent result of Saxton and Thomasson
- similar result of Balogh, Morris and Samotij gives similar bound
- double exponential bound was proved earlier by Conlon and Gowers and RRSch
- Lower bound: $2^{t / 2}<R(t, t) \leq f_{2}(t)$

New bounds for the Folkman number

$f_{r}(t):=\min \left\{v(H): \omega(H)=t\right.$ and $\left.H \rightarrow\left(K_{t}\right)_{r}\right\}$
Theorem (Rödl, Ruciński \& Sch.)

$$
\log f_{r}(t)=O\left(t^{4} \log t+t^{3} r \log r\right)
$$

Remarks:

- proof is based on recent result of Saxton and Thomasson

■ similar result of Balogh, Morris and Samotij gives similar bound

- double exponential bound was proved earlier by Conlon and Gowers and RRSch
- Lower bound: $2^{t / 2}<R(t, t) \leq f_{2}(t)$

Question

Can t^{4} be improved to $o\left(t^{2}\right)$ for $r=2$?

Sketch of Proof

Sketch of Proof

$$
\begin{gathered}
n^{t+1} p^{\binom{t+1}{2}} \ll n^{2} p \ll n^{t} p^{\binom{t}{2}} \\
p=n^{-\frac{2}{t+1}+\varepsilon}
\end{gathered}
$$

Sketch of Proof

$$
n^{t+1} p^{\binom{t+1}{2}} \ll n^{2} p \ll n^{t} p^{\binom{t}{2}}
$$

Sketch of Proof

Sketch of Proof

$$
P\left(G \not \supset K_{t+1}\right)>P\left(G \nrightarrow K_{t}\right)
$$

Sketch of Proof

$$
n^{t+1} p^{\binom{t+1}{2}} \ll n^{2} p \ll n^{t} p^{\binom{t}{2}}
$$

$$
P\left(G \not \supset K_{t+1}\right)>P\left(G \nrightarrow K_{t}\right)
$$

Future work and open questions

Future work and open questions

■ What about sharp thresholds for extremal properties?

Future work and open questions

■ What about sharp thresholds for extremal properties?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

Future work and open questions

■ What about sharp thresholds for extremal properties?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

■ Which pseudorandom subsets $X \subseteq \mathbb{Z} / n \mathbb{Z}$ have the Roth-property?

Future work and open questions

■ What about sharp thresholds for extremal properties?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

■ Which pseudorandom subsets $X \subseteq \mathbb{Z} / n \mathbb{Z}$ have the Roth-property?
\rightarrow Is $\lambda(X) \ll|X|^{2} / n$ sufficient?

$$
\Rightarrow|X| \gg n^{2 / 3}
$$

Future work and open questions

■ What about sharp thresholds for extremal properties?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

■ Which pseudorandom subsets $X \subseteq \mathbb{Z} / n \mathbb{Z}$ have the Roth-property?
\rightarrow Is $\lambda(X) \ll|X|^{2} / n$ sufficient?
\rightarrow known: $\lambda(X) \ll|X|^{3} / n^{2}$ suffices
$\Rightarrow|X| \gg n^{2 / 3}$
$\Rightarrow|X| \gg n^{4 / 5}$

Future work and open questions

■ What about sharp thresholds for extremal properties?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

■ Which pseudorandom subsets $X \subseteq \mathbb{Z} / n \mathbb{Z}$ have the Roth-property?
\rightarrow Is $\lambda(X) \ll|X|^{2} / n$ sufficient?
$\Rightarrow|X| \gg n^{2 / 3}$
\rightarrow known: $\lambda(X) \ll|X|^{3} / n^{2}$ suffices

$$
\Rightarrow|X| \gg n^{4 / 5}
$$

- Which pseudorandom graphs have the Turán-property for a given graph F ? Conlon, Fox \& Zhao

Future work and open questions

■ What about sharp thresholds for extremal properties?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

■ Which pseudorandom subsets $X \subseteq \mathbb{Z} / n \mathbb{Z}$ have the Roth-property?
\rightarrow Is $\lambda(X) \ll|X|^{2} / n$ sufficient?
$\Rightarrow|X| \gg n^{2 / 3}$
\rightarrow known: $\lambda(X) \ll|X|^{3} / n^{2}$ suffices

$$
\Rightarrow|X| \gg n^{4 / 5}
$$

- Which pseudorandom graphs have the Turán-property for a given graph F ? Conlon, Fox \& Zhao

