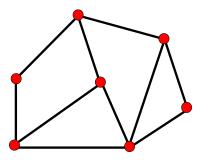
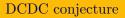
Directed cycle double covers and cut-obstacles

Andrea Jiménez

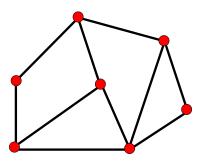
University of São Paulo

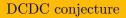
Joint work with Martin Loebl



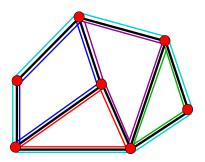


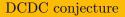
Cycle double cover (CDC): set of cycles of G covering edges exactly twice



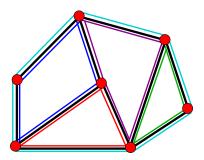


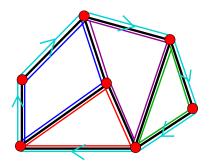
Cycle double cover (CDC): set of cycles of G covering edges exactly twice

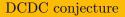




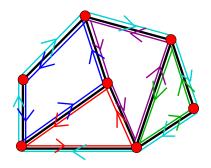
Consider an undirected graph G



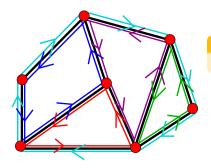




Consider an undirected graph G



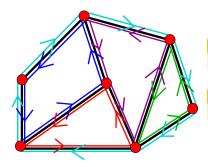
Cycle double cover (CDC): set of cycles of G covering edges exactly twice Directed cycle double cover (DCDC): CDC + orientations



DCDC Conjecture [Jaeger – 1985]

Every bridgeless graph has a DCDC.

Cycle double cover (CDC): set of cycles of G covering edges exactly twice Directed cycle double cover (DCDC): CDC + orientations

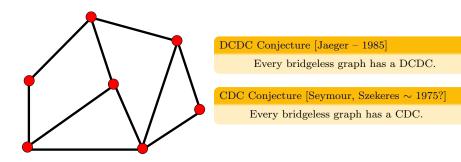


DCDC Conjecture [Jaeger - 1985]

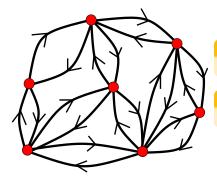
Every bridgeless graph has a DCDC.

CDC Conjecture [Seymour, Szekeres ~ 1975 ?]

Every bridgeless graph has a CDC.



Cycle double cover (CDC): set of cycles of G covering edges exactly twice Directed cycle double cover (DCDC): CDC + orientations



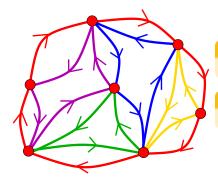
DCDC Conjecture [Jaeger – 1985]

Every bridgeless graph has a DCDC.

CDC Conjecture [Seymour, Szekeres ~ 1975 ?]

Every bridgeless graph has a CDC.

Cycle double cover (CDC): set of cycles of G covering edges exactly twice Directed cycle double cover (DCDC): CDC + orientations



DCDC Conjecture [Jaeger – 1985]

Every bridgeless graph has a DCDC.

CDC Conjecture [Seymour, Szekeres ~ 1975 ?]

Every bridgeless graph has a CDC.

- minimum counterexample to the DCDC conjecture: cubic, cyclically 4-edge-connected, non 3-edge-colorable.
- DCDC conjecture holds in:
 - $\star\,$ bridgeless planar graphs,
 - $\star\,$ graphs with a nowhere-zero 4-flow (Jaeger, Tutte, \leq 1979),
 - $\star\,$ 2-connected projective-planar graphs (Ellingham & Zha, 2011),
 - \star lean fork graphs (J. & Loebl, 2013+).
- Topological approach to the DCDC conjecture (Jaeger, 1979).

A trigraph ${\cal H}$ is a cubic graph with ear decomposition

 $H_0, L_1 \ldots, L_n$

s.t. H_0 is a cycle, L_i is a k-ear with $k \in \{1, 2, 3\}$ or a star.

