Algorithms and complexity of graph convexity problems

Vinícius F. dos Santos

Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG) Belo Horizonte, Brazil

> Joint Work with: Igor da Fonseca Ramos Jayme L. Szwarcfiter

> > December 2014

Image: A Image: A

Convexity

Definition: convexity

Given a finite ground set V and a family C of subsets of V, C is a **convexity** if the following conditions are satisfied:

- (a) The sets \emptyset and V belong to C; and
- (b) C is closed for intersections.

一日、

Convexity

Definition: convexity

Given a finite ground set V and a family C of subsets of V, C is a **convexity** if the following conditions are satisfied:

- (a) The sets \emptyset and V belong to C; and
- (b) C is closed for intersections.

Definition: convex set

A set is **convex** if it belongs to C.

Graph convexity

- For a graph G = (V, E), the ground set is V.
- The family C contains subsets of V.

Graph Convexity

Graph convexity

- For a graph G = (V, E), the ground set is V.
- The family C contains subsets of V.

Path convexity

- We can use a family of paths \mathcal{F}_G to define \mathcal{C} :
- $S \subseteq V(G)$ is convex if, for every pair $u, v \in S$, every $w \in V(G)$ in a *uv*-path in \mathcal{F}_G is also in S.
- Interval function: *I*(*S*) is the set of vertices that belong to at least one *uv*-path of *F_G*, *u*, *v* ∈ *S*

Convexity

Some well studied graph convexities

- Geodetic Convexity
- Monophonic Convexity
- P₃ Convexity
- P₃^{*} Convexity

3

-

Geodetic convexity

• Family of paths \mathcal{F}_G consists of all the shortest paths of G.

Convex sets

 $S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a *uv*-shortest path in G is also in S.

Geodetic convexity

• Family of paths \mathcal{F}_G consists of all the shortest paths of G.

Convex sets

 $S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a *uv*-shortest path in G is also in S.

Figure: Convex set.

Geodetic convexity

• Family of paths \mathcal{F}_G consists of all the shortest paths of G.

Convex sets

 $S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a *uv*-shortest path in G is also in S.

Figure: Non-convex set.

Monophonic convexity

• Family of paths \mathcal{F}_G consists of the induced paths of G.

Convex sets

 $S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a *uv*-induced path of G also belongs to S.

Monophonic convexity

• Family of paths \mathcal{F}_G consists of the induced paths of G.

Convex sets

 $S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a *uv*-induced path of G also belongs to S.

Figure: Convex set.

Monophonic convexity

• Family of paths \mathcal{F}_G consists of the induced paths of G.

Convex sets

 $S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a *uv*-induced path of G also belongs to S.

Figure: Non-convex set.

• Family of paths \mathcal{F}_G contain the paths of order 3 of G.

Convex sets

 $S \subseteq V(G)$ is convex if and only if for all $u, v \in S$, every path in a *uv*-path of order 3 is also in S.

• • = • •

• Family of paths \mathcal{F}_G contain the paths of order 3 of G.

Convex sets

 $S \subseteq V(G)$ is convex if there is no $v \in V(G) \setminus S$ with two or more neighbors in S.

3

(4回) (4回) (4回)

• Family of paths \mathcal{F}_G contain the paths of order 3 of G.

Convex sets

 $S \subseteq V(G)$ is convex if there is no $v \in V(G) \setminus S$ with two or more neighbors in S.

Figure: Convex set.

→ Ξ →

• Family of paths \mathcal{F}_G contain the paths of order 3 of G.

Convex sets

 $S \subseteq V(G)$ is convex if there is no $v \in V(G) \setminus S$ with two or more neighbors in S.

Figure: Non-convex set.

→ Ξ →

Convex Hull in graphs

- Convex hull of S: smallest convex superset containing S.
- Denoted by H(S).
- If $v \in H(S) \setminus S$, we say that v is **generated** by S.

3

□ ▶ ▲ □ ▶ ▲ □

Convex Hull in graphs

- Convex hull of S: smallest convex superset containing S.
- Denoted by H(S).
- If $v \in H(S) \setminus S$, we say that v is **generated** by S.

Convex Hull in graphs

- Convex hull of S: smallest convex superset containing S.
- Denoted by H(S).
- If $v \in H(S) \setminus S$, we say that v is **generated** by S.

