Kneser Transversals

Luis Montejano

National University of Mexico at Queretaro luis@matem.unam.mx

GRAPHS AND COMBINATORICS WORSHOP FOCM MONTEVIDEO 2014

Overview

Introduction

Kneser Hypergraphs

Rado's Central Point Theorem

The Conjecture

Oriented Matroids

8 points in R^{3} in general position

8 points in R^{3} in general position

8 points in R^{3} in general position
NEVER

- 8 POINTS, NEVER
- 6 POINTS, ALWAYS
- 7 POINTS, SOMETIMES YES, SOMETIMES NOT
- 8 POINTS, NEVER
- 6 POINTS, ALWAYS
- 7 POINTS, SOMETIMES YES, SOMETIMES NOT

Basic Definitions

always
$m(k, d, \lambda)=$ the maximum positive integer n such that every set of n points in R^{d} has the property that the convex hull of all k-sets have a transversal $(d-\lambda)$-plane

Basic Definitions

always

$m(k, d, \lambda)=$ the maximum positive integer n such that every set of n points in R^{d} has the property that the convex hull of all k-sets have a transversal $(d-\lambda)$-plane

never

$M(k, d, \lambda)=$ the minimum positive integer n such that for every set of n points in \mathbb{R}^{d} in general position, the convex hull of the k-sets do not have a transversal $(d-\lambda)$-plane.

Basic Definitions

always

$m(k, d, \lambda)=$ the maximum positive integer n such that every set of n points in R^{d} has the property that the convex hull of all k-sets have a transversal $(d-\lambda)$-plane

never

$M(k, d, \lambda)=$ the minimum positive integer n such that for every set of n points in \mathbb{R}^{d} in general position, the convex hull of the k-sets do not have a transversal $(d-\lambda)$-plane.

$$
m(k, d, \lambda)<M(k, d, \lambda)
$$

$M(k, d, \lambda)$
 NEVER

$$
M(k, d, \lambda)=d+2(k-\lambda)+1
$$

- $M(4,3,2)=8$
- The inequality: $M(k, d, \lambda) \leq d+2(k-\lambda)+1$ is a Combinatorial argument
- Gale Emmbeddings give rice to the inequality $M(k, d, \lambda) \geq d+2(k-\lambda)+1$

$m(k, d, \lambda)$ ALWAYS

$$
d-\lambda+k+\left\lceil\frac{k}{\lambda}\right\rceil-1 \leq m(k, d, \lambda) .
$$

- $m(4,3,2)=6$
- The proof of this inequality uses Schubert calculus in the cohomology ring of Grassmannian manifolds.
- This inequality has strong connetions with the chromatic number of the Kneser hypergraphs

Kneser Graphs

- Let [n] denote the set $\{1, \ldots, n\}$
- $\binom{[n]}{k}$ the collection of k-subsets of $[n]$
- The well known Kneser graph has vertex $\binom{[n]}{k}$ and two k-subsets are connected by an edge if they are disjoint.

Kneser Graphs

- Let [n] denote the set $\{1, \ldots, n\}$
- $\binom{[n]}{k}$ the collection of k-subsets of [$\left.n\right]$
- The well known Kneser graph has vertex $\binom{[n]}{k}$ and two k-subsets are connected by an edge if they are disjoint.

$$
K G^{2}(5,2)
$$

Kneser Hypergraph $K G^{2}(73)$

Chromatic Number of Kneser Hypergraphs

The Kneser Hypergraph $K G^{\lambda}(n, k)$ has vertex $\binom{[n]}{k}$ and λ k-subsets $\left\{S_{1}, \ldots, S \lambda\right\}$ give rise to an hyperedge if

$$
S_{1} \cap \ldots \cap S_{\lambda}=\emptyset
$$

Chromatic Number of Kneser Hypergraphs

The Kneser Hypergraph $K G^{\lambda}(n, k)$ has vertex $\binom{[n]}{k}$ and λ k-subsets $\left\{S_{1}, \ldots, S \lambda\right\}$ give rise to an hyperedge if

$$
S_{1} \cap \ldots \cap S_{\lambda}=\emptyset
$$

A coloring of the vertices of the hypergraph $K G^{\lambda}(n, k)$ is proper if no hyperedge is monochromatic.

