Kneser Transversals

Luis Montejano

National University of Mexico at Queretaro

luis@matem.unam.mx

GRAPHS AND COMBINATORICS WORSHOP FOCM MONTEVIDEO 2014

Introduction

Kneser Hypergraphs

Rado's Central Point Theorem

The Conjecture

Oriented Matroids

Oriented Matroids

8 points in R^3 in general position

Oriented Matroids

8 points in R^3 in general position

Is there a transversal line to the convex hull of all tethahedra ?

8 points in R^3 in general position NEVER

- 8 POINTS, NEVER
- 6 POINTS, ALWAYS
- 7 POINTS, SOMETIMES YES, SOMETIMES NOT

- 8 POINTS, NEVER
- 6 POINTS, ALWAYS
- 7 POINTS, SOMETIMES YES, SOMETIMES NOT

Basic Definitions

always

 $m(k, d, \lambda)$ = the maximum positive integer *n* such that every set of *n* points in \mathbb{R}^d has the property that the convex hull of all *k*-sets have a transversal $(d - \lambda)$ -plane

Basic Definitions

always

 $m(k, d, \lambda)$ = the maximum positive integer *n* such that every set of *n* points in \mathbb{R}^d has the property that the convex hull of all *k*-sets have a transversal $(d - \lambda)$ -plane

never

 $M(k, d, \lambda)$ = the minimum positive integer *n* such that for every set of *n* points in \mathbb{R}^d in general position, the convex hull of the *k*-sets do not have a transversal $(d - \lambda)$ -plane.

Basic Definitions

always

 $m(k, d, \lambda)$ = the maximum positive integer *n* such that every set of *n* points in \mathbb{R}^d has the property that the convex hull of all *k*-sets have a transversal $(d - \lambda)$ -plane

never

 $M(k, d, \lambda)$ = the minimum positive integer *n* such that for every set of *n* points in \mathbb{R}^d in general position, the convex hull of the *k*-sets do not have a transversal $(d - \lambda)$ -plane.

 $m(k, d, \lambda) < M(k, d, \lambda)$

The Conjectu

Oriented Matroids

 $M(k, d, \lambda)$ NEVER

$$M(k, d, \lambda) = d + 2(k - \lambda) + 1$$

- M(4,3,2) = 8
- The inequality: M(k, d, λ) ≤ d + 2(k − λ) + 1 is a Combinatorial argument
- Gale Emmbeddings give rice to the inequality $M(k, d, \lambda) \ge d + 2(k \lambda) + 1$

The Conjectu

Oriented Matroids

 $m(k, d, \lambda)$ ALWAYS

$$d - \lambda + k + \left\lceil \frac{k}{\lambda} \right\rceil - 1 \le m(k, d, \lambda).$$

- m(4,3,2) = 6
- The proof of this inequality uses Schubert calculus in the cohomology ring of Grassmannian manifolds.
- This inequality has strong connetions with the chromatic number of the Kneser hypergraphs

Kneser Graphs

- Let [n] denote the set $\{1, ..., n\}$
- $\binom{[n]}{k}$ the collection of *k*-subsets of [n]
- The well known Kneser graph has vertex
 ^[n]
 _k and two
 _k-subsets are connected by an edge if they are disjoint.

Kneser Graphs

- Let [n] denote the set $\{1, ..., n\}$
- $\binom{[n]}{k}$ the collection of *k*-subsets of [n]
- The well known Kneser graph has vertex
 ^[n]
 _k and two
 _k-subsets are connected by an edge if they are disjoint.

 $KG^{2}(5, 2)$

Kneser Hypergraph $KG^2(73)$

Chromatic Number of Kneser Hypergraphs

The Kneser Hypergraph $KG^{\lambda}(n, k)$ has vertex $\binom{[n]}{k}$ and λ *k*-subsets $\{S_1, ..., S\lambda\}$ give rise to an hyperedge if $S_1 \cap ... \cap S_{\lambda} = \emptyset$.

Chromatic Number of Kneser Hypergraphs

The Kneser Hypergraph $KG^{\lambda}(n, k)$ has vertex $\binom{[n]}{k}$ and λ *k*-subsets $\{S_1, ..., S\lambda\}$ give rise to an hyperedge if $S_1 \cap ... \cap S_{\lambda} = \emptyset$.

