Algorithms and complexity of graph convexity problems

Vinícius F. dos Santos

Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG) Belo Horizonte, Brazil

Joint Work with:
Igor da Fonseca Ramos
Jayme L. Szwarcfiter

December 2014

Convexity

Definition: convexity
Given a finite ground set V and a family \mathcal{C} of subsets of V, \mathcal{C} is a convexity if the following conditions are satisfied:
(a) The sets \emptyset and V belong to \mathcal{C}; and
(b) \mathcal{C} is closed for intersections.

Convexity

Definition: convexity
Given a finite ground set V and a family \mathcal{C} of subsets of V, \mathcal{C} is a convexity if the following conditions are satisfied:
(a) The sets \emptyset and V belong to \mathcal{C}; and
(b) \mathcal{C} is closed for intersections.

Definition: convex set
A set is convex if it belongs to \mathcal{C}.

Graph convexity

■ For a graph $G=(V, E)$, the ground set is V.

- The family \mathcal{C} contains subsets of V.

Graph convexity

■ For a graph $G=(V, E)$, the ground set is V.

- The family \mathcal{C} contains subsets of V.

Path convexity

■ We can use a family of paths \mathcal{F}_{G} to define \mathcal{C} :
$■ S \subseteq V(G)$ is convex if, for every pair $u, v \in S$, every $w \in V(G)$ in a uv-path in \mathcal{F}_{G} is also in S.

■ Interval function: $I(S)$ is the set of vertices that belong to at least one $u v$-path of $\mathcal{F}_{G}, u, v \in S$

Convexity

Some well studied graph convexities

- Geodetic Convexity

■ Monophonic Convexity

- P_{3} Convexity
- P_{3}^{*} Convexity

Geodetic convexity

■ Family of paths \mathcal{F}_{G} consists of all the shortest paths of G.

Convex sets
$S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a $u v$-shortest path in G is also in S.

Geodetic convexity

■ Family of paths \mathcal{F}_{G} consists of all the shortest paths of G.

Convex sets

$S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a $u v$-shortest path in G is also in S.

Figure: Convex set.

Geodetic convexity

■ Family of paths \mathcal{F}_{G} consists of all the shortest paths of G.

Convex sets

$S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a $u v$-shortest path in G is also in S.

Figure: Non-convex set.

Monophonic convexity

■ Family of paths \mathcal{F}_{G} consists of the induced paths of G.
Convex sets
$S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a $u v$-induced path of G also belongs to S.

Monophonic convexity

■ Family of paths \mathcal{F}_{G} consists of the induced paths of G.
Convex sets
$S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a $u v$-induced path of G also belongs to S.

Figure: Convex set.

Monophonic convexity

■ Family of paths \mathcal{F}_{G} consists of the induced paths of G.
Convex sets
$S \subseteq V(G)$ is convex if and only if for every pair $u, v \in S$, every vertex in a $u v$-induced path of G also belongs to S.

Figure: Non-convex set.

P_{3} convexity

■ Family of paths \mathcal{F}_{G} contain the paths of order 3 of G.
Convex sets
$S \subseteq V(G)$ is convex if and only if for all $u, v \in S$, every path in a $u v$-path of order 3 is also in S.

P_{3} convexity

■ Family of paths \mathcal{F}_{G} contain the paths of order 3 of G.

Convex sets
$S \subseteq V(G)$ is convex if there is no $v \in V(G) \backslash S$ with two or more neighbors in S.

P_{3} convexity

- Family of paths \mathcal{F}_{G} contain the paths of order 3 of G.

Convex sets
$S \subseteq V(G)$ is convex if there is no $v \in V(G) \backslash S$ with two or more neighbors in S.

Figure: Convex set.

P_{3} convexity

- Family of paths \mathcal{F}_{G} contain the paths of order 3 of G.

Convex sets
$S \subseteq V(G)$ is convex if there is no $v \in V(G) \backslash S$ with two or more neighbors in S.

Figure: Non-convex set.

Convex Hull in graphs

■ Convex hull of S : smallest convex superset containing S.
■ Denoted by $H(S)$.
■ If $v \in H(S) \backslash S$, we say that v is generated by S.

Convex Hull in graphs

■ Convex hull of S : smallest convex superset containing S.

- Denoted by $H(S)$.

■ If $v \in H(S) \backslash S$, we say that v is generated by S.

Example on the P_{3} convexity:

Convex Hull in graphs

■ Convex hull of S : smallest convex superset containing S.

