Directed cycle double covers and cut-obstacles

Andrea Jiménez

University of São Paulo

Joint work with Martin Loebl

DCDC conjecture

Consider an undirected graph G

DCDC conjecture

Consider an undirected graph G
Cycle double cover (CDC): set of cycles of G covering edges exactly twice

DCDC conjecture

Consider an undirected graph G

Cycle double cover (CDC): set of cycles of G covering edges exactly twice

DCDC conjecture

Consider an undirected graph G

Cycle double cover (CDC): set of cycles of G covering edges exactly twice
Directed cycle double cover (DCDC): CDC + orientations

DCDC conjecture

Consider an undirected graph G

Cycle double cover (CDC): set of cycles of G covering edges exactly twice
Directed cycle double cover (DCDC): CDC + orientations

DCDC conjecture

Consider an undirected graph G

Cycle double cover (CDC): set of cycles of G covering edges exactly twice
Directed cycle double cover (DCDC): CDC + orientations

DCDC conjecture

Consider an undirected graph G

Cycle double cover (CDC): set of cycles of G covering edges exactly twice Directed cycle double cover (DCDC): CDC + orientations

DCDC Conjecture [Jaeger - 1985]

Every bridgeless graph has a DCDC.

DCDC conjecture

Consider an undirected graph G

Cycle double cover (CDC): set of cycles of G covering edges exactly twice Directed cycle double cover (DCDC): CDC + orientations

DCDC Conjecture [Jaeger - 1985]

Every bridgeless graph has a DCDC.

CDC Conjecture [Seymour, Szekeres ~ 1975?]

Every bridgeless graph has a CDC.

DCDC conjecture

Consider an undirected graph G

Cycle double cover (CDC): set of cycles of G covering edges exactly twice Directed cycle double cover (DCDC): CDC + orientations

DCDC Conjecture [Jaeger - 1985]

Every bridgeless graph has a DCDC.

CDC Conjecture [Seymour, Szekeres ~ 1975?]

Every bridgeless graph has a CDC.

DCDC conjecture

Consider an undirected graph G

Cycle double cover (CDC): set of cycles of G covering edges exactly twice Directed cycle double cover (DCDC): CDC + orientations

DCDC Conjecture [Jaeger - 1985]
Every bridgeless graph has a DCDC.

CDC Conjecture [Seymour, Szekeres ~ 1975?]
Every bridgeless graph has a CDC.

DCDC conjecture

Consider an undirected graph G

Cycle double cover (CDC): set of cycles of G covering edges exactly twice Directed cycle double cover (DCDC): CDC + orientations

DCDC Conjecture [Jaeger - 1985]

Every bridgeless graph has a DCDC.

CDC Conjecture [Seymour, Szekeres ~ 1975?]
Every bridgeless graph has a CDC.

Related work

- minimum counterexample to the DCDC conjecture: cubic, cyclically 4-edge-connected, non 3-edge-colorable.
- DCDC conjecture holds in:
* bridgeless planar graphs,
\star graphs with a nowhere-zero 4-flow (Jaeger, Tutte, ≤ 1979),
* 2-connected projective-planar graphs (Ellingham \& Zha, 2011),
* lean fork graphs (J. \& Loebl, 2013+).
- Topological approach to the DCDC conjecture (Jaeger, 1979).

A trigraph H is a cubic graph with ear decomposition

$$
H_{0}, L_{1} \ldots, L_{n}
$$

s.t. H_{0} is a cycle, L_{i} is a k-ear with $k \in\{1,2,3\}$ or a star.

- ear $:=$ star or path
- k-ear $:=$ path with k internal vertices

A trigraph H is a cubic graph with ear decomposition

$$
H_{0}, L_{1} \ldots, L_{n}
$$

s.t. H_{0} is a cycle, L_{i} is a k-ear with $k \in\{1,2,3\}$ or a star.

- ear $:=$ star or path
- k-ear $:=$ path with k internal vertices

Example:
star

3-ear

2-ear

1-ear
starting cycle

A trigraph H is a cubic graph with ear decomposition

$$
H_{0}, L_{1} \ldots, L_{n}
$$

s.t. H_{0} is a cycle, L_{i} is a k-ear with $k \in\{1,2,3\}$ or a star.

- ear $:=$ star or path
- k-ear $:=$ path with k internal vertices

Example:

$$
\begin{aligned}
& \text { star } \\
& 3 \text {-ear } \\
& 2 \text {-ear } \\
& \text { 1-ear } \\
& \text { starting cycle }
\end{aligned}
$$

A trigraph H is a cubic graph with ear decomposition

$$
H_{0}, L_{1} \ldots, L_{n}
$$

s.t. H_{0} is a cycle, L_{i} is a k-ear with $k \in\{1,2,3\}$ or a star.

