
Towards a Broader View of the Theory of Computing

Narendra Karmarkar

Part - 1, (A6), 12/11/14, 6:30pm

now available in arXiv

Part - 2, (A4), 12/13/14, 5:00pm

Part - 3, (B2), 12/16/14, 4:00pm

Part - 4, (B3), 12/17/14, 3:00pm



Models of Computation

A model of computation provides a mathematical abstraction of
the basic data objects and operations on them
provided as building blocks by the physical hardware.

This effectively decouples
design of algorithms for complex tasks

from
implementation details of the basic primitives in the underlying hardware.

Examples:

Turing Model
uses strings of zeroes and ones and finite state machines as primitives.

BSS model (Blum, Shub, Smale)
model uses real numbers or complex numbers as data objects and
algebraic operations (including comparisons in real case) as basic operations.



Various types of applications - discrete and continuous

Many business and IT applications of computing use discrete models.

There are many applications based on continuous models
Numerical simulation of natural phenomena or engineered systems
based on differential equations

Estimation of probabilities,
assessing strength of association between various entities in social networks

Interior point algorithms in optimization which are based on
embedding discrete configurations in a multidimensional continuous space
and constructing trajectories converging to the solution

A model of computation is used to map these on physical machines

Examples of physical computers

Standard digital computers

Analog computers explored in the past e.g. Shannon’s differential analyzer

Quantum computers

Biological systems that appear to do information processing / computing

Computers partially mimicking some aspects of those systems
e.g. neural networks, neuromorphic computing, etc.



Early Pioneers views on the need for broader approach to computation

Alan Turing
was interested in understanding the origin of intelligence in biological systems

He believed it is due to some form of computing happening in these systems.

There doesn’t seem to be anything similar to Turing machines in these systems.

Many years after developing the discrete model of computation,

Turing started exploration of PDE’s modelling biological functions

These are clearly continuum based models of biological systems

Von Neumann
Defined architecture of a digital computer using many ideas from TM

However, he was particularly critical of the limitations imposed on the theory of
automata by its foundations in formal logic, combinatorics.

He articulated the need for a detailed, highly mathematical, and more
specifically, analytical theory of computation based on mathematical analysis

Shannon
worked on analog computer - differential analyzer

However, direct implementation of differentiation in analog system is highly
error prone as it involves subtraction of two nearly equal continuous quantities.



constructing analog computers

Role of Integral Transform
It’s well known that for non-linear DE’s which are difficult to solve
numerically, it helps to convert them into equivalent integral equations.

Biological systems also seem to use integral transform. e.g.

Human ear computes the magnitude of Fourier Transform of speech signal.

The transform of the derivative is then obtained by scaling,
a simpler algebraic operation than differentiation in analog setting

Some optical computers are implementing Fourier transform directly for
computing differential operators required in computational fluid dynamics.

Robustness
In digial systems, the mapping
Physical states / signals −→ information states/signals
is many to one, In fact, each information state has infinite pre images.

This is to gain robustness in the face of small variations in physical states,
due to noise, thermal effects, variations in manufacturing etc.

However, this does not necessarily require information states to be discrete.
e.g. an ideal low pass filter also provides infinity to one mapping
but the output signal still belongs to the continuum.

it is important to include these two mechanisms when constructing
machines that support continuum computing



Intertwining of discrete and continuous models

Logical and physical process underlying the computation involves several levels
of abstractions, both continuous and discrete.



Towards a broader view of theory of computing

Given this intertwining of discrete and continuous models from top to
bottom, it would be more illuminating to take a broader view

Exploration of what a continuum view of computing might suggest for
algorithms, relative difficulty of various computing tasks etc.

Abstract Continuum Computing Model AC 2M or just CM

Basic data objects
algebraic closure of meromorphic functions (over suitable domain)
the machine can store, evaluate and compose such function objects.

Basic unit operations

field operations: +,−,×,÷
and comparison ( =, ( and also < for real quantities ) )

analytic operations

integration:
∫
C f (z )dz this is a binary operation, function f and

specification contour C are the two operands

differentiation: ∂f
∂zi

is also a binary operation with inputs f and zi .

(a word of caution when comparing with TM - there is no such thing as
“conservation of difficulty” across the models.)



Extension of P 6= NP conjecture from TM theory

Computing models can be organized in the same way as Cantor organized
infinite sets i.e. according to the cardinal number
of set of all possible data objects and machines in the model.

At each cardinal number in the sequence i0 < i1 < i2 < . . ., you have
models of computation, and corresponding P 6= NP question

TM −→ i0, cardinalnumber(Q)

CM −→ i1, cardinalnumber(R)

It appears that P 6= NP problem for TM is just the first member in a
sequence of strict inclusions

P(TM ) ( NP(TM ) ( P(CM ) ( NP(CM ) ( P(i2) . . .

An interesting question across adjacent level:
NP(TM ) ( P(CM )

i.e., is non-determisitic computing at any one level is no more powerful
than deterministic computing at the next level ?



Our Research Program

Is aimed at understanding the following:

how to construct physical machines supporting Continuum Computing ?

