On Connected Identifying Codes for Infinite Lattices

F. Benevides ${ }^{1} \quad$ V. Campos ${ }^{1} \quad$ M. Dourado ${ }^{2} \quad$ R. Sampaio ${ }^{1}$
A. Silva ${ }^{1}$
${ }^{1}$ ParGO, UFC, Brazil
${ }^{2}$ UFRJ, Brazil

Ball

Definition: $B_{r}(v)$
Set of vertices at distance at most r from v.

Ball

Definition: $B_{r}(v)$
Set of vertices at distance at most r from v.

Ball

Definition: $B_{r}(v)$
Set of vertices at distance at most r from v.

Ball

Definition: $B_{r}(v)$
Set of vertices at distance at most r from v.

Identifying Code

Let $C \subseteq V(G)$

Identifying Code

Let $C \subseteq V(G)$
Identifying set of v (Code of v)
$I(v)=I(v, C)=B_{1}(v) \cap C$

Identifying Code

Let $C \subseteq V(G)$
Identifying set of v (Code of v)
$I(v)=I(v, C)=B_{1}(v) \cap C$
C is

Identifying Code

Let $C \subseteq V(G)$
Identifying set of v (Code of v)
$I(v)=I(v, C)=B_{1}(v) \cap C$
C is
Dominating: $I(v) \neq \emptyset$ for every vertex v.

Identifying Code

$$
\text { Let } C \subseteq V(G)
$$

Identifying set of v (Code of v)

$I(v)=I(v, C)=B_{1}(v) \cap C$
C is
Dominating: $I(v) \neq \emptyset$ for every vertex v.
Identifying: $I(v) \neq I(u)$ for distinct vertices u and v.

Identifying Code

$$
\text { Let } C \subseteq V(G)
$$

Identifying set of v (Code of v)

$$
I(v)=I(v, C)=B_{1}(v) \cap C
$$

C is

Dominating: $I(v) \neq \emptyset$ for every vertex v.
Identifying: $I(v) \neq I(u)$ for distinct vertices u and v. Identifying code: both dominating and identifying.

Identifying Code

$$
\text { Let } C \subseteq V(G)
$$

Identifying set of v (Code of v)

$$
I(v)=I(v, C)=B_{1}(v) \cap C
$$

C is

Dominating: $I(v) \neq \emptyset$ for every vertex v.
Identifying: $I(v) \neq I(u)$ for distinct vertices u and v.
Identifying code: both dominating and identifying.
Connected identifying code: identifying code and $G[C]$ is connected.

Identifying Code

$$
\text { Let } C \subseteq V(G)
$$

Identifying set of v (Code of v)

$$
I(v)=I(v, C)=B_{1}(v) \cap C
$$

C is

Dominating: $I(v) \neq \emptyset$ for every vertex v.
Identifying: $I(v) \neq I(u)$ for distinct vertices u and v.
Identifying code: both dominating and identifying.
Connected identifying code: identifying code and $G[C]$ is connected.

Identifying Code

$$
\text { Let } C \subseteq V(G)
$$

Identifying set of v (Code of v)
$I(v)=I(v, C)=B_{1}(v) \cap C$

C is

Dominating: $I(v) \neq \emptyset$ for every vertex v.
Identifying: $I(v) \neq I(u)$ for distinct vertices u and v.
Identifying code: both dominating and identifying.
Connected identifying code: identifying code and $G[C]$ is connected.

Identifying Code

$$
\text { Let } C \subseteq V(G)
$$

Identifying set of v (Code of v)
$I(v)=I(v, C)=B_{1}(v) \cap C$

C is

Dominating: $I(v) \neq \emptyset$ for every vertex v.
Identifying: $I(v) \neq I(u)$ for distinct vertices u and v.
Identifying code: both dominating and identifying.
Connected identifying code: identifying code and $G[C]$ is connected.

Identifying Code

Let $C \subseteq V(G)$

Identifying set of v (Code of v)
$I(v)=I(v, C)=B_{1}(v) \cap C$

C is

Dominating: $I(v) \neq \emptyset$ for every vertex v.
Identifying: $I(v) \neq I(u)$ for distinct vertices u and v.
Identifying code: both dominating and identifying.
Connected identifying code: identifying code and $G[C]$ is connected.

