Counting independent sets in hypergraphs and its applications

József Balogh
U. of Illinois at U.C.

2014
Transference theorems

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result \mathcal{R}

$\mathcal{R} + \quad \Rightarrow \quad$ random analogue of \mathcal{R}.

supersaturation

Dr D. Conlon | Sir W.T. Gowers | Dr M. Schacht
Szemerédi’s theorem

Theorem (Szemerédi [1975])

For every $k \geq 3$, the largest subset of \(\{1, \ldots, n\} \) with no k-term AP has $o(n)$ elements.

Endre Szemerédi
Theorem (Kohayakawa–Łuczak–Rödl [1996])

For every $\delta > 0$, there exists a C such that if $p(n) \geq Cn^{-1/2}$, then a.a.s.: the p-random subset $[n]_p$ satisfies:

Every $A \subseteq [n]_p$ with $|A| \geq \delta |[n]_p|$ contains a 3-term AP.
Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result \mathcal{R}

\implies random analogue of \mathcal{R}

supersaturation
Transference theorems — corollary

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result \mathcal{R}

+ \implies random analogue of \mathcal{R}

supersaturation

Corollary (Random analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $p(n) \geq C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then
a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \geq \delta|\, [n]_p|$ contains a k-term AP.
Transference theorems — corollary

Theorem (Turán [1941])

For every $k \geq 3$,

$$ex(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) \binom{n}{2}.$$
Theorem (Turán [1941])

For every $k \geq 3$,

$$\text{ex}(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right)\binom{n}{2}.$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu,\ldots
Transference theorems — corollary

Theorem (Turán [1941])
For every $k \geq 3$,

$$\text{ex}(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) \binom{n}{2}. $$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu, . . .

Theorem (Conlon–Gowers [2009+], Schacht [2009+])
For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:
Transference theorems — corollary

Theorem (Turán [1941])

For every $k \geq 3$,

$$ex(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) \binom{n}{2}.$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu, . . .

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

$$ex(G(n, p), K_k) = \left(1 - \frac{1}{k-1} + o(1)\right) \cdot e(G(n, p)).$$

This is usually referred to as the random analogue of Turán’s theorem.
Authors I. [at the time of the submission of the paper]

W. Samotij

R. Morris
Authors II. [at the time of the submission of the paper]
Authors I. [at the time of the acceptance of the paper]

W. Samotij

R. Morris
Authors II. [at the time of the acceptance of the paper]
Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.
Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $p(n) \geq C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \geq \delta |[n]_p|$ contains a k-term AP.
Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $p(n) \geq C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \geq \delta |[n]_p|$ contains a k-term AP.

Corollary (Random analogue of Turán’s theorem)

For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

$$\text{ex}(G(n, p), K_k) = \left(1 - \frac{1}{k-1} + o(1)\right) \cdot e(G(n, p)).$$
Certain hypergraphs have only few independent sets.
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $m \geq C(k, \delta)n^{1-\frac{1}{k-1}}$, then

$$\# \text{m-subsets of } [n] \text{ with no } k\text{-term AP } \leq \binom{\delta n}{m}.$$
Balogh–Morris–Samotij, Saxton–Thomason [2012+]
Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $m \geq C(k, \delta)n^{1-\frac{1}{k-1}}$, then

$$\#m\text{-subsets of } [n] \text{ with no } k\text{-term AP} \leq \left(\frac{\delta n}{m}\right).$$

Theorem (Erdős–Kleitman–Rothschild [1976])

There are at most $2^{(1+o(1)) \cdot \text{ex}(n,K_k)} K_k$-free graphs on n vertices.
The Cameron–Erdős problem

Question
How many integers from \(\{1, \ldots, n\} \) can we select without creating a solution of

\[x + y = z \]
The Cameron–Erdős problem

Question
How many integers from \{1, \ldots, n\} can we select without creating a solution of
\[x + y = z? \]

Observation
- Set of odds is sum-free.
The Cameron–Erdős problem

Question
How many integers from \(\{1, \ldots, n\} \) can we select without creating a solution of
\[
x + y = z?
\]