- Denoted by $H(S)$.

■ If $v \in H(S) \backslash S$, we say that v is generated by S.

Example on the P_{3} convexity:

Algorithm to determine the convex hull

- Greedy algorithm.
- Start with $H(S)=S$.

■ Repeat:

- Let $R=I(H(S))$;
- $H(S) \leftarrow H(S) \cup R$.

Algorithm to determine the convex hull

- Greedy algorithm.
- Start with $H(S)=S$.
- Repeat:
- Let $R=I(H(S))$;
- $H(S) \leftarrow H(S) \cup R$.

Example on the P_{3} convexity:

Algorithm to determine the convex hull

- Greedy algorithm.
- Start with $H(S)=S$.

■ Repeat:

- Let $R=I(H(S))$;
- $H(S) \leftarrow H(S) \cup R$.

Example on the P_{3} convexity:

Algorithm to determine the convex hull

- Greedy algorithm.
- Start with $H(S)=S$.

■ Repeat:

- Let $R=I(H(S))$;
- $H(S) \leftarrow H(S) \cup R$.

Example on the P_{3} convexity:

Algorithm to determine the convex hull

- Greedy algorithm.
- Start with $H(S)=S$.

■ Repeat:

- Let $R=I(H(S))$;
- $H(S) \leftarrow H(S) \cup R$.

Example on the P_{3} convexity:

Algorithm to determine the convex hull

- Greedy algorithm.
- Start with $H(S)=S$.

■ Repeat:

- Let $R=I(H(S))$;
- $H(S) \leftarrow H(S) \cup R$.

Example on the P_{3} convexity:

Hull set

Definition: hull set
 If $H(S)=V(G), S$ is a hull set of G.

Hull set

Definition: hull set

If $H(S)=V(G), S$ is a hull set of G.

Figure: A hull set.

Parameters of a graph convexity

Definition: hull number

The hull number of a graph is the cardinality of its smallest hull set.

Parameters of a graph convexity

Definition: hull number

The hull number of a graph is the cardinality of its smallest hull set.
Definition: interval number
The minimum size of a set S such that $I(S)=V(G)$.

Parameters of a graph convexity

Definition: hull number

The hull number of a graph is the cardinality of its smallest hull set.
Definition: interval number
The minimum size of a set S such that $I(S)=V(G)$.
Definition: convexity number
The maximum size of a convex set S such that $S \neq V(G)$.

Parameters of a graph convexity

Definition: hull number

The hull number of a graph is the cardinality of its smallest hull set.
Definition: interval number
The minimum size of a set S such that $I(S)=V(G)$.
Definition: convexity number
The maximum size of a convex set S such that $S \neq V(G)$.
Definition: partition number
The maximum integer k such that $V(G)$ can be partitioned into p convex sets for any $p \in\{1, \ldots, k\}$.

Parameters of a graph convexity

Definition: hull number
The hull number of a graph is the cardinality of its smallest hull set.
Definition: interval number
The minimum size of a set S such that $I(S)=V(G)$.
Definition: convexity number
The maximum size of a convex set S such that $S \neq V(G)$.
Definition: partition number
The maximum integer k such that $V(G)$ can be partitioned into p convex sets for any $p \in\{1, \ldots, k\}$.

Definition: percolation time
The maximum number of iteractions of the greed algorithm to generate the whole graph.

Radon number

Definition: Radon partition

Given a set R, a partition $R=R_{1} \cup R_{2}$ such that $H\left(R_{1}\right) \cap H\left(R_{2}\right) \neq \emptyset$ is a Radon partition.

Radon number

Definition: Radon partition

Given a set R, a partition $R=R_{1} \cup R_{2}$ such that $H\left(R_{1}\right) \cap H\left(R_{2}\right) \neq \emptyset$ is a Radon partition.

Definition: Radon-independent set

If a set does not admit a Radon partition we say it is a Radon-independent set.

Radon number

Definition: Radon partition

Given a set R, a partition $R=R_{1} \cup R_{2}$ such that $H\left(R_{1}\right) \cap H\left(R_{2}\right) \neq \emptyset$ is a Radon partition.

Definition: Radon-independent set

If a set does not admit a Radon partition we say it is a Radon-independent set.

Definition: Radon number
The Radon number $r(G)$ is given by $\max \{|R|, R$ is a Radon-independent set $\}+1$.

