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8 points in R3 in general position

Is there a transversal line to the convex hull of all tethahedra ?
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• 8 POINTS, NEVER

• 6 POINTS, ALWAYS

• 7 POINTS, SOMETIMES YES, SOMETIMES NOT
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Basic Definitions

always

m(k , d , λ) = the maximum positive integer n such that every set
of n points in Rd has the property that the convex hull of all
k-sets have a transversal (d − λ)-plane

never

M(k , d , λ) = the minimum positive integer n such that for every
set of n points in Rd in general position, the convex hull of the
k-sets do not have a transversal (d − λ)-plane.

m(k , d , λ) < M(k , d , λ)



Introduction Kneser Hypergraphs Rado’s Central Point Theorem The Conjecture Oriented Matroids

Basic Definitions

always

m(k , d , λ) = the maximum positive integer n such that every set
of n points in Rd has the property that the convex hull of all
k-sets have a transversal (d − λ)-plane

never

M(k , d , λ) = the minimum positive integer n such that for every
set of n points in Rd in general position, the convex hull of the
k-sets do not have a transversal (d − λ)-plane.

m(k , d , λ) < M(k , d , λ)



Introduction Kneser Hypergraphs Rado’s Central Point Theorem The Conjecture Oriented Matroids

Basic Definitions

always

m(k , d , λ) = the maximum positive integer n such that every set
of n points in Rd has the property that the convex hull of all
k-sets have a transversal (d − λ)-plane

never

M(k , d , λ) = the minimum positive integer n such that for every
set of n points in Rd in general position, the convex hull of the
k-sets do not have a transversal (d − λ)-plane.

m(k , d , λ) < M(k , d , λ)



Introduction Kneser Hypergraphs Rado’s Central Point Theorem The Conjecture Oriented Matroids

M(k , d , λ)
NEVER

M(k , d , λ) = d + 2(k − λ) + 1

• M(4, 3, 2) = 8

• The inequality: M(k, d , λ) ≤ d + 2(k − λ) + 1 is a
Combinatorial argument

• Gale Emmbeddings give rice to the inequality
M(k, d , λ) ≥ d + 2(k − λ) + 1
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m(k , d , λ)
ALWAYS

d − λ+ k +

⌈
k

λ

⌉
− 1 ≤ m(k, d , λ).

• m(4, 3, 2) = 6

• The proof of this inequality uses Schubert calculus in the
cohomology ring of Grassmannian manifolds.

• This inequality has strong connetions with the chromatic
number of the Kneser hypergraphs
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Kneser Graphs
• Let [n] denote the set {1, ..., n}

•
([n]
k

)
the collection of k-subsets of [n]

• The well known Kneser graph has vertex
([n]
k

)
and two

k-subsets are connected by an edge if they are disjoint.

KG 2(5, 2)
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Kneser Hypergraph KG 2(73)
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Chromatic Number of Kneser Hypergraphs

The Kneser Hypergraph KGλ(n, k) has vertex
([n]
k

)
and λ

k-subsets {S1, ...,Sλ} give rise to an hyperedge if
S1 ∩ ... ∩ Sλ = ∅.

A coloring of the vertices of the hypergraph KGλ(n, k) is proper if
no hyperedge is monochromatic.

The chromatic number χ(KGλ+1(n, k)) of the Kneser hypergraph
is the smallest number m such that a proper coloring of KGλ(n, k)

with m colors exist.
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Connection between m(k , d , λ) and the Chromatic
Number of Kneser Hypergraphs

The connections between the chromatic number and m(k , d , λ) are
of the following sort:

PROPER COLORATIONS

↓

KNESER TRANSVERSAL

If the triangles of a set X of 8 points in R4 can be colored with 3
colors in such a way that the triangles of the same color has the
2-Helly property ( 3 by 3 have a common point), then there is a

plane transversal to all triangles of X .
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Upper bound for m(k , d , λ)

↓

Lower bound for χ(KGλ+1(n, k))

If m(k, d , λ) < n, then d − λ+ 1 < χ(KGλ+1(n, k)).

As consequence, of the lower bound
m(k , d , λ) < d − 2(k − λ) + 1 = M(k , d , λ)

we obtain:

n − 2k + λ < χ(KGλ+1(n, k))

.
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As a Corollary we obtain a proof of the Kneser Conjecture first
proved by L. Lovasz.

Lovasz

χ(KG 2(n, k)) = n − 2k + 2

.
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Rado’s Central Point Theorem

Another interesting connection concerns the

Rado’s Theorem

Let X be a finite set of n points in Rd . Then there exist a point
x ∈ Rd such that any closed half-space H through x contains at

least
⌈

n
d+1

⌉
points of X .

The inequality d − λ+ k +
⌈
k
λ

⌉
− 1 ≤ m(k , d , λ) is equivalent to

the following theorem which generalizes Rados Theorem.

Theorem

Let X be a finite set of n points in Rd . Then there exist a
(d − λ)-plane L such that any closed half-space H through L

contains at least
⌊
n−d+2λ)

λ+1

⌋
+ (d − λ) points of X .
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Conjecture

d − λ+ k +

⌈
k

λ

⌉
− 1 = m(k , d , λ)

The inequality m(k , d , λ) < M(k , d , λ) shows that the conjecture
is true if either λ = 1, or k ≤ λ+ 1 or k = 2, 3.

Our next purpose is to improve the inequality

d − λ+ k +

⌈
k

λ

⌉
− 1 ≤ m(k , d , λ) < d + 2(k − λ) + 1
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Next Purpose

Find an embedding of d + 2(k − λ) points in Rd

WITHOUT
(d − λ)-transversal line to the convex hull of their k-subsets

Proving that m(k , d , λ) < d + (k − λ).
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In this range we have two classes of (d − λ) Kneser Transversals

• Unestable

• Stable = contain (d − lambda + 1) of our points

We shall prove later that the cyclic politope with does not admit
an stable Kneser Transversal
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Special Kneser Transversals

Given a collection X of points in Rd a (d − λ)-plane L es called a
special Kneser Transversal if and only if

• L contains (d − lambda + 1) points of X

• L intersect the convex hull of all k-subsets of X



Introduction Kneser Hypergraphs Rado’s Central Point Theorem The Conjecture Oriented Matroids

Oriented Matroids

order type → collection of of points

Kneser Transversals → Special Kneser Transversals

m(k, d , λ) → m∗(k , d , λ)

M(k , d , λ) → M∗(k , d , λ)

Geometry → Oriented Matroids
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M∗(k , d , λ) = M(k , d , λ)

If 2λ ≥ d + 1, then

m∗(k , d , λ) = d − λ+ k

.

k+(d−λ)+1 ≤ m∗(k , d , λ) ≤

⌊
(

2
⌈
d
2

⌉
− λ+ 1⌈
d
2

⌉ )(k − 1)

⌋
+(d−λ)+1.
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Last inequality was obtained by proving that the cyclic polytope in
Rd with more than

⌊
(

2
⌈
d
2

⌉
− λ+ 1⌈
d
2

⌉ )(k − 1)

⌋
+ (d − λ) + 1.

vertices DOES NOT admit an special transversal (d − λ)-plane to
the convex hulls of all their k-subset.
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If k − 1 >
⌈
d
2

⌉
, then

⌊
(

2
⌈
d
2

⌉
− λ+ 1⌈
d
2

⌉ )(k − 1)

⌋
+ (d − λ) + 1 < 2d + (k − λ)

If k − 1 >
⌈
d
2

⌉
, then

m(d , k, λ) < 2d + (k − λ)
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