Can non-deterministic computing at the TM level be simulated by
deterministic computing at next level i.e. by Continuum Computing ?

and a harder question:

to what extent can one approximate deterministic Continuum Computing
by deterministic computing in TM?

initially, approximate cross-simulation was meant to be ”stop-gap”
measure, but now it appears that building continuum machine may take
many years, hence simulation becomes more important.

Floating Point numbers allows approximation of reals by rationals

similarly one can approximate functions by other simpler functions

in this investigation, length of ”binary encoding” of data object does not
have the same fundamental significance as in TM theory. Instead, other
properties of the problem space seem more important



Computationally generated proofs for optimality and non-satisfiability

Converting results of continuum based algorithms so that optimality or
non-existence of solutions can be transferred to standard model.

Both involve proofs of non-negativity of functions.

Optimality:

Proving that xmin is a global minimum of f (x1, x2, . . . , xn) is equivalent to
showing that for fmin = f (xmin), we have

f (x)− fmin ≥ 0 ∀x ∈ Rn

Non-satisfiability: Each variable xi = ±1
let V denote the variety defined by x2

i = 1∀i
For each clause associate a polynomial. e.g.
C = xi ∨ x̄j ∨ xk , associated pc = [1− xi ] · [1 + xj ] · [1− xk ]

For a ±1 vector x pc =

{
0 if x is a satisfying assignment

8 otherwise

Define f =
∑

C∈Clauses pc .

Then f (x) > 0 ∀x ∈ V gives proof of non-satisfiability.



Relation of Positivity Proofs to Hilbert’s 17th problem

One approach to proving positivity of a polynomial is to express it as sums
of squares of other functions

Using polynomials:
Hilbert (1888) realized that it is not always possible , but gave a
non-constructive proof of the existence of a counter example.

Using rational functions:
Always possible – Artin’s (1926) solution of Hilbert’s 17th problem.
But exponentially many terms of high degree required (Pfister).

Concrete examples of Hilbert’s result took long time to construct.
First counter example - Motzkin

f (x , y , z ) = z 6 + x4y2 + x2y4 − 3x2y2z 2

Further examples - Lam, Robinson and others.

Computational results:
for these “counterexamples”, we have computed expressions as sums

of squares of polynomials, with a modified interpretation.
Algorithm underlying the solver was described in previous lecture
[Karmarkar, MIT91, IPCO92]



Computational approach to positivity proofs

Consider a homogeneous polynomial f (x1, x2, . . . , xn) of degree d in n real
variables x1, x2, . . . , xn , which is non-negative everywhere.

To show that a function is non-negative on a compact set, it is enough to
show that the function is non-negative at all its critical points.
(note we have homogeneous polynomials over projective space).

This can be achieved if we

(1) construct a variety containing all critical points of the function and

(2) construct an expression of the function as sums of squares
of polynomials in the coordinate ring of that variety, instead of
the polynomial ring <(x1, . . . , xn).

Additionally, without loss of generality, we impose a spherical constraint

x2
1 + x2

2 + . . .+ x2
n = 1 (1)

Each point in the real projective space is covered twice
(by a pair of antipodal points) in this representation.

A critical point of the function satisfies

∂f

∂xi
= λxi , i = 1, ...,n (2)

where λ is the Lagrange multiplier.



Computational approach to positivity proofs (Contd.)

We now work in <n+1, and points in this expanded space will be denoted
by (x1, x2, ..., xn , λ)

The equations (1) and (2) define an algebraic variety U (i.e an algebraic
set – in our terminology a variety does not have to be irreducible).

Our approach is to construct a variety V such that U ⊆ V ⊆ <n+1

and in the co-ordinate ring of V , construct an expression for f as sums of
squares ∑

i S
2
i (x1, x2, . . . , xn , λ)

We also produce an explicit expression for

f −
∑

i S
2
i (x1, x2, . . . , xn , λ)

as
∑

j aj (x , λ) gj (x1, x2, . . . , xn , λ)

where gj (x1, x2, . . . , xn , λ) = 0

These are the defining equations for V .



Our computer generated proofs

Motzkin’s first counter example

f (x , y, z) = z
6
+ x

4
y
2
+ x

2
y
4 − 3x

2
y
2
z
2

f ≡ (
1

4
S

2
1 + S

2
2 + S

2
3 + S

2
4 +

3

4
S

2
5 ) mod V

S1 = xy(x
2 − y

2
)

S2 = x
4
+ y

4 − 2x
2 − 2y

2
+ x

2
y
2
+ 1

S3 = xz(x
2
+ 2y

2 − 1)

S4 = yz(2x
2
+ y

2 − 1)

S5 = xy(3x
2
+ 3y

2 − 2)

(3)
Robinson’s counter example

f = x
6
+ y

6
+ z

6 − (x
4
y
2
+ x

2
y
4
+ y

4
z
2
+ y

2
z
4
+ z

4
x
2
+ z

2
x
4
) + 3x

2
y
2
z
2

f ≡ (S
2
1 +

3

4
S

2
2 +

1

4
S

2
3 + S

2
4 + S

2
5 ) mod V

S1 = −x
3
y + xy

3

S2 = −1 + 3x
2 − 2x

4 − 4x
2
y
2
+ 2y

2

S3 = 1 − x
2 − 2x

4
+ 4x

2
y
2 − 4y

2
+ 4y

4

S4 = −2x
3
z − xy

2
z + xz

S5 = −x
2
yz − 2y

3
z + yz

(4)



Extensions of previous proof systems



Rules for positivity proofs

1 Starting primitives:

1 Constant functions

Let α ∈ R be a positive scalar.

