Toughness and Kronecker Product of Graphs

Authors: Dr. Daniel A. Jaume

Departamento de Matemáticas
Universidad Nacional de San Luis, Argentina

FoCM 2014 Conference
Montevideo, Uruguay

December 11, 2014

1djaume@unsl.edu.ar
Given a connected graph G we ask:

1. (Minimum) size of a vertex cut set $S \subset V(G)$
2. Number of remaining connected components $k(G - S)$
3. Size of the largest connected component $m(G - S)$
Given a connected graph G we ask:

1. (minimum) size of a vertex cut set $S \subseteq V(G)$
2. number of remaining connected components $k(G - S)$
3. size of the largest connected component $m(G - S)$
Given a connected graph G we ask:

1. (minimum) size of a vertex cut set $S \subset V(G)$
2. number of remaining connected components $k(G - S)$
3. size of the largest connected component $m(G - S)$
(Vertex) Vulnerability parameters

192? **connectivity**, \(\kappa(G) \), deal with 1

1973 Chvátal’s **toughness**, \(t(G) \), deal with 1 and 2.

1978 Jung’s **scattering number**, \(sc(G) \), deal with 1 and 2.

1987 Barefoot-Entringer-Swart’s **integrity**, \(I(G) \), deal with 1 and 3.

1992 Cozzens-Moazzami-Stueckle’s **tenacity**, \(T(G) \), deal with 1, 2 and 3.

2004 Li-Zhang-Li’s **rupture degree**, \(r(G) \), deal with 1, 2 and 3.
192? **connectivity**, $\kappa(G)$, deal with 1

1973 Chvátal’s **toughness**, $t(G)$, deal with 1 and 2.

1978 Jung’s scattering **number**, $sc(G)$, deal with 1 and 2.

1987 Barefoot-Entringer-Swart’s **integrity**, $I(G)$, deal with 1 and 3.

1992 Cozzens-Moazzami-Stueckle’s **tenacity**, $T(G)$, deal with 1, 2 and 3.

2004 Li-Zhang-Li’s **rupture degree**, $r(G)$, deal with 1, 2 and 3.
192? **connectivity**, $\kappa(G)$, deal with 1
1973 Chvátal’s **toughness**, $t(G)$, deal with 1 and 2.
1978 Jung’s **scattering number**, $sc(G)$, deal with 1 and 2.
1987 Barefoot-Entringer-Swart’s **integrity**, $I(G)$, deal with 1 and 3.
1992 Cozzens-Moazzami-Stueckle’s **tenacity**, $T(G)$, deal with 1, 2 and 3.
2004 Li-Zhang-Li’s **rupture degree**, $r(G)$, deal with 1, 2 and 3.
(Vertex) Vulnerability parameters

192? **connectivity**, $\kappa(G)$, deal with 1

1973 Chvátal’s **toughness**, $t(G)$, deal with 1 and 2.

1978 Jung’s **scattering number**, $sc(G)$, deal with 1 and 2.

1987 Barefoot-Entringer-Swart’s **integrity**, $I(G)$, deal with 1 and 3.

1992 Cozzens-Moazzami-Stueckle’s **tenacity**, $T(G)$, deal with 1, 2 and 3.

2004 Li-Zhang-Li’s **rupture degree**, $r(G)$, deal with 1, 2 and 3.
(Vertex) Vulnerability parameters

192? connectivity, $\kappa(G)$, deal with 1
1973 Chvátal’s toughness, $t(G)$, deal with 1 and 2.
1978 Jung’s scattering number, $sc(G)$, deal with 1 and 2.
1987 Barefoot-Entringer-Swart’s integrity, $I(G)$, deal with 1 and 3.
1992 Cozzens-Moazzami-Stueckle’s tenacity, $T(G)$, deal with 1, 2 and 3.
2004 Li-Zhang-Li’s rupture degree, $r(G)$, deal with 1, 2 and 3.
(Vertex) Vulnerability parameters

192? connectivity, $\kappa(G)$, deal with 1.
1973 Chvátal’s toughness, $t(G)$, deal with 1 and 2.
1978 Jung’s scattering number, $sc(G)$, deal with 1 and 2.
1987 Barefoot-Entringer-Swart’s integrity, $I(G)$, deal with 1 and 3.
1992 Cozzens-Moazzami-Stueckle’s tenacity, $T(G)$, deal with 1, 2 and 3.
2004 Li-Zhang-Li’s rupture degree, $r(G)$, deal with 1, 2 and 3.
Toughness

Definition

Given a connected non-complete graph G, the toughness of G is:

$$t(G) := \min \frac{|S|}{k(G - S)}$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $t(K_n) := +\infty$

Example

- $t(C_n) = 1$, $n \geq 3$.
- $t(K_{k, n-k}) = \frac{k}{n-k}$, where $1 \leq k \leq \frac{n}{2}$.
- $t($Petersen graph$) = \frac{4}{3}$.
- Every Hamiltonian graph have toughness at least 1.
Toughness

Definition

Given a connected non-complete graph G, the toughness of G is:

$$t(G) := \min \frac{|S|}{k(G - S)}$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$.