Example on the P_3 convexity:

• • = • •

- Greedy algorithm.
- Start with H(S) = S.
- Repeat:
 - Let R = I(H(S));
 - $H(S) \leftarrow H(S) \cup R$.

3

< 回 > < 三 > < 三 >

- Greedy algorithm.
- Start with H(S) = S.
- Repeat:
 - Let R = I(H(S));
 - $H(S) \leftarrow H(S) \cup R$.

- Greedy algorithm.
- Start with H(S) = S.
- Repeat:
 - Let R = I(H(S));
 - $H(S) \leftarrow H(S) \cup R$.

- Greedy algorithm.
- Start with H(S) = S.
- Repeat:
 - Let R = I(H(S));
 - $H(S) \leftarrow H(S) \cup R$.

- Greedy algorithm.
- Start with H(S) = S.
- Repeat:
 - Let R = I(H(S));
 - $H(S) \leftarrow H(S) \cup R$.

- Greedy algorithm.
- Start with H(S) = S.
- Repeat:
 - Let R = I(H(S));
 - $H(S) \leftarrow H(S) \cup R$.

Convex Hull

Hull set

Definition: **hull set** If H(S) = V(G), S is a **hull set** of G.

3

イロト イヨト イヨト イヨト

Convex Hull

Hull set

Definition: hull set If H(S) = V(G), S is a hull set of G.

Figure: A hull set.

-

▲ 同 ▶ → 三 ▶

Definition: hull number

The hull number of a graph is the cardinality of its smallest hull set.

Definition: hull number

The hull number of a graph is the cardinality of its smallest hull set.

Definition: interval number

The minimum size of a set S such that I(S) = V(G).

Definition: hull number

The hull number of a graph is the cardinality of its smallest hull set.

Definition: interval number

The minimum size of a set S such that I(S) = V(G).

Definition: convexity number

The maximum size of a convex set S such that $S \neq V(G)$.

- 4 同 6 4 日 6 4 日 6

Definition: hull number

The hull number of a graph is the cardinality of its smallest hull set.

Definition: interval number

The minimum size of a set S such that I(S) = V(G).

Definition: convexity number

The maximum size of a convex set S such that $S \neq V(G)$.

Definition: partition number

The maximum integer k such that V(G) can be partitioned into p convex sets for any $p \in \{1, ..., k\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Some parameters of a graph convexity

Parameters of a graph convexity

Definition: hull number

The hull number of a graph is the cardinality of its smallest hull set.

Definition: interval number

The minimum size of a set S such that I(S) = V(G).

Definition: convexity number

The maximum size of a convex set S such that $S \neq V(G)$.

Definition: partition number

The maximum integer k such that V(G) can be partitioned into p convex sets for any $p \in \{1, \ldots, k\}$.

Definition: percolation time

The maximum number of iteractions of the greed algorithm to generate the whole graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Radon number

Definition: Radon partition

Given a set R, a partition $R = R_1 \cup R_2$ such that $H(R_1) \cap H(R_2) \neq \emptyset$ is a Radon partition.

3

- 4 @ > - 4 @ > - 4 @ >

Radon number

Definition: Radon partition

Given a set R, a partition $R = R_1 \cup R_2$ such that $H(R_1) \cap H(R_2) \neq \emptyset$ is a Radon partition.

Definition: Radon-independent set

If a set does not admit a Radon partition we say it is a Radon-independent set.

・ 同 ト ・ ヨ ト ・ ヨ ト

Radon number

Definition: Radon partition

Given a set R, a partition $R = R_1 \cup R_2$ such that $H(R_1) \cap H(R_2) \neq \emptyset$ is a Radon partition.

Definition: Radon-independent set

If a set does not admit a Radon partition we say it is a Radon-independent set.

Definition: Radon number

The Radon number r(G) is given by max{|R|, R is a Radon-independent set} + 1.

< 回 > < 三 > < 三 >

Carathéodory number

Definition: Carathéodory-independent set

A set S such that

$$H(S)\setminus \bigcup_{v\in S}H(S\setminus \{v\})\neq \emptyset.$$

3
Carathéodory number

Definition: Carathéodory-independent set

A set S such that

$$H(S) \setminus \bigcup_{v \in S} H(S \setminus \{v\}) \neq \emptyset.$$

Definition: Carathéodory number

Largest cardinality of a Carathéodory-independent set.

