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Understanding random walks:

1

Lazy random walk - stay in place with prob. 1
2

What to study: distribution of random walk over time.

SRW: Distribution can be poorly behaved - bipartite graph
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Behavior of random walk: Governed by shape of graph.

graph?
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Basic Question: How to understand diffusion of random walks
by geometric means and vice versa
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Lazy random walk:
Stay in place each step with probability 1

2 .

⇒ time in place geometrically distributed
Staying in place makes distribution better behaved

Continuous time random walk:
Stay in place for exponential time
Distribution is similarly well behaved
Distribution u(x , t) over time:

u(x , t) =
((

Det∆D−1)u(·,0)
)

(x)

Very closely related to heat equation ∂
∂t u = ∆u.

Focus for talk: Understanding positive solutions to heat
equation
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Harnack Inequalities

Goal: Given u positive solution to heat equation on G,
understand evolution of u.

Harnack inequality: Given (x , t1), (y , t2) with t2 ≥ t1 and
positive solution to the heat equation u bound

u(x , t1)

u(y , t2)
< C

where C depends on |t2 − t1|, d(x , y).
Gold Standard: If |d(x , y)| < R, and |t2 − t1| < R2, then C
can be taken to be an absolute constant.
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Harnack inequalities

Harnack inequalities: Powerful tools, but...

How do verify that they hold?
Delmotte: Showed the following are equivalent (on
graphs):

Poincaré inequality + volume doubling
(eigenvalue inequality + volume growth estimate)
Gaussian bounds on heat kernel.
(Parabolic) Harnack inequality

Grigor’yan and Saloff-Coste: same in Riemannian manifold
case (earlier)

Remark: Result shows symbiotic nature of results connecting
distribution of RW and geometry.
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Harnack inequalities

Harnack inequalities: Powerful tools, but...

How do verify that they hold?
Delmotte: Showed the following are equivalent (on
graphs):

Poincaré inequality + volume doubling
(eigenvalue inequality + volume growth estimate)
Gaussian bounds on heat kernel.
(Parabolic) Harnack inequality

Grigor’yan and Saloff-Coste: same in Riemannian manifold
case (earlier)

Hard to check! Simple condition to guarantee?
In manifold case: curvature.
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Gradient estimates

Local condition implying Harnack?

Li-Yau Inequality (simple form)
Suppose M is a compact n dimensional manifold with non-
negative curvature. If u is a positive solution to the heat equation
on M for t ≤ T , then for every x ∈ M

|∇u|2

u2 (x , t)− ut

u
(x , t) ≤ n

2t
.

at all points (x , t)

Integrating gradient estimates: Proves Harnack inequality.

Note: More general form for more general
operators/non-compact case/negative curvature bound/etc...
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Goal

Goal: Understand evolution of positive solutions from local
information – can yield global information on graph
geometry.
Want: Analogue of Li-Yau inequality for positive solutions
to heat equation on graphs.
Need: Understand discrete analogues of many important
ideas on graphs:

Gradient of functions?
Curvature/Dimension?
...
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Gradients on Graphs

Bakry-Emery gradient operators:
For functions f , g : V (G)→ R

(∆f )(x) =
1
dx

∑
y∼x

(f (y)− f (x))

Γ(f ,g)(x) =
1
2

(∆(fg)− f ∆g − g∆f )

=
1

2dx

∑
y∼x

(f (y)− f (x))(g(y)− g(x)) = 〈∇f ,∇g〉

Γ(f ) = Γ(f , f ) = |∇f |2

Key property: In continuous case

∆(fg) = f ∆g + g∆f + 2〈∇f ,∇g〉
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Graph curvature

An n-dimensional manifold M with curvature ≥ −K satisfies the
Bochner Formula
For every smooth function f : M → R

1
2

(∆|∇f |2 − 2〈∇f ,∇∆f 〉) ≥ 1
n

(∆f )2 − K |∇f |2

at every point x .

P. Horn Li-Yau Inequality on Graphs



Graph curvature

An n-dimensional manifold M with curvature ≥ −K satisfies the
Bochner Formula
For every smooth function f : M → R

1
2

(∆|∇f |2 − 2〈∇f ,∇∆f 〉) ≥ 1
n

(∆f )2 − K |∇f |2

at every point x .