By definition $t(K_n) := +\infty$

Example

- $t(C_n) = 1, \ n \geq 3$.
- $t(K_{k,n-k}) = \frac{k}{n-k}, \text{ where } 1 \leq k \leq \frac{n}{2}$.
- $t($Petersen graph$) = \frac{4}{3}$.
- Every Hamiltonian graph have toughness at least 1.
Definition

Given a connected non-complete graph G, the **toughness** of G is:

$$t(G) := \min \frac{|S|}{k(G - S)}$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $t(K_n) := +\infty$

Example

- $t(C_n) = 1, \ n \geq 3$.
- $t(K_{k,n-k}) = \frac{k}{n-k}$, where $1 \leq k \leq \frac{n}{2}$.
- $t($Petersen graph$) = \frac{4}{3}$.
- Every Hamiltonian graph have toughness at least 1.
Toughness

Definition

Given a connected non-complete graph G, the **toughness** of G is:

$$t(G) := \min \frac{|S|}{k(G - S)}$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $t(K_n) := +\infty$

Example

- $t(C_n) = 1, \ n \geq 3$.
- $t(K_k,n-k) = \frac{k}{n-k}$, where $1 \leq k \leq \frac{n}{2}$.
- $t($Petersen graph$) = \frac{4}{3}$.
- Every Hamiltonian graph have toughness at least 1.
Toughness

Definition

Given a connected non-complete graph G, the toughness of G is:

$$t(G) := \min \frac{|S|}{k(G - S)}$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $t(K_n) := +\infty$

Example

- $t(C_n) = 1, \ n \geq 3$.
- $t(K_k,n-k) = \frac{k}{n-k}$, where $1 \leq k \leq \frac{n}{2}$.
- $t($Petersen graph$) = \frac{4}{3}$.
- Every Hamiltonian graph have toughness at least 1.
Scattering number

Definition

Given a connected non-complete graph G, the **scattering number** of G is:

$$sc(G) := \max \{ k(G - S) - |S| \}$$

where the maximum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $sc(K_n) := -\infty$.

Example

- $sc(C_n) = 0$, for $n \geq 4$.
- $sc(P_n) = 1$, for $n \geq 3$.
- $sc(K_{m,n}) = n - m$, if $m \leq n$ and $n \geq 2$.
Scattering number

Definition

Given a connected non-complete graph \(G \), the scattering number of \(G \) is:

\[
\text{sc}(G) := \max \{ k(G - S) - |S| \}
\]

where the maximum is taken over all the vertex-cut sets \(S \subset V(G) \). By definition \(\text{sc}(K_n) := -\infty \)

Example

- \(\text{sc}(C_n) = 0 \), for \(n \geq 4 \).
- \(\text{sc}(P_n) = 1 \), for \(n \geq 3 \).
- \(\text{sc}(K_{m,n}) = n - m \), if \(m \leq n \) and \(n \geq 2 \).
Scattering number

Definition

Given a connected non-complete graph G, the scattering number of G is:

$$sc(G) := \max \{k(G - S) - |S|\}$$

where the maximum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $sc(K_n) := -\infty$

Example

- $sc(C_n) = 0$, for $n \geq 4$.
- $sc(P_n) = 1$, for $n \geq 3$.
- $sc(K_{m,n}) = n - m$, if $m \leq n$ and $n \geq 2$.
Scattering number

Definition

Given a connected non-complete graph G, the scattering number of G is:

$$sc(G) := \max \{ k(G - S) - |S| \}$$

where the maximum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $sc(K_n) := -\infty$

Example

- $sc(C_n) = 0$, for $n \geq 4$.
- $sc(P_n) = 1$, for $n \geq 3$.
- $sc(K_{m,n}) = n - m$, if $m \leq n$ and $n \geq 2$.
Integrity

Definition

Given a connected non-complete graph G, the integrity of G is:

$$I(G) := \min\{|S| + m(G - S)|$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $I(K_n) := n$.

Example

- $I(P_n) = \lceil 2\sqrt{n+1} \rceil - 2$.
- $I(K_{m,n}) = 1 + \min\{m, n\}$.
Definition

Given a connected non-complete graph G, the integrity of G is:

$$I(G) := \min\{|S| + m(G - S)|$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $I(K_n) := n$.

Example

- $I(P_n) = \lceil 2\sqrt{n} + 1 \rceil - 2$.
- $I(K_{m,n}) = 1 + \min\{m, n\}$.
Definition

Given a connected non-complete graph G, the **integrity** of G is:

$$I(G) := \min\{|S| + m(G - S)\}$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $I(K_n) := n$.

Example

- $I(P_n) = \lceil 2\sqrt{n+1} \rceil - 2$.
- $I(K_{m,n}) = 1 + \min\{m, n\}$.
Tenacity

Definition

Given a connected non-complete graph G, the *tenacity* of G is

$$T(G) := \min \left\{ \frac{|S| + m(G - S)}{k(G - S)} \right\}$$

where the minimum is taken over all the vertex-cut sets $S \subseteq V(G)$. By definition $T(K_n) := n$.