Smallest integer k such that for every $U \subseteq V$ and every $u \in H(U)$, there is a set $F \subseteq U$ with $|F| \leq k$ and $u \in H(F)$.

不良 とう きょう かいしょ

Helly number

Definition: Helly-independent set

A set S such that

$$\bigcap_{v\in S} H(S\setminus \{v\}) = \emptyset.$$

3

(日) (同) (三) (三)

Helly number

Definition: Helly-independent set

A set S such that

$$\bigcap_{v\in S} H(S\setminus \{v\}) = \emptyset.$$

Definition: Helly number

The cardinality of a maximum Helly-independent set.

□ ▶ ▲ □ ▶ ▲ □

Definition: convexly independent set

 $S \subseteq V(G)$ is a convexly independent set if, for all $v \in S$, $v \notin H(S - v)$. Equivalently, no vertex of S is generated by the others.

If a vertex of $S \subseteq V(G)$ is generated by the others, S is **convexly** dependent.

(日) (周) (三) (三)

Definition: convexly independent set

 $S \subseteq V(G)$ is a convexly independent set if, for all $v \in S$, $v \notin H(S - v)$. Equivalently, no vertex of S is generated by the others.

If a vertex of $S \subseteq V(G)$ is generated by the others, S is **convexly** dependent.

Figure: Convexly dependent set.

Definition: convexly independent set

 $S \subseteq V(G)$ is a convexly independent set if, for all $v \in S$, $v \notin H(S - v)$. Equivalently, no vertex of S is generated by the others.

If a vertex of $S \subseteq V(G)$ is generated by the others, S is **convexly** dependent.

A (1) > A (2) > A

Definition: convexly independent set

 $S \subseteq V(G)$ is a convexly independent set if, for all $v \in S$, $v \notin H(S - v)$. Equivalently, no vertex of S is generated by the others.

If a vertex of $S \subseteq V(G)$ is generated by the others, S is **convexly** dependent.

Figure: Convexly independent set.

A (10) F (10)

Definition: convexly independent set

 $S \subseteq V(G)$ is a convexly independent set if, for all $v \in S$, $v \notin H(S - v)$. Equivalently, no vertex of S is generated by the others.

If a vertex of $S \subseteq V(G)$ is generated by the others, S is **convexly** dependent.

A (10) F (10)

Definition: convexly independent set

 $S \subseteq V(G)$ is a convexly independent set if, for all $v \in S$, $v \notin H(S - v)$. Equivalently, no vertex of S is generated by the others.

If a vertex of $S \subseteq V(G)$ is generated by the others, S is **convexly** dependent.

Definition: convexly independent set

 $S \subseteq V(G)$ is a convexly independent set if, for all $v \in S$, $v \notin H(S - v)$. Equivalently, no vertex of S is generated by the others.

If a vertex of $S \subseteq V(G)$ is generated by the others, S is **convexly** dependent.

Definition: convexly independent set

 $S \subseteq V(G)$ is a convexly independent set if, for all $v \in S$, $v \notin H(S - v)$. Equivalently, no vertex of S is generated by the others.

If a vertex of $S \subseteq V(G)$ is generated by the others, S is **convexly** dependent.

A (10) F (10)

The rank of a graph

Definition: rank

The rank of a graph, denoted by rk(G), is the cardinality of a maximum convexly independent set of G.

The rank of a graph

Definition: rank

The rank of a graph, denoted by rk(G), is the cardinality of a maximum convexly independent set of G.

CONVEXLY INDEPENDENT SET INPUT: A graph G and an integer k. QUESTION: $rk(G) \ge k$?

State of the art

Parameter	Geodetic	Monophonic	P ₃	P*3
Interval of a set	Polynomial	NP-complete	Polynomial	Polynomial
Hull	NP-complete	Polynomial	NP-complete	NP-complete
Convexity	NP-complete	NP-complete	NP-complete	NP-complete
Radon	NP-complete	NP-complete	NP-hard	NP-hard
Carathéodory	NP-complete	Polynomial	NP-complete	NP-complete
Helly	coNP-complete	Polynomial	Open	Open
Rank	NP-complete	NP-complete	NP-complete	NP-complete
Partition	NP-complete	Open	NP-complete	Open
Percolation time	NP-complete	NP-complete	NP-complete	NP-complete

æ

イロト イヨト イヨト イヨト

■ *k*-tuple domination.

___ ▶

- k-tuple domination.
- Conversion/percolation problems.