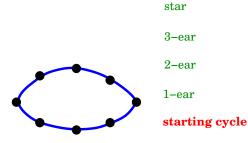
- ear := star or path
- k-ear := path with k internal vertices

A trigraph ${\cal H}$ is a cubic graph with ear decomposition

 $H_0, L_1 \ldots, L_n$

s.t. H_0 is a cycle, L_i is a k-ear with $k \in \{1, 2, 3\}$ or a star.

- \bullet ear := star or path
- k-ear := path with k internal vertices

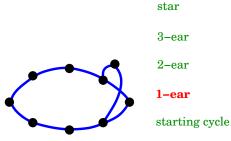


A trigraph ${\cal H}$ is a cubic graph with ear decomposition

 $H_0, L_1 \ldots, L_n$

s.t. H_0 is a cycle, L_i is a k-ear with $k \in \{1, 2, 3\}$ or a star.

- \bullet ear := star or path
- k-ear := path with k internal vertices



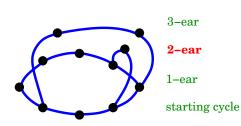
A trigraph H is a cubic graph with ear decomposition

 $H_0, L_1 \ldots, L_n$

s.t. H_0 is a cycle, L_i is a k-ear with $k \in \{1, 2, 3\}$ or a star.

star

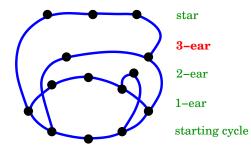
- \bullet ear := star or path
- k-ear := path with k internal vertices



A trigraph H is a cubic graph with ear decomposition $H_0, L_1 \dots, L_n$

s.t. H_0 is a cycle, L_i is a k-ear with $k \in \{1, 2, 3\}$ or a star.

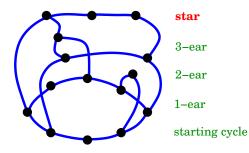
- ear := star or path
- k-ear := path with k internal vertices



A trigraph H is a cubic graph with ear decomposition $H_0, L_1 \dots, L_n$

s.t. H_0 is a cycle, L_i is a k-ear with $k \in \{1, 2, 3\}$ or a star.

- ear := star or path
- k-ear := path with k internal vertices

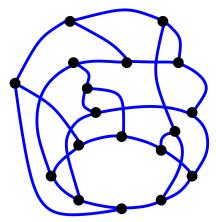


Every robust trigraph admits a reduction process avoiding cut-obstacles.

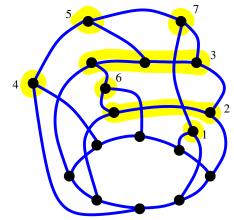
Theorem [J. & Loebl, 2014+]

Our "trigraph conjecture" implies general DCDC conjecture.

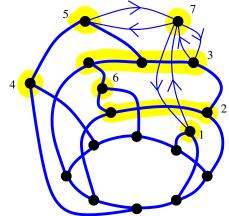
Every robust trigraph admits a reduction process avoiding cut-obstacles.



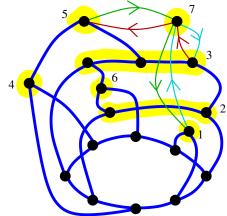
Every robust trigraph admits a reduction process avoiding cut-obstacles.



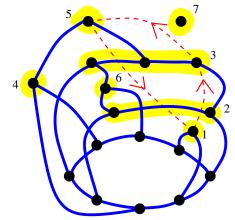
Every robust trigraph admits a reduction process avoiding cut-obstacles.



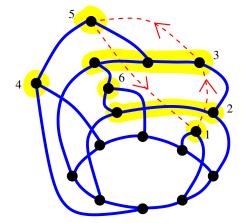
Every robust trigraph admits a reduction process avoiding cut-obstacles.



Every robust trigraph admits a reduction process avoiding cut-obstacles.