Observation: Bochner formula real application of curvature in
Li-Yau proof

From work of Bakry, Emery: Satisfying Bochner formula can be
used as it definition of curvature in many settings.
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Graph curvature

An n-dimensional manifold M with curvature ≥ −K satisfies the
Bochner Formula
For every smooth function f : M → R

1
2

(∆|∇f |2 − 2〈∇f ,∇∆f 〉) ≥ 1
n

(∆f )2 − K |∇f |2

at every point x .

A graph G satisfies the curvature-dimension inequality
CD(n,−K ) if

Γ2(f ) =
1
2

(∆Γ(f )− 2Γ(f ,∆f )) ≥ 1
n

(∆f )2 − K |Γ(f )|2

for every function f .
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Curve ball

Every graph satisfies CD(2,−1 + 1
max deg(v) ).

Graphs satisfying CD(n,0) for some n: certain Cayley
graphs of polynomial growth.
Local property: Need to check distance two neighborhoods
of vertices.
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Challenges:

Continuous mathematics? Too easy!
Li-Yau proof:

Uses maximum principle: Pick some function H to
maximize and at maximum:

∆H ≤ 0
∂

∂t
H ≥ 0 ∇H = 0

Discrete: No reasonable definition of ∇ so that ∇H = 0
Continuous case: Look at log u instead of u.

∆(log u) =
|∇u|2

u2 − ∆u
u

= |∇ log u|2 − (log u)t .

Discrete: Royal mess!

∆(log u)(x) =
1
dx

∑
y∼x

log
(y

x

)
=???
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Deforestation:

How to get rid of log?
Key to Li-Yau proof: If f = log u

∆f = |∇f |2 − ft

Not true at all in discrete case! (No reasonable
inequalities, even!)
Why important? Bochner formula:

1
2

(∆|∇f |2 − 2〈∇f ,∇∆f 〉) ≥ 1
n

(∆f )2

Relates ∆|∇f |2 and (∆f )2 = (|∇f |2 − ft )2.
Discrete case: Need new identity.
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Searching for an identity

What can replace ∆(log u) = −|∇ log u|+ ∆u
u ?

Infinite family of identities: On manifolds

∆up = pup−1∆u +
p − 1

p
u−p|∇up|2

Key fact: Identity holds for graphs for p = 1
2 :

−2
√

u∆
√

u = 2Γ(
√

u)−∆u.
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Gradient estimates

Li-Yau estimate:

(−∆ log u =)
Γ(u)

u2 −
∆u
u
≤ n

2t
.

but...

Identity suggests: Right thing for graphs is

(
−2
√

u∆
√

u
u

=)
2Γ(
√

u)−∆u
u

≤ n
2t
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Keeping up with the curve
Goal: ‘Non-negative curvature’ implies:

2Γ(
√

u)−∆u
u

≤ n
t
.

CD(n,0) seems not enough.
Can only prove:

Theorem
If G satisfies CD(n,0) and u is a positive solution to the heat
equation on G

Γ(
√

u)−∆u
u1−ε||u||ε∞

≤ O(t−1/2ε−1

)

Doesn’t scale properly!!
Not strong enough to imply Harnack inequality!
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Keeping up with the curve
Goal: ‘Non-negative curvature’ implies:

2Γ(
√

u)−∆u
u

≤ n
t
.

CD(n,0) seems not enough.
Problem: Lack of chain rule
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Rethinking curvature

CD(n,0) not enough

Recall: G satisfies CD(n,−K ) if for all functions u : V (G)→ R:

Γ2(u) =
1
2

[∆Γ(u)− 2Γ(u,∆u)] ≥ 1
n

(∆u)2 − K Γ(u)

Say G satisfies the exponential curvature dimension inequality
CDE(n,−K ) if for all positive functions u : V (G)→ R

Γ̃2(u) =
1
2

[
∆Γ(u)− 2Γ

(
u,

∆u2

u

)]
≥ 1

n
(∆u)2 − K Γ(u)

at all points x such that (∆u)(x) ≤ 0.
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Rethinking curvature

CD(n,0) not enough

Say G satisfies the exponential curvature dimension inequality
CDE(n,−K ) if for all positive functions u : V (G)→ R

Γ̃2(u) =
1
2

[
∆Γ(u)− 2Γ

(
u,

∆u2

u

)]
≥ 1

n
(∆u)2 − K Γ(u)

at all points x such that (∆u)(x) ≤ 0.

