Counting independent sets in hypergraphs and its applications

József Balogh U. of Illinois at U.C.

2014

Transference theorems

$\begin{array}{rl} + & \Longrightarrow & {\sf random \ analogue \ of \ } {\mathcal R}. \\ {\sf supersaturation} \end{array}$

Dr D. Conlon

Sir W.T. Gowers

Dr M. Schacht

Szemerédi's theorem

Theorem (Szemerédi [1975])

For every $k \ge 3$, the largest subset of $\{1, ..., n\}$ with no k-term AP has o(n) elements.

Endre Szemerédi

Random analogue of Szemerédi's theorem

Theorem (Kohayakawa-Łuczak-Rödl [1996])

For every $\delta > 0$, there exists a C such that if $p(n) \ge Cn^{-1/2}$, then a.a.s.: the *p*-random subset $[n_p]$ satisfies:

Every $A \subseteq [n]_p$ with $|A| \ge \delta |[n]_p|$ contains a 3-term AP.

Y. Kohayakawa

T. Łuczak

V. Rödl

Corollary (Random analogue of Szemerédi's theorem)

For every $k \ge 3$ and $\delta > 0$, if $p(n) \ge C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \ge \delta |[n]_p|$ contains a *k*-term AP.

For every $k \geq 3$,

$$ex(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) {n \choose 2}.$$

For every $k \geq 3$,

$$ex(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) {n \choose 2}.$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl. by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu....

For every $k \geq 3$,

$$ex(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) {n \choose 2}.$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl. by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu....

Theorem (Conlon-Gowers [2009+], Schacht [2009+])

For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

For every $k \geq 3$,

$$ex(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) {n \choose 2}.$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl. by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu....

Theorem (Conlon-Gowers [2009+], Schacht [2009+])

For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

$$\exp(G(n,p), K_k) = \left(1 - \frac{1}{k-1} + o(1)\right) \cdot e(G(n,p)).$$

This is usually referred to as the random analogue of Turán's theorem.

Authors I. [at the time of the submission of the paper]

W. Samotij

R. Morris

Authors II. [at the time of the submission of the paper]

Authors I. [at the time of the acceptance of the paper]

W. Samotij

R. Morris

Authors II. [at the time of the acceptance of the paper]

Counting Independent sets in Hypergraphs

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

Certain hypergraphs have only few independent sets.

Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi's theorem)

For every $k \ge 3$ and $\delta > 0$, if $p(n) \ge C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \ge \delta |[n]_p|$ contains a *k*-term AP.

Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi's theorem)

For every
$$k \ge 3$$
 and $\delta > 0$, if $p(n) \ge C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then
a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \ge \delta |[n]_p|$ contains a
k-term AP.

Corollary (Random analogue of Turán's theorem)

For
$$p = p(n) \gg n^{-\frac{2}{k+1}}$$
 a.a.s.:
 $\exp(G(n,p), K_k) = (1 - \frac{1}{k-1} + o(1)) \cdot e(G(n,p)).$

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi's theorem)

For every $k \ge 3$ and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then #*m*-subsets of [*n*] with no *k*-term AP $\le {\binom{\delta n}{m}}$. Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi's theorem)

For every $k \ge 3$ and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then #*m*-subsets of [*n*] with no *k*-term AP $\le {\binom{\delta n}{m}}$.

Theorem (Erdős–Kleitman–Rothschild [1976])

There are at most $2^{(1+o(1))\cdot e_x(n,K_k)}$ K_k -free graphs on *n* vertices.

Question

How many integers from $\{1,\ldots,n\}$ can we select without creating a solution of

x + y = z?

Question

How many integers from $\{1,\ldots,n\}$ can we select without creating a solution of

$$x + y = z?$$

Observation

• Set of odds is sum-free.

Question

How many integers from $\{1,\ldots,n\}$ can we select without creating a solution of

$$x + y = z?$$

Observation

- Set of odds is sum-free.
- $\{n/2 + 1, n/2 + 2, ..., n\}$ is sum-free.
- $\{n/2, n/2 + 1, ..., n 1\}$ is sum-free.