Chromatic Number of Kneser Hypergraphs

The Kneser Hypergraph $K G^{\lambda}(n, k)$ has vertex $\binom{[n]}{k}$ and λ k-subsets $\left\{S_{1}, \ldots, S \lambda\right\}$ give rise to an hyperedge if

$$
S_{1} \cap \ldots \cap S_{\lambda}=\emptyset .
$$

A coloring of the vertices of the hypergraph $K G^{\lambda}(n, k)$ is proper if no hyperedge is monochromatic.

The chromatic number $\chi\left(K G^{\lambda+1}(n, k)\right)$ of the Kneser hypergraph is the smallest number m such that a proper coloring of $K G^{\lambda}(n, k)$ with m colors exist.

Connection between $m(k, d, \lambda)$ and the Chromatic Number of Kneser Hypergraphs

The connections between the chromatic number and $m(k, d, \lambda)$ are of the following sort:

PROPER COLORATIONS

KNESER TRANSVERSAL

Connection between $m(k, d, \lambda)$ and the Chromatic Number of Kneser Hypergraphs

The connections between the chromatic number and $m(k, d, \lambda)$ are of the following sort:

PROPER COLORATIONS

KNESER TRANSVERSAL

If the triangles of a set X of 8 points in R^{4} can be colored with 3 colors in such a way that the triangles of the same color has the 2-Helly property (3 by 3 have a common point), then there is a plane transversal to all triangles of X.

Upper bound for $m(k, d, \lambda)$

Lower bound for $\chi\left(K G^{\lambda+1}(n, k)\right)$

Upper bound for $m(k, d, \lambda)$

Lower bound for $\chi\left(K G^{\lambda+1}(n, k)\right)$

If $m(k, d, \lambda)<n, \quad$ then $\quad d-\lambda+1<\chi\left(K G^{\lambda+1}(n, k)\right)$.

Upper bound for $m(k, d, \lambda)$

Lower bound for $\chi\left(K G^{\lambda+1}(n, k)\right)$

If $m(k, d, \lambda)<n$, then $\quad d-\lambda+1<\chi\left(K G^{\lambda+1}(n, k)\right)$.
As consequence, of the lower bound $m(k, d, \lambda)<d-2(k-\lambda)+1=M(k, d, \lambda)$ we obtain:

Upper bound for $m(k, d, \lambda)$

Lower bound for $\chi\left(K G^{\lambda+1}(n, k)\right)$

If $m(k, d, \lambda)<n$, then $\quad d-\lambda+1<\chi\left(K G^{\lambda+1}(n, k)\right)$.
As consequence, of the lower bound $m(k, d, \lambda)<d-2(k-\lambda)+1=M(k, d, \lambda)$ we obtain:

$$
n-2 k+\lambda<\chi\left(K G^{\lambda+1}(n, k)\right)
$$

As a Corollary we obtain a proof of the Kneser Conjecture first proved by L. Lovasz.

Lovasz

$$
\chi\left(K G^{2}(n, k)\right)=n-2 k+2
$$

Rado's Central Point Theorem

Another interesting connection concerns the

Rado's Theorem

Let X be a finite set of n points in \mathbb{R}^{d}. Then there exist a point $x \in \mathbb{R}^{d}$ such that any closed half-space H through x contains at least $\left\lceil\frac{n}{d+1}\right\rceil$ points of X.

The inequality $d-\lambda+k+\left\lceil\frac{k}{\lambda}\right\rceil-1 \leq m(k, d, \lambda)$ is equivalent to the following theorem which generalizes Rados Theorem.

Rado's Central Point Theorem

Another interesting connection concerns the

Rado's Theorem

Let X be a finite set of n points in \mathbb{R}^{d}. Then there exist a point $x \in \mathbb{R}^{d}$ such that any closed half-space H through x contains at least $\left\lceil\frac{n}{d+1}\right\rceil$ points of X.

The inequality $d-\lambda+k+\left\lceil\frac{k}{\lambda}\right\rceil-1 \leq m(k, d, \lambda)$ is equivalent to the following theorem which generalizes Rados Theorem.

Theorem

Let X be a finite set of n points in \mathbb{R}^{d}. Then there exist a $(d-\lambda)$-plane L such that any closed half-space H through L contains at least $\left\lfloor\frac{n-d+2 \lambda)}{\lambda+1}\right\rfloor+(d-\lambda)$ points of X.