If f (x) = α, then f > 0.

2 Square functions

If f (x) = g2(x), then f ≥ 0.

2 Algebraic operations preserving positivity:

If f ≥ 0 and g ≥ 0, then f + g ≥ 0

If f ≥ 0 and g ≥ 0, then f · g ≥ 0

3 Positivity restricted to variety defining constraints:
Suppose there are integrality constraints, x2

i = 1, or other constraints like
Ax = b etc. They define an algebraic set or subvariety V of Rn . Algebraic
operations are defined upto equivalence classes of functions on V .

Lovaśz, Schrijver, Grigoriev, Worah, and references therein, have explored rules
of this kind along with rules for cuts based on integrality constraints.



New rules

We strengthen the previous proof systems by adding the following new rules.
1 Substitution or Composition rule:

Let f (x1, . . . , xn) and gi(y1, . . . , ym) for 1 ≤ i ≤ n be given.

Let h(y1, . . . , ym) = f (g1(y1, . . . , ym), . . . , gn(y1, . . . , ym)).

1 If f (x1, . . . , xn ) ≥ 0 for all x ∈ Rn , then h(y1, . . . , ym ) ≥ 0.

2 If f (x1, . . . , xn ) ≥ 0 for all x ∈ Rn
+ and gi (y1, . . . , ym ) ≥ 0 for all y ∈ Rm ,

then h(y1, . . . , ym ) ≥ 0.

2 Division rule: While number of rational terms in Artin’s approach can be
exponential, one can apply the following rule selectively ::
Suppose g(x) > 0, f (x) ≥ 0 and g(x) | f (x).

If f (x) = g(x) · h(x), then h(x) ≥ 0.

This rule reduces the degree.

3 Odd Radical rule:
Suppose f (x) is a perfect odd ((2k + 1)th) power. Let g(x) be the
(2k + 1)th root of f (x), i.e. f (x) = g2k+1(x).

If f (x) ≥ 0, then g(x) ≥ 0.

This is one of the rare rules that reduces the degree.
Note :Lower bounds based on proof system w/o these rules
don’t show ”intrinsic” difficulty of any problem,
but only show ”intrinsic” limitations of the proof system used



Maximum Independent Set

Let G = (V ,E) be a graph with vertex set V and edge set E .

A subset U ⊆ V of nodes is called independent if for every edge
(i , j ) ∈ E , either i /∈ U or j /∈ U

Problem: Find the largest independent set.

±1 integer programming formulation
Constraints:

wi = ±1; i = 1, . . . ,n
wi + wj ≤ 0; ∀(i , j ) ∈ E

Objective: Maximize
∑

wi

Relaxation of the feasible set allows −1 ≤ wi ≤ 1

Each extreme point of an LP has co-ordinates that are ±1 or 0.

For a ±1 solution,
∑

i w
2
i = n.

Non-convex objective:
∑

wi + β
∑

w2
i



Defining a sharper polytope

There are additional inequalities

that hold for the solution points, i.e. feasible points with ±1 solution

but cannot be expressed as non-negative linear combinations of basic
inequalities

number of such inequalities grows exponentially with n

significant effort in polyhedral combinatorics is aimed at identifying such
constraints (e.g. see Schrijver).



Example: odd cycle inequalities

Consider an odd cycle in the graph, having 2k + 1 vertices. At most k of
the 2k + 1 vertices can be in an independent set.

Let i1, i2, . . . , i2k+1 be the vertices in the cycle; hence
wi1 + wi2 + . . .+ wi2k+1 ≤ −1.

This inequality is sharper, since the previous inequalities only imply :
wi1 + wi2 + . . .+ wi2k+1 ≤ 0.

Number of odd cycles, and hence the corresponding number of
inequalities, can grow exponentially with n.



Inequalities for other subgraphs

Similar to odd cycles, there are constraints based on other types of
subgraphs.

Let ∑
i∈G0

ai · wi ≤ b

be a constraint based on a fixed graph G0.

Let G̃ be a graph obtained by an odd sub-division of the edges of G0, i.e.
replace an edge by an odd path.

Then sum of newly added vertices is always non-positive, i.e.∑
i∈New vertex wi ≤ 0.



Inequalities for other subgraphs (Contd.)

Furthermore, to achieve the equality,
∑

i∈New vertex wi = 0,there are
only two ways to assign values to new vertices and each corresponds to a
particular feasible assignment to the end points of the original edge.