- k-tuple domination.
- Conversion/percolation problems.
- Feedback vertex set.

- k-tuple domination.
- Conversion/percolation problems.
- Feedback vertex set.
- Open packing number.

The open packing number

Definition: open packing

An open packing of a graph G is a set S such that, for every pair $u, v \in S$, $N(u) \cap N(v) = \emptyset$.

The open packing number

Definition: open packing

An open packing of a graph G is a set S such that, for every pair $u, v \in S$, $N(u) \cap N(v) = \emptyset$.

Definition: open packing number

The open packing number of a graph, denoted by $\rho_o(G)$, is the cardinality of a maximum open packing of G.

The open packing number

Definition: open packing

An open packing of a graph G is a set S such that, for every pair $u, v \in S$, $N(u) \cap N(v) = \emptyset$.

Definition: open packing number

The open packing number of a graph, denoted by $\rho_o(G)$, is the cardinality of a maximum open packing of G.

OPEN PACKING NUMBER

INPUT: A graph G and an integer k. QUESTION: $\rho_o(G) \ge k$?

- If S is an open packing, H(S) = S. Hence, every open packing is convexly independent.
- Not every convexly independent set is an open packing.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- If S is an open packing, H(S) = S. Hence, every open packing is convexly independent.
- Not every convexly independent set is an open packing.

- If S is an open packing, H(S) = S. Hence, every open packing is convexly independent.
- Not every convexly independent set is an open packing.

- If S is an open packing, H(S) = S. Hence, every open packing is convexly independent.
- Not every convexly independent set is an open packing.

Split graphs on the P_3 convexity

Theorem

The CONVEXLY INDEPENDENT SET problem is NP-complete on the P_3 convexity, even for split graphs with $\delta(G) \geq 2$.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Reduction from Set Packing.

SET PACKING INPUT: A family S of non-empty subsets $S_i \in S$ of a ground set and an integer k. QUESTION: S has at least k pairwise disjoint sets?

 $S_1 = \{1,6\}, S_2 = \{1,2\}, S_3 = \{2,3\}, S_4 = \{3,4\}, S_5 = \{4,5\}, S_6 = \{5,6\}.$

 $S_1 = \{1, 6\}, S_2 = \{1, 2\}, S_3 = \{2, 3\}, S_4 = \{3, 4\}, S_5 = \{4, 5\}, S_6 = \{5, 6\}.$

 $S_1 = \{1, 6\}, S_2 = \{1, 2\}, S_3 = \{2, 3\}, S_4 = \{3, 4\}, S_5 = \{4, 5\}, S_6 = \{5, 6\}.$

- 31

(日) (周) (三) (三)

 $S_1 = \{1, 6\}, S_2 = \{1, 2\}, S_3 = \{2, 3\}, S_4 = \{3, 4\}, S_5 = \{4, 5\}, S_6 = \{5, 6\}.$

3

(日) (同) (三) (三)

 $S_1 = \{1, 6\}, S_2 = \{1, 2\}, S_3 = \{2, 3\}, S_4 = \{3, 4\}, S_5 = \{4, 5\}, S_6 = \{5, 6\}.$

3

(日) (周) (三) (三)

 $S_1 = \{1, 6\}, S_2 = \{1, 2\}, S_3 = \{2, 3\}, S_4 = \{3, 4\}, S_5 = \{4, 5\}, S_6 = \{5, 6\}.$

3

(日) (周) (三) (三)

Open packing number

Corollary

The OPEN PACKING NUMBER is NP-complete for split graphs with $\delta(G) \geq 2$.

3

-

A (10) F (10)

Open packing number

Corollary

The OPEN PACKING NUMBER is NP-complete for split graphs with $\delta(G) \geq 2$.

It was known that the problem was NP-hard for chordal graphs [Henning and Slater, 1999].

A (10) F (10)

Bipartite graphs on the P_3 convexity

Theorem

The CONVEXLY INDEPENDENT SET problem is NP-complete on the P_3 convexity, even for bipartite graphs with diameter at most 3.
NP-completeness

Bipartite graphs on the P_3 convexity

Theorem

The CONVEXLY INDEPENDENT SET problem is NP-complete on the P_3 convexity, even for bipartite graphs with diameter at most 3.

Reduction from CONVEXLY INDEPENDENT SET for split graphs with $\delta(G) \geq 2$.