Question

How many integers from $\{1,\ldots,n\}$ can we select without creating a solution of

$$x + y = z?$$

Observation

- Set of odds is sum-free.
- $\{n/2 + 1, n/2 + 2, ..., n\}$ is sum-free.
- $\{n/2, n/2 + 1, ..., n 1\}$ is sum-free.

Cameron – Erdős Conjecture (1990)

The number of sum-free subsets of [n] is $O(2^{n/2})$.

Question

How many integers from $\{1,\ldots,n\}$ can we select without creating a solution of

$$x + y = z?$$

Observation

- Set of odds is sum-free.
- $\{n/2 + 1, n/2 + 2, ..., n\}$ is sum-free.
- $\{n/2, n/2 + 1, ..., n 1\}$ is sum-free.

Cameron – Erdős Conjecture (1990)

The number of sum-free subsets of [n] is $O(2^{n/2})$.

Remark

The number of sum-free subsets of [n] is more than $2 \times 2^{n/2}$. Any subset of $\{n/2, n/2 + 1, ..., n - 1\}$ is sum-free, etc...

Cameron – Erdős Conjecture (1990)

The number of sum-free subsets of [n] is $O(2^{n/2})$.

Green (2004), Sapozhenko (2003)

There are constans c_e and c_o s.t. the number of sum-free subsets of [n] is

$$(1+o(1))c_e2^{n/2}, \quad (1+o(1))c_o2^{n/2}$$

depending on the parity of n.

There is c > 0 that the number of **maximal** sum-free subsets of [n] is

$$O(2^{n/2-cn}).$$

There are at least $2^{n/4}$ maximal sum-free subsets of [n].

There is c > 0 that the number of **maximal** sum-free subsets of [n] is

$$O(2^{n/2-cn}).$$

There are at least $2^{n/4}$ maximal sum-free subsets of [n].

Łuczak and Schoen (2001)

The number of **maximal** sum-free subsets of [n] is at most $O(2^{n/2-2^{-28}n})$.

There is c > 0 that the number of **maximal** sum-free subsets of [n] is

$$O(2^{n/2-cn}).$$

There are at least $2^{n/4}$ maximal sum-free subsets of [n].

Łuczak and Schoen (2001)

The number of **maximal** sum-free subsets of [n] is at most $O(2^{n/2-2^{-28}n})$.

Wolfowitz (2009)

The number of **maximal** sum-free subsets of [n] is at most $2^{3n/8-o(n)}$.

There is c > 0 that the number of **maximal** sum-free subsets of [n] is

$$O(2^{n/2-cn}).$$

There are at least $2^{n/4}$ maximal sum-free subsets of [n].

Łuczak and Schoen (2001)

The number of **maximal** sum-free subsets of [n] is at most $O(2^{n/2-2^{-28}n})$.

Wolfowitz (2009)

The number of **maximal** sum-free subsets of [n] is at most $2^{3n/8-o(n)}$.

Balogh-H. Liu-Sharifzadeh-Treglown [2014+]

The number of **maximal** sum-free subsets of [n] is $2^{n/4+o(n)}$.

There is c > 0 that the number of **maximal** sum-free subsets of [n] is

$$O(2^{n/2-cn}).$$

There are at least $2^{n/4}$ maximal sum-free subsets of [n].

Łuczak and Schoen (2001)

The number of **maximal** sum-free subsets of [n] is at most $O(2^{n/2-2^{-28}n})$.

Wolfowitz (2009)

The number of **maximal** sum-free subsets of [n] is at most $2^{3n/8-o(n)}$.

Balogh-H. Liu-Sharifzadeh-Treglown [2014?]

The number of **maximal** sum-free subsets of [n] is $O(2^{n/4})$.