Using this observation, it is easy to show that the inequality for G0 implies
a similar inequality for G̃, i.e.∑

i∈G0

ai · wi ≤ b ⇒
∑
i∈G̃

ãi · wi ≤ b

In this context, we are using a more restricted notion of homeomorphism.

Specifically, in order for two paths to be homeomorphic
both must have odd length or both must have even length.

We call this “parity-respecting” homeomorphisms, and denote it by

G̃ ∼= G0(mod2)

(different authors use different terminology/notation, e.g. see [])



Inequalities for other subgraphs (Contd.)

Given a fixed graph G0 and an input graphs G,
an inequality for G0 ⇒ an inequality for each subgraph G̃ of G that is
homeomorphic to G0.

Number of such subgraphs can grow exponentially with n.

As an example, let G0 be a triangle and G be a given graph.
Then the subgraphs of G that are homeomorphic to G0 respecting parity,
are exactly the odd cycles of G.
All odd cycle inequalities for G are obtained from inequalities for G0.

We will use this example to show how the combined effect of all odd cycle
inequalities can be computed in polynomial time in the continuum model.

Observe that all the inequalities in this example are linear, which simplifies
our exposition.

However, these techniques are not limited to the linear case. Later, we will
show an example of non-linear, non-convex inequalities as well.



Combining Effect of Exponential Number of Inequalities



Projectively Invariant Metric

Consider the projectively invariant metric we use in linear programming
algorithm. Let

4 =
{
xi | xi ≥ 0,

∑
xi = 1

}
be the simplex used in the algorithm.

Let x, y ε int (4) be two interior points in the simplex.
Projectively invariant distance between x and y, based on p-norms :

d(x, y) =
1

2
·

(∑
i

(
xi
yi
− yi

xi

)p
) 1

p

The infinitesimal version of d gives the Riemannian metric g(x) for p = 2
and Riemann-Finsler metric for p > 2.

gp
ij (x)dxidxj =

∑
i

(
dxi
xi

)p

The performance of the algorithm depends on curvature in this metric.
(Karmarkar, N., AMS, Contemporary Mathematics 114, pp. 51-75)



Projectively Invariant Metric (Contd.)

For inequalities in the form Ax ≤ b, let x, y be two interior points, and let
s, t be the corresponding slack variables i.e.

Ax + s = b, Ay + t = b

Then projectively invariant distance between x and y is given by

dp(x, y) =
∑
i

[
1

2
·
(
si
ti
− ti

si

)]p
Let s0 = slack variable for the current interior point x0 (constant)
and s = slack variable for the next (unknown) interior point x.

Observe the particular “distributive“ form of the function dp(x, x0).
If S is the set of all slack variables, then dp distributes linearly over S .

dp(x, x0) =
∑
sεS

ψ(s)

where the ψ(s) for the individual slack variable is

ψ(s) =

[
1

2
·
(

s

s0
− s0

s

)]p



Computing exponential sums efficiently

Note that the potential function used in the interior point methods also
has the same distributive form,
where the corresponding ψ could be a non-linear rational or transcendental
function of individual slack variable.

We are interested in the case when S is exponentially large.

Such sums can be evaluated efficiently for

Large class of problems involving exponential number of inequalities,

when ψ(s) belongs to certain special parametric family of functions such as
exponential function, e.g ψ(s) = e−zs .

While the actual function ψ(s) of interest is not of this form,
it can be expressed as a linear superposition of functions of this form.

E.g. techniques such as
Laplace transform or Fourier transform and their inverse transforms enable
expressing ψ as (infinite)superposition of (real or complex) exponentials.

For approximate cross-simulation on the standard model,
we use a suitable finite superposition.



Combined Effect of Inequalities for all Odd Cycles in a Graph

Contribution of an individual slack variable s: ψ(s) = e−zs where zε C.

Goal: We want to find closed form meromorphic function for
total contribution of all slack variables.

Edge Matrix

For a single edge, we have
wi + wj

2
≤ 0

Note: since each node in a cycle has degree 2, we are dividing by 2
For more general graph minors, the weighting factors are different.

Introducing slack variable sij , we get
wi + wj

2
+ sij = 0. Then,

sij = −wi + wj

2

ψ = e−z ·sij = e
z

{
wi+wj

2

}

Define edge matrix A(z ,w) over the field of meromorphic functions as

Aij (z ,w) =

{
e

z
2{wi+wj} if (i , j ) is an edge

0 otherwise.



Combined Effect of Inequalities for Odd Cycles (Contd.)

For a single slack variable s, there is a relation between the derivative

operators
∂

∂s
and

∂

∂z

s
∂ψ

∂s
= z

∂ψ

∂z

For the edge matrix A(z ,w), derivative with respect to wi , the co-ordinates
of the interior point, are expressed in terms of the “J-products”.

∂A

∂wp
=

z

2

{
I ©J

p
A + A©J

p
I

}
This gives an autonomous differential equation for A,
which allows us to create recurrence relation connecting

higher powers of A to lower powers and

higher derivatives of A to lower order derivatives.

These recurrence relations lead to closed form expressions for higher
derivatives and higher powers.