CDE: Looks like an odd condition. In the manifold setting
(and for diffusion semigroups) CD(n,−K )⇒ CDE(n,−K )

Continuous case: CD(n,−K ) is equivalent to CDE’(n,-K):

Γ̃2(u) ≥ 1
n

u2(∆ log u)2 − K Γ(u)
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Exponential curvature dimension

G satisfies
CDE(n,−K ) if for all positive functions u : V (G)→ R

Γ̃2(u) =
1
2

[
∆Γ(u)− 2Γ

(
u,

∆u2

u

)]
≥ 1

n
(∆u)2 − K Γ(u)

at all points x such that (∆u)(x) ≤ 0.
CDE ′(n,−K ) if for all positive functions u : V (G)→ R

Γ̃2(u) ≥ 1
n

(∆ log u)2 − K Γ(u)

Remarks:
Exponential: CDE inequalities for u follow from CD
inequality for log u.
Manifold case: CD(n,−K ) equivalent to CDE ′(n,−K ) – but
using CDE’ leads to worse gradient estimate on graphs.
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Exponential curvature dimension

G satisfies
CDE(n,−K ) if for all positive functions u : V (G)→ R

Γ̃2(u) =
1
2

[
∆Γ(u)− 2Γ

(
u,

∆u2

u

)]
≥ 1

n
(∆u)2 − K Γ(u)

at all points x such that (∆u)(x) ≤ 0.
CDE ′(n,−K ) if for all positive functions u : V (G)→ R

Γ̃2(u) ≥ 1
n

(∆ log u)2 − K Γ(u)

What graphs satisfy these inequalities?
One example: Ricci-flat graphs of Chung and Yau (including

lattices/abelian Cayley graphs)
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Ricci-flat theorem

Theorem
d-regular ‘Ricci-flat graphs’ in sense of Chung and Yau (includ-
ing Zd/2) satisfy

CDE(d ,0)

CDE ′(2.265d ,0)

Remark: Get optimal constants (though 2.265 approximate).
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Ricci-flat theorem

Theorem
d-regular ‘Ricci-flat graphs’ in sense of Chung and Yau (includ-
ing Zd/2) satisfy

CDE(d ,0)

CDE ′(2.265d ,0)

Remark: Get optimal constants (though 2.265 approximate).

Funny fact:
Discrete case: Necessarily lose a dimension constant by
going through CDE’ for Zd
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Comparing Curvature Dimension Inequalities

Remark:
All graphs satisfy CD(2,−1)

d-regular trees don’t satisfy CDE ′(n,−K ) for any K !
A weakness of CDE ′!

Graphs of maximum degree D satisfy CDE(2,−D
2 ).

D-regular trees require curvature lower bounds like −D
2 .

Natural, but unusual: Most graph curvature notions have
fixed lower bounds that all graphs satisfy.
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Recap!

Goal: Prove analogue of Li-Yau gradient estimate for positive
solutions to the heat equation on non-negatively manifolds:

|∇u|2

u2 − ∆u
u
≤ n

2t
.

Many important applications in geometry including
Harnack inequalities relating maximum and minimum of
solution.
For graphs, distribution of continuous time random walk
are solutions to heat equation.
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Recap!

Goal: Prove analogue of Li-Yau gradient estimate for positive
solutions to the heat equation on non-negatively manifolds:

|∇u|2

u2 − ∆u
u
≤ n

2t
.

Needed: Notion of curvature for graphs.
Bakry-Emery curvature dimension inequality CD(n,−K )
not enough
Introduced new exponential curvature dimension inequality
CDE(n,−K ) – weaker in manifold case.
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Recap!

Goal: Prove analogue of Li-Yau gradient estimate for positive
solutions to the heat equation on non-negatively manifolds:

|∇u|2

u2 − ∆u
u
≤ n

2t
.