New applications of the "Counting Method":

Theorem (Erdős–Kleitman–Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

 $2^{n^{3/2+o(1)}}$

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

$$2^{n^{3/2+o(1)}}$$
 $2^{o(n^2)}$

Theorem (Erdős–Kleitman–Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

$$2^{n^{3/2+o(1)}}$$
 $2^{o(n^2)}$ $2^{n^2/8}$

Theorem (Erdős–Kleitman–Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

$$2^{n^{3/2+o(1)}}$$
 $2^{o(n^2)}$ $2^{n^2/8}$ $2^{(1/4-c)n^2}$

Theorem (Erdős–Kleitman–Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

$$2^{n^{3/2+o(1)}}$$
 $2^{o(n^2)}$ $2^{n^2/8}$ $2^{(1/4-c)n^2}$ $2^{n^2/4}$

New applications of the "Counting Method":

Folklore

New applications of the "Counting Method":

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on *n* vertices.

• Let $X := \{u_1v_1, \dots, u_{n/4}v_{n/4}\}$ be a matching;

- Let $X := \{u_1v_1, ..., u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size n/2.

- Let $X := \{u_1v_1, \dots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size n/2.
- For every *i*: partition $Y := A_i \cup B_i$.

- Let $X := \{u_1v_1, \dots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size n/2.
- For every *i*: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i ; add all edges between v_i and B_i .

- Let $X := \{u_1v_1, \dots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size n/2.
- For every *i*: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i ; add all edges between v_i and B_i .
- Most of these graphs will be maximal triangle-free.

- Let $X := \{u_1v_1, \dots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size n/2.
- For every *i*: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i ; add all edges between v_i and B_i .
- Most of these graphs will be maximal triangle-free.
- Number of graphs: $(2^{n/2})^{n/4} = 2^{n^2/8}$.

There are at least $2^{n^2/8}$ maximal triangle-free graphs on *n* vertices.

- Let $X := \{u_1v_1, \dots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size n/2.
- For every *i*: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i ; add all edges between v_i and B_i .
- Most of these graphs will be maximal triangle-free.
- Number of graphs: $(2^{n/2})^{n/4} = 2^{n^2/8}$.

Balogh–Petříčková [2014+]

New applications of the "Counting Method":

Balogh-H. Liu-Petrickova-Sharifzadeh [2014+++]

Almost every maximal triangle-free graph has the above structure.

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

• Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.

Theorem (Erdős–Kleitman–Rothschild [1976])

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.

Theorem (Erdős–Kleitman–Rothschild [1976])

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean *G_n*: remove edges inside clusters, between sparse pairs, and irregular pairs.

Theorem (Erdős-Kleitman-Rothschild [1976])

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean *G_n*: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.

Theorem (Erdős–Kleitman–Rothschild [1976])

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean *G_n*: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n . [Approximate Container]

Theorem (Erdős-Kleitman-Rothschild [1976])

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean *G_n*: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n . [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.

Theorem (Erdős-Kleitman-Rothschild [1976])

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean *G_n*: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to *n* vertices.
- C_n contains all but $o(n^2)$ edges of G_n . [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.

Theorem (Erdős-Kleitman-Rothschild [1976])

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean *G_n*: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n . [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is

$$O(1) \cdot n^n \cdot$$

Theorem (Erdős-Kleitman-Rothschild [1976])

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean *G_n*: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n . [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is

$$O(1) \cdot n^n \cdot 2^{n^2/4}$$

Theorem (Erdős–Kleitman–Rothschild [1976])

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to *n* vertices.
- C_n contains all but $o(n^2)$ edges of G_n . [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is

$$O(1) \cdot n^n \cdot 2^{n^2/4} \cdot {n^2 \choose o(n^2)} = 2^{n^2/4 + o(n^2)}$$

Theorem (Erdős–Kleitman–Rothschild [1976])

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

• For each F_n triangle-free graph there is an *i* that $F_n \subset G_i$.

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

For each F_n triangle-free graph there is an i that F_n ⊂ G_i.
e(G_i) ≤ n²/4 + o(n²).

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

- For each F_n triangle-free graph there is an *i* that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

- For each F_n triangle-free graph there is an *i* that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is $t \cdot$

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

- For each F_n triangle-free graph there is an *i* that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is $t \cdot 2^{n^2/4 + o(n^2)} = 2^{n^2/4 + o(n^2)}$.