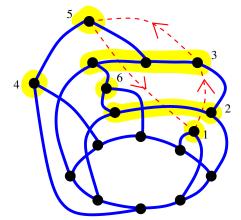


Every robust trigraph admits a reduction process avoiding cut-obstacles.



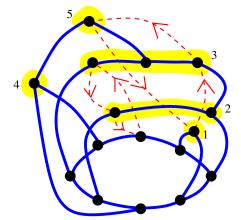
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



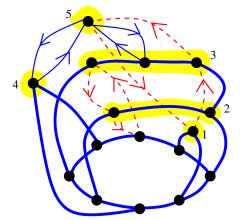
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



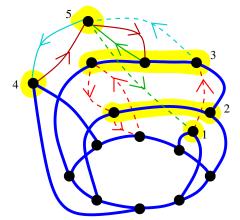
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



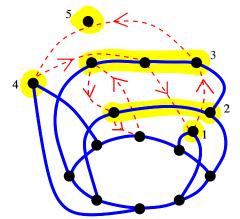
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



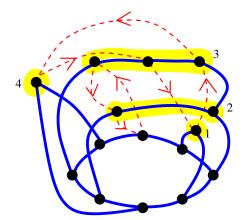
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



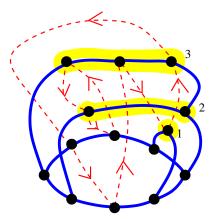
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



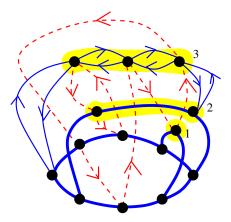
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



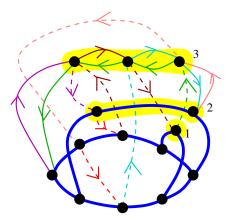
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



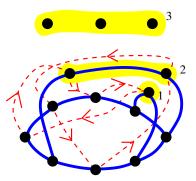
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



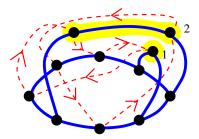
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



Every robust trigraph admits a reduction process avoiding cut-obstacles.

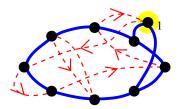
Reduction process and cut-obstacles:



Mixed graph (V, E, A, R) R:=forbidden pairs of arcs in a DCDC

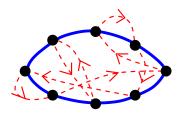
Every robust trigraph admits a reduction process avoiding cut-obstacles.

Reduction process and cut-obstacles:



Mixed graph (V, E, A, R) R:=forbidden pairs of arcs in a DCDC

Every robust trigraph admits a reduction process avoiding cut-obstacles.



Mixed graph (V, E, A, R) R:=forbidden pairs of arcs in a DCDC

Every robust trigraph admits a reduction process avoiding cut-obstacles.

Proposition

In general, reductions of stars, 1-ears and 2-ears always exist!! In robust trigraphs (because of definition of robust), reductions of 3-ears always exist!!

Weak trigraph conjecture

In the <u>closure</u> of each <u>robust trigraph</u>, there exists a trigraph that admits a reduction process avoiding cut-obstacles.

Theorem [J. & Loebl, 2014+]

The "weak trigraph conjecture" implies general DCDC conjecture.

Weak trigraph conjecture

In the closure of each robust trigraph, there exists a trigraph that admits a reduction process avoiding cut-obstacles.

Theorem [J. & Loebl, 2014+]

The "weak trigraph conjecture" implies general DCDC conjecture.

Closure of a robust trigraph

Given trigraph H, \mathcal{H} . A trigraph H', \mathcal{H}' is in the closure of H, \mathcal{H} if H', \mathcal{H}' is obtained from H, \mathcal{H} by a sequence of the following two operations:

- Modification of \mathcal{H} up to starting cycle and a fixed subset S of ears.
- A local exchange of edges (H' is not necessarily isomorphic to H).

