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Preliminaries

We look at a copies of a subgraph H = (W ,F ) in a graph
G = (V ,E ) as injective functions f : W → V such that

{u, v} ∈ F ⇐⇒ {f (u), f (v)} ∈ E .
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Preliminaries

Given graphs H and G , let Λ(H,G ) denote the number of copies of
H in G . The density of H as an induced subgraph of G is given by

t(H,G ) =
Λ(H,G )(n

k

) ,

where n = |V (G )| and k = |V (H)|.

Example: t(K2, I2) = 1/3, t(K3, I2) = 0
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Preliminaries

Let G denote the set of all finite graphs. For a fixed family of
graphs H1, . . . ,Hr , consider the function F : G → [0, 1]r given by

F(G ) = (t(H1,G ), · · · , t(Hr ,G )).

Here, we will consider H1, . . . ,Hr to be the set of all (unlabelled)
connected graphs with 2 ≤ |V (Hi )| ≤ k for some k ∈ N.
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Preliminaries

For k = 3, the graphs are

1

2

3 4

5

6 7

8

K4 → (1, 0, 1), P3 → (2/3, 1, 0)
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The image of F

Erdős, Lovász and Spencer (1979) considered the image of F .
They were particularly concerned with the way in which the
coordinates of F(G ) depend on each other.

Whitney (1932) showed that, for any finite family of connected
graphs, the coordinates are algebraically independent as functions
over all graphs.

Consider the set

Sr = {v ∈ [0, 1]r : ∃ sequence Gn, |V (Gn)| → ∞,F(Gn)→ v}.

This is the set of accumulation points of the image of F .
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The image of Φ

Consider the set

Sr = {v ∈ [0, 1]r : ∃ sequence Gn, |V (Gn)| → ∞,F(Gn)→ v}.

• For k = 3, (2/3, 1, 0) /∈ Sr , even though there is a graph G
such that F(G ) = (2/3, 1, 0).

• Sr may contain points with irrational coordinates.
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A theorem of Erdős, Lovász and Spencer

Theorem (Erdős, Lovász, Spencer’79)
For all k ≥ 2, the set Sr has an interior point. In particular, the set
Sr is r -dimensional.

However, the densities of disconnected subgraphs are asymptotically
determined by the densities of their connected components.
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Permutations

A permutation σ on [n] = {1, 2, . . . , n} is a bijective function of the
set [n] into itself.

(4, 5, 2, 3, 6, 1) is a permutation on [6].
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Parameter testing

We consider general (quantitative) properties of a permutation:
• How many fixed points does it have?
• What is the size of the longest increasing subpermutation?

Question: Can one estimate the answer of such a question
accurately by looking only at a randomly chosen substructure of
sufficiently large, but constant size?

An Erdős-Lovász-Spencer Theorem for permutations and its consequences for parameter testing



A theorem by Erdős, Lovász and Spencer Permutations and their limits An Erdős-Lovász-Spencer Theorem for permutations

Parameter testing

We consider general (quantitative) properties of a permutation:
• How many fixed points does it have?
• What is the size of the longest increasing subpermutation?

Question: Can one estimate the answer of such a question
accurately by looking only at a randomly chosen substructure of
sufficiently large, but constant size?

An Erdős-Lovász-Spencer Theorem for permutations and its consequences for parameter testing



A theorem by Erdős, Lovász and Spencer Permutations and their limits An Erdős-Lovász-Spencer Theorem for permutations

Subpermutations

A subpermutation of a permutation σ on [n] is a permutation τ on
[k] such that there is an k-tuple x1 < · · · < xk ∈ [n]k such that
τ(i) < τ(j) if and only if σ(xi ) < σ(xj) for every (i , j) ∈ [k]2.

Example: τ = (3, 1, 4, 2), σ = (5, 6, 2, 4, 7, 1, 3).

σ = (5, 6, 2, 4, 7, 1, 3).

σ = (5, 6, 2, 4, 7, 1, 3).
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Subpermutations

Let Λ(τ, σ) be the number of occurrences of τ in σ. The density of
the permutation τ as a subpermutation of σ is given by

t(τ, σ) =

(
n
k

)−1

Λ(τ, σ).

Example: For τ = (2, 1) and σ = (3, 1, 2),

t(τ, σ) =

(
3
2

)−1

· 2 =
2
3
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Random subpermutations

Let k ≤ n be positive integers and let σ be a permutation on [n]. A
random subpermutation sub(k , σ) of σ is obtained as follows:

Choose a subset X = {x1 < · · · < xk} of size k uniformly at
random in [n]. Consider the permutation given by the relative order
of the sequence (σ(x1), . . . , σ(xk)).

k = 3, n = 10, σ = (5, 7, 2, 10, 1, 4, 8, 6, 3, 9)

X = {2, 5, 9} → σ = (5, 7, 2, 10, 1, 4, 8, 6, 3, 9)

→ sub(k , σ) = (3, 1, 2)
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Permutation parameters

A permutation parameter is a function f :
⋃

n Sn → R, where
Sn = {permutations on [n]}.