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an *i* that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is $t \cdot 2^{n^2/4 + o(n^2)} = 2^{n^2/4 + o(n^2)}$.

Szemerédi container lemma

The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on *n* vertices.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on *n* vertices.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$. Note $e(G_i) \leq n^2/4 + o(n^2)$.

Ruzsa–Szemerédi (1976)

Any graph G_n with at most $o(n^3)$ triangles can be made triangle-free by removing at most $o(n^2)$ edges.

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on *n* vertices.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$. Note $e(G_i) \leq n^2/4 + o(n^2)$.

Ruzsa–Szemerédi (1976)

Any graph G_n with at most $o(n^3)$ triangles can be made triangle-free by removing at most $o(n^2)$ edges.

Hujter–Tuza (1993)

Any triangle-free graph T_N has at most $2^{N/2}$ maximal independent sets. Sharpness is by a perfect matching.

The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on *n* vertices.

• For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.

Balogh–Petříčková [2014+]

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) T_i$ is triangle-free.

Balogh–Petříčková [2014+]

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a T_i ⊂ E(G_i) that |T_i| = o(n²) and E(G_i) − T_i is triangle-free. Decide on T_i ∩ E(F_n). Number of choices is 2^{o(n²)}.

Balogh–Petříčková [2014+]

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.
- Form auxiliary graph: $V := E(G_i) T_i$, $E = \{ef : if \exists g \in T_i \cap E(F_n), \text{ that } efg \text{ is a triangle.}\}$

Balogh-Petříčková [2014+]

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.
- Form auxiliary graph: $V := E(G_i) T_i$, $E = \{ef : if \exists g \in T_i \cap E(F_n), \text{ that } efg \text{ is a triangle.}\}$
- This graph is triangle-free;

Balogh-Petříčková [2014+]

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.
- Form auxiliary graph: $V := E(G_i) T_i$, $E = \{ef : if \exists g \in T_i \cap E(F_n), \text{ that } efg \text{ is a triangle.}\}$
- This graph is triangle-free;
- Number of choices for (F_n ∩ G_i) − T_i is at most the number of maximal independent sets in the auxilary graph.

Balogh-Petříčková [2014+]

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a T_i ⊂ E(G_i) that |T_i| = o(n²) and E(G_i) − T_i is triangle-free. Decide on T_i ∩ E(F_n). Number of choices is 2^{o(n²)}.
- Form auxiliary graph: $V := E(G_i) T_i$, $E = \{ef : if \exists g \in T_i \cap E(F_n), \text{ that } efg \text{ is a triangle.}\}$
- This graph is triangle-free;
- Number of choices for (F_n ∩ G_i) − T_i is at most the number of maximal independent sets in the auxilary graph.
- $|V| \leq n^2/4$; Hujter–Tuza gives $\leq 2^{n^2/8}$ choices.

Definition

• **Permutation** $\pi = \pi(n)$ is a bijective map from [n] to [n].

- **Permutation** $\pi = \pi(n)$ is a bijective map from [n] to [n].
- Permutations ρ, π are **intersecting** if there is an *i* that $\rho(i) = \pi(i)$.

- **Permutation** $\pi = \pi(n)$ is a bijective map from [n] to [n].
- Permutations ρ, π are **intersecting** if there is an *i* that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.

- **Permutation** $\pi = \pi(n)$ is a bijective map from [n] to [n].
- Permutations ρ, π are **intersecting** if there is an *i* that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i,j) := \{\pi : \pi(i) = j\}$ is a trivially intersecting family; of size (n-1)!.

- **Permutation** $\pi = \pi(n)$ is a bijective map from [n] to [n].
- Permutations ρ, π are **intersecting** if there is an *i* that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i,j) := \{\pi : \pi(i) = j\}$ is a trivially intersecting family; of size (n-1)!.
- The number of intersecting families is at least $(1 o(1)) \cdot n^2 \cdot 2^{(n-1)!}$.

