## HOMOMORPHISMS STRUCTURAL RAMSEY THEORY LIMITS

JAROSLAV NESETRIL

CHARLES UNIVERSITY

PRAGUE

FOCM MONTEVIDED DEC 13, 2014

# HOMOMORPHISMS STRUCTURAL RAMSEY THEORY LIMITS

JAROSLAV NESETRIL

CHARLES UNIVERSITY

PRAGUE



FOCM MONTEVIDED DEC 13, 2014

#### MODERN DICHOTOMIES

SPARSE VS DENSE

STRUCTURE VS RANDOMNES

#### MODEST GOAL

THREE RESULTS

ONE CHIECTURE (5)

TWO

ALL MATHEMATICAL CONTEXT

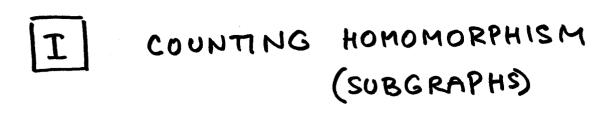
OF COMBINATORICS

I COUNTING HONOMORPHISM (SUBGRAPHS)

DEF. A HOMOMORPHISM IS A MAP WHICH PRESERVES ALL INFORMATION (DEFINING STRUCTURE) I COUNTING HOMOMORPHISM (SUBGRAPHS)

DEF. A HOMOMORPHISM IS A MAP WHICH PRESERVES ALL INFORMATION (DEFINING STRUCTURE)

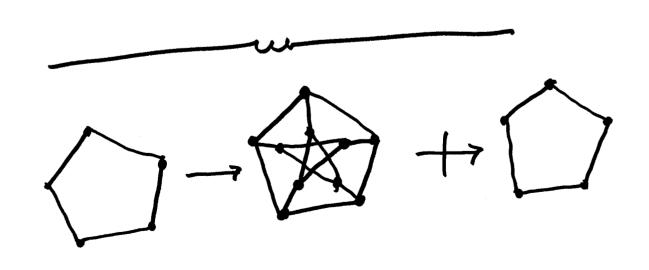
FOR GRAPHS:  $f: V \longrightarrow V'$  is Homomorphism of  $G=(v_i E) \longrightarrow G'=(v_i E')$  of  $G=(v_i E) \longrightarrow f(E)f(V) \in E'$ .



DEF. A HOMOMORPHISM IS A MAP WHICH PRESERVES ALL INFORMATION (DEFINING STRUCTURE)

FOR GRAPHS:  $f: V \longrightarrow V'$  is Homomorphism of  $G=(v_i E) \longrightarrow G'=(v_i' E')$  of  $G=(v_i E) \longrightarrow f(E)f(V_i') E'$ .

IF  $xy \in E \longrightarrow f(E)f(V_i') E'$ .



$$hom(F_1G) = \left| \{f; f: F \rightarrow G \} \right|$$

$$hom(F_1G) = \left| \{f; f: F \rightarrow G \} \right|$$

$$hom(F_1G) = \left| \{f; f: F \rightarrow G \} \right|$$

~ PARTITION FUNCTION

$$hom(F_1G) = \left| \{f; f: F \rightarrow G \} \right|$$

- ~ PARTITION FUNCTION
- CONSTRAINT SATISFACTION

$$hom(F_1G) = \left| \{f; f: F \rightarrow G \} \right|$$

- ~ PARTITION FUNCTION
- ~ CONSTRAINT SATISFACTION
- IMPORTANT INVARIANT

$$hom(F_1G) = \left| \{f; f: F \rightarrow G \} \right|$$

\_\_ IMPORTANT INVARIANT

\_\_\_\_

WHAT CAN WE SAY ABOUT

THM (N., P. OSSONA DE MENDEZ)

FOR ANY CLASS & OF GRAPHS

SUP Log hom (F,G) 

SUP Log IGI

FOR ANY F.

| THM (N. | P. OSSONA | DE | MENDEZ) |
|---------|-----------|----|---------|
|---------|-----------|----|---------|

FOR ANY CLASS & OF GRAPHS

$$\frac{\log \log hom(F,G)}{\log |G|} \longrightarrow \{-\infty,0,1,...|F|\}$$

FOR ANY F.

COUNTER EXAMPLE :

SUP NOT INTEGER (3/2)

| THM | (N., P. OSSONA | DE | MENDEZ) |
|-----|----------------|----|---------|
|     | Ø              |    | 2       |

FOR ANY CLASS & OF GRAPHS

$$\frac{\log \frac{\log hom(F,G)}{\log |G|}}{\log |G|}$$

FOR ANY F.