Observation
- Set of odds is sum-free.
- \(\{n/2 + 1, n/2 + 2, \ldots, n\} \) is sum-free.
- \(\{n/2, n/2 + 1, \ldots, n - 1\} \) is sum-free.
The Cameron–Erdős problem

<table>
<thead>
<tr>
<th>Question</th>
<th>How many integers from ({1, \ldots, n}) can we select without creating a solution of (x + y = z)?</th>
</tr>
</thead>
</table>
| Observation | - Set of odds is sum-free.
- \(\{n/2 + 1, n/2 + 2, \ldots, n\}\) is sum-free.
- \(\{n/2, n/2 + 1, \ldots, n - 1\}\) is sum-free. |
| Cameron – Erdős Conjecture (1990) | The number of sum-free subsets of \([n]\) is \(O(2^{n/2})\). |
The Cameron–Erdős problem

Question
How many integers from \(\{1, \ldots, n\} \) can we select without creating a solution of
\[
x + y = z?
\]

Observation
- Set of odds is sum-free.
- \(\{n/2 + 1, n/2 + 2, \ldots, n\} \) is sum-free.
- \(\{n/2, n/2 + 1, \ldots, n - 1\} \) is sum-free.

Cameron – Erdős Conjecture (1990)
The number of sum-free subsets of \([n]\) is \(O(2^{n/2})\).

Remark
The number of sum-free subsets of \([n]\) is more than \(2 \times 2^{n/2}\).
Any subset of \(\{n/2, n/2 + 1, \ldots, n - 1\} \) is sum-free, etc...
The Cameron–Erdős problem

Cameron – Erdős Conjecture (1990)

The number of sum-free subsets of \([n]\) is \(O(2^{n/2})\).

There are constants \(c_e\) and \(c_o\) s.t. the number of sum-free subsets of \([n]\) is

\[
(1 + o(1))c_e2^{n/2}, \quad (1 + o(1))c_o2^{n/2}
\]

depending on the parity of \(n\).
The Cameron–Erdős problem

Cameron – Erdős Conjecture (1999)

There is \(c > 0 \) that the number of maximal sum-free subsets of \([n]\) is

\[O(2^{n/2-cn}). \]

There are at least \(2^{n/4} \) maximal sum-free subsets of \([n]\).
The Cameron–Erdős problem

Cameron – Erdős Conjecture (1999)
There is $c > 0$ that the number of maximal sum-free subsets of $[n]$ is

$$O(2^{n/2 - cn}).$$

There are at least $2^{n/4}$ maximal sum-free subsets of $[n]$.

Łuczak and Schoen (2001)
The number of maximal sum-free subsets of $[n]$ is at most $O(2^{n/2 - 2^{-28}n})$.
The Cameron–Erdős problem

Cameron – Erdős Conjecture (1999)

There is $c > 0$ that the number of maximal sum-free subsets of $[n]$ is

$$O(2^{n/2 - cn}).$$

There are at least $2^{n/4}$ maximal sum-free subsets of $[n]$.

Łuczak and Schoen (2001)

The number of maximal sum-free subsets of $[n]$ is at most $O(2^{n/2 - 2^{-28}n})$.

Wolfowitz (2009)

The number of maximal sum-free subsets of $[n]$ is at most $2^{3n/8 - o(n)}$.
The Cameron–Erdős problem

Cameron – Erdős Conjecture (1999)

There is $c > 0$ that the number of maximal sum-free subsets of $[n]$ is $O(2^{n/2-cn})$.

There are at least $2^{n/4}$ maximal sum-free subsets of $[n]$.

Łuczak and Schoen (2001)

The number of maximal sum-free subsets of $[n]$ is at most $O(2^{n/2-2^{-28}n})$.

Wolfowitz (2009)

The number of maximal sum-free subsets of $[n]$ is at most $2^{3n/8-o(n)}$.