Carathéodory number

Definition: Carathéodory-independent set

A set S such that

$$
H(S) \backslash \bigcup_{v \in S} H(S \backslash\{v\}) \neq \emptyset
$$

Carathéodory number

Definition: Carathéodory-independent set

A set S such that

$$
H(S) \backslash \bigcup_{v \in S} H(S \backslash\{v\}) \neq \emptyset
$$

Definition: Carathéodory number

Largest cardinality of a Carathéodory-independent set.

Smallest integer k such that for every $U \subseteq V$ and every $u \in H(U)$, there is a set $F \subseteq U$ with $|F| \leq k$ and $u \in H(F)$.

Helly number

Definition: Helly-independent set

A set S such that

$$
\bigcap_{v \in S} H(S \backslash\{v\})=\emptyset .
$$

Helly number

Definition: Helly-independent set
A set S such that

$$
\bigcap_{v \in S} H(S \backslash\{v\})=\emptyset
$$

Definition: Helly number
The cardinality of a maximum Helly-independent set.

Convexly independent sets

Definition: convexly independent set
$S \subseteq V(G)$ is a convexly independent set if, for all $v \in S, v \notin H(S-v)$. Equivalently, no vertex of S is generated by the others.

If a vertex of $S \subseteq V(G)$ is generated by the others, S is convexly dependent.

Convexly independent sets

Definition: convexly independent set
$S \subseteq V(G)$ is a convexly independent set if, for all $v \in S, v \notin H(S-v)$. Equivalently, no vertex of S is generated by the others.
If a vertex of $S \subseteq V(G)$ is generated by the others, S is convexly dependent.

Figure: Convexly dependent set.

Convexly independent sets

Definition: convexly independent set
$S \subseteq V(G)$ is a convexly independent set if, for all $v \in S, v \notin H(S-v)$. Equivalently, no vertex of S is generated by the others.
If a vertex of $S \subseteq V(G)$ is generated by the others, S is convexly dependent.

Figure: $v_{4} \in H\left(\left\{v_{1}, v_{13}\right\}\right)$.

Convexly independent sets

Definition: convexly independent set
$S \subseteq V(G)$ is a convexly independent set if, for all $v \in S, v \notin H(S-v)$. Equivalently, no vertex of S is generated by the others.
If a vertex of $S \subseteq V(G)$ is generated by the others, S is convexly dependent.

Figure: Convexly independent set.

Convexly independent sets

Definition: convexly independent set
$S \subseteq V(G)$ is a convexly independent set if, for all $v \in S, v \notin H(S-v)$. Equivalently, no vertex of S is generated by the others.
If a vertex of $S \subseteq V(G)$ is generated by the others, S is convexly dependent.

Figure: $v_{1} \notin H\left(\left\{v_{7}, v_{12}, v_{13}\right\}\right)$.

Convexly independent sets

Definition: convexly independent set
$S \subseteq V(G)$ is a convexly independent set if, for all $v \in S, v \notin H(S-v)$. Equivalently, no vertex of S is generated by the others.
If a vertex of $S \subseteq V(G)$ is generated by the others, S is convexly dependent.

Figure: $v_{13} \notin H\left(\left\{v_{1}, v_{7}, v_{12}\right\}\right)$.

Convexly independent sets

Definition: convexly independent set
$S \subseteq V(G)$ is a convexly independent set if, for all $v \in S, v \notin H(S-v)$. Equivalently, no vertex of S is generated by the others.
If a vertex of $S \subseteq V(G)$ is generated by the others, S is convexly dependent.

Figure: $v_{12} \notin H\left(\left\{v_{1}, v_{7}, v_{13}\right\}\right)$.

Convexly independent sets

Definition: convexly independent set
$S \subseteq V(G)$ is a convexly independent set if, for all $v \in S, v \notin H(S-v)$. Equivalently, no vertex of S is generated by the others.
If a vertex of $S \subseteq V(G)$ is generated by the others, S is convexly dependent.

Figure: $v_{7} \notin H\left(\left\{v_{1}, v_{12}, v_{13}\right\}\right)$.

The rank of a graph

Definition: rank
The rank of a graph, denoted by $r k(G)$, is the cardinality of a maximum convexly independent set of G.

The rank of a graph

Definition: rank
The rank of a graph, denoted by $r k(G)$, is the cardinality of a maximum convexly independent set of G.

Convexly Independent Set
Input: A graph G and an integer k.
Question: $r k(G) \geq k$?