COUNTER EXAMPLE :

SUP NOT INTEGER (3/2)

CENTRAL QUESTION OF EXTREMAL
THEORY

HIERARCHY OF CLASSES

e = e vo = e v1 = ....

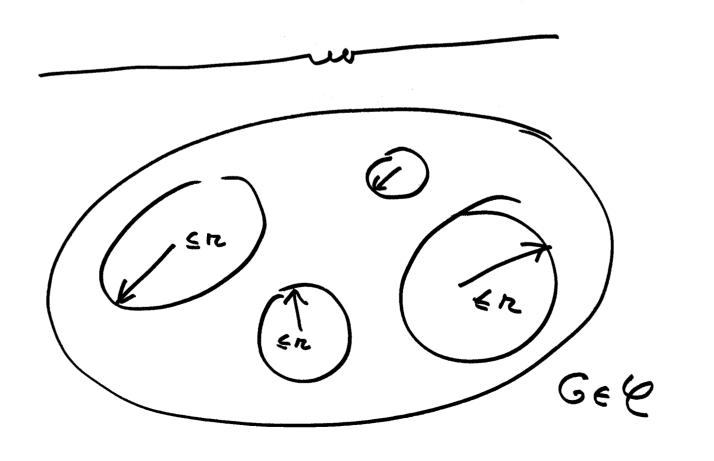
PVi = ALL GRAPHS WHICH

CAN BE OBTAINED

FROM GRAPHS IN P

BY CONTRACTING SUBGRAPHS

WITH PADIUS & v.



THM I

FOR ANY CLASS & AND ANY F:

 $\lim_{i\to\infty} \sup_{G\in \mathbb{R}^i} \frac{\log hom(F_iG)}{\log |G|} \in \{-\infty, 0, 1, \dots, |F|\}$ 

8

lim sup <|F| = PrifGRAPHS

FOR ALL 2

. . .

| 1 | THM | I |
|---|-----|---|
|---|-----|---|

FOR ANY CLASS & AND ANY F:

 $\lim_{i\to\infty} \sup \frac{\log hom(F_1G)}{\log |G|} \in \{-\infty,0,1,...,|F|\}$   $i\to\infty GetPi \log |G|$ 

lim sup <|F| = QvifGRAPHS

FOR ALL 2

CLASSES ) (NOWHERE DENSE

VS

CLASSES SOMEWHERE DENSE

(DYORA'K, NORINE, KREUTZER, GROHE, KRA'L, THOMAS, ...

Jaroslav Nešetřil Patrice Ossona de Mendez

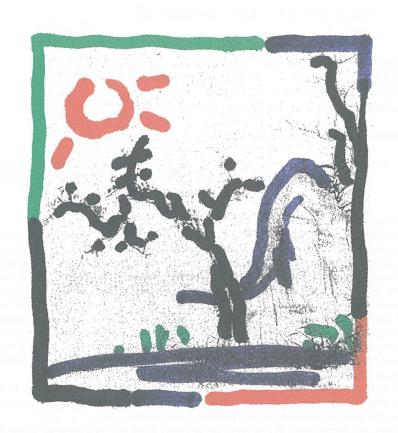
# Sparsity

Graphs, Structures, and Algorithms



#### **Sparsity**

Graphs, Structures, and Algorithms





#### COROLLARY

P NOWHERE DENSE

m limnut log (#FGG)

So GERTI Log |G|

{.∞,0,1,..., α(F)}

FOR EVERY F.

WITH AT LEAST one edge SO THAT dE) CIFI.

#### PROOF

IT SUFFICES TO PROVE



PROOF COMBINES ALL CHARACTERIZATION

TREE DEPTH to

- LOW TREE DEPTH DECOMPOSITIONS

- STEPPING UP LEMMA
FOR "(KIF) - SUNFLOWERS"

- COUNTING OF COLORED TREES

#### PROOF I

FIRST CASE: F = K2

THM (TRICHOTOMY THM)