Threshold graphs on the P_3 convexity

Theorem

The CONVEXLY INDEPENDENT SET problem can be solved in linear time for threshold graphs on the P_3 convexity.

Threshold graphs on the P_3 convexity

Theorem

The CONVEXLY INDEPENDENT SET problem can be solved in linear time for threshold graphs on the P_3 convexity.

Theorem

If G is a connected threshold graph with $|V(G)| \ge 3$ and $D \subseteq V(G)$ is a set with all vertices of minimum degree G, then:

Threshold graphs on the P_3 convexity

Theorem

The CONVEXLY INDEPENDENT SET problem can be solved in linear time for threshold graphs on the P_3 convexity.

Theorem

If G is a connected threshold graph with $|V(G)| \ge 3$ and $D \subseteq V(G)$ is a set with all vertices of minimum degree G, then:

- (i) if G is a star, then rk(G) = |V(G)| 1;
- (ii) otherwise, if d(v) = 1 for all $v \in D$, then rk(G) = |D| + 1;
- (iii) otherwise, rk(G) = 2.

< 回 ト < 三 ト < 三 ト

Trees on the P_3 convexity

Theorem

The CONVEXLY INDEPENDENT SET problem can be solved in time $O(n \log \Delta(T))$ for trees on the P_3 convexity.

□ ▶ ▲ □ ▶ ▲ □

Trees on the P_3 convexity

Theorem

The CONVEXLY INDEPENDENT SET problem can be solved in time $O(n \log \Delta(T))$ for trees on the P_3 convexity.

Dynamic Programming.

周 ト イ ヨ ト イ ヨ

Given a tree T.

Select a root $r \in V(T)$.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Given a tree T.

- Select a root $r \in V(T)$.
- Consider that $u \in V(T)$ sends **charge** to $v \in V(T)$ if u and v are adjacent, $u \in H(S)$ and u does not depend on v to be in H(S).

3

(人間) トイヨト イヨト

Given a tree T.

- Select a root $r \in V(T)$.
- Consider that $u \in V(T)$ sends **charge** to $v \in V(T)$ if u and v are adjacent, $u \in H(S)$ and u does not depend on v to be in H(S).
- P_v(i, j, k) is the contribuition of v: maximum number of vertices of the subtree rooted on v that can be on the maximum convexly independent set under the condition given by i, j e k:
 - i = 1: the parent of v sends charge to v.
 - j = 1: v is in the convexly independent set being considered.
 - k: number of children sending charge to v.

Given a tree T.

Select a root $r \in V(T)$.

- Consider that $u \in V(T)$ sends **charge** to $v \in V(T)$ if u and v are adjacent, $u \in H(S)$ and u does not depend on v to be in H(S).
- P_v(i, j, k) is the contribuition of v: maximum number of vertices of the subtree rooted on v that can be on the maximum convexly independent set under the condition given by i, j e k:
 - i = 1: the parent of v sends charge to v.
 - j = 1: v is in the convexly independent set being considered.
 - k: number of children sending charge to v.

Define:

•
$$f(v, i) = \max\{P_v(i, 0, 0), P_v(i, 0, 1)\}.$$

• $h(v, i) = \max\{\max_{2 \le k \le d(v)} \{P(i, 0, k)\}, \max_{0 \le k \le d(v)} P_v(i, 1, k)\}.$

 $g(v, i_1, i_2) = h(v, i_1) - f(v, i_2).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Recurrence relation I

$$P_{\nu}(0,0,0) = \sum_{u \in N'(\nu)} f(u,0);$$

$$P_{\nu}(0,0,1) = \begin{cases} -\infty, & \text{if } \nu \text{ have no children,} \\ \sum_{u \in N'(\nu)} f(u,0) + \max_{u \in N'(\nu)} g(u,0,0), & \text{otherwise;} \end{cases}$$
(2)

$$P_{\nu}(0,0,2) = \begin{cases} -\infty, & \text{if } \nu \text{ has at most } 1 \text{ child,} \\ \sum_{u \in N'(\nu)} f(u,1) + \max_{\substack{\forall X \subseteq N'(\nu) \\ |X|=2}} g(u,0,1), & \text{otherwise;} \end{cases}$$
(3)

$$P_{\nu}(0,0,k) = \begin{cases} -\infty, & \text{if } \nu \text{ less than } k \text{ children}, \\ \sum_{u \in N'(\nu)} f(u,1) + \max_{\substack{\forall X \subseteq N'(\nu) \\ |X| = k}} \sum_{u \in X} g(u,1,1), & \text{otherwise}; \end{cases}$$
(4)

