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Ball

Definition: Br (v)

Set of vertices at distance at most r from v .
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Identifying Code

Let C ⊆ V (G )

Identifying set of v (Code of v)

I (v) = I (v ,C ) = B1(v) ∩ C

C is

Dominating: I (v) 6= ∅ for every vertex v .

Identifying: I (v) 6= I (u) for distinct vertices u and v .

Identifying code: both dominating and identifying.

Connected identifying code: identifying code and G [C ] is connected.
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Density

Density of an identifying code C ⊆ V (G )

D(C ) =
|C |
|V (G )|

For infinite graphs

D(C ) = lim sup
r→∞

|Br (v) ∩ C |
|Br (v)|

Definitions

id(G ) = min{D(C )|C is identifying code}
cid(G ) = min{D(C )|C is connected identifying code}
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Results for Infinite Lattices

Triangular lattice LT

id(LT ) = 1
4

cid(LT ) = 1
3

Square lattice LS

id(LS) = 7
20

cid(LH) = 2
5

Hexagonal lattice LH

5
12 ≤ id(LH) ≤ 3

7

cid(LH) = 1
2

M. Karpovsky, K. Chakrabarty and L. Levitin.
On a new class of codes for identifying vertices in graphs.
IEEE Trans. Inform. Theory 1998.
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Our Results
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Upper bound: Triangular lattice
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Upper bound: Square lattice
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Upper bound: Hexagonal lattice
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Lower Bounds

Theorem [KCL]

If G is finite with maximum degree ∆, then

id(G ) ≥ 2

∆ + 2
.

Theorem [BCDSS]

If G is finite with n vertices and maximum degree ∆, then

cid(G ) ≥ 2

∆ + 1
(1− 1

n
).

M. Karpovsky, K. Chakrabarty and L. Levitin.
On a new class of codes for identifying vertices in graphs.
IEEE Trans. Inform. Theory 1998.
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Double counting proof

N = number of pairs (c , v) with c ∈ C , v ∈ V and c ∈ I (v).

Counting through c ∈ C :

N = |C |+
∑
c∈C

d(c) ≤ |C |+ ∆|C |

Counting through v ∈ V :

N ≥
∑
c∈C

(d(c ,C ) + 1) + |C |+ 2(n − 2|C |)

Since G [C ] is connected:∑
c∈C

d(c ,C ) ≥ 2|C | − 2

Reorganizing we get:

|C |
n
≥ 2

∆ + 1
(1− 1

n
)
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Is it tight?

G [C ] is a tree

Add |C | vertices forming a path.

Exactly |C | vertices in V \ C with |I (v)| = 1.

Add |C | pendant vertices.

All other vertices in V \ C with |I (v)| = 2.

All vertices in C with d(c) = ∆.

Careful application of Baranyai’s Theorem.

Baranyai’s Theorem (Particular case)

A complete graph on an even number of vertices can be decomposed into
perfect matchings.
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Is it tight for regular graphs?

Vertices in C have degree ∆.

Remaining vertices have degree 1 or 2.

Can we add edges between them to make it regular?

Yes if ∆ is even but no if ∆ is odd.

Erdős-Gallai Theorem

A sequence of integers d1 ≥ · · · ≥ dn can be represented as the degree
sequence of a simple graph iff

∑
di is even and

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{di , k}.
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Tight lower bound theorem

Theorem [BCDSS]

If G is ∆-regular finite with n vertices and ∆ is even, then

cid(G ) ≥ 2

∆ + 1
(1− 1

n
).

Theorem [BCDSS]

If G is ∆-regular finite with n vertices and ∆ is odd, then

cid(G ) ≥ 2

∆ + 1
(1− 1

2n
).

Both are tight.

Tight for square and hexagonal lattices.
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Slight problem

- Solved!

For infinite graphs

D(C ) = lim sup
r→∞

|Br (v) ∩ C |
|Br (v)|

Our lower bound is only for finite graphs.

Br (v) ∩ C doesn’t need to be connected (for any r !!)

Br (v) ∩ C doesn’t need to be identifying code

Theorem [BCDSS]

If C is identifying code in LS or LH , respectively, then

|Br (v) ∩ C |
|Br (v)|

≥ 2

∆ + 1
+ o(1).
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∆ + 1
+ o(1).
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Triangular lattice lower bound

Theorem [BCDSS]

cid(LT ) ≥ 1

3

Proof - Discharging

Give charge of 3 to vertices in Br (v) ∩ C (initial charge = 3|C |.).

Each vertex v ∈ V \ C takes 1
|I (v)| charge from neighbours in I (v).

Vertices in V \ C have charge 1.

If c ∈ C has charge ≥ 1 + 2
3 (d(c ,C )− 2)

We prove
∑
c∈C

(
1 +

2

3
(d(c ,C )− 2)

)
≥ |C | − 4

3

3|C | ≥ |V |
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Cont. Proof - Remaining charge
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Open problem

King Grid?
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The end

Thank you very much!
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