Example

- $T(P_n) = 1$, if n is odd, and $T(P_n) = \frac{n+2}{n}$, if n is even.
- $T(C_n) = \frac{n+3}{n-1}$, if n is odd, and $T(P_n) = \frac{n+2}{n}$, if n is even.
- $T(K_{k,n-k}) = \frac{k+1}{n-k}$, for $1 \leq k \leq \frac{n}{2}$.
Tenacity

Definition

Given a connected non-complete graph G, the **tenacity** of G is

$$T(G) := \min \left\{ \frac{|S| + m(G - S)}{k(G - S)} \right\}$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $T(K_n) := n$.

Example

- $T(P_n) = 1$, if n is odd, and $T(P_n) = \frac{n+2}{n}$, if n is even.
- $T(C_n) = \frac{n+3}{n-1}$, if n is odd, and $T(P_n) = \frac{n+2}{n}$, if n is even.
- $T(K_{k,n-k}) = \frac{k+1}{n-k}$, for $1 \leq k \leq \frac{n}{2}$
Tenacity

Definition

Given a connected non-complete graph G, the **tenacity** of G is

$$T(G) := \min \left\{ \frac{|S| + m(G - S)}{k(G - S)} \right\}$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $T(K_n) := n$.

Example

- $T(P_n) = 1$, if n is odd, and $T(P_n) = \frac{n+2}{n}$, if n is even.
- $T(C_n) = \frac{n+3}{n-1}$, if n is odd, and $T(P_n) = \frac{n+2}{n}$, if n is even.
- $T(K_{k,n-k}) = \frac{k+1}{n-k}$, for $1 \leq k \leq \frac{n}{2}$
Tenacity

Definition

Given a connected non-complete graph G, the tenacity of G is

$$T(G) := \min \left\{ \frac{|S| + m(G - S)}{k(G - S)} \right\}$$

where the minimum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $T(K_n) := n$.

Example

- $T(P_n) = 1$, if n is odd, and $T(P_n) = \frac{n+2}{n}$, if n is even.
- $T(C_n) = \frac{n+3}{n-1}$, if n is odd, and $T(P_n) = \frac{n+2}{n}$, if n is even.
- $T(K_{k,n-k}) = \frac{k+1}{n-k}$, for $1 \leq k \leq \frac{n}{2}$
Rupture degree

Definition

Given a connected non-complete graph G, the **rupture degree** of G is

$$r(G) := \max \{ k(G - S) - |S| - m(G - S) \}$$

where the maximum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $r(K_n) := 1 - n$.

Example

- $r(P_n) = 0$, if n is odd, and $r(P_n) = -1$, if n is even.
- $r(C_n) = -2$, if n is odd, and $r(P_n) = -1$, if n is even.
- $r(K_{k,n-k}) = n - 2k - 1$, for $1 \leq k \leq \frac{n}{2}$
Rupture degree

Definition

Given a connected non-complete graph G, the **rupture degree** of G is

$$r(G) := \max \left\{ k(G - S) - |S| - m(G - S) \right\}$$

where the maximum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $r(K_n) := 1 - n$.

Example

- $r(P_n) = 0$, if n is odd, and $r(P_n) = -1$, if n is even.
- $r(C_n) = -2$, if n is odd, and $r(P_n) = -1$, if n is even.
- $r(K_{k,n-k}) = n - 2k - 1$, for $1 \leq k \leq \frac{n}{2}$
Rupture degree

Definition
Given a connected non-complete graph G, the rupture degree of G is

$$r(G) := \max \{ k(G - S) - |S| - m(G - S) \}$$

where the maximum is taken over all the vertex-cut sets $S \subset V(G)$. By definition $r(K_n) := 1 - n$.

Example
- $r(P_n) = 0$, if n is odd, and $r(P_n) = -1$, if n is even.
- $r(C_n) = -2$, if n is odd, and $r(P_n) = -1$, if n is even.
- $r(K_{k,n-k}) = n - 2k - 1$, for $1 \leq k \leq \frac{n}{2}$
Rupture degree

Definition

Given a connected non-complete graph G, the **rupture degree** of G is

$$r(G) := \max \{ k(G - S) - |S| - m(G - S) \}$$

where the maximum is taken over all the vertex-cut sets $S \subset V(G)$.

By definition $r(K_n) := 1 - n$.

Example

- $r(P_n) = 0$, if n is odd, and $r(P_n) = -1$, if n is even.
- $r(C_n) = -2$, if n is odd, and $r(P_n) = -1$, if n is even.
- $r(K_{k,n-k}) = n - 2k - 1$, for $1 \leq k \leq \frac{n}{2}$
Kronecker Product

Definition

Let G, H be two graphs. The **Kronecker Product** of both is the graph (Nešetřil notation)

$$G \times H$$

with vertex set

$$V(G \times H) = V(G) \times V(H)$$

(Cartesian product of sets) and edge set

$$E(G \times H) = \{ \{(a, b), (a', b')\} \mid \{a, a'\} \in E(G), \{b, b'\} \in E(H) \}$$
Let \(n \) and \(m \) be integer with \(n \geq m \geq 2 \) and \(n \geq 3 \). Then:

1. \(t(K_m \times K_n) = m - 1 \)
2. \(sc(K_m \times K_n) = \begin{cases} 2 - (m - 1)(n - 1), & \text{if } m = n \\ 2n - mn, & \text{otherwise} \end{cases} \)
3. \(l(K_m \otimes K_n) = mn - n + 1 \)
4. \(T(K_m \otimes K_n) = m + \frac{1}{n} - 1 \)
5. \(r(K_m \otimes K_n) = ??? \)
Theorem

Let \(n \) \(y \) \(m \) be integer with \(n \geq m \geq 2 \) and \(n \geq 3 \). Then:

1. \(t(K_m \times K_n) = m - 1 \)
2. \(sc(K_m \times K_n) = \begin{cases} 2 - (m - 1)(n - 1), & \text{if } m = n \\ 2n - mn, & \text{otherwise} \end{cases} \)
3. \(I(K_m \otimes K_n) = mn - n + 1 \)
4. \(T(K_m \otimes K_n) = m + \frac{1}{n} - 1 \)
5. \(r(K_m \otimes K_n) = ??? \)
Theorem

Let $n \leq m \geq 2$ and $n \geq 3$. Then:

1. $t(K_m \times K_n) = m - 1$
2. $\text{sc}(K_m \times K_n) = \begin{cases} 2 - (m - 1)(n - 1), & \text{if } m = n \\ 2n - mn, & \text{otherwise} \end{cases}$
3. $I(K_m \otimes K_n) = mn - n + 1$
4. $T(K_m \otimes K_n) = m + \frac{1}{n} - 1$
5. $r(K_m \otimes K_n) = ???$
Theorem

Let \(n \) y \(m \) be integer with \(n \geq m \geq 2 \) and \(n \geq 3 \). Then:

1. \(t(K_m \times K_n) = m - 1 \)
2. \(sc(K_m \times K_n) = \begin{cases} 2 - (m - 1)(n - 1), & \text{if } m = n \\ 2n - mn, & \text{otherwise} \end{cases} \)
3. \(l(K_m \otimes K_n) = mn - n + 1 \)
4. \(T(K_m \otimes K_n) = m + \frac{1}{n} - 1 \)
5. \(r(K_m \otimes K_n) = ??? \)
Theorem

Let n and m be integers with $n \geq m \geq 2$ and $n \geq 3$. Then:

1. $t(K_m \times K_n) = m - 1$

2. $sc(K_m \times K_n) = \begin{cases} 2 - (m - 1)(n - 1), & \text{if } m = n \\ 2n - mn, & \text{otherwise} \end{cases}$

3. $l(K_m \otimes K_n) = mn - n + 1$

4. $T(K_m \otimes K_n) = m + \frac{1}{n} - 1$

5. $r(K_m \otimes K_n) = ???$
Mamut-Vumar-Problem

Problem (Mamut y Vumar (2007))

Determine good bounds for vulnerability parameters of $G \times H$, with G and H arbitrary connected graphs.
Our little result

Theorem

Let G be a connected non-complete graph such that $t(G) \geq \frac{n}{2}$, with $n \geq 3$. Then

$$t(G \times K_n) = n - 1$$
Definition

Let n be a positive integer greater than 1. The Unitary Cayley Graph X_n is defined as the graph with vertex set $V(X_n) = \{0, 1, \ldots, n - 1\}$ and edge set $E(X_n) = \{(a, b) \mid a, b \in \mathbb{Z}_n, \quad \gcd(a - b, n) = 1\}$.
Example: X_{10}

$U_{10} = \{1, 3, 7, 9\}$
Example: X_{10}

$$U_{10} = \{1, 3, 7, 9\}$$
Example: X_{10}

\[U_{10} = \{1, 3, 7, 9\} \]
Example: X_{10}

$U_{10} = \{1, 3, 7, 9\}$
Example: X_{10}

$U_{10} = \{1, 3, 7, 9\}$
Some properties of unitary Cayley Graphs were determined by Klotz and Sander [4]. Here, \(p_1(n) \) will denote the smallest prime number \(p \) such that \(p | n \).

Theorem

Let \(X_n \) be a Unitary Cayley Graph of order \(n \) then

1. the independence number \(\text{ind}(X_n) = \frac{n}{p_1(n)} \).
2. the vertex connectivity \(\kappa(X_n) = \varphi(n) \).
Some properties of unitary Cayley Graphs were determined by Klotz and Sander [4]. Here, \(p_1(n) \) will denote the smallest prime number \(p \) such that \(p|n \).

Theorem

Let \(X_n \) be a Unitary Cayley Graph of order \(n \) then

1. the independence number \(\text{ind}(X_n) = \frac{n}{p_1(n)} \).
2. the vertex connectivity \(\kappa(X_n) = \varphi(n) \).
Some properties of unitary Cayley Graphs were determined by Klotz and Sander [4]. Here, $p_1(n)$ will denote the smallest prime number p such that $p|n$.