The number of maximal sum-free subsets of $[n]$ is $2^{n/4+o(n)}$.
The Cameron–Erdős problem

Cameron – Erdős Conjecture (1999)

There is $c > 0$ that the number of maximal sum-free subsets of $[n]$ is $O(2^{n/2-cn})$.

There are at least $2^{n/4}$ maximal sum-free subsets of $[n]$.

Łuczak and Schoen (2001)

The number of maximal sum-free subsets of $[n]$ is at most $O(2^{n/2-2^{-28}n})$.

Wolfowitz (2009)

The number of maximal sum-free subsets of $[n]$ is at most $2^{3n/8-o(n)}$.

The number of maximal sum-free subsets of $[n]$ is $O(2^{n/4})$.
New applications of the “Counting Method”:

<table>
<thead>
<tr>
<th>Theorem (Erdős–Kleitman–Rothschild [1976])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost all triangle-free graphs are bipartite.</td>
</tr>
</tbody>
</table>
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])
Almost all triangle-free graphs are bipartite.

Remark
Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])
Almost all triangle-free graphs are bipartite.

Remark
Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])
What is the number of maximal triangle-free graphs on n vertices?
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])
Almost all triangle-free graphs are bipartite.

Remark
Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])
What is the number of maximal triangle-free graphs on n vertices?

$2^{n^{3/2+o(1)}}$
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])
Almost all triangle-free graphs are bipartite.

Remark
Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])
What is the number of maximal triangle-free graphs on n vertices?

$2^{n^{3/2+o(1)}}$ $2^{o(n^2)}$
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])

What is the number of **maximal** triangle-free graphs on \(n \) vertices?

\[
2^{n^3/2+o(1)} \quad 2^{o(n^2)} \quad 2^{n^2/8}
\]
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])
Almost all triangle-free graphs are bipartite.

Remark
Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])
What is the number of maximal triangle-free graphs on \(n \) vertices?

\[
2^{n^3/2+o(1)} \quad 2^{o(n^2)} \quad 2^{n^2/8} \quad 2^{(1/4-c)n^2}
\]
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on \(n \) vertices?

\[
2^{n^3/2+o(1)} \quad 2^o(n^2) \quad 2^{n^2/8} \quad 2(1/4–c)n^2 \quad 2n^2/4.
\]
New applications of the "Counting Method":

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.
New applications of the “Counting Method”:

Folklore

There are at least \(2^{n^2/8}\) maximal triangle-free graphs on \(n\) vertices.

- Let \(X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}\) be a matching;
Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$;
- For every i: partition $Y := A_i \cup B_i$.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1 v_1, \ldots, u_{n/4} v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
- For every i: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i; add all edges between v_i and B_i.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
- For every i: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i; add all edges between v_i and B_i.
- Most of these graphs will be maximal triangle-free.

Balogh–Petríčková [2014+]

There are at most $2^{n^2/8 + o(n^2)}$ maximal triangle-free graphs on n vertices.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
- For every i: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i; add all edges between v_i and B_i.
- Most of these graphs will be maximal triangle-free.
- Number of graphs: $(2^{n/2})^{n/4} = 2^{n^2/8}$.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
- For every i: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i; add all edges between v_i and B_i.
- Most of these graphs will be maximal triangle-free.
- Number of graphs: $(2^{n/2})^{n/4} = 2^{n^2/8}$.

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.
New applications of the “Counting Method”:

Almost every maximal triangle-free graph has the above structure.
The number of triangle-free graphs: Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.

The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is \(2^{n^2/4 + o(n^2)} \).

- Apply Szemerédi Regularity Lemma for a \(G_n \) triangle-free graph.
- Obtain cluster graph \(R_t \).
- Clean \(G_n \): remove edges inside clusters, between sparse pairs, and irregular pairs.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is \(2^{n^2/4+o(n^2)}\).