(1)

Recurrence relation II

$$P_{v}(0,1,0) = \sum_{u \in N'(v)} f(u,1) + 1;$$

$$P_{\nu}(0,1,1) = \begin{cases} -\infty, & \text{if } \nu \text{ have no children,} \\ \sum_{u \in N'(\nu)} f(u,1) + \max_{u \in N'(\nu)} g(u,1,1) + 1, & \text{otherwise;} \end{cases}$$
(6)

$$P_{\nu}(0,1,k) = -\infty;$$
(7)

$$P_{\nu}(1,0,0) = \begin{cases} -\infty, & \text{if } \nu = r, \\ \sum_{u \in N'(\nu)} f(u,0), & \text{otherwise;} \end{cases}$$

$$\tag{8}$$

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

(5)

Recurrence relation III

$$P_{\nu}(1,0,1) = \begin{cases} -\infty, & \text{if } \nu \text{ have no children ou } \nu = r, \\ \sum_{u \in N'(\nu)} f(u,1) + \max_{u \in N'(\nu)} g(u,0,1), & \text{otherwise;} \end{cases}$$
(9)

$$P_{\nu}(1,0,k) = \begin{cases} -\infty, & \text{if } \nu \text{ has less than } k \text{ children or } \nu = r, \\ \sum_{u \in N'(\nu)} f(u,1) + \max_{\substack{\forall S \subseteq N'(\nu) \\ |S| = k}} g(u,1,1), & \text{otherwise;} \end{cases}$$
(10)

$$P_{\nu}(1,1,0) = \begin{cases} -\infty, & \text{if } \nu = r, \\ \sum_{u \in N'(\nu)} f(u,1) + 1, & \text{otherwise;} \end{cases}$$
(11)

$$P_{\nu}(1,1,k) = -\infty.$$
(12)

3

<ロ> (日) (日) (日) (日) (日)

Graphs without separating cliques on the monophonic convexity

Theorem

The CONVEXLY INDEPENDENT SET problem is NP-complete on the monophonic convexity, even for graphs without separating clique.

A (10) F (10)

Graphs without separating cliques on the monophonic convexity

Theorem [Dourado, Protti, Szwarcfiter, 2010]

If G is a graph with no separating clique, but is not a complete graph, then every pair of non-adjacent vertices is a hull set of G on the monophonic convexity.

Graphs without separating cliques on the monophonic convexity

Theorem [Dourado, Protti, Szwarcfiter, 2010]

If G is a graph with no separating clique, but is not a complete graph, then every pair of non-adjacent vertices is a hull set of G on the monophonic convexity.

Lemma

The CLIQUE problem is NP-complete, even for graphs without separating clique.

・ 同 ト ・ ヨ ト ・ ヨ ト

Parameter	Geodetic	Monophonic	P ₃	P*3
Interval of a set	Polynomial	NP-complete	Polynomial	Polynomial
Hull	NP-complete	Polynomial	NP-complete	NP-complete
Convexity	NP-complete	NP-complete	NP-complete	NP-complete
Radon	NP-complete	NP-complete	NP-hard	NP-hard
Carathéodory	NP-complete	Polynomial	NP-complete	NP-complete
Helly	coNP-complete	Polynomial	Open	Open
Rank	NP-complete	NP-complete	NP-complete	NP-complete
Partition	NP-complete	Open	NP-complete	Open
Percolation time	NP-complete	NP-complete	NP-complete	NP-complete

3

<ロ> (日) (日) (日) (日) (日)

Fill the gaps on the table.

3

イロト イヨト イヨト イヨト

- Fill the gaps on the table.
- New parameters:
 - Generating Degree.
 - Exchange number.

3

- Fill the gaps on the table.
- New parameters:
 - Generating Degree.
 - Exchange number.
- New convexities.

-

3

- Fill the gaps on the table.
- New parameters:
 - Generating Degree.
 - Exchange number.
- New convexities.
- Refine results:
 - Finding tractable cases.
 - Exact (FPT?) algorithms.
 - Strengthening hardness results.

Thanks

Thank you for your attention!

¡Gracias por su atención!

3

-

・ロト ・回 ・ ・ ヨト ・