Density

Density of an identifying code $C \subseteq V(G)$

$$
D(C)=\frac{|C|}{|V(G)|}
$$

Density

Density of an identifying code $C \subseteq V(G)$

$$
D(C)=\frac{|C|}{|V(G)|}
$$

For infinite graphs

$$
D(C)=\limsup _{r \rightarrow \infty} \frac{\left|B_{r}(v) \cap C\right|}{\left|B_{r}(v)\right|}
$$

Density

Density of an identifying code $C \subseteq V(G)$

$$
D(C)=\frac{|C|}{|V(G)|}
$$

For infinite graphs

$$
D(C)=\limsup _{r \rightarrow \infty} \frac{\left|B_{r}(v) \cap C\right|}{\left|B_{r}(v)\right|}
$$

Definitions

- $i d(G)=\min \{D(C) \mid C$ is identifying code $\}$

Density

Density of an identifying code $C \subseteq V(G)$

$$
D(C)=\frac{|C|}{|V(G)|}
$$

For infinite graphs

$$
D(C)=\limsup _{r \rightarrow \infty} \frac{\left|B_{r}(v) \cap C\right|}{\left|B_{r}(v)\right|}
$$

Definitions

- $i d(G)=\min \{D(C) \mid C$ is identifying code $\}$
- $\operatorname{cid}(G)=\min \{D(C) \mid C$ is connected identifying code $\}$

Results for Infinite Lattices

Triangular lattice L_{T}

- $i d\left(L_{T}\right)=\frac{1}{4}$

國 M. Karpovsky, K. Chakrabarty and L. Levitin.
On a new class of codes for identifying vertices in graphs. IEEE Trans. Inform. Theory 1998.

Results for Infinite Lattices

Triangular lattice L_{T}

- $i d\left(L_{T}\right)=\frac{1}{4}$

Square lattice L_{S}

- $i d\left(L_{S}\right)=\frac{7}{20}$
(i. G. Cohen, S. Gravier, I. Honkala, A. Lobstein, M. Mollard, C. Payan and G. Zémor. Improved identifying codes for the grid. Electron. J. Combin. 1999.
(in Y. Ben-Haim and S. Litsyn.
Exact minimum density of codes identifying vertices in the square grid.
SIAM J. Discrete Math. 2005.

Results for Infinite Lattices

Triangular lattice L_{T}

- $i d\left(L_{T}\right)=\frac{1}{4}$

Square lattice L_{S}

- $i d\left(L_{S}\right)=\frac{7}{20}$

Hexagonal lattice L_{H}

- $\frac{5}{12} \leq i d\left(L_{H}\right) \leq \frac{3}{7}$
(G. Cohen, I. Honkala, A. Lobstein and G. Zémor. Bounds for codes identifying vertices in the hexagonal grid. SIAM J. Discrete Math. 2000.
國 A. Cukierman and G. Yu.
New bounds on the minimum density of an identifying code for the infinite hexagonal grid.
Discrete Appl. Math. 2013.

Our Results

Triangular lattice L_{T}

- $i d\left(L_{T}\right)=\frac{1}{4}$
- $\operatorname{cid}\left(L_{T}\right)=\frac{1}{3}$

Square lattice L_{S}

- $i d\left(L_{S}\right)=\frac{7}{20}$
- $\operatorname{cid}\left(L_{H}\right)=\frac{2}{5}$

Hexagonal lattice L_{H}

- $\frac{5}{12} \leq i d\left(L_{H}\right) \leq \frac{3}{7}$
- $\operatorname{cid}\left(L_{H}\right)=\frac{1}{2}$

軎 F. Benevides, V. Campos, M. Dourado, R. Sampaio and A. Silva On Connected Identifying Codes for Infinite Lattices.
FoCM 2014.

Upper bound: Triangular lattice

Upper bound: Square lattice

Upper bound: Hexagonal lattice

Lower Bounds

Theorem [KCL]

If G is finite with maximum degree Δ, then

$$
i d(G) \geq \frac{2}{\Delta+2}
$$

囲 M. Karpovsky, K. Chakrabarty and L. Levitin.
On a new class of codes for identifying vertices in graphs. IEEE Trans. Inform. Theory 1998.