A coloring of the vertices of the hypergraph $KG^{\lambda}(n, k)$ is proper if no hyperedge is monochromatic.

Chromatic Number of Kneser Hypergraphs

The Kneser Hypergraph $KG^{\lambda}(n, k)$ has vertex $\binom{[n]}{k}$ and λ k-subsets $\{S_1, ..., S\lambda\}$ give rise to an hyperedge if $S_1 \cap ... \cap S_{\lambda} = \emptyset$.

A coloring of the vertices of the hypergraph $KG^{\lambda}(n, k)$ is proper if no hyperedge is monochromatic.

The chromatic number $\chi(KG^{\lambda+1}(n, k))$ of the Kneser hypergraph is the smallest number *m* such that a proper coloring of $KG^{\lambda}(n, k)$ with *m* colors exist.

Connection between $m(k, d, \lambda)$ and the Chromatic Number of Kneser Hypergraphs

The connections between the chromatic number and $m(k, d, \lambda)$ are of the following sort:

PROPER COLORATIONS

↓ KNESER TRANSVERSAL

Connection between $m(k, d, \lambda)$ and the Chromatic Number of Kneser Hypergraphs

The connections between the chromatic number and $m(k, d, \lambda)$ are of the following sort:

PROPER COLORATIONS

KNESER TRANSVERSAL

If the triangles of a set X of 8 points in R⁴ can be colored with 3 colors in such a way that the triangles of the same color has the 2-Helly property (3 by 3 have a common point), then there is a plane transversal to all triangles of X.

 \downarrow Lower bound for $\chi(KG^{\lambda+1}(n,k))$

Lower bound for $\chi(KG^{\lambda+1}(n,k))$

 \downarrow

If $m(k, d, \lambda) < n$, then $d - \lambda + 1 < \chi(KG^{\lambda+1}(n, k))$.

Lower bound for $\chi(KG^{\lambda+1}(n,k))$

 \downarrow

If $m(k, d, \lambda) < n$, then $d - \lambda + 1 < \chi(KG^{\lambda+1}(n, k))$.

As consequence, of the lower bound

$$m(k, d, \lambda) < d - 2(k - \lambda) + 1 = M(k, d, \lambda)$$

we obtain:

Lower bound for $\chi(KG^{\lambda+1}(n,k))$

If $m(k, d, \lambda) < n$, then $d - \lambda + 1 < \chi(KG^{\lambda+1}(n, k))$.

As consequence, of the lower bound

$$m(k, d, \lambda) < d - 2(k - \lambda) + 1 = M(k, d, \lambda)$$

we obtain:

$$n-2k+\lambda < \chi(KG^{\lambda+1}(n,k))$$

As a Corollary we obtain a proof of the Kneser Conjecture first proved by L. Lovasz.

Lovasz

$$\chi(KG^2(n,k)) = n - 2k + 2$$

Rado's Central Point Theorem

Another interesting connection concerns the

Rado's Theorem

Let X be a finite set of n points in \mathbb{R}^d . Then there exist a point $x \in \mathbb{R}^d$ such that any closed half-space H through x contains at least $\left\lceil \frac{n}{d+1} \right\rceil$ points of X.

The inequality $d - \lambda + k + \lfloor \frac{k}{\lambda} \rfloor - 1 \le m(k, d, \lambda)$ is equivalent to the following theorem which generalizes Rados Theorem.

Rado's Central Point Theorem

Another interesting connection concerns the

Rado's Theorem

Let X be a finite set of n points in \mathbb{R}^d . Then there exist a point $x \in \mathbb{R}^d$ such that any closed half-space H through x contains at least $\left\lceil \frac{n}{d+1} \right\rceil$ points of X.

The inequality $d - \lambda + k + \lfloor \frac{k}{\lambda} \rfloor - 1 \le m(k, d, \lambda)$ is equivalent to the following theorem which generalizes Rados Theorem.

Theorem

Let X be a finite set of n points in \mathbb{R}^d . Then there exist a $(d - \lambda)$ -plane L such that any closed half-space H through L contains at least $\left\lfloor \frac{n-d+2\lambda}{\lambda+1} \right\rfloor + (d-\lambda)$ points of X.