Theorem

Let X_n be a Unitary Cayley Graph of order n then

1. the independence number $\text{ind}(X_n) = \frac{n}{p_1(n)}$.
2. the vertex connectivity $\kappa(X_n) = \varphi(n)$.
Some properties of unitary Cayley Graphs were determined by Klotz and Sander [4]. Here, $p_1(n)$ will denote the smallest prime number p such that $p|n$.

Theorem

Let X_n be a Unitary Cayley Graph of order n then

1. the independence number $\text{ind}(X_n) = \frac{n}{p_1(n)}$.
2. the vertex connectivity $\kappa(X_n) = \varphi(n)$.
Some properties of unitary Cayley Graphs were determined by Klotz and Sander [4]. Here, $p_1(n)$ will denote the smallest prime number p such that $p|n$.

Theorem

Let X_n be a Unitary Cayley Graph of order n then

1. the independence number $\text{ind}(X_n) = \frac{n}{p_1(n)}$.
2. the vertex connectivity $\kappa(X_n) = \varphi(n)$.
Theorem

Given \(n \in \mathbb{Z}^+ \), with prime factorization \(= p_1^{\alpha_1} \ldots p_k^{\alpha_k} \), where \(p_1 < \ldots < p_k \). Then

\[
X_n \cong X_{p_1^{\alpha_1}} \times \ldots \times X_{p_k^{\alpha_k}}
\]
Given \(n \in \mathbb{Z}^+ \), the \textbf{radical} of \(n \), denoted \(\text{rad}(n) \), is the greatest square-free divisor of \(n \).

Theorem

Let \(X_n \) be an Unitary Cayley Graph of order \(n \). Then

\[
t(X_n) \geq t(X_{\text{rad}(n)})
\]

Proof.

- Take a \(t \)-vertex-cut-set \(S \subset V(X_n) \).
- \(Z := \{ i \in \mathbb{Z}_{\text{rad}(n)} \mid \text{if } g \equiv i \mod \text{rad}(n), \text{then } g \in S \} \)
 - \(|S| \geq \frac{n}{\text{rad}(n)} |Z| \).
 - \(k(X_n - S) \leq k(X_{\text{rad}(n)} - Z) \).

\[
t(X_n) = \frac{|S|}{k(X_n - S)} \geq \frac{n}{\text{rad}(n)} \frac{|Z|}{k(X_{\text{rad}(n)} - Z)} \geq t(X_{\text{rad}(n)})
\]
radical bound

Given $n \in \mathbb{Z}^+$, the radical of n, denoted $\text{rad}(n)$, is the greatest square-free divisor of n.

Theorem

Let X_n be an Unitary Cayley Graph of order n. Then $t(X_n) \geq t(X_{\text{rad}(n)})$

Proof.

- Take a t-vertex-cut-set $S \subset V(X_n)$.
- $Z := \{i \in \mathbb{Z}_{\text{rad}(n)} | \text{if } g \equiv i \mod \text{rad}(n), \text{ then } g \in S\}$
 - $|S| \geq \frac{n}{\text{rad}(n)} |Z|$.
 - $k(X_n - S) \leq k(X_{\text{rad}(n)} - Z)$

\[
t(X_n) = \frac{|S|}{k(X_n - S)} \geq \frac{n}{\text{rad}(n)} \frac{|Z|}{k(X_{\text{rad}(n)} - Z)} \geq t(X_{\text{rad}(n)})
\]
radical bound

Given $n \in \mathbb{Z}^+$, the radical of n, denoted $\text{rad}(n)$, is the greatest square-free divisor of n.

Theorem

Let X_n be an Unitary Cayley Graph of order n. Then $t(X_n) \geq t(X_{\text{rad}(n)})$

Proof.

- Take a t-vertex-cut-set $S \subset V(X_n)$.
- $Z := \{i \in \mathbb{Z}_{\text{rad}(n)} \mid \text{if } g \equiv i \mod \text{rad}(n), \text{ then } g \in S\}$
 - $|S| \geq \frac{n}{\text{rad}(n)}|Z|$.
 - $k(X_n - S) \leq k(X_{\text{rad}(n)} - Z)$

\[
t(X_n) = \frac{|S|}{k(X_n - S)} \geq \frac{n}{\text{rad}(n)} \frac{|Z|}{k(X_{\text{rad}(n)} - Z)} \geq t(X_{\text{rad}(n)})
\]
radical bound

Given \(n \in \mathbb{Z}^+ \), the \textbf{radical} of \(n \), denoted \(\text{rad}(n) \), is the greatest square-free divisor of \(n \).

Theorem

Let \(X_n \) be an Unitary Cayley Graph of order \(n \). Then

\[
t(X_n) \geq t(X_{\text{rad}(n)})
\]

Proof.

- Take a \(t \)-vertex-cut-set \(S \subset V(X_n) \).
- \(Z := \{ i \in \mathbb{Z}_{\text{rad}(n)} \mid \text{if } g \equiv i \mod \text{rad}(n), \text{then } g \in S \} \)
 - \(|S| \geq \frac{n}{\text{rad}(n)} |Z| \).
 - \(k(X_n - S) \leq k(X_{\text{rad}(n)} - Z) \)

\[
t(X_n) = \frac{|S|}{k(X_n - S)} \geq \frac{n}{\text{rad}(n)} \frac{|Z|}{k(X_{\text{rad}(n)} - Z)} \geq t(X_{\text{rad}(n)})
\]
radical bound

Given $n \in \mathbb{Z}^+$, the radical of n, denoted $\text{rad}(n)$, is the greatest square-free divisor of n.