A parameter f is testable (through subpermutations) if, for every
ε > 0, there exists a positive integer k = k(ε) with the following
property. If σ is a permutation of length n > k , then

P
(
|f (σ)− f (sub(k , σ))| > ε

)
≤ ε.

An Erdős-Lovász-Spencer Theorem for permutations and its consequences for parameter testing



A theorem by Erdős, Lovász and Spencer Permutations and their limits An Erdős-Lovász-Spencer Theorem for permutations

Permutation parameters

A permutation parameter is a function f :
⋃

n Sn → R, where
Sn = {permutations on [n]}.

A parameter f is testable (through subpermutations) if, for every
ε > 0, there exists a positive integer k = k(ε) with the following
property. If σ is a permutation of length n > k , then

P
(
|f (σ)− f (sub(k , σ))| > ε

)
≤ ε.

An Erdős-Lovász-Spencer Theorem for permutations and its consequences for parameter testing



A theorem by Erdős, Lovász and Spencer Permutations and their limits An Erdős-Lovász-Spencer Theorem for permutations

Limits of permutation sequences

Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi (2006)
proved that, for graphs, testable parameters are characterized by
graph limits. A theory of convergence has been devised for
permutation sequences.

A sequence of permutations (σn) is said to converge if, for every
fixed permutation τ , the real sequence (t(τ, σn))n∈N converges.

A permuton (or permutation limit) is a probability measure Φ on
the unit square [0, 1]2 such that Φ has uniform marginals:

Φ([α, β]× [0, 1]) = Φ([0, 1]× [α, β]) = β − α

for every 0 ≤ α ≤ β ≤ 1.
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Random permutations

For a permuton Φ, a Φ-random permutation of order n is a
permutation σΦ,n generated as follows.

x

y

1

1
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Random permutations

Sample n points (x1, y1), . . . , (xn, yn) in [0, 1]2 independently with
the distribution given by Φ.

x

y

1

1
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Random permutations

Let i1, . . . , in such that xi1 < xi2 < · · · < xin . The permutation is
given by the relative order of the yij .

x

y

1
xi1 xi2 xi3 xi4

yi1
yi2

yi3

yi4

(3,2,4,1)
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Existence of a limit

If Φ is a permuton and τ is a permutation on [k], we define

t(τ,Φ) = P(σΦ,k = τ).

Theorem (H., Kohayakawa, Moreira, Ráth and Sampaio’10)
Given a convergent permutation sequence (σn), there exists a
permuton Φ : [0, 1]2 → [0, 1] such that

lim
n→∞

t(τ, σn) = t(τ,Φ)

for every permutation τ .

An Erdős-Lovász-Spencer Theorem for permutations and its consequences for parameter testing



A theorem by Erdős, Lovász and Spencer Permutations and their limits An Erdős-Lovász-Spencer Theorem for permutations

Existence of a limit

If Φ is a permuton and τ is a permutation on [k], we define

t(τ,Φ) = P(σΦ,k = τ).

Theorem (H., Kohayakawa, Moreira, Ráth and Sampaio’10)
Given a convergent permutation sequence (σn), there exists a
permuton Φ : [0, 1]2 → [0, 1] such that

lim
n→∞

t(τ, σn) = t(τ,Φ)

for every permutation τ .

An Erdős-Lovász-Spencer Theorem for permutations and its consequences for parameter testing



A theorem by Erdős, Lovász and Spencer Permutations and their limits An Erdős-Lovász-Spencer Theorem for permutations

Characterization of testable parameters

A permutation parameter f is bounded if there is a constant M
such that |f (σ)| < M for every permutation σ.

Theorem (H., Kohayakawa, Moreira and Sampaio’10)
A bounded permutation parameter is testable if and only if the
sequence (f (σn)) converges for every convergent permutation
sequence (σn).
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Finite forcibility

A permutation parameter is finitely forcible if there exists a finite
family of permutations A which determines the value of the
parameter.

Formally, for every ε > 0, there exist an integer n0 and a constant
δ > 0 such that if σ and π are permutations on [n], where n ≥ n0,
satisfying |t(τ, σ)− t(τ, π)| < δ for every τ ∈ A, then
|f (σ)− f (π)| < ε.
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Finite approximability

A permutation parameter is finitely approximable if, for every ε > 0,
there exist a finite family of permutations Aε, an integer n0 and a
constant δ > 0 such that if σ and π are permutations on [n], where
n ≥ n0, satisfying |t(τ, σ)− t(τ, π)| < δ for every τ ∈ A, then
|f (σ)− f (π)| < ε.