Needed: Notion of curvature for graphs.
Needed: Replacement for logarithm

Vital identity for Li-Yau for f = log u

∆f = −|∇u|2

u2 +
∆u
u

= −|∇f |2 + ft

Make use of

2
√

u∆
√

u = −2Γ(
√

u) + ∆u = −2Γ(
√

u) + ut
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A Theorem!

Theorem
If G satisfies CDE(n,0) and u is a positive solution to the heat
equation on G

Γ(
√

u)

u
− ∆u

2u
≤ n

2t
.

Remark:
Direct analogue to Li-Yau inequality

|∇u|2

u2 − ∆u
u
≤ n

2t
.
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A Theorem!

Gradient estimate strong enough to prove Harnack inequality?
YES!

Theorem
Suppose G satisfies the gradient estimate

Γ(
√

u)

u
− ∆u

u
≤ n

2t
.

for u a positive function. Then for T1 ≤ T2 and x , y ∈ V (G)

u(x ,T1) ≤ u(y ,T2)

(
T2

T1

)2n

· exp
(

dist(x , y)2 × (max deg(v))

T2 − T1

)
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Recall:

Cheeger’s Inequality

If we define

Φ(G) = min
S⊆G

e(S, S̄)

min{
∑

v∈S deg(v),
∑

v 6∈S deg(v)}
,

to be the conductance of a graph, then

Φ(G)2

2
≤ λ1 ≤ 2Φ(G)

In manifold case:

Cheeger: λ1 ≥ Φ(G)2

2 .
Buser: λ1 = O(Φ2(G)) if M has non-negative curvature.
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Application

Gradient estimate + observation of Ledoux imply:

Theorem (Buser’s inequality for graphs)

If G satisfies CDE(n,0) (and hence the gradient estimate)

λ1(G) ≤ CnΦ(G)2

Gradient estimate yields Buser’s inequality

Klartag, Kozma: Buser’s inequality holds for graphs satisfying
CD(d ,0).
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More applications

Gradient Estimate yields:
Heat Kernel estimates
Polynomial volume growth in graphs satisfying CDE(n,0)

Nice theme: local graph property implies global graph property.
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But wait, there’s more!

Stated results for finite graphs, and non-negative curvature,
but...

Have results for:
Graphs satisfying CDE(d ,−K ) (graphs with curvature
≥ −K ).
Infinite graphs
Solutions on a ball (instead of the entire graph)
Solutions to more general Schrödinger operators:
(∆− d

dt − q)u = 0 where q = q(x , t)
...

These imply various version of
Harnack inequalities
Buser’s inequality

(with curvature - of form λ1 ≥ CΦ2 + C2K Φ )
...

P. Horn Li-Yau Inequality on Graphs



Final remarks

Special case: Solutions to the heat equation on ‘balls’.
Li-Yau: u solution on ball of radius R, non-negatively
curved manifold.

|∆u|2

u2 − ∆u
u
≤ n

2t
+

C
R2

Key: Existence of cut-off functions.
Graph case: Cutoff function based on graph distance?
Only can prove estimates of form

2Γ(
√

u)−∆u
u

≤ n
2t

+
C
R
.

Can show
2Γ(
√

u)−∆u
u

≤ n
2t

+
C
R2 .

if special cutoff functions exist. Can prove their existence
for Zd . In general?
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CDE’: Weaker dimension, but more powerful!

Even though CDE ′(n,0) required weaker dimension constants,
it many ways it has proven to be more powerful.
In later work with Lin, Shangdong, and Yau shown CDE ′(n,0)

Hamilton-type gradient estimates: Gradient estimates in
space (no ∂

∂t term)
Showed CDE ′(n,0) implies ‘volume doubling’ (a
strengthening of polynomial volume growth), and Poincaré
type inequalities, sidestepping the ‘ 1

R ’ vs ‘ 1
R2 ’ problem.

Proven diameter bounds from CDE ′(n,K ) if K > 0.
Proven heat kernel analogue of Perelman entropy formula
(implying log-Sobolev type inequalities)
· · ·

Method: Semigroup arguments instead of maximum principle
arguments
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Conclusión

Geometric methods give powerful tools and ideas to
understand graphs.

Graph curvature notions give a local way to certify global
geometric information.

Despite recent advances still much to understand.

Gracias!
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