Permitting additional inequalities

We are interested in all odd cycles in the graph.

A odd cycle is a special case of a closed odd walk.

Since a closed odd walk contains an odd cycle as a subgraph, a sharper version
of inequality is also valid for closed odd walk.

However this inequality is implied by the odd cycle inequalities.

Therefore, from the point of view of formulation, these additional inequalities
are superfluous:

useless → since they are implied by other inequalities but
harmless → they are still valid.

However from the point of view of obtaining a closed form expression that can
be evaluated in polynomial time, they are essential.



Getting the closed form expression for the combined effect of inequalities

Steps:

(1) Get expressions for the effect of the implied inequalities for the following:

(a) For a given walk W of length l : ψW

(b) For a given pair of nodes i and j , all walks of length l : ψij

(c) In the entire graph, all closed walks of length l : ψl

(d) In the entire graph, all closed odd walks of length at most n : ψ

(2) Transitioning from expressions for implied inequalities to expressions for
sharper inequalities for the following:

(a) All closed odd walks of length at most n in the entire graph : ψ̃



Closed form expression: Step (1a)

Single walk W of length l :

Consider a walk W with l edges i1, i2, . . . , il+1. Summing the edge inequalities,
we have

1

2
w1 + w2 + . . .+ wl +

1

2
wl+1 ≤ 0

Let sw be a slack variable for the “implied” inequality for walk W .

sw =
∑
e∈W

se

ψW (sw ) = e−z ·sw = e−z
∑

e∈W se =
∏
e∈W

e−z ·se

ψW = Ai1i2Ai2i3 · · ·Ail il+1



Closed form expression: Steps (1b) & (1c)

Between given pair of nodes i and j effect of all walks of length l :

Let i1 = i and il+1 = j .

ψij =
∑

i2,i3,...,il

Aii2Ai2i3 · · ·Ail j

ψij = Al
ij

All closed walks of length l in the entire graph:

ψl =
∑
i

Al
ii = tr{Al(z ,w)}

However, a closed walk of length l is counted 2l times in the expression above,

Due to l vertices of the walk and

The two senses of traversal along the walk.

Compensating for this repetition, we have

ψl =
tr{Al(z ,w)}

2l



Closed form expression: Step (1d)

All closed odd walks of length at most n in the entire graph:

Let kmax = b n−1
2
c.

ψ =

kmax∑
k=1

ψ2k+1

=

kmax∑
k=1

1

2 · (2k + 1)
tr{A2k+1(z ,w)}

= tr{B(z ,w)}

where

B(z ,w) =

kmax∑
k=1

A2k+1

2 · (2k + 1)



Transitioning from effect of implied inequalities to sharper ones

Let i1, i2, . . . , il+1 be a walk of length l ; its implied inequality is given by

wi1

2
+ wi2 + . . .+ wil +

wil+1

2
≤ 0

If il+1 = i1, we have a closed walk with the implied inequality given by

wi1 + wi2 + . . .+ wil ≤ 0

For closed odd walks ( l = 2k + 1), we get the following sharper inequality.

wi1 + wi2 + . . .+ wil ≤ −1

since at most k nodes can be in an independent set.
If s is the slack variable for the implied inequality, let s̃ denote the slack
variable for the corresponding sharper inequality.

s̃ = s − 1

e−z ·s̃ = ez · e−s

ψ̃l = ezψl



Closed form expression: Step (2a)

Transitioning from the expression for implied inequality for a closed odd walk to
the sharper inequality for it involves multiplication by ez which is independent
of the length of the walk.
Therefore, for l odd, ψ̃l is given by

ψ̃l = ez · tr{A
l(z ,w)}
2l

And ψ̃ is given by

ψ̃ = ez · B(z ,w)

It is trivial to see that this can be evaluated in polynomial time in the
continuum model.

Straightforward as written, evaluation of ψ̃ will take O(n4) operations but

With some rearrangement, it is possible to do with O(n3) operations.



Join Product

We split the tensor product involving contraction into two steps The first step
is similar to join operation on relations in a relational data base

Simple examples of J-products –
1 Matrix Multiplication :

C = A.B , Cpr =
∑
q

ApqBqr

corresponding ”join” product (definition):

Cpqr = ApqBqr

without the summation (contraction) over q
corresponding ”join” product (notation):

C = A©J
q

B



1 Dot Product of vectors :

c = a.b =
∑
i

aib
i

Corresponding join product (definition) :

ci = aib
i

Corresponding join product (notation) :

c = a©J
i

b

2 Hadamard Product of matrices :
is an example of J-product with two repeated indices

Apq = BpqCpq

A = B ©J
p, q

C



Tensor contraction

input tensors : A, B, with repeated covariant and contravarient indices , and
output tensor : C with summation over repeated indices r1, r2, ...rm .