Theorem

Let X_n be an Unitary Cayley Graph of order n. Then $t(X_n) \geq t(X_{\text{rad}(n)})$

Proof.

1. Take a t-vertex-cut-set $S \subset V(X_n)$.
2. $Z := \{i \in \mathbb{Z}_{\text{rad}(n)}\ | \ g \equiv i \mod \text{rad}(n), \text{ then } g \in S\}$
 - $|S| \geq \frac{n}{\text{rad}(n)}|Z|$.
 - $k(X_n - S) \leq k(X_{\text{rad}(n)} - Z)$

$$t(X_n) = \frac{|S|}{k(X_n - S)} \geq \frac{n}{\text{rad}(n)} \frac{|Z|}{k(X_{\text{rad}(n)} - Z)} \geq t(X_{\text{rad}(n)})$$
radical bound

Given $n \in \mathbb{Z}^+$, the radical of n, denoted $\text{rad}(n)$, is the greatest square-free divisor of n.

Theorem

Let X_n be an Unitary Cayley Graph of order n. Then

$$t(X_n) \geq t(X_{\text{rad}(n)})$$

Proof.

- Take a t-vertex-cut-set $S \subset V(X_n)$.
- $Z := \{i \in \mathbb{Z}_{\text{rad}(n)} \mid \text{if } g \equiv i \text{ mod } \text{rad}(n), \text{ then } g \in S\}$
 - $|S| \geq \frac{n}{\text{rad}(n)}|Z|$.
 - $k(X_n - S) \leq k(X_{\text{rad}(n)} - Z)$

Then

$$t(X_n) = \frac{|S|}{k(X_n - S)} \geq \frac{n}{\text{rad}(n)} \frac{|Z|}{k(X_{\text{rad}(n)} - Z)} \geq t(X_{\text{rad}(n)})$$
First a very well known result about toughness

Theorem

For every non-complete graph G, \[\frac{\kappa(G)}{\text{ind}(G)} \leq t(G) \leq \frac{\kappa(G)}{2} \]

Now, a humble result of us:

Theorem

Let $p < q$ be prime numbers and S vertex-cut set with $|S| < pq - q$ then $k(X_{pq} - S) = 2$.
First a very well known result about toughness

Theorem

For every noncomplete graph G,

$$\frac{\kappa(G)}{\text{ind}(G)} \leq t(G) \leq \frac{\kappa(G)}{2}$$

Now, a humble result of us:

Theorem

Let $p < q$ be prime numbers and S vertex-cut set with $|S| < pq - q$ then $k(X_{pq} - S) = 2$.

Daniel A. Jaume, Adrián Pastine, Denis E. Videla

Vulnerability of Unitary Cayley Graphs
First a very well known result about toughness

Theorem

For every noncomplete graph G,

$$\frac{\kappa(G)}{\text{ind}(G)} \leq t(G) \leq \frac{\kappa(G)}{2}$$

Now, a humble result of us:

Theorem

Let $p < q$ be prime numbers and S vertex-cut set with $|S| < pq - q$ then $k(X_{pq} - S) = 2$.
Vulnerability of Unitary Cayley Graphs
Vulnerability of Unitary Cayley Graphs

Index Preliminaries Main Result UCG

[0]_3 [1]_3 [2]_3

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14
Vulnerability of Unitary Cayley Graphs
Toughness of UCG

Theorem

Let X_n be an Unitary Cayley Graph of order n. Then $t(X_n) = p_1(n) - 1$

Proof.

Assume that n is square-free.

Induction over the number of prime divisors of n

- $n = p_1 p_2$, and $S \subset V(X_n)$ a vertex-cut of X_n
- If $|S| < p_1 p_2 - p_2$, then $k(X_{p_1 p_2} - S) = 2$.

\[
\frac{|S|}{k(X_{p_1 p_2} - S)} \geq \frac{\kappa(X_{p_1 p_2})}{2} = \frac{(p_1 - 1)(p_2 - 1)}{2} \geq p_1 - 1
\]
Theorem

Let X_n be an Unitary Cayley Graph of order n. Then $t(X_n) = p_1(n) - 1$

Proof.

Assume that n is square-free.

Induction over the number of prime divisor of n

- $n = p_1p_2$, and $S \subset V(X_n)$ a vertices-cut of X_n

 - If $|S| < p_1p_2 - p_2$, then $k(X_{p_1p_2} - S) = 2$.

 \[
 \frac{|S|}{k(X_{p_1p_2} - S)} \geq \frac{\kappa(X_{p_1p_2})}{2} = \frac{(p_1 - 1)(p_2 - 1)}{2} \geq p_1 - 1
 \]
Theorem

Let X_n be an Unitary Cayley Graph of order n. Then

$$t(X_n) = p_1(n) - 1$$

Proof.

Assume that n is square-free.