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from [n] to [n].
- Permutations ρ, π are **intersecting** if there is an *i* that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- Π(i,j) := {π : π(i) = j} is a trivially intersecting family; of size (n-1)!.
- The number of intersecting families is at least $(1 o(1)) \cdot n^2 \cdot 2^{(n-1)!}$.

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

(i) The number of intersecting families of permutations is

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from [n] to [n].
- Permutations ρ, π are **intersecting** if there is an *i* that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- Π(i,j) := {π : π(i) = j} is a trivially intersecting family; of size (n-1)!.
- The number of intersecting families is at least $(1 o(1)) \cdot n^2 \cdot 2^{(n-1)!}$.

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

(i) The number of intersecting families of permutations is

 $2^{(1+o(1))(n-1)!}$.

The number of intersecting families of permutations is

 $2^{(1+o(1))(n-1)!}$.

• Proof follows Alon-Balogh-Morris-Samotij [2014]:

The number of intersecting families of permutations is

- Proof follows Alon-Balogh-Morris-Samotij [2014]:
- Form graph: V := permutations, E := non-intersecting pairs.

The number of intersecting families of permutations is

- Proof follows Alon-Balogh-Morris-Samotij [2014]:
- Form graph: V := permutations, E := non-intersecting pairs.
- Apply Alon-Chung Expander-Mixing Lemma:

The number of intersecting families of permutations is

- Proof follows Alon-Balogh-Morris-Samotij [2014]:
- Form graph: V := permutations, E := non-intersecting pairs.
- Apply Alon–Chung Expander-Mixing Lemma: Let G be a D-regular graph on N vertices, and let λ be its smallest eigenvalue. Then for all S ⊆ V(G),

$$e(G[S]) \geq rac{D}{2N}|S|^2 + rac{\lambda}{2N}|S|(N-|S|).$$

The number of intersecting families of permutations is

 $2^{(1+o(1))(n-1)!}$

- Proof follows Alon-Balogh-Morris-Samotij [2014]:
- Form graph: V := permutations, E := non-intersecting pairs.
- Apply Alon–Chung Expander-Mixing Lemma: Let G be a D-regular graph on N vertices, and let λ be its smallest eigenvalue. Then for all S ⊆ V(G),

$$e(G[S]) \geq rac{D}{2N}|S|^2 + rac{\lambda}{2N}|S|(N-|S|).$$

• Ellis: $\lambda = (-\frac{1}{e} + o(1))(n-1)!,$ $N = n!, D = (\frac{1}{e} + o(1))N, |S| = (1 + o(1))(n-1)!$

The number of intersecting families of permutations is

- Proof follows Alon-Balogh-Morris-Samotij [2014]:
- Form graph: V := permutations, E := non-intersecting pairs.
- Apply Alon–Chung Expander-Mixing Lemma: Let G be a D-regular graph on N vertices, and let λ be its smallest eigenvalue. Then for all S ⊆ V(G),

$$e(G[S]) \geq rac{D}{2N}|S|^2 + rac{\lambda}{2N}|S|(N-|S|).$$

- Ellis: $\lambda = (-\frac{1}{e} + o(1))(n-1)!,$ $N = n!, D = (\frac{1}{e} + o(1))N, |S| = (1 + o(1))(n-1)!$
- G[S] spans many edges $\rightarrow G$ does not have 'many' independent sets.

Shagnik Das

Maryam S. – Hong L. – Michelle D.

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

• Count maximal intersecting families. Let Π be such family.

