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Transference theorems

Theorem (Conlon—Gowers [2009+], Schacht [2009+])

extremal result R
+ —> random analogue of R.
supersaturation

Dr D. Conlon Sir W.T. Gowers Dr M. Schacht



Szemerédi's theorem

Theorem (Szemerédi [1975])

For every k > 3, the largest subset of {1,...,n} with no k-term AP has
o(n) elements.

Endre Szemerédi



Random analogue of Szemerédi's theorem

Theorem (Kohayakawa—tuczak—Raéd| [1996])

For every § > 0, there exists a C such that if p(n) > Cn~'/2, then a.a.s.:
the p-random subset [n,] satisfies:

Every A C [n], with |A| > d][n]p| contains a 3-term AP.

V. Radl
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Theorem (Conlon—Gowers [2009+], Schacht [2009+])

extremal result R
T —> random analogue of R
supersaturation

Corollary (Random analogue of Szemerédi's theorem)

For every k > 3 and § > 0, if p(n) > C(k,?) - n*ﬁ, then
a.a.s. [n], satisfies that every A C [n], with |A| > §|[n],| contains a
k-term AP.




Transference theorems — corollary

Theorem (Turan [1941])

For every k > 3,

ex(n, Ki) = e(Ti_1(n)) = (1 - ﬁ + o(l)) (’2’)




Transference theorems — corollary

Theorem (Turan [1941])

For every k > 3,

ex(n, Ki) = e(Ti_1(n)) = (1 - ﬁ + o(l)) (’2’)

Motivated by: Haxell, Kohayakawa, tuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer,
Steger, Szabd, Sudakov, Vu,...



Transference theorems — corollary

Theorem (Turan [1941])
For every k > 3,

Motivated by: Haxell, Kohayakawa, tuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer,
Steger, Szabd, Sudakov, Vu,...

Theorem (Conlon—Gowers [2009+], Schacht [2009+])

For p = p(n) > nTEI aas.




Transference theorems — corollary

Theorem (Turan [1941])
For every k > 3,

Motivated by: Haxell, Kohayakawa, tuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer,
Steger, Szabd, Sudakov, Vu,...

Theorem (Conlon—Gowers [2009+], Schacht [2009+])

For p = p(n) > nTEI aas.

ex(G(n, p), Kx) = (1—ﬁ+o(1)>-e(G(n,p)).

This is usually referred to as the random analogue of Turédn's theorem.
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Counting Independent sets in Hypergraphs

Balogh—Morris—Samotij, Saxton—Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi's theorem)

For every k >3 and 6 > 0, if m > C(k,é)nl_ﬁ, then

#m-subsets of [n] with no k-term AP < <(i:)

Theorem (Erdés—Kleitman—Rothschild [1976])

There are at most 2(1+0(1)-ex(nKk) K, free graphs on n vertices.
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The Cameron—Erdés problem

Question
How many integers from {1,...,n} can we select without creating a
solution of

X+y=2z?

|

Observation
@ Set of odds is sum-free.
o {n/2+1,n/2+2,..., n} is sum-free.
e {n/2,n/2+1,...,n— 1} is sum-free.

.

Cameron — Erdés Conjecture (1990)

The number of sum-free subsets of [n] is O(2"/?).

v

RENEILS

The number of sum-free subsets of [n] is more than 2 x 27/2.
Any subset of {n/2,n/2+1,...,n— 1} is sum-free, etc...

.




The Cameron—Erdés problem

Cameron — Erdds Conjecture (1990)

The number of sum-free subsets of [n] is O(2"/2).