- Apply Szemerédi Regularity Lemma for a \(G_n\) triangle-free graph.
- Obtain cluster graph \(R_t\).
- Clean \(G_n\): remove edges inside clusters, between sparse pairs, and irregular pairs.
- \(C_n :=\) blow up \(R_t\) to \(n\) vertices.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is \(2^{n^2/4 + o(n^2)}\).

- Apply Szemerédi Regularity Lemma for a \(G_n\) triangle-free graph.
- Obtain cluster graph \(R_t\).
- Clean \(G_n\): remove edges inside clusters, between sparse pairs, and irregular pairs.
- \(C_n :=\) blow up \(R_t\) to \(n\) vertices.
- \(C_n\) contains all but \(o(n^2)\) edges of \(G_n\). \([\text{Approximate Container}]\)
- \(C_n\) is triangle-free, hence \(e(C_n) \leq n^2/4\).
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4 + o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is $O(1) \cdot n^n$.

The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4 + o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n \coloneqq$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is

$$O(1) \cdot n^n \cdot 2^{n^2/4}.$$
The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is

$$O(1) \cdot n^n \cdot 2^{n^2/4} \cdot \left(\binom{n^2}{o(n^2)} \right) = 2^{n^2/4+o(n^2)}.$$
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Szemerédi container lemma

There is a $t = 2^{o(n^2)}$ and a set \{\(G_1, \ldots, G_t\}\) of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph \(H\) there is an $i \in \{1, \ldots, t\}$ such that \(H \subseteq G_i\).

For each \(F\) triangle-free graph there is an i that $F \subset G_i$.

\(e(G_i) \leq n^2/4+o(n^2)\).
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4 + o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subseteq G_i$.
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subseteq G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.

\[
\text{Number of choices for } F_n \text{ is } t \cdot 2^{n^2/4+o(n^2)} = 2^{n^2/4+o(n^2)}.
\]
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleinman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4 + o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subseteq G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is...
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4 + o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is t.

Szemerédi container lemma

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is $t \cdot 2^{n^2/4+o(n^2)} = 2^{n^2/4+o(n^2)}$.
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is \(2^{n^2/4 + o(n^2)}\).

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a \(t < 2^{O(\log n \cdot n^{3/2})}\) and a set \(\{G_1, \ldots, G_t\}\) of graphs, each containing at most \(o(n^3)\) triangles, such that for every triangle-free graph \(H\) there is an \(i \in [t]\) such that \(H \subseteq G_i\).

- For each \(F_n\) triangle-free graph there is an \(i\) that \(F_n \subseteq G_i\).
- \(\text{e}(G_i) \leq n^2/4 + o(n^2)\).
- Number of choices for \(F_n\) is \(t \cdot 2^{n^2/4 + o(n^2)} = 2^{n^2/4 + o(n^2)}\).

Szemerédi container lemma

There is a \(t = 2^{o(n^2)}\) and a set \(\{G_1, \ldots, G_t\}\) of graphs, each containing at most \(o(n^3)\) triangles, such that for every triangle-free graph \(H\) there is \(i \in [t]\) such that \(H \subseteq G_i\).
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]
There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]
There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$. Note $e(G_i) \leq n^2/4 + o(n^2)$.

Ruzsa–Szemerédi (1976)
Any graph G_n with at most $o(n^3)$ triangles can be made triangle-free by removing at most $o(n^2)$ edges.

Hujter–Tuza (1993)
Any triangle-free graph T_N has at most $2^{\log_2 N/2}$ maximal independent sets. Sharpness is by a perfect matching.
The number of maximal triangle-free graphs

<table>
<thead>
<tr>
<th>Source</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balogh–Petříčková [2014+]</td>
<td>There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.</td>
</tr>
<tr>
<td>Balogh–Morris–Samotij, Saxton–Thomason [2012+]</td>
<td>There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set ${G_1, \ldots, G_t}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$. Note $e(G_i) \leq n^2/4 + o(n^2)$.</td>
</tr>
<tr>
<td>Ruzsa–Szemerédi (1976)</td>
<td>Any graph G_n with at most $o(n^3)$ triangles can be made triangle-free by