Lower Bounds

Theorem [KCL]

If G is finite with maximum degree Δ, then

$$
i d(G) \geq \frac{2}{\Delta+2}
$$

Theorem [BCDSS]

If G is finite with n vertices and maximum degree Δ, then

$$
\operatorname{cid}(G) \geq \frac{2}{\Delta+1}\left(1-\frac{1}{n}\right)
$$

F. Benevides, V. Campos, M. Dourado, R. Sampaio and A. Silva On Connected Identifying Codes for Infinite Lattices. FoCM 2014.

Double counting proof

- $N=$ number of pairs (c, v) with $c \in C, v \in V$ and $c \in I(v)$.

Double counting proof

- $N=$ number of pairs (c, v) with $c \in C, v \in V$ and $c \in I(v)$.
- Counting through $c \in C$:

$$
N=|C|+\sum_{c \in C} d(c) \leq|C|+\Delta|C|
$$

Double counting proof

- $N=$ number of pairs (c, v) with $c \in C, v \in V$ and $c \in I(v)$.
- Counting through $c \in C$:

$$
N=|C|+\sum_{c \in C} d(c) \leq|C|+\Delta|C|
$$

- Counting through $v \in V$:

$$
N \geq \sum_{c \in C}(d(c, C)+1)+|C|+2(n-2|C|)
$$

Double counting proof

- $N=$ number of pairs (c, v) with $c \in C, v \in V$ and $c \in I(v)$.
- Counting through $c \in C$:

$$
N=|C|+\sum_{c \in C} d(c) \leq|C|+\Delta|C|
$$

- Counting through $v \in V$:

$$
N \geq \sum_{c \in C}(d(c, C)+1)+|C|+2(n-2|C|)
$$

- Since $G[C]$ is connected:

$$
\sum_{c \in C} d(c, C) \geq 2|C|-2
$$

Double counting proof

- $N=$ number of pairs (c, v) with $c \in C, v \in V$ and $c \in I(v)$.
- Counting through $c \in C$:

$$
N=|C|+\sum_{c \in C} d(c) \leq|C|+\Delta|C|
$$

- Counting through $v \in V$:

$$
N \geq \sum_{c \in C}(d(c, C)+1)+|C|+2(n-2|C|)
$$

- Since $G[C]$ is connected:

$$
\sum_{c \in C} d(c, C) \geq 2|C|-2
$$

- Reorganizing we get:

$$
\frac{|C|}{n} \geq \frac{2}{\Delta+1}\left(1-\frac{1}{n}\right)
$$

Is it tight?

- $G[C]$ is a tree

Is it tight?

- $G[C]$ is a tree
- Exactly $|C|$ vertices in $V \backslash C$ with $|I(v)|=1$.

Is it tight?

- $G[C]$ is a tree
- Exactly $|C|$ vertices in $V \backslash C$ with $|I(v)|=1$.
- All other vertices in $V \backslash C$ with $|I(v)|=2$.
- All vertices in C with $d(c)=\Delta$.

Is it tight?

- $G[C]$ is a tree

Add $|C|$ vertices forming a path.

- Exactly $|C|$ vertices in $V \backslash C$ with $|I(v)|=1$.
- All other vertices in $V \backslash C$ with $|I(v)|=2$.
- All vertices in C with $d(c)=\Delta$.

Is it tight?

- $G[C]$ is a tree

Add $|C|$ vertices forming a path.

- Exactly $|C|$ vertices in $V \backslash C$ with $|I(v)|=1$.

Add $|C|$ pendant vertices.

- All other vertices in $V \backslash C$ with $|I(v)|=2$.
- All vertices in C with $d(c)=\Delta$.

Is it tight?

- $G[C]$ is a tree

Add $|C|$ vertices forming a path.

- Exactly $|C|$ vertices in $V \backslash C$ with $|I(v)|=1$.

Add $|C|$ pendant vertices.

- All other vertices in $V \backslash C$ with $|I(v)|=2$.
- All vertices in C with $d(c)=\Delta$.