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}.$

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}.$
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}.$
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}.$
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}.$
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \notin \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}.$
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \notin \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \rightarrow \{(i, \rho(i) : i \in [n]\}$ maps an *n*-uniform hypergraph.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}.$
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \notin \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \rightarrow \{(i, \rho(i) : i \in [n]\}$ maps an *n*-uniform hypergraph.
- **Bollobás** set-pair inequality: $|\Gamma| \leq \binom{2n}{n}$.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}.$
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \notin \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \rightarrow \{(i, \rho(i) : i \in [n]\}$ maps an *n*-uniform hypergraph.
- **Bollobás** set-pair inequality: $|\Gamma| \leq \binom{2n}{n}$.
- Ellis (2011): Largest non-trivial intersecting permutation family has size at most (1 − ¹/_e + o(1))(n − 1)!.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}.$
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \notin \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \rightarrow \{(i, \rho(i) : i \in [n]\}$ maps an *n*-uniform hypergraph.
- **Bollobás** set-pair inequality: $|\Gamma| \leq \binom{2n}{n}$.
- Ellis (2011): Largest non-trivial intersecting permutation family has size at most (1 − ¹/_e + o(1))(n − 1)!.

•
$$\binom{n!}{\binom{2n}{n}}$$

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}.$
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \notin \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \rightarrow \{(i, \rho(i) : i \in [n]\}$ maps an *n*-uniform hypergraph.
- **Bollobás** set-pair inequality: $|\Gamma| \leq \binom{2n}{n}$.
- Ellis (2011): Largest non-trivial intersecting permutation family has size at most (1 − ¹/_e + o(1))(n − 1)!.

•
$$\binom{n!}{\binom{2n}{n}} \cdot 2^{(1-1/e+o(1))(n-1)!} \ll 2^{n\log n \cdot 2^{2n}} \cdot 2^{(1-1/e+o(1))(n-1)!} \ll 2^{(n-1)!}$$
.

Example (Erdős–Turán problem)

•
$$V = \{1, ..., n\}$$

• $\mathcal{H} = k$ -term APs in [n].

Example (Erdős–Turán problem)

•
$$V = \{1, ..., n\}$$

• $\mathcal{H} = k$ -term APs in [n].

Example (Turán problem)

- $V = edges of K_n$,
- $\mathcal{H} =$ edge-sets of copies of K_k in K_n .

Example (Erdős–Turán problem)

•
$$V = \{1, ..., n\}$$

• $\mathcal{H} = k$ -term APs in [n].

Example (Turán problem)

- $V = edges of K_n$,
- $\mathcal{H} =$ edge-sets of copies of K_k in K_n .

Example (sum-free sets)

- V = an Abelian group,
- $\mathcal{H} = \text{sets of the form } \{x, y, z\} \text{ with } x + y = z \text{ (Schur triples).}$

Theorem (Balogh–Morris–Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq {\binom{V}{k}}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H})\leqslant c\cdot p^{\ell-1}rac{e(\mathcal{H})}{v(\mathcal{H})}.$$

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H})\leqslant c\cdot p^{\ell-1}rac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \ge \varepsilon \cdot e(\mathcal{H})\}.$

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H})\leqslant c\cdot p^{\ell-1}rac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \ge \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

• a very small family $\mathcal{S} \subseteq \binom{V(\mathcal{H})}{\leqslant Cp \cdot v(\mathcal{H})}$ of labels,

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H})\leqslant c\cdot p^{\ell-1}rac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \ge \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq \binom{V(\mathcal{H})}{\leqslant C_{P} \cdot v(\mathcal{H})}$ of labels,
- $f: S \to \mathcal{F}^c$ (maps each label to a set that is *sparse* in \mathcal{H}),

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq {\binom{V}{k}}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H})\leqslant c\cdot p^{\ell-1}rac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \ge \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq {V(\mathcal{H}) \choose \leqslant Cp \cdot v(\mathcal{H})}$ of labels,
- f: S → F^c (maps each label to a set that is sparse in H),
- a labeling function $g: \mathcal{I}(\mathcal{H}) \to \mathcal{S}$,

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq {\binom{V}{k}}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H})\leqslant c\cdot p^{\ell-1}rac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \ge \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq {V(\mathcal{H}) \choose \leqslant Cp \cdot v(\mathcal{H})}$ of labels,
- f: S → F^c (maps each label to a set that is sparse in H),
- a labeling function $g: \mathcal{I}(\mathcal{H}) \to \mathcal{S}$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq {\binom{V}{k}}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H})\leqslant c\cdot p^{\ell-1}rac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \ge \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq {V(\mathcal{H}) \choose \leqslant Cp \cdot v(\mathcal{H})}$ of labels,
- $f: S \to \mathcal{F}^c$ (maps each label to a set that is *sparse* in \mathcal{H}),
- a labeling function $g: \mathcal{I}(\mathcal{H})
 ightarrow \mathcal{S}$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,

$$g(I) \subseteq I$$
 and $I \setminus g(I) \subseteq f(g(I))$.