Induction over the number of prime divisors of n

- $n = p_1 p_2$, and $S \subset V(X_n)$ a vertex-cut of X_n
- If $|S| < p_1 p_2 - p_2$, then $k(X_{p_1p_2} - S) = 2$.

$$\frac{|S|}{k(X_{p_1p_2} - S)} \geq \frac{\kappa(X_{p_1p_2})}{2} = \frac{(p_1 - 1)(p_2 - 1)}{2} \geq p_1 - 1$$
Theorem

Let X_n be an Unitary Cayley Graph of order n. Then $t(X_n) = p_1(n) - 1$

Proof.

Assume that n is square-free. Induction over the number of prime divisor of n

- $n = p_1p_2$, and $S \subset V(X_n)$ a vertex-cut of X_n
- If $|S| < p_1p_2 - p_2$, then $k(X_{p_1p_2} - S) = 2$.

$$\frac{|S|}{k(X_{p_1p_2} - S)} \geq \frac{\kappa(X_{p_1p_2})}{2} = \frac{(p_1 - 1)(p_2 - 1)}{2} \geq p_1 - 1$$
Proof.

- If $|S| \geq p_1p_2 - p_2$, then

 $$\frac{|S|}{k(X_{p_1p_2} - S)} \geq \frac{p_1p_2 - p_2}{\text{ind}(X_{p_1p_2})} = p_1 - 1$$

- $n = p_1p_2 \ldots p_{k+1}$ con $p_1 < \ldots < p_{k+1}$
- $X_n \cong X_{p_1} \times G$, where $G = X_{p_2} \times \ldots \times X_{p_{k+1}}$
- But $t(G) \geq p_2 - 1$ by induction hypothesis.
- Then, $t(X_{p_1} \times G) = p_1 - 1$.
- If n is non-square-free, as $t(X_{\text{rad}(n)}) \leq t(X_n) \leq p_1(n) - 1$, we are done!
Proof.

- If $|S| \geq p_1 p_2 - p_2$, then
 \[
 \frac{|S|}{k(X_{p_1 p_2} - S)} \geq \frac{p_1 p_2 - p_2}{\text{ind}(X_{p_1 p_2})} = p_1 - 1
 \]

- $n = p_1 p_2 \ldots p_{k+1}$ con $p_1 < \ldots < p_{k+1}$
- $X_n \cong X_{p_1} \times G$, where $G = X_{p_2} \times \ldots \times X_{p_{k+1}}$
- But $t(G) \geq p_2 - 1$ by induction hypothesis.
- Then, $t(X_{p_1} \times G) = p_1 - 1$.
- If n is non-square-free, as $t(X_{\text{rad}(n)}) \leq t(X_n) \leq p_1(n) - 1$, we are done!
Proof.

- If $|S| \geq p_1p_2 - p_2$, then
 \[
 \frac{|S|}{k(X_{p_1p_2} - S)} \geq \frac{p_1p_2 - p_2}{\text{ind}(X_{p_1p_2})} = p_1 - 1
 \]

- $n = p_1p_2 \ldots p_{k+1}$ con $p_1 < \ldots < p_{k+1}$
- $X_n \cong X_{p_1} \times G$, where $G = X_{p_2} \times \ldots \times X_{p_{k+1}}$
- But $t(G) \geq p_2 - 1$ by induction hypothesis.
- Then, $t(X_{p_1} \times G) = p_1 - 1$.
- If n is non-square-free, as $t(X_{\text{rad}(n)}) \leq t(X_n) \leq p_1(n) - 1$, we are done!
Proof.

- If $|S| \geq p_1 p_2 - p_2$, then

 \[
 \frac{|S|}{k(X_{p_1 p_2} - S)} \geq \frac{p_1 p_2 - p_2}{\text{ind}(X_{p_1 p_2})} = p_1 - 1
 \]

- $n = p_1 p_2 \ldots p_{k+1}$ con $p_1 < \ldots < p_{k+1}$
- $X_n \cong X_{p_1} \times G$, where $G = X_{p_2} \times \ldots \times X_{p_{k+1}}$
- But $t(G) \geq p_2 - 1$ by induction hypothesis.
 - Then, $t(X_{p_1} \times G) = p_1 - 1$.
 - If n is non-square-free, as $t(X_{\text{rad}(n)}) \leq t(X_n) \leq p_1(n) - 1$, we are done!
Proof.

- If $|S| \geq p_1p_2 - p_2$, then

$$\frac{|S|}{k(X_{p_1p_2} - S)} \geq \frac{p_1p_2 - p_2}{ind(X_{p_1p_2})} = p_1 - 1$$

- $n = p_1p_2 \ldots p_{k+1}$ con $p_1 < \ldots < p_{k+1}$
- $X_n \cong X_{p_1} \times G$, where $G = X_{p_2} \times \ldots \times X_{p_{k+1}}$
- But $t(G) \geq p_2 - 1$ by induction hypothesis.
- Then, $t(X_{p_1} \times G) = p_1 - 1$.

- If n is non-square-free, as $t(X_{rad(n)}) \leq t(X_n) \leq p_1(n) - 1$, we are done!
Proof.