FOR EVERY INFINITE CLASS C

THE LIMIT

lim limont log 161

{-0.10,1,23

<1 IFF @ IS NOWHERE DENSE

2 IFF @ IS SOMEWHERE
DENSE

## THARACTERISATION OF RAMSEY CLASSES

### FINITE RAMSEY THEOREM

$$\forall p_1 k, n \exists N = N(p_1 k_1 n) : N \rightarrow (n)_k^p$$

IF  $|X| = N$ ,  $(X) = \{A \subseteq X; |A| = p\}$ 
 $(X) = (ARBITRARY)$ 
 $(X) = (ARBITRARY)$ 
 $(X) = (ARBITRARY)$ 

THEN

$$\exists Y, Y \subseteq X, |Y| = n$$

$$(Y) \subseteq Q_{i_0}$$

| DEF                                                            | RAMSEY        | CLASS 2  | K<br>RUCTURES)                  |
|----------------------------------------------------------------|---------------|----------|---------------------------------|
| $A_1B_1C_1$ $\begin{pmatrix} B \\ A \end{pmatrix}$ $ALL$ $150$ | E K<br>SUBSTI | RUCTURES |                                 |
|                                                                | w<br>AMSEY    | CLASS    | (N., RODL                       |
| YA YB YK                                                       | 3 C:          | C        | $(B)_{\mathbf{k}}^{\mathbf{A}}$ |
| 110 90                                                         |               |          |                                 |

(ERDÖS-RADO) PARTITION A RROW:

FOR EVERY  $\binom{C}{A} = \alpha_1 \cup \ldots \cup \alpha_k$   $\exists B' \in \binom{C}{B}$ SUCH THAT  $\binom{B'}{A} \subseteq \alpha_{i_0}$ 

RAMSEY CLASSES = TOP OF THE LINE OF "RAMSEY "PROPERTIES"

EXAMPLES

ALL COMPLETE GRAPHS (FRT)

ALL FINITE LINEAR ORDERS (FRT)

ALL FINITE VECTOR SPACES

ALL COMBINATORIAL CUBES

NOT GRAPHS, ....

#### NECESSARY CONDITIONS FOR RAMSEY CLASSES

(1) RIGIDITY

(ORDERING, ORDERING LEMMA)

N. RODL

ANGEL, KECHRIS, LYONS

#### NECESSARY CONDITIONS FOR RAMSEY CLASSES

(1) RIGIDITY

(ORDERING, ORDERING LEMMA)

N. RODL

ANGEL, KECHRIS, LYONS

2 GLOBAL SYMMETRY

(AGE OF ULTRAHOMOGENEOUS)

STRUCTURE

N.
KECHRIS, PESTOV, TODORCEVIC

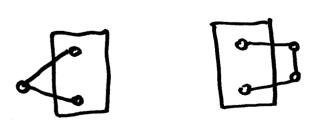
CHARACTERIZATION PROGRAM

HOMOMORPHISM DEFINE CLASSES

$$S = \{F_{1}, F_{2}, \dots, F_{t}\}$$
  
 $FORB(S) = \{G; F_{i} + G\}$   
 $Forb(S) = \{G; F_{i+1} - G\}$ 

FORB (()) = ALL GRAPHS NOT CONTAINING () OR ()





RED BLUE

#### BUT

LIFT OF FORB(())
(EXPANSION)

IS RAMSEY

BUT

(EXPANSION)

IS RAMSEY

THM II (N. 13)

FOR EVERY FINITE SET OF
CONNECTED GRAPHS F
THE CLASS FORB (F) HAS
A FINITE LIFT WHICH FORM RAMSEY
CLASS.

POSETS HINITE UNIVERSAL
FORM METRIC OBJECTS
FOR FORB(\$F)
CLASS
(N. RODL)

(N.)

ij.

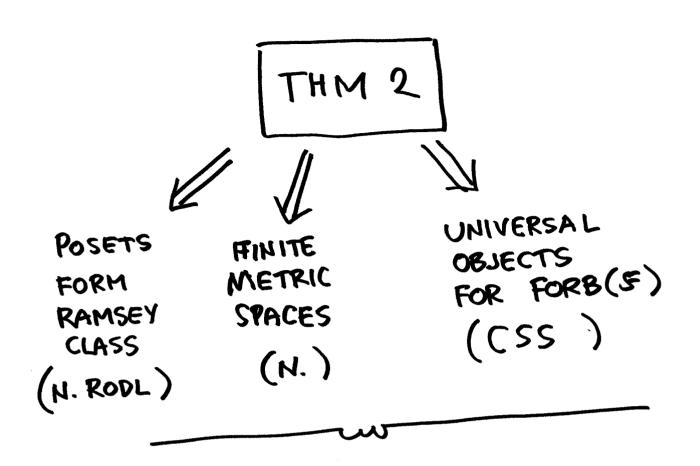
POSETS FINITE UNIVERSAL
FORM METRIC OBJECTS
FOR FORB(F)
CLASS
(N.)