State of the art

Parameter	Geodetic	Monophonic	P_{3}	P_{3}^{*}
Interval of a set	Polynomial	NP-complete	Polynomial	Polynomial
Hull	NP-complete	Polynomial	NP-complete	NP-complete
Convexity	NP-complete	NP-complete	NP-complete	NP-complete
Radon	NP-complete	NP-complete	NP-hard	NP-hard
Carathéodory	NP-complete	Polynomial	NP-complete	NP-complete
Helly	coNP-complete	Polynomial	Open	Open
Rank	NP-complete	NP-complete	NP-complete	NP-complete
Partition	NP-complete	Open	NP-complete	Open
Percolation time	NP-complete	NP-complete	NP-complete	NP-complete

Connections with other graph parameters

- k-tuple domination.

Connections with other graph parameters

- k-tuple domination.

■ Conversion/percolation problems.

Connections with other graph parameters

- k-tuple domination.

■ Conversion/percolation problems.
■ Feedback vertex set.

Connections with other graph parameters

- k-tuple domination.

■ Conversion/percolation problems.
■ Feedback vertex set.
■ Open packing number.

The open packing number

Definition: open packing

An open packing of a graph G is a set S such that, for every pair $u, v \in S$, $N(u) \cap N(v)=\emptyset$.

The open packing number

Definition: open packing

An open packing of a graph G is a set S such that, for every pair $u, v \in S$, $N(u) \cap N(v)=\emptyset$.

Definition: open packing number
The open packing number of a graph, denoted by $\rho_{o}(G)$, is the cardinality of a maximum open packing of G.

The open packing number

Definition: open packing

An open packing of a graph G is a set S such that, for every pair $u, v \in S$, $N(u) \cap N(v)=\emptyset$.

Definition: open packing number
The open packing number of a graph, denoted by $\rho_{o}(G)$, is the cardinality of a maximum open packing of G.

Open Packing Number
Input: A graph G and an integer k.
Question: $\rho_{o}(G) \geq k$?

$\rho_{o}(G)$ and $r k(G)$

■ If S is an open packing, $H(S)=S$. Hence, every open packing is convexly independent.
■ Not every convexly independent set is an open packing.

$\rho_{o}(G)$ and $r k(G)$

■ If S is an open packing, $H(S)=S$. Hence, every open packing is convexly independent.

■ Not every convexly independent set is an open packing.

$\rho_{o}(G)$ and $r k(G)$

■ If S is an open packing, $H(S)=S$. Hence, every open packing is convexly independent.

■ Not every convexly independent set is an open packing.

$\rho_{o}(G)$ and $r k(G)$

■ If S is an open packing, $H(S)=S$. Hence, every open packing is convexly independent.

■ Not every convexly independent set is an open packing.

Split graphs on the P_{3} convexity

Theorem
The Convexly Independent Set problem is NP-complete on the P_{3} convexity, even for split graphs with $\delta(G) \geq 2$.

Proof sketch

Reduction from Set Packing.
Set Packing
InPut: A family \mathcal{S} of non-empty subsets $S_{i} \in \mathcal{S}$ of a ground set and an integer k.
Question: \mathcal{S} has at least k pairwise disjoint sets?

Proof sketch

$$
S_{1}=\{1,6\}, S_{2}=\{1,2\}, S_{3}=\{2,3\}, S_{4}=\{3,4\}, S_{5}=\{4,5\}, S_{6}=\{5,6\} .
$$

Proof sketch

$$
S_{1}=\{1,6\}, S_{2}=\{1,2\}, S_{3}=\{2,3\}, S_{4}=\{3,4\}, S_{5}=\{4,5\}, S_{6}=\{5,6\} .
$$

Proof sketch

$$
S_{1}=\{1,6\}, S_{2}=\{1,2\}, S_{3}=\{2,3\}, S_{4}=\{3,4\}, S_{5}=\{4,5\}, S_{6}=\{5,6\} .
$$

Proof sketch

$$
S_{1}=\{1,6\}, S_{2}=\{1,2\}, S_{3}=\{2,3\}, S_{4}=\{3,4\}, S_{5}=\{4,5\}, S_{6}=\{5,6\} .
$$

Proof sketch

$$
S_{1}=\{1,6\}, S_{2}=\{1,2\}, S_{3}=\{2,3\}, S_{4}=\{3,4\}, S_{5}=\{4,5\}, S_{6}=\{5,6\} .
$$

Proof sketch

$$
S_{1}=\{1,6\}, S_{2}=\{1,2\}, S_{3}=\{2,3\}, S_{4}=\{3,4\}, S_{5}=\{4,5\}, S_{6}=\{5,6\} .
$$

Open packing number

Corollary
The Open Packing Number is NP-complete for split graphs with $\delta(G) \geq 2$.