Careful application of Baranyai's Theorem.

Baranyai's Theorem (Particular case)

A complete graph on an even number of vertices can be decomposed into perfect matchings.

Is it tight for regular graphs?

- Vertices in C have degree Δ.

Is it tight for regular graphs?

- Vertices in C have degree Δ.
- Remaining vertices have degree 1 or 2 .

Is it tight for regular graphs?

- Vertices in C have degree Δ.
- Remaining vertices have degree 1 or 2 .
- Can we add edges between them to make it regular?

Is it tight for regular graphs?

- Vertices in C have degree Δ.
- Remaining vertices have degree 1 or 2 .
- Can we add edges between them to make it regular?

Yes if Δ is even but no if Δ is odd.

Erdős-Gallai Theorem

A sequence of integers $d_{1} \geq \cdots \geq d_{n}$ can be represented as the degree sequence of a simple graph iff $\sum d_{i}$ is even and

$$
\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{n} \min \left\{d_{i}, k\right\} .
$$

Tight lower bound theorem

Theorem [BCDSS]

If G is Δ-regular finite with n vertices and Δ is even, then

$$
\operatorname{cid}(G) \geq \frac{2}{\Delta+1}\left(1-\frac{1}{n}\right)
$$

Theorem [BCDSS]

If G is Δ-regular finite with n vertices and Δ is odd, then

$$
\operatorname{cid}(G) \geq \frac{2}{\Delta+1}\left(1-\frac{1}{2 n}\right)
$$

Tight lower bound theorem

Theorem [BCDSS]

If G is Δ-regular finite with n vertices and Δ is even, then

$$
\operatorname{cid}(G) \geq \frac{2}{\Delta+1}\left(1-\frac{1}{n}\right)
$$

Theorem [BCDSS]

If G is Δ-regular finite with n vertices and Δ is odd, then

$$
\operatorname{cid}(G) \geq \frac{2}{\Delta+1}\left(1-\frac{1}{2 n}\right)
$$

Both are tight.

Tight lower bound theorem

Theorem [BCDSS]

If G is Δ-regular finite with n vertices and Δ is even, then

$$
\operatorname{cid}(G) \geq \frac{2}{\Delta+1}\left(1-\frac{1}{n}\right)
$$

Theorem [BCDSS]

If G is Δ-regular finite with n vertices and Δ is odd, then

$$
\operatorname{cid}(G) \geq \frac{2}{\Delta+1}\left(1-\frac{1}{2 n}\right)
$$

Both are tight. Tight for square and hexagonal lattices.

Slight problem

For infinite graphs

$$
D(C)=\limsup _{r \rightarrow \infty} \frac{\left|B_{r}(v) \cap C\right|}{\left|B_{r}(v)\right|}
$$

Slight problem

For infinite graphs

$$
D(C)=\limsup _{r \rightarrow \infty} \frac{\left|B_{r}(v) \cap C\right|}{\left|B_{r}(v)\right|}
$$

- Our lower bound is only for finite graphs.

Slight problem

For infinite graphs

$$
D(C)=\limsup _{r \rightarrow \infty} \frac{\left|B_{r}(v) \cap C\right|}{\left|B_{r}(v)\right|}
$$

- Our lower bound is only for finite graphs.
- $B_{r}(v) \cap C$ doesn't need to be connected (for any $r!!$)

Slight problem

For infinite graphs

$$
D(C)=\limsup _{r \rightarrow \infty} \frac{\left|B_{r}(v) \cap C\right|}{\left|B_{r}(v)\right|}
$$

- Our lower bound is only for finite graphs.
- $B_{r}(v) \cap C$ doesn't need to be connected (for any $r!!$)
- $B_{r}(v) \cap C$ doesn't need to be identifying code

Slight problem - Solved!