C p1p2...pk s1s2...sn
q1q2...ql t1t2...tu

=
∑

r1r2...rm

Ap1p2...pk
q1q2...ql r1r2...rmB

r1r2...rm s1s2...sn
t1t2...tu

If there are m repeated indices, rank(C) = rank(A) + rank(B) - 2.m
Corresponding join operator :

There is no summation over repeated indices

One copy of such indices is present in the output, enclosed in round ()

They don’t have significance as tensor indices but simply denote
an indexed family of tensors of the same rank as above

[C p1p2...pk s1s2...sn
q1q2...ql t1t2...tu

](r1r2...rm) = Ap1p2...pk
q1q2...ql r1r2...rm ©J B r1r2...rm s1s2...sn

t1t2...tu



Notation :

C = A©J B

Sometimes, the repeated indices are noted below ©J as shown :

C = A ©J
r1r2...rm

B

Tensor Product as composition of join and summation operation :

A.B =
∑

r1r2...rm

A ©J
r1r2...rm

B



Properties of join product

Linear in both arguments :
If α and β are scalars

{αA + βB}©J C = α(A©J C ) + β(B ©J C )

If A, B, X are matrices of compatible dimensions,

X (A©J B) = {XA}©J B

(A©J B)X = A©J {BX }
Similar rule applies for general compatible tensor multiplication.
Associative :

A©J [B ©J C ] = [A©J B ]©J C

Derivative rule :

∂

∂xi
{A(x1x2...xn)©J B(x1x2...xn)} =

∂A

∂xi
©J B + A©J ∂

∂xi
B



Transpose :

CT
ijk = Ckji

[A©J B ]T = [BT ©J AT ]

For symmetric A,B

[A©J B ] = [B ©J A]

Transpose of triple product :

[A©J
p

B ©J
q

C ]T = CT ©J
q

BT ©J
p
AT

Note the reversal of p, q



Application of J-product in the present context

Derivative of Edge Matrix w.r.t. co-ordinates of interior point can be expressed
in terms of J-product , which reduces derivative to an algebraic operation :

∂A

∂wq
=

z

2

{
I ©J

q
A + A©J

q
I

}
Recurrence relation for derivative of kth power of the Edge Matrix in terms of
J-products of lower powers :

∂Ak

∂wq
=

z

2
sym

{
k∑

i=1

Ai ©J
q

Ak−i

}
Recurrence relation for kth derivative of the Edge Matrix in terms of derivatives
of lower order e.g. second derivative in terms of first derivative :

∂2A

∂wp∂wq
=

z

2

{
∂A

∂wp
©J
q

I + I ©J
q

∂A

∂wp

}



Solution of recurrence relations for J-Products

∂Ak

∂wp
=

∑
α

z

2

{
W k,1

rank(α)·A
α1 ©J

p
Aα2

}
(5)

∂2Ak

∂wp∂wq
=

∑
α

z 2

4
· 1

2!

{
W k,2

rank(α)

[
Aα1 ©J

p
Aα2 ©J

q
Aα3

+Aα1 ©J
q
Aα2 ©J

p
Aα3

]}
(6)

where α is a (weak) composition of k given by

α = (α1, α2) α1 + α2 = k , αi ≥ 0 for (1)

α = (α1, α2, α3) α1 + α2 + α3 = k , αi ≥ 0 for (2)

rank(α) = number of non-zero α′is

W k,m
rank(α) = fixed weights depending on rank

Similar formulas hold for higher derivatives. For efficient computation, instead
of these ”flat” expressions, new recurrence relations involving ”forward” and
”backward” sweep are created.



Approximate Evaluation on the Standard Model

We want to illustrate how a function of distributive type over the set of all
slack variable can be approximated by superposition of exponentials, for
various ψ(s).

For simplicity of exposition consider

ψ(s) =
1

s
, s > 0

1

s
=

∫ ∞
0

e−sxdx

In the problem of interest,
all slack variable lie in a bounded interval of real axis.

Upper bound : trivial since −1 ≤ wi ≤ 1. Hence |aTw | < |a|1 ≤ n for
closed walks of length at most n.

Lower bound: at each iteration we round the interior point to nearest valid
±1 solution by a simple method, until optimal solution is identified.

Hence the minimum value of the slack variable remains bounded away
from zero.



Approximate Evaluation on the Standard Model (Contd.)

Consider the following nested regions

Ri = {x ∈ R | e−i ≤ x ≤ e jmax } for i = 1, . . . ,L

so that
R1 ⊂ R2 ⊂ R3 · · · ⊂ RL

Note: L is not known in advance; we increment it dynamically based on the
number of iterations so far.
Projective invariance of the algorithm implies invariance w.r.t. simple uniform
scaling transformations Tk : s → ek s, k ∈ Z.

To get an efficient approximation exploiting the scale invariance, we make
further substitution

x = e−at

in the integral for 1
s

.

1

s
=

∫ ∞
−∞

a · e−at · e−[e−at .s]dt



Approximate Evaluation on the Standard Model (Contd.)

Approximate the integral by sum, with integer nodes in a bounded range
[−m,M ], m,M ∈ N.