Conjecture

$$d - \lambda + k + \left\lceil \frac{k}{\lambda} \right\rceil - 1 = m(k, d, \lambda)$$

Conjecture

$$d - \lambda + k + \left\lceil \frac{k}{\lambda} \right\rceil - 1 = m(k, d, \lambda)$$

The inequality $m(k, d, \lambda) < M(k, d, \lambda)$ shows that the conjecture is true if either $\lambda = 1$, or $k \le \lambda + 1$ or k = 2, 3.

Our next purpose is to improve the inequality

$$d-\lambda+k+\left\lceilrac{k}{\lambda}
ight
ceil-1\leq m(k,d,\lambda) < d+2(k-\lambda)+1$$

Rado's Central Point Theorem

The Conjecture

Oriented Matroids

Next Purpose

Find an embedding of $d + 2(k - \lambda)$ points in \mathbb{R}^d WITHOUT $(d - \lambda)$ -transversal line to the convex hull of their k-subsets Proving that $m(k, d, \lambda) < d + (k - \lambda)$.

In this range we have two classes of $(d - \lambda)$ Kneser Transversals

- Unestable
- Stable = contain (d lambda + 1) of our points

We shall prove later that the cyclic politope with does not admit an stable Kneser Transversal

Special Kneser Transversals

Given a collection X of points in R^d a $(d - \lambda)$ -plane L es called a special Kneser Transversal if and only if

- L contains (d lambda + 1) points of X
- L intersect the convex hull of all k-subsets of X

Oriented Matroids

order type \rightarrow collection of of points Kneser Transversals \rightarrow Special Kneser Transversals $m(k, d, \lambda) \rightarrow m^*(k, d, \lambda)$ $M(k, d, \lambda) \rightarrow M^*(k, d, \lambda)$ Geometry \rightarrow Oriented Matroids

$$M^*(k, d, \lambda) = M(k, d, \lambda)$$

$$M^*(k,d,\lambda) = M(k,d,\lambda)$$

If $2\lambda \geq d+1$, then

 $m^*(k,d,\lambda) = d - \lambda + k$

$$M^*(k, d, \lambda) = M(k, d, \lambda)$$

If $2\lambda \geq d+1$, then

 $m^*(k, d, \lambda) = d - \lambda + k$

$$k+(d-\lambda)+1\leq m^*(k,d,\lambda)\leq \left\lfloor(rac{2\left\lceilrac{d}{2}
ight
ceil-\lambda+1}{\left\lceilrac{d}{2}
ight
ceil})(k-1)
ight
ceil+(d-\lambda)+1.$$

Last inequality was obtained by proving that the cyclic polytope in \mathbb{R}^d with more than

$$\left\lfloor (\frac{2\left\lceil \frac{d}{2} \right\rceil - \lambda + 1}{\left\lceil \frac{d}{2} \right\rceil})(k-1) \right\rfloor + (d-\lambda) + 1.$$

vertices DOES NOT admit an special transversal $(d - \lambda)$ -plane to the convex hulls of all their k-subset.

If $k-1 > \left\lceil \frac{d}{2} \right\rceil$, then

$$\left\lfloor (\frac{2\left\lceil \frac{d}{2} \right\rceil - \lambda + 1}{\left\lceil \frac{d}{2} \right\rceil})(k-1) \right\rfloor + (d-\lambda) + 1 < 2d + (k-\lambda)$$

If $k - 1 > \left\lceil \frac{d}{2} \right\rceil$, then

$$\left\lfloor (\frac{2\left\lceil \frac{d}{2} \right\rceil - \lambda + 1}{\left\lceil \frac{d}{2} \right\rceil})(k-1) \right\rfloor + (d-\lambda) + 1 < 2d + (k-\lambda)$$

If $k - 1 > \left\lceil \frac{d}{2} \right\rceil$, then

 $m(d, k, \lambda) < 2d + (k - \lambda)$

Coauthors

- Jorge Arocha
- Javier Bracho
- Jonathan Chapellon
- Natalia Garcia Colin
- Andreas Holmsen
- Leonardo Martinez
- Luis Pedro Montejano Cantoral
- Jorge Ramirez Alfonsin
- Martin Tancer

Oriented Matroids

THANK YOU FOR YOUR KIND ATTENTION