For infinite graphs

$$
D(C)=\limsup _{r \rightarrow \infty} \frac{\left|B_{r}(v) \cap C\right|}{\left|B_{r}(v)\right|}
$$

- Our lower bound is only for finite graphs.
- $B_{r}(v) \cap C$ doesn't need to be connected (for any $\left.r!!\right)$
- $B_{r}(v) \cap C$ doesn't need to be identifying code

Theorem [BCDSS]

If C is identifying code in L_{S} or L_{H}, respectively, then

$$
\frac{\left|B_{r}(v) \cap C\right|}{\left|B_{r}(v)\right|} \geq \frac{2}{\Delta+1}+o(1) .
$$

Triangular lattice lower bound

Theorem [BCDSS]

$$
\operatorname{cid}\left(L_{T}\right) \geq \frac{1}{3}
$$

Triangular lattice lower bound

Theorem [BCDSS]

$$
\operatorname{cid}\left(L_{T}\right) \geq \frac{1}{3}
$$

Proof - Discharging

Triangular lattice lower bound

Theorem [BCDSS]

$$
\operatorname{cid}\left(L_{T}\right) \geq \frac{1}{3}
$$

Proof - Discharging

- Give charge of 3 to vertices in $B_{r}(v) \cap C$ (initial charge $=3|C|$.).

Triangular lattice lower bound

Theorem [BCDSS]

$$
\operatorname{cid}\left(L_{T}\right) \geq \frac{1}{3}
$$

Proof - Discharging

- Give charge of 3 to vertices in $B_{r}(v) \cap C$ (initial charge $=3|C|$.).
- Each vertex $v \in V \backslash C$ takes $\frac{1}{|(v)|}$ charge from neighbours in $I(v)$.

Triangular lattice lower bound

Theorem [BCDSS]

$$
\operatorname{cid}\left(L_{T}\right) \geq \frac{1}{3}
$$

Proof - Discharging

- Give charge of 3 to vertices in $B_{r}(v) \cap C$ (initial charge $=3|C|$.).
- Each vertex $v \in V \backslash C$ takes $\frac{1}{|(v)|}$ charge from neighbours in $I(v)$.
- Vertices in $V \backslash C$ have charge 1 .

Triangular lattice lower bound

Theorem [BCDSS]

$$
\operatorname{cid}\left(L_{T}\right) \geq \frac{1}{3}
$$

Proof - Discharging

- Give charge of 3 to vertices in $B_{r}(v) \cap C$ (initial charge $=3|C|$.).
- Each vertex $v \in V \backslash C$ takes $\frac{1}{|(v)|}$ charge from neighbours in $I(v)$.
- Vertices in $V \backslash C$ have charge 1 .
- If $c \in C$ has charge $\geq 1+\frac{2}{3}(d(c, C)-2)$

Triangular lattice lower bound

Theorem [BCDSS]

$$
\operatorname{cid}\left(L_{T}\right) \geq \frac{1}{3}
$$

Proof - Discharging

- Give charge of 3 to vertices in $B_{r}(v) \cap C$ (initial charge $=3|C|$.).
- Each vertex $v \in V \backslash C$ takes $\frac{1}{|(v)|}$ charge from neighbours in $I(v)$.
- Vertices in $V \backslash C$ have charge 1 .
- If $c \in C$ has charge $\geq 1+\frac{2}{3}(d(c, C)-2)$

$$
\text { We prove } \sum_{c \in C}\left(1+\frac{2}{3}(d(c, C)-2)\right) \geq|C|-\frac{4}{3}
$$

Triangular lattice lower bound

Theorem [BCDSS]

$$
\operatorname{cid}\left(L_{T}\right) \geq \frac{1}{3}
$$

Proof - Discharging

- Give charge of 3 to vertices in $B_{r}(v) \cap C$ (initial charge $=3|C|$.).
- Each vertex $v \in V \backslash C$ takes $\frac{1}{|(v)|}$ charge from neighbours in $I(v)$.
- Vertices in $V \backslash C$ have charge 1 .
- If $c \in C$ has charge $\geq 1+\frac{2}{3}(d(c, C)-2)$

$$
\begin{gathered}
\text { We prove } \sum_{c \in C}\left(1+\frac{2}{3}(d(c, C)-2)\right) \geq|C|-\frac{4}{3} \\
3|C| \geq|V|
\end{gathered}
$$

Cont. Proof - Remaining charge

Open problem

King Grid?

The end

Thank you very much!