1

s
∼

i=M∑
i=−m

a · e−ia · e−[e−ia .s]

Let λi = e−ia

1

s
∼

i=M∑
i=−m

a · λi · e−λi s (∗)

As an example, suppose the region of interest is

e−30 < s < e1

Taking a = 1
2

, m = 1
a

= 2, M = 30
a

= 60, we have 63 terms and this gives the
l.h.s. and r.h.s. of (∗) which are identical when evaluated in standard double
precision (64-bit) arithmetic.



Superposition of Exponentials

By similar techniques approximation to the function ψ(s) of interest is
expressed as sum of exponential

ψ(s) =
∑
i

cie
−λi s

The main function φ (either metric or potential) is expressed in terms of
ψ(s) in distributive form

φ =
∑
sεS

ψ(s),

=
∑
sεS

∑
i

cie
−λi s

=
∑
i

ci

{∑
sεS

e−λi s

}
=
∑
i

ci · ez · tr{B(z )}|z=λi

Note that the number of terms is O(L), and evaluation of each term is
polynomial in n.



An example of application to non-convex, non-linear problem

Consider set of inequalities of the form

(aT
i x)2 − (bTi x)2 ≤ c, c > 0

The set defined by these inequalities is (2, 2)-connected [Kar, 10] slack
variable si = c − (aT

i x)2 + (bTi x)2

With the function ψ(s) : R→ R of interest, we associate another function
ψ̃ : R2 → R as follows

ψ̃(u, v) = ψ(c − u2 + v2)

Let R be the region of interest in the (u, v) plane.
Note: due to the symmetries based on flipping signs of u and v , we can
consider only one quarter of the plane.

[Kar, 10] = Beyond Convexity, LNCS 6457, Dec. 2010



An example of application to non-convex, non-linear problem

Let χR : Characteristic function of R. By considering 2-D inverse Laplace
transform of χ̃Rψ̃(u, v), (or by other means) we can obtain finite
approximation based on exponentials functions in the plane

χRψ̃ ∼
∑

(µk ,λk )

cke
−[µku+λk v ]

Since u = aT
i x and v = bTi x are linear in x , the above expression is of the

same type as considered before.



Extension to the satisfiability problem



Recall the definition of SAT...

We have boolean variables x1, . . . , xn .

A literal l is a variable or its complement: l = x or l = x̄

A clause is an OR of literals. Eg. C = x ∨ y ∨ z̄ . In 3-SAT, each clause
has 3 literals.

A satisfiability formula f = C1 ∧ C2 ∧ . . . ∧ Cm

Problem (SAT): Find truth assignments to the variables x1, . . . , xn such
that f is true, or prove that no such assignment exists.



Generation of implied clauses

Consider the following pair of clauses

C1 = a ∨ b ∨ c̄

C2 = c ∨ d ∨ e

Together they imply the clause C3 = a ∨ b ∨ d ∨ e.

We refer to this operation as the “join” operation on clauses.

This operation is fundamental in resolution or elimination methods for
solving the SAT problem.

It is known that the number of such new clauses generated during the
resolution process grows exponentially with n for almost all instances of
the problem with parameters in a certain range (Chvátal and Szemerédi).



Continuum based approach

Associate real variables taking ±1 values with the boolean variables.

Embedding the problem in Rn , allow the variables to take on values in the
interval [−1, 1], i.e. −1 ≤ xi ≤ 1.

For a literal l ,

v(l) =

{
x if l = x

−x if l = x̄

Each clause corresponds to an inequality

C = l1 ∨ l2 ∨ l3 −→ v(l1) + v(l2) + v(l3) ≥ -1

Explanation: Sum of three ±1 variables can be -3, -1, 1 or 3 of which the
value -3 is forbidden since it corresponds to all literals being false.



Interpreting the join operation in the continuum model

Clauses Inequalities

a ∨ b ∨ c̄ (C1) −→ a + b − c ≥ -1 (1)

c ∨ d ∨ e (C2) −→ c + d + e ≥ -1 (2)

Join: a ∨ b ∨ d ∨ e (C3) −→ a + b + d + e ≥ -2 (3)

Observe that the inequality (3) corresponding to the newly generated
clause is just the sum of (1) and (2).

Imposition of constraint (3) does not change the feasible set, hence it is
superfluous.

This is the first reason why the continuum approach is more economical
than resolution.



A thought experiment

Run the resolution algorithm.

For each new clause generated, ask if the corresponding inequality is
superfluous or essential (i.e. not derivable as a non-negative combination
of the previous inequalities).

Unless the previous inequalities have only vectors with all ±1 co-ordinates
as extreme points, an essential constraint must get generated during the
course of the algorithm since resolution is a complete method.

This leads us to the following question: Which sequence of clauses when
joined, yields an essential constraint, and is such that no subsequence has
the same property?

To understand this, we introduce the concepts of paths, walks, cycles, etc.
formed by subformulas in a SAT problem.



Paths and cycles

(Open) Path:

Consider a sequence of clauses of the following type:
l1 ∨ l2 ∨ l3, l3 ∨ l4 ∨ l5, l5 ∨ l6 ∨ l7, . . . , l2k−1 ∨ l2k ∨ l2k+1

where each li is a literal based on a distinct variable.