Green (2004), Sapozhenko (2003)

There are constans c. and ¢, s.t. the number of sum-free subsets of [n] is
(14 0(1))ce2™?, (14 o(1))co2™?

depending on the parity of n.
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The Cameron—Erdés problem

Cameron — Erdés Conjecture (1999)

There is ¢ > 0 that the number of maximal sum-free subsets of [n] is
O(2n/2—cn)'

There are at least 2"/4 maximal sum-free subsets of [n].

tuczak and Schoen (2001)

The number of maximal sum-free subsets of [n] is at most O(2"/2*2728"),

Wolfowitz (2009)

The number of maximal sum-free subsets of [n] is at most 237/8=0(n)

Balogh—H. Liu—Sharifzadeh—Treglown [20147]

The number of maximal sum-free subsets of [n] is O(2"/4).




New applications of the “Counting Method":

Theorem (Erdés—Kleitman—Rothschild [1976])

Almost all triangle-free graphs are bipartite.




New applications of the “Counting Method":

Theorem (Erdés—Kleitman—Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Most bipartite graphs are not maximal; there are only “few” complete
bipartite graphs.




New applications of the “Counting Method":

Theorem (Erdés—Kleitman—Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Most bipartite graphs are not maximal; there are only “few” complete
bipartite graphs.

Question (Erdés [1996])

What is the number of maximal triangle-free graphs on n vertices?




New applications of the “Counting Method":

Theorem (Erdés—Kleitman—Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Most bipartite graphs are not maximal; there are only “few” complete
bipartite graphs.

Question (Erdés [1996])

What is the number of maximal triangle-free graphs on n vertices?

3/2+0(1)

2!1



New applications of the “Counting Method":

Theorem (Erdés—Kleitman—Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Most bipartite graphs are not maximal; there are only “few” complete
bipartite graphs.

Question (Erdés [1996])

What is the number of maximal triangle-free graphs on n vertices?

2,.'3/2+o(1 2o(n2)



New applications of the “Counting Method":

Theorem (Erdés—Kleitman—Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Most bipartite graphs are not maximal; there are only “few” complete
bipartite graphs.

Question (Erdés [1996])

What is the number of maximal triangle-free graphs on n vertices?

2,.'3/2+o(1 2o(n2) 2n2/8



New applications of the “Counting Method":

Theorem (Erdés—Kleitman—Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Most bipartite graphs are not maximal; there are only “few” complete
bipartite graphs.

Question (Erdés [1996])

What is the number of maximal triangle-free graphs on n vertices?

2n3/2+°(1 2o(n2) 2n2/8 2(1/4—c)n2



New applications of the “Counting Method":

Theorem (Erdés—Kleitman—Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Most bipartite graphs are not maximal; there are only “few” complete
bipartite graphs.

Question (Erdés [1996])

What is the number of maximal triangle-free graphs on n vertices?

2n3/2+°(1 2o(n2) 2n2/8 2(1/4—c)n2 2n2/4_



New applications of the “Counting Method":

There are at least 27°/8 maximal triangle-free raphs on n vertices.
g g




New applications of the “Counting Method":

There are at least 27°/8 maximal triangle-free raphs on n vertices.
g g

o Let X :={u1v1,...,Up/aVn/s} be a matching;




New applications of the “Counting Method":

There are at least 27°/8 maximal triangle-free graphs on n vertices. |

o Let X :={u1v1,...,Up/aVn/s} be a matching;

@ Y be an independent set of size n/2.



New applications of the “Counting Method":

There are at least 27°/8 maximal triangle-free graphs on n vertices. |

o Let X :={u1v1,...,Up/aVn/s} be a matching;

@ Y be an independent set of size n/2.

o For every i: partition Y := A; U B;.



New applications of the “Counting Method":

There are at least 27°/8 maximal triangle-free graphs on n vertices. |

Let X := {u1v1, ..., Up/aVy/4} be a matching;

Y be an independent set of size n/2.
For every i: partition Y := A; U B;.
Add all edges between u; and A;; add all edges between v; and B;.



New applications of the “Counting Method":

There are at least 27°/8 maximal triangle-free graphs on n vertices. \

Let X := {u1v1, ..., Up/aVy/4} be a matching;

Y be an independent set of size n/2.
For every i: partition Y := A; U B;.
Add all edges between u; and A;; add all edges between v; and B;.