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq {\binom{V}{k}}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H})\leqslant c\cdot p^{\ell-1}rac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \ge \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq {V(\mathcal{H}) \choose \leqslant Cp \cdot v(\mathcal{H})}$ of labels,
- f: S → F^c (maps each label to a set that is sparse in H),
- a labeling function $g: \mathcal{I}(\mathcal{H})
 ightarrow \mathcal{S}$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,

$$g(I) \subseteq I$$
 and $I \setminus g(I) \subseteq f(g(I))$.

Similar result was obtained independently by Saxton and Thomason. Explain: Example of triangle-free graphs.

• Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1} .

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1} .
- An *I* independent set in \mathcal{H} is a K_{r+1} -free graph.

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1} .
- An *I* independent set in \mathcal{H} is a K_{r+1} -free graph.
- Let $t = \binom{n^2/2}{Cn^{2-1/r}}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1} -free graph there is an *i* that $H \subset G_i$.

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1} .
- An I independent set in \mathcal{H} is a K_{r+1} -free graph.
- Let $t = \binom{n^2/2}{Cn^{2-1/r}}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1} -free graph there is an *i* that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1} .
- An *I* independent set in \mathcal{H} is a K_{r+1} -free graph.
- Let $t = \binom{n^2/2}{Cn^{2-1/r}}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1} -free graph there is an *i* that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each *i* :

 $e(G_i) < (1 - \frac{1}{r} + o(1))\frac{n^2}{2}.$

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1} .
- An *I* independent set in \mathcal{H} is a K_{r+1} -free graph.
- Let $t = \binom{n^2/2}{Cn^{2-1/r}}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1} -free graph there is an *i* that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each *i* :

 $e(G_i) < (1 - \frac{1}{r} + o(1))\frac{n^2}{2}.$

• Super-saturation – Stability theorems implies that each G_i is

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1} .
- An *I* independent set in \mathcal{H} is a K_{r+1} -free graph.
- Let $t = \binom{n^2/2}{Cn^{2-1/r}}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1} -free graph there is an *i* that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each *i* :

 $e(G_i) < (1 - \frac{1}{r} + o(1))\frac{n^2}{2}.$

• Super-saturation – Stability theorems implies that each G_i is either almost *r*-partite or

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1} .
- An *I* independent set in \mathcal{H} is a K_{r+1} -free graph.
- Let $t = \binom{n^2/2}{Cn^{2-1/r}}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1} -free graph there is an *i* that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each *i* :

 $e(G_i) < (1 - \frac{1}{r} + o(1))\frac{n^2}{2}.$

• Super-saturation – Stability theorems implies that each G_i is either almost *r*-partite or

$$e(G_i) < (1 - \frac{1}{r} - c)\frac{n^2}{2}.$$

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1} .
- An *I* independent set in \mathcal{H} is a K_{r+1} -free graph.
- Let $t = \binom{n^2/2}{Cn^{2-1/r}}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1} -free graph there is an *i* that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each *i* :

$$e(G_i) < (1 - \frac{1}{r} + o(1))\frac{n^2}{2}.$$

• Super-saturation – Stability theorems implies that each G_i is either almost *r*-partite or

$$e(G_i) < (1-\frac{1}{r}-c)\frac{n^2}{2}.$$

• Computation gives: Almost all K_{r+1} -free graph is almost *r*-partite.

$$\binom{n^2/2}{Cn^{2-1/r}} 2^{(1-1/r-c)n^2/2} \ll 2^{(1-1/r)n^2/2}.$$