For any two consecutive clauses in the sequence, the last literal of the
earlier clause and the first literal of the latter clause are complementary.

The above sequence yields the following joined clause:
l1 ∨ l2 ∨ l4 ∨ l6 ∨ . . . ∨ l2k ∨ l2k+1

and the corresponding inequality is superfluous.

(Ordinary) Cycle:

If l2k+1 = l1 above, then we can join the two ends by normal rules of
joining, but the joined clause of the sequence is a tautology (always true)
due to the presence of l1 and l1.



Mobius cycles

Consider the above sequence of clauses again:
l1 ∨ l2 ∨ l3, l3 ∨ l4 ∨ l5, l5 ∨ l6 ∨ l7, . . . , l2k−1 ∨ l2k ∨ l2k+1

If l2k+1 = l1, then the joined clause of the sequence contains two copies of
l1, but we need only one. Hence, the joined clause is equivalent to
l1 ∨ l2 ∨ l4 ∨ l6 ∨ . . . ∨ l2k .

Corresponding inequality

v(l1) + v(l2) + v(l4) + . . .+ v(l2k ) ≥ −k + 1

where

v(l) =

{
x if l = x

−x if l = x̄

This is sharper than the inequality implied by the sum of the constituent
inequalities, namely

2 · v(l1) + v(l2) + v(l4) + . . .+ v(l2k ) ≥ −k



Mobius cycles (Contd.)

We call the cycles of the kind referred to above as “mobius cycles”.

The mobius cycles are the only mechanism giving rise to new sharper
inequalities.

If there were no mobius cycles, then solving the L.P. corresponding to the
SAT problem is sufficient to solve the latter.

In other words, the special classes of SAT formulas in which mobius cycles
are forbidden as subformulas, can be solved in polynomial time.



Computing the effect of mobius cycles in the continuum model

The total number of mobius cycles in the original formula can be
exponentially large, but we can compute their net effect in polynomial
time.

The method is similar to the one used for odd cycles in the maximum
independent set problem, except that we construct a directed graph as
explained below.

2n nodes corresponding to the literals x1, x1, x2, x2, . . . , xn , xn .

Let C = l1 ∨ l2 ∨ l3 be a clause.

Inequality corresponding to this clause C

v(l1) + v(l2) + v(l3) ≥ −1

Slack variable s = 1 + v(l1) + v(l2) + v(l3)

ψC (s) = e−z ·s = e−z · ez [v(l1)+v(l2)+v(l3)]



Computing the effect of mobius cycles in the continuum model

Corresponding to C , put the following 6 edges in the graph.

(l1, l2), (l1, l3), (l2, l3)

(l1, l2), (l1, l3), (l2, l3)

Each of the 6 edges corresponding to clause C is labelled with ψC (s).

Construct a “clause matrix”A(z , x)

Aij =


sum of all ψC (s) of all parallel edges

between i and j if any

0 otherwise

Note that the clause matrix is not symmetric

A(i , j ) 6= A(j , i)

but it has another kind of symmetry

A(i , j ) = A(j̄ , ī)



Closed form expression for combined effect of all mobius cycles

As before, we permit self-intersecting, directed, closed walks and thereby
include the effect of “useless but harmless” inequalities. This leads to
closed form expression for the combined effect as before.

Consider a mobius cycle l1 ∨ l2 ∨ l3, l3 ∨ l4 ∨ l5, l5 ∨ l6 ∨ l7,
. . . , l2k−1 ∨ l2k ∨ l1

Let s and s̃ be the slack variables for the implied and sharper inequalities
respectively.
s = k + 2 · v(l1) + v(l2) + v(l4) + . . .+ v(l2k )
s̃ = k − 1 + v(l1) + v(l2) + v(l4) + . . .+ v(l2k )
s − s̃ = 1 + v(l1)

ez ·(s−s̃) = ez [1+v(l1)]

ψ(s̃) = e−z ·s̃ = e−z ·s · ez [1+v(l1)] = ez [1+v(l1)] · ψ(s)

The factor ez [1+v(l1)] is associated with a special edge from l1 to l1.
Traversing this edge differentiates mobius cycles from ordinary cycles.



Closed form expression for combined effect of all mobius cycles (Contd.)

Construct “mobius completion matrix”Mc from special edges as follows:

MC (z , x)i ,̄i = ez [1−xi ]

MC (z , x)ī,i = ez [1+xi ]

MC (z , x)i,j = 0 if j 6= ī {Note:̄̄i = i}
Define walk matrix B(z , x) as before, except that we include all walks
(odd and even) upto length kmax , where kmax = number of clauses.

B(z , x) =

k=kmax∑
k=2

Ak (z , x)

2k

For each walk, there is a “mirror-image” walk obtained by complementing
all the nodes in t he walk, hence factor of 2 in the denominator
Multiplication by Mc also achieves the transition from implied to sharper
inequalities. The combined effect is given by

φ(z , x) = tr{Mc(z , x) · B(z , x)}

Lengths of mobius cycles have expontential effect on resolution. In
contrast, we are able to include the effect of mobius cycles of all lengths in
polynomial number of operations.