Open packing number

Corollary
The Open Packing Number is NP-complete for split graphs with $\delta(G) \geq 2$.

It was known that the problem was NP-hard for chordal graphs [Henning and Slater, 1999].

Bipartite graphs on the P_{3} convexity

Theorem

The Convexly Independent Set problem is NP-complete on the P_{3} convexity, even for bipartite graphs with diameter at most 3.

Bipartite graphs on the P_{3} convexity

Theorem

The Convexly Independent Set problem is $N P$-complete on the P_{3} convexity, even for bipartite graphs with diameter at most 3.

Reduction from Convexly Independent Set for split graphs with $\delta(G) \geq 2$.

Threshold graphs on the P_{3} convexity

Theorem
The Convexly Independent Set problem can be solved in linear time for threshold graphs on the P_{3} convexity.

Threshold graphs on the P_{3} convexity

Theorem
The Convexly Independent Set problem can be solved in linear time for threshold graphs on the P_{3} convexity.

Theorem
If G is a connected threshold graph with $|V(G)| \geq 3$ and $D \subseteq V(G)$ is a set with all vertices of minimum degree G, then:

Threshold graphs on the P_{3} convexity

Theorem

The Convexly Independent Set problem can be solved in linear time for threshold graphs on the P_{3} convexity.

Theorem
If G is a connected threshold graph with $|V(G)| \geq 3$ and $D \subseteq V(G)$ is a set with all vertices of minimum degree G, then:
(i) if G is a star, then $\operatorname{rk}(G)=|V(G)|-1$;
(ii) otherwise, if $d(v)=1$ for all $v \in D$, then $r k(G)=|D|+1$;
(iii) otherwise, $r k(G)=2$.

Trees on the P_{3} convexity

Theorem
The Convexly Independent Set problem can be solved in time $O(n \log \Delta(T))$ for trees on the P_{3} convexity.

Trees on the P_{3} convexity

Theorem
The Convexly Independent Set problem can be solved in time $O(n \log \Delta(T))$ for trees on the P_{3} convexity.

Dynamic Programming.

Algorithm idea

Given a tree T.

■ Select a root $r \in V(T)$.

Algorithm idea

Given a tree T.

- Select a root $r \in V(T)$.
- Consider that $u \in V(T)$ sends charge to $v \in V(T)$ if u and v are adjacent, $u \in H(S)$ and u does not depend on v to be in $H(S)$.

Algorithm idea

Given a tree T.

- Select a root $r \in V(T)$.

■ Consider that $u \in V(T)$ sends charge to $v \in V(T)$ if u and v are adjacent, $u \in H(S)$ and u does not depend on v to be in $H(S)$.

- $P_{v}(i, j, k)$ is the contribuition of v : maximum number of vertices of the subtree rooted on v that can be on the maximum convexly independent set under the condition given by i, j e k :

■ $i=1$: the parent of v sends charge to v.
■ $j=1: v$ is in the convexly independent set being considered.

- k : number of children sending charge to v.

Algorithm idea

Given a tree T.

- Select a root $r \in V(T)$.

■ Consider that $u \in V(T)$ sends charge to $v \in V(T)$ if u and v are adjacent, $u \in H(S)$ and u does not depend on v to be in $H(S)$.

- $P_{v}(i, j, k)$ is the contribuition of v : maximum number of vertices of the subtree rooted on v that can be on the maximum convexly independent set under the condition given by i, j e k :
$\square i=1$: the parent of v sends charge to v.
- $j=1: v$ is in the convexly independent set being considered.
- k : number of children sending charge to v.
- Define:
- $f(v, i)=\max \left\{P_{v}(i, 0,0), P_{v}(i, 0,1)\right\}$.
- $h(v, i)=\max \left\{\max _{2 \leq k<d(v)}\{P(i, 0, k)\}, \max _{0 \leq k \leq d(v)} P_{v}(i, 1, k)\right\}$.
- $g\left(v, i_{1}, i_{2}\right)=h\left(v, i_{1}\right)-f\left(v, i_{2}\right)$.

Recurrence relation I

$P_{v}(0,0,0)=\sum_{u \in N^{\prime}(v)} f(u, 0) ;$
$P_{v}(0,0,1)=\left\{\begin{array}{cl}-\infty, & \text { if } v \text { have no children, } \\ \sum_{u \in N^{\prime}(v)} f(u, 0)+\max _{u \in N^{\prime}(v)} g(u, 0,0), & \text { otherwise; }\end{array}\right.$
$P_{v}(0,0,2)=\left\{\begin{array}{cl}-\infty, & \text { if } v \text { has at } \\ \sum_{u \in N^{\prime}(v)} f(u, 1)+\max _{\substack{\forall X \subseteq N^{\prime}(v) \\|\bar{X}|=2}} \sum_{u \in X} g(u, 0,1), & \text { otherwise; }\end{array}\right.$
$P_{v}(0,0, k)=\left\{\begin{array}{cl}-\infty, & \text { if } v \text { less th } \\ \sum_{u \geq 3} f(u, 1)+\max _{\substack{\forall X \subseteq N^{\prime}(v) \\|\bar{X}|=k}} \sum_{u \in X} g(u, 1,1), & \text { otherwise; }\end{array}\right.$

Recurrence relation II

$$
\begin{align*}
& P_{v}(0,1,0)=\sum_{u \in N^{\prime}(v)} f(u, 1)+1 ; \tag{5}\\
& P_{v}(0,1,1)= \begin{cases}-\infty, & \text { if } v \text { have no children, } \\
\sum_{u \in N^{\prime}(v)} f(u, 1)+\max _{u \in N^{\prime}(v)} g(u, 1,1)+1, & \text { otherwise; }\end{cases} \\
& \begin{array}{c}
P_{v}(0,1, k)=-\infty ; \\
k \geq 2 \\
P_{v}(1,0,0)= \begin{cases}-\infty, & \text { if } v=r, \\
\sum_{u \in N^{\prime}(v)} f(u, 0), & \text { otherwise; }\end{cases}
\end{array} .
\end{align*}
$$

Recurrence relation III

$$
P_{v}(1,0,1)=\left\{\begin{array}{cl}
-\infty, & \text { if } v \text { have no children ou } v=r \\
\sum_{u \in N^{\prime}(v)} f(u, 1)+\max _{u \in N^{\prime}(v)} g(u, 0,1), & \text { otherwise; } \tag{9}
\end{array}\right.
$$

$$
\text { if } v \text { has less than } k \text { children or } v=r \text {, }
$$

otherwise;

$$
\begin{equation*}
P_{v}(\underset{k \geq 1}{1,1, k)}=-\infty \tag{12}
\end{equation*}
$$

Graphs without separating cliques on the monophonic convexity

Theorem
The Convexly Independent Set problem is NP-complete on the monophonic convexity, even for graphs without separating clique.

Graphs without separating cliques on the monophonic convexity

Theorem [Dourado, Protti, Szwarcfiter, 2010]
If G is a graph with no separating clique, but is not a complete graph, then every pair of non-adjacent vertices is a hull set of G on the monophonic convexity.

Graphs without separating cliques on the monophonic convexity

Theorem [Dourado, Protti, Szwarcfiter, 2010]
If G is a graph with no separating clique, but is not a complete graph, then every pair of non-adjacent vertices is a hull set of G on the monophonic convexity.

Lemma
The Clique problem is NP-complete, even for graphs without separating clique.

Open problems

Parameter	Geodetic	Monophonic	P_{3}	P_{3}^{*}
Interval of a set	Polynomial	NP-complete	Polynomial	Polynomial
Hull	NP-complete	Polynomial	NP-complete	NP-complete
Convexity	NP-complete	NP-complete	NP-complete	NP-complete
Radon	NP-complete	NP-complete	NP-hard	NP-hard
Carathéodory	NP-complete	Polynomial	NP-complete	NP-complete
Helly	coNP-complete	Polynomial	Open	Open
Rank	NP-complete	NP-complete	NP-complete	NP-complete
Partition	NP-complete	Open	NP-complete	Open
Percolation time	NP-complete	NP-complete	NP-complete	NP-complete

Open problems

- Fill the gaps on the table.

Open problems

- Fill the gaps on the table.
- New parameters:
- Generating Degree.
- Exchange number.

Open problems

- Fill the gaps on the table.
- New parameters:
- Generating Degree.
- Exchange number.

■ New convexities.

Open problems

- Fill the gaps on the table.
- New parameters:
- Generating Degree.
- Exchange number.

■ New convexities.
■ Refine results:
■ Finding tractable cases.

- Exact (FPT?) algorithms.
- Strengthening hardness results.

Thanks

Thank you for your attention!
¡Gracias por su atención!