Most of these graphs will be maximal triangle-free.



New applications of the “Counting Method":

There are at least 27°/8 maximal triangle-free graphs on n vertices. \

Let X := {u1v1, ..., Up/aVy/4} be a matching;

Y be an independent set of size n/2.
For every i: partition Y := A; U B;.
Add all edges between u; and A;; add all edges between v; and B;.

Most of these graphs will be maximal triangle-free.

Number of graphs: (2”/2)n/4 = 2m/8,



New applications of the “Counting Method":

There are at least 27°/8 maximal triangle-free graphs on n vertices. \

Let X := {u1v1, ..., Up/aVy/4} be a matching;

Y be an independent set of size n/2.
For every i: partition Y := A; U B;.
Add all edges between u; and A;; add all edges between v; and B;.

Most of these graphs will be maximal triangle-free.

@ Number of graphs: (2”/2)n/4 = 2n°/8,

Balogh—Pet¥itkova [2014+]

There are at most 27°/8+°(") maximal triangle-free graphs on n vertices.




New applications of the “Counting Method":

Balogh—H. Liu—Petrickova—Sharifzadeh [2014+++]

Almost every maximal triangle-free graph has the above structure.
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Theorem (Erdés—Kleitman—Rothschild [1976])

The number of triangle-free graphs is 27°/4+0o(m%).

o Apply Szemerédi Regularity Lemma for a G, triangle-free graph.
Obtain cluster graph R:.
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The number of triangle-free graphs: ‘New approach’

Theorem (Erdés—Kleitman—Rothschild [1976])

The number of triangle-free graphs is o /4+o(r?),

Balogh—Morris—Samotij, Saxton—Thomason [2012+]

There is a t < 20008n1*%) and 3 set {Gy, ..., G} of graphs, each
containing at most o(n3) triangles, such that for every triangle-free graph
H there is an i € [t] such that H C G;.

o For each F, triangle-free graph there is an i that F, C G;.
e ¢(G;) < n?/4+ o(n?).
o Number of choices for F,, is t - 27 /4+o(m?) — pn?/4+o(n?)

There is a t = 2°(m) and a set {Gi,..., Gt} of graphs, each containing at
most o(n3) triangles, such that for every triangle-free graph H there is
i € [t] such that H C G;.
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There is a t < 20008n1*%) and 3 set {Gy, ..., G} of graphs, each
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Ruzsa—Szemerédi (1976)
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Balogh—Morris—Samotij, Saxton—Thomason [2012+]

There is a t < 20008n1*%) and 3 set {Gy, ..., G} of graphs, each
containing at most o(n3) triangles, such that for every triangle-free graph
H there is an i € [t] such that H C G;. Note e(G;) < n?/4 + o(n?).

Ruzsa—Szemerédi (1976)

Any graph G, with at most o(n%) triangles can be made triangle-free by
removing at most o(n?) edges.

Hujter—Tuza (1993)

Any triangle-free graph Ty has at most 2V/2 maximal independent sets.
Sharpness is by a perfect matching.
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The number of maximal triangle-free graphs

Balogh—Pet¥itkova [2014+]

2 2 0 0 .
There are at most 2" /8+°("™) maximal triangle-free graphs on n vertices.

@ For F, triangle-free graph there is a G; containing it.
20(logn-n*') cpoices.
e Fixa T; C E(G;) that | T;| = o(n?) and E(G;) — T; is triangle-free.
Decide on T; N E(F,). Number of choices is 2°(").
e Form auxiliary graph: V := E(G;) — T;
E={ef:if 3 ge T;NE(F,), that efg is a triangle.}
@ This graph is triangle-free;
@ Number of choices for (F, N G;) — T; is at most the number of
maximal independent sets in the auxilary graph.
|V| < n?/4; Hujter-Tuza gives < 2°/8 choices.
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The number of intersecting families of permutations is

o(1+0(1))(n—1)!