[H., Kohayakawa, Moreira and Sampaio] f is testable if and only if
f is finitely approximable. Is there a testable parameter that is not
finitely forcible?

An Erdős-Lovász-Spencer Theorem for permutations and its consequences for parameter testing



A theorem by Erdős, Lovász and Spencer Permutations and their limits An Erdős-Lovász-Spencer Theorem for permutations

Finite approximability

A permutation parameter is finitely approximable if, for every ε > 0,
there exist a finite family of permutations Aε, an integer n0 and a
constant δ > 0 such that if σ and π are permutations on [n], where
n ≥ n0, satisfying |t(τ, σ)− t(τ, π)| < δ for every τ ∈ A, then
|f (σ)− f (π)| < ε.

[H., Kohayakawa, Moreira and Sampaio] f is testable if and only if
f is finitely approximable. Is there a testable parameter that is not
finitely forcible?

An Erdős-Lovász-Spencer Theorem for permutations and its consequences for parameter testing



A theorem by Erdős, Lovász and Spencer Permutations and their limits An Erdős-Lovász-Spencer Theorem for permutations

Connected permutations

A permutation on [n] is connected if there is no m < n such that
σ([m]) = [m].

Example: (2, 1) is the single connected permutation on [2] and
(3, 1, 2), (2, 3, 1) and (3, 2, 1) are the connected permutations on
[3].
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Erdős-Lovász-Spencer Theorem for permutations

• Given k ≥ 2, let τ1, . . . , τr be the set of connected
permutations on [j ], where 2 ≤ j ≤ k .

• Consider the function σ → (t(τ1, σ), . . . , t(τr , σ)) and the set
Sr of its accumulation points. In fact,

Sr = {(t(τ1,Φ), . . . , t(τr ,Φ)): Φ permuton}

Theorem (Glebov, H., Klimos̆ová, Kohayakawa, Král, Liu’14?)
For all k ≥ 2, the set Sr has an interior point.
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A testable permutation parameter that is not finitely forcible

Theorem (Glebov, H., Klimos̆ová, Kohayakawa, Král, Liu’14?)
For all k ≥ 2, the set Sr has an interior point.

This result implies that, for any finite family of permutations A,
there exist a permutation τ and permutons Φ and Φ′ such that
• t(π,Φ) = t(π,Φ′) for every π ∈ A
• t(τ,Φ) 6= t(τ,Φ′)
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A testable permutation parameter that is not finitely forcible

• Using this theorem inductively, fix a sequence (τi ) of
permutations of strictly increasing orders such that, for every
k > 1, there exist permutons Φk and Φ′k satisfying the
following:

• t(σ,Φk) = t(σ,Φ′k) for every σ such that |σ| ≤ |τk−1|
• t(τk ,Φk) > t(τk ,Φ

′
k)

• With this, we may easily find a sequence αi of positive reals
such that

f•(σ) =
∞∑
i=1

αi t(τi , σ)

is testable, but not finitely forcible.
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Sketch of the proof our main theorem

We define two constructions on permutons:

• Step-up permuton: Given a permutation σ on [n] and a
vector y = (y1, . . . , yn) ∈ [0, 1]n such that

∑
yi ≤ 1, we define

the step-up permuton Φy
σ.

σ = (2, 4, 3, 1), y = (1/6, 1/4, 1/12, 1/4)
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Sketch of the proof our main theorem

We define two constructions on permutons:

• Composed permuton: given permutons Φ1, . . . ,Φ`, and a
vector y = (y1, . . . , y`) ∈ [0, 1]` such that

∑
yi ≤ 1, we define

the composed permuton
⊕

(yi ,Φi ).

Φ1

Φ2

Φ3

The permuton (1/3,Φ1)⊕ (1/6,Φ2)⊕ (1/4,Φ3).
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Sketch of the proof our main theorem

• Given x = (x1, . . . , xn), we find formulas for t(τ,Φx
σ) and

t(τ,
⊕

(xi ,Φi )), which are homogeneous polynomials of degree
|τ | on the indeterminates x.

• If τ1, . . . , τr are the nontrivial connected permutations of order
up to k ≥ 2, and c1, . . . , cr are real number, not all of which
are zero, we show that there is a permuton Φ such that∑r

i=1 ci t(τi ,Φ) 6= 0. In particular, Sr contains elements that
span Rr .
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Sketch of the proof our main theorem

• Let Φ1, . . . ,Φr be permutons such that
{(t(τ1,Φi ), . . . , t(τr ,Φi ))} span Rr . Let Ψ : Rr → Rr be the
map:

Ψj : (x1, . . . , xr )→
r∑

i=1

x |τj |i t(τj ,Φi ).

• Our formulas show that Ψ((0, 1/r)r ) ⊂ Sr . Moreover, there
exists x ∈ (0, 1/r)r such that Jac(Ψ)(x) 6= 0. Then Sr
contains an open ball around Ψ(x).
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