- ear $:=$ star or path
- k-ear $:=$ path with k internal vertices

Example:

A trigraph H is a cubic graph with ear decomposition

$$
H_{0}, L_{1} \ldots, L_{n}
$$

s.t. H_{0} is a cycle, L_{i} is a k-ear with $k \in\{1,2,3\}$ or a star.

- ear $:=$ star or path
- k-ear $:=$ path with k internal vertices

Example:

A trigraph H is a cubic graph with ear decomposition

$$
H_{0}, L_{1} \ldots, L_{n}
$$

s.t. H_{0} is a cycle, L_{i} is a k-ear with $k \in\{1,2,3\}$ or a star.

- ear $:=$ star or path
- k-ear $:=$ path with k internal vertices

Example:

Trigraph conjecture

Every robust trigraph admits a reduction process avoiding cut-obstacles.

Theorem [J. \& Loebl, 2014+]

Our "trigraph conjecture" implies general DCDC conjecture.

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.
Reduction process and cut-obstacles:

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Mixed graph $(V, E, A, R) \quad R:=$ forbidden pairs of arcs in a DCDC

Trigraph conjecture

Every robust trigraph admits a reduction process avoiding cut-obstacles.

Proposition

In general, reductions of stars, 1-ears and 2-ears always exist!!
In robust trigraphs (because of definition of robust), reductions of 3-ears always exist!!

Weak trigraph conjecture

In the closure of each robust trigraph, there exists a trigraph that admits a reduction process avoiding cut-obstacles.

Theorem [J. \& Loebl, 2014+]
The "weak trigraph conjecture" implies general DCDC conjecture.

Weak trigraph conjecture

In the closure of each robust trigraph, there exists a trigraph that admits a reduction process avoiding cut-obstacles.

Theorem [J. \& Loebl, 2014+]

The "weak trigraph conjecture" implies general DCDC conjecture.

Closure of a robust trigraph

Given trigraph H, \mathcal{H}. A trigraph $H^{\prime}, \mathcal{H}^{\prime}$ is in the closure of H, \mathcal{H} if $H^{\prime}, \mathcal{H}^{\prime}$ is obtained from H, \mathcal{H} by a sequence of the following two operations:

- Modification of \mathcal{H} up to starting cycle and a fixed subset S of ears.
- A local exchange of edges (H^{\prime} is not necessarily isomorphic to H).

Weak trigraph conjecture

In the closure of each robust trigraph, there exists a trigraph that admits a reduction process avoiding cut-obstacles.

Theorem [J. \& Loebl, 2014+]

The "weak trigraph conjecture" implies general DCDC conjecture.

Closure of a robust trigraph

Given trigraph H, \mathcal{H}. A trigraph $H^{\prime}, \mathcal{H}^{\prime}$ is in the closure of H, \mathcal{H} if $H^{\prime}, \mathcal{H}^{\prime}$ is obtained from H, \mathcal{H} by a sequence of the following two operations:

- Modification of \mathcal{H} up to starting cycle and a fixed subset S of ears.
- A local exchange of edges $\left(H^{\prime}\right.$ is not necessarily isomorphic to H).

Proposition

Our conjecture holds in the class of planar trigraphs and for trigraphs that admit special embeddings into orientable surfaces.

Sketch of Proof

"Trigraph conjecture implies general DCDC conjecture".

Sketch of Proof

"Trigraph conjecture implies general DCDC conjecture".

Consider G bridgeless cubic graph \& an ear decomposition of G.

Proposition

Complete reduction process of G constructs a DCDC of G.

Sketch of Proof

"Trigraph conjecture implies general DCDC conjecture".

Consider G bridgeless cubic graph \& an ear decomposition of G.

Proposition

Complete reduction process of G constructs a DCDC of G.

Main Lemma (Construction)

There exists a trigraph $H(G)$ such that:

- Reduction process of $H(G)$ without cut-obstacles encodes complete reduction process of G.
- If G is 3-connected, then $H(G)$ is a robust trigraph.

Sketch of Proof

"Trigraph conjecture implies general DCDC conjecture".

Consider G bridgeless cubic graph \& an ear decomposition of G.

Proposition

Complete reduction process of G constructs a DCDC of G.

Main Lemma (Construction)

There exists a trigraph $H(G)$ such that:

- Reduction process of $H(G)$ without cut-obstacles encodes complete reduction process of G.
- If G is 3-connected, then $H(G)$ is a robust trigraph.

Key ingredient in the construction of $H(G)$ are: basic gadgets

$\mathrm{G} \longrightarrow \mathrm{H}(\mathrm{G})$

BASIC GADGET

$\mathrm{G} \longrightarrow \mathrm{H}(\mathrm{G})$

$\mathrm{G} \longrightarrow \mathrm{H}(\mathrm{G})$

BASIC GADGET

$\mathrm{G} \longrightarrow \mathrm{H}(\mathrm{G})$

BASIC GADGET

Thank you!