Proof follows Alon—Balogh—Morris—Samotij [2014]:

Form graph: V := permutations, E := non-intersecting pairs.
Apply Alon—Chung Expander-Mixing Lemma:

Let G be a D-regular graph on N vertices, and let A be its smallest
eigenvalue. Then for all S C V(G),

e(GIS]) > oIS+ 2yiISI (N ~IS]).

o Ellis: )\
nl

(— % +0o(1))(n—1)!,
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The number of intersecting families of permutations is

o(1+0(1))(n—1)!

Proof follows Alon—Balogh—Morris—Samotij [2014]:
Form graph: V := permutations, E := non-intersecting pairs.

Apply Alon—Chung Expander-Mixing Lemma:
Let G be a D-regular graph on N vertices, and let A be its smallest
eigenvalue. Then for all S C V(G),

e(GIS]) > oIS+ 2yiISI (N ~IS]).

Ellis: A= (—1+4o(1))(n—1)!,
N=n!, D= (%+0(1))N,|S|=(1+o0(1))(n— 1)
G[S] spans many edges — G does not have ‘many’ independent sets.
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@ Count maximal intersecting families. Let 1 be such family.
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Almost every intersecting permutation family is trivially intersecting.

@ Count maximal intersecting families. Let 1 be such family.
IN):={meS,: mtNp#0, VpeTl}.

[ C M is a generating set of 1 if Z(I') =T.

Every I1 has DIFFERENT minimal generating sets.

Count minimal generating sets!

Vp; €T there is a m; ¢ I that (p;, ;) is not an intersecting pair,
but Vp; € I with i # j, (p;,m;) is an intersecting pair.

p— {(i,p(i) : i € [n]} maps an n-uniform hypergraph.

Bollobas set-pair inequality: || < (2:)

Ellis (2011): Largest non-trivial intersecting permutation family has
size at most (1 — 1 4 o(1))(n— 1)L

((g' ) . 2(1-1/e+o(1))(n—1)! < onlog n-22n o(1-1/e+o(1))(n—-1)! < o(n—1)!

")
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General framework — examples

Example (Erdés—Turan problem)
o V={1,...,n},
o H = k-term APs in [n].

v

Example (Turdn problem)

o V = edges of K,,

@ H = edge-sets of copies of Ky in K.

Example (sum-free sets)
@ V = an Abelian group,
o H = sets of the form {x,y,z} with x +y = z (Schur triples).
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Transference Theorem

Theorem (Balogh—Morris—Samotij [2012+])

For every k, c,e there is a C that the following holds. Let % C (}) such that for
te[k], pelo0,1]

AfH) < ptt EZ;

Let F = {AC V: |H[A]| > € e(H)}. Then there are:
@ a very small family S C (gc\;(tl()ﬂ)) of labels,
@ f: S — F° (maps each label to a set that is sparse in H),
@ a labeling function g: Z(H) — S,

such that for every | € Z(H),

g(l) Sl and [\ g(l)C f(g(l)).

Similar result was obtained independently by Saxton and Thomason.

Explain: Example of triangle-free graphs.
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How to use Transference Theorem?

o Let V(H) = E(K,), E(H) = copies of Ky1.

@ An [/ independent set in H is a K,1-free graph.

o lett= (C:Zf/,) There are Gy, ... G; graphs that for any H
K,+1-free graph there is an i that H C G;.

o The number of K,;1 in each G; is o(n"*1).

@ Super-saturation implies that for each i :

e(G) < (1-1+0(1))2.

@ Super-saturation — Stability theorems implies that each G; is

either almost r-partite or

2
e(G)<(1-1-0)%.
o Computation gives: Almost all K, 1-free graph is almost r-partite.

2
(an/f/ )2(11/rc)n2/2 < 2(-1/n/2.
n<— r
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