(N.)

PROBLEM

EVERY ULTRAHOMOGENEOUS STRUCTURE HAS

A FINITARY LIFT WHICH FORM
RAMSEY CLASS.



PROBLEM EVERY ULTRAHOMOGENEOUS
STRUCTURE HAS

A FINITARY LIFT WHICH FORM
RAMSEY CLASS.

BOWTIE - FREE GRAPHS (KOMJATH)
H'AVE RAMSEY LIFT
(HUBIČKA, N.)

#### COROLLARY

EVERY HOMOMORPHISM CLOSED FIRST ORDER DEFINABLE CLASS FIRST ORDER DEFINABLE CLASS OF STRUCTURES HAS A RAMSEY LIFT.

( PF: THEOREM II

+
ROSSMAN

III LIMITS BY SATISFACTION

$$\exists f: F \longrightarrow G$$

$$G \models \varphi_f$$

$$(\varphi_f = \bigwedge_{ij \in E(F)} x_i x_i )$$

φ FIRST ORDER FORMULA

y(x,-,xt) WITH & FREE VARIABLES

$$\varphi(G) = \{(v_a, ..., v_e); G \models \varphi(w_a, ..., w_e)\}$$

$$\langle \varphi_1 G \rangle = \frac{|\varphi(G)|}{|G|^t}$$

φ FIRST ORDER FORMULA

y(x,-,xt) with t FREE VARIABLES

 $\varphi(G) = \{(v_1, ..., v_e); G \models \varphi(v_1, ..., v_e)\}$ 

$$\langle \varphi_1 G \rangle = \frac{|\varphi(G)|}{|G|^t}$$

"STONE BRACKET"

PROBABILITY THAT & VERTICES

CAN BE EXTENDED TO SATISFACTION

OF P

$$\varphi(x_4,x_2) = \exists x (xx_4 \in E xx_2 \in E)$$

M

BETWEEN X, AND X2 THERE IS A PATH OF LENGTH 2.

 $\langle 9|G \rangle$  = PROB. THAT 2 VERTICES OF G ARE JOINED BY A PATH OF LENGTH 2. G, G2,..., Gn,... IS FO-CONVERGENT

IFF

FOR EVERY O THE NUMBERS

Ly,Gi7

CONVERGE .

M. BOSSONA

| $G_n,G_2,,G_n,$ | IS FO -     |
|-----------------|-------------|
| (FF             |             |
| FOR EVERY 9     | THE NUMBERS |
| (y,Gi)          |             |
| CONVERGE.       | N. P.OSSONA |
| W               |             |

X - CONVERGENCE

FOR EVERY  $\phi \in X$  . - - -

Fo(&)

BOOLEAN ALGEBRA

UI

X

BOOLEAN SUBALGEBRA

S(X)

STONE SPACE OF X

(ULTRAFILTERS OR )
HOMOMORPHISMS f: X-> 30,13

+ τοροιος y βy Κχ (φ)= ξυ | φευβ = ξ f | f(φ)=1β

STONE DUALITY

THM X BUBALCEBRA OF FO(X). FOR EVERY X-CONVERGENT SEQUENCE (Gn) nEN THERE EXISTS UNIQUE PROBABILITY MEASURE (L. om S(X) SUCH THAT FOR EVERY FORMULA φ(xn)...,xp) EX HOLDS:  $\int \Lambda_{K(\varphi)}(x) d\mu(x) =$ 

=  $\lim_{n\to\infty} \langle \varphi_1 G_n \rangle$ 

## EXTREME CASE

G MODELLING IS STANDARD
BOREL SPACE

SUCH THAT EVERY FIRST ORDER DEFINABLE SET IS MEASURABLE

## EXTREME CASE

G MODELLING IS STANDARD BOREL SPACE

SUCH THAT EVERY FIRST ORDER DEFINABLE SET IS MEASURABLE

THM 3

EVERY CONVERGENT SEQUENCE (Gn)
CONVERGES TO MODELLING

1

Q IS NOWHERE DENSE

CONVERSE TRUE FOR

- GRAPHS WITH BOUNDE TREE DEPTH
- GRAPHS WITH BOUNDED DEGREES

- TREES



2



2

THANK YOU FOR YOUR
ATTENTION