Conjecture

$$
d-\lambda+k+\left\lceil\frac{k}{\lambda}\right\rceil-1=m(k, d, \lambda)
$$

Conjecture

$$
d-\lambda+k+\left\lceil\frac{k}{\lambda}\right\rceil-1=m(k, d, \lambda)
$$

The inequality $m(k, d, \lambda)<M(k, d, \lambda)$ shows that the conjecture is true if either $\lambda=1$, or $k \leq \lambda+1$ or $k=2,3$.

Our next purpose is to improve the inequality

$$
d-\lambda+k+\left\lceil\frac{k}{\lambda}\right\rceil-1 \leq m(k, d, \lambda)<d+2(k-\lambda)+1
$$

Next Purpose

Find an embedding of $d+2(k-\lambda)$ points in R^{d} WITHOUT
$(d-\lambda)$-transversal line to the convex hull of their k-subsets
Proving that $m(k, d, \lambda)<d+(k-\lambda)$.

In this range we have two classes of $(d-\lambda)$ Kneser Transversals

- Unestable
- Stable $=$ contain $(d-$ lambda +1$)$ of our points

We shall prove later that the cyclic politope with does not admit an stable Kneser Transversal

Special Kneser Transversals

Given a collection X of points in R^{d} a $(d-\lambda)$-plane L es called a special Kneser Transversal if and only if

- L contains $(d-l a m b d a+1)$ points of X
- L intersect the convex hull of all k-subsets of X

Oriented Matroids

$$
\begin{aligned}
\text { order type } & \rightarrow \text { collection of of points } \\
\text { Kneser Transversals } & \rightarrow \text { Special Kneser Transversals } \\
m(k, d, \lambda) & \rightarrow m^{*}(k, d, \lambda) \\
M(k, d, \lambda) & \rightarrow M^{*}(k, d, \lambda) \\
\text { Geometry } & \rightarrow \text { Oriented Matroids }
\end{aligned}
$$

$$
M^{*}(k, d, \lambda)=M(k, d, \lambda)
$$

$$
M^{*}(k, d, \lambda)=M(k, d, \lambda)
$$

If $2 \lambda \geq d+1$, then

$$
m^{*}(k, d, \lambda)=d-\lambda+k
$$

$$
M^{*}(k, d, \lambda)=M(k, d, \lambda)
$$

If $2 \lambda \geq d+1$, then

$$
m^{*}(k, d, \lambda)=d-\lambda+k
$$

$k+(d-\lambda)+1 \leq m^{*}(k, d, \lambda) \leq\left\lfloor\left(\frac{2\left\lceil\frac{d}{2}\right\rceil-\lambda+1}{\left\lceil\frac{d}{2}\right\rceil}\right)(k-1)\right\rfloor+(d-\lambda)+1$.

Last inequality was obtained by proving that the cyclic polytope in \mathbb{R}^{d} with more than

$$
\left\lfloor\left(\frac{2\left\lceil\frac{d}{2}\right\rceil-\lambda+1}{\left\lceil\frac{d}{2}\right\rceil}\right)(k-1)\right\rfloor+(d-\lambda)+1 .
$$

vertices DOES NOT admit an special transversal $(d-\lambda)$-plane to the convex hulls of all their k-subset.

If $k-1>\left\lceil\frac{d}{2}\right\rceil$, then

$$
\left\lfloor\left(\frac{2\left\lceil\frac{d}{2}\right\rceil-\lambda+1}{\left\lceil\frac{d}{2}\right\rceil}\right)(k-1)\right\rfloor+(d-\lambda)+1<2 d+(k-\lambda)
$$

If $k-1>\left\lceil\frac{d}{2}\right\rceil$, then

$$
\left\lfloor\left(\frac{2\left\lceil\frac{d}{2}\right\rceil-\lambda+1}{\left\lceil\frac{d}{2}\right\rceil}\right)(k-1)\right\rfloor+(d-\lambda)+1<2 d+(k-\lambda)
$$

If $k-1>\left\lceil\frac{d}{2}\right\rceil$, then

$$
m(d, k, \lambda)<2 d+(k-\lambda)
$$

Coauthors

- Jorge Arocha
- Javier Bracho
- Jonathan Chapellon
- Natalia Garcia Colin
- Andreas Holmsen
- Leonardo Martinez
- Luis Pedro Montejano Cantoral
- Jorge Ramirez Alfonsin
- Martin Tancer

THANK YOU
FOR YOUR

KIND ATTENTION