- If $|S| \geq p_1 p_2 - p_2$, then

 $$\frac{|S|}{k(X_{p_1 p_2} - S)} \geq \frac{p_1 p_2 - p_2}{\text{ind}(X_{p_1 p_2})} = p_1 - 1$$

- $n = p_1 p_2 \ldots p_{k+1}$ con $p_1 < \ldots < p_{k+1}$
- $X_n \cong X_{p_1} \times G$, where $G = X_{p_2} \times \ldots \times X_{p_{k+1}}$
- But $t(G) \geq p_2 - 1$ by induction hypothesis.
- Then, $t(X_{p_1} \times G) = p_1 - 1$.
- If n is non-square-free, as $t(X_{\text{rad}(n)}) \leq t(X_n) \leq p_1(n) - 1$, we are done!
Tenacity

It is well known that:

Theorem

Let G be a non-complete connected graph. Then

$$t(G) + \frac{1}{\text{ind}(G)} \leq T(G) \leq \frac{|V(G)| - \text{ind}(G) + 1}{\text{ind}(G)}$$

With this we can prove that

Corollary

Let X_n a Unitary Cayley Graph of order n. Then

$$T(X_n) = p_1(n) \left(1 + \frac{1}{n}\right) - 1$$
Tenacity

It is well known that:

Theorem

Let G be a non-complete connected graph. Then

$$t(G) + \frac{1}{\text{ind}(G)} \leq T(G) \leq \frac{|V(G)| - \text{ind}(G) + 1}{\text{ind}(G)}$$

With this we can prove that

Corollary

Let X_n a Unitary Cayley Graph of order n. Then

$$T(X_n) = p_1(n) \left(1 + \frac{1}{n} \right) - 1$$
Remember

Definition

Given a non-complete connected graph G, the **integrity** of G, $I(G)$ is defined as:

$$\min\{|S| + m(G - S)\}$$

where the minimum is taken over all the $S \subset V(G)$.
We will make use of the following known result about integrity:

Theorem

Let G be a k-regular Graph of order n. Then

$$k + 1 \leq I(G) \leq n - \text{ind}(G) + 1$$
Example: X_{10}

\[t(X_{10}) = 1 \]

\[I(X_{10}) = 6 \]
Example: X_{10}

\[t(X_{10}) = 1 \]
\[I(X_{10}) = 6 \]
Before going on with the results on integrity we will write the bounds for integrity in the language of Unitary Cayley Graphs:

$$\varphi(n) + 1 \leq I(X_n) \leq n - \frac{n}{p_1(n)} + 1$$
Theorem

Let \(p \) be a prime number and \(k \in \mathbb{Z}^+ \). Then

\[
I(X_{p^k}) = p^k - p^{k-1} + 1
\]

Proof.

We know that

\[
I(X_{p^k}) \geq \varphi(p^k) + 1 = p^k - p^{k-1} + 1
\]

But we also have that:

\[
I(X_{p^k}) \leq p^k - \frac{p^k}{p} + 1
\]

\[
= p^k - p^{k-1} + 1
\]

Thus \(I(X_{p^k}) = p^k - p^{k-1} + 1 \) as we wanted to prove.
Theorem

Let p be a prime number and $k \in \mathbb{Z}^+$. Then

$$l(X_{p^k}) = p^k - p^{k-1} + 1$$

Proof.

We know that

$$l(X_{p^k}) \geq \varphi(p^k) + 1 = p^k - p^{k-1} + 1$$

But we also have that:

$$l(X_{p^k}) \leq p^k - \frac{p^k}{p} + 1$$

$$= p^k - p^{k-1} + 1$$

Thus $l(X_{p^k}) = p^k - p^{k-1} + 1$ as we wanted to prove.
Theorem

Let $p < q$ be prime numbers, then $I(X_{pq}) = pq - q + 1$

Proof.

Let S be a vertex-cut set such that $|S| < pq - q$. We have that $k(X_{pq} - S) = 2$. Using the pigeonhole principle we have that:

$$m(X_{pq} - S) \geq \frac{pq - |S|}{2}$$

And so we have, using that $p < q$ and that, as S is a vertex-cut, $|S| \geq \kappa(X_{pq}) = (p - 1)(q - 1)$:

$$|S| + m(X_{pq} - S) \geq |S| + \frac{pq - |S|}{2}$$

$$\geq \frac{|S| + pq}{2} \geq \frac{(p - 1)(q - 1) + pq}{2}$$
Proof.

\[|S| + m(X_{pq} - S) \geq \frac{(p - 1)(q - 1) + pq}{2} \]

\[\geq pq - \frac{p + q}{2} + \frac{1}{2} > pq - q \]

Assume now that \(|S| \geq pq - q \), then:

\[|S| + m(X_{pq} - S) \geq pq - q + 1 \]

And so \(I(X_{pq}) = pq - q + 1 \).
Notice that in both cases the integrity is equal to the upper bound $n - \frac{n}{p_1(n)} + 1$, we conjecture that this is the case for every Unitary Cayley Graph.
GRACIAS!!!!!!!!
Bibliography