Weak trigraph conjecture

In the closure of each robust trigraph, there exists a trigraph that admits a reduction process avoiding cut-obstacles.

Theorem [J. & Loebl, 2014+]

The "weak trigraph conjecture" implies general DCDC conjecture.

Closure of a robust trigraph

Given trigraph H, \mathcal{H} . A trigraph H', \mathcal{H}' is in the closure of H, \mathcal{H} if H', \mathcal{H}' is obtained from H, \mathcal{H} by a sequence of the following two operations:

- Modification of \mathcal{H} up to starting cycle and a fixed subset S of ears.
- A local exchange of edges (H' is not necessarily isomorphic to H).

Proposition

Our conjecture holds in the class of planar trigraphs and for trigraphs that admit special embeddings into orientable surfaces.

Consider G bridgeless cubic graph & an ear decomposition of G.

Proposition

Complete reduction process of G constructs a DCDC of G.

Consider G bridgeless cubic graph & an ear decomposition of G.

Proposition

Complete reduction process of G constructs a DCDC of G.

Main Lemma (Construction)

There exists a trigraph H(G) such that:

- Reduction process of H(G) without cut-obstacles encodes complete reduction process of G.
- If G is 3-connected, then H(G) is a robust trigraph.

Consider G bridgeless cubic graph & an ear decomposition of G.

Proposition

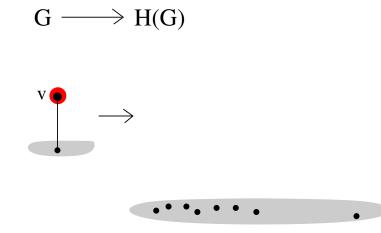
Complete reduction process of G constructs a DCDC of G.

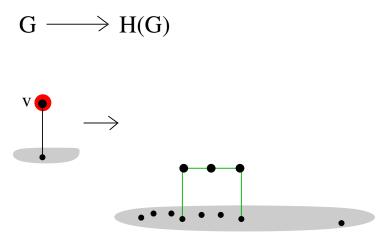
Main Lemma (Construction)

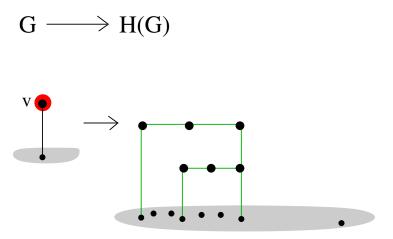
There exists a trigraph H(G) such that:

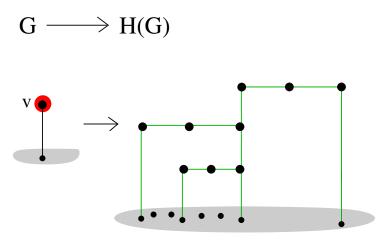
- Reduction process of H(G) without cut-obstacles encodes complete reduction process of G.
- If G is 3-connected, then H(G) is a robust trigraph.

Key ingredient in the construction of H(G) are: basic gadgets

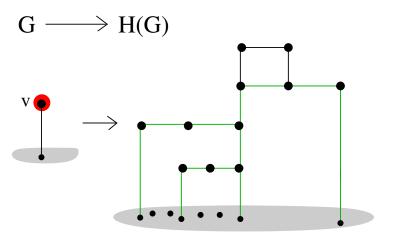


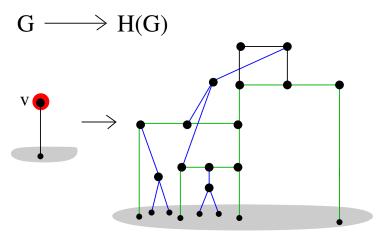


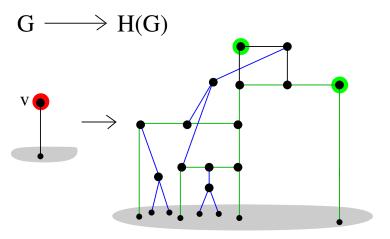




BASIC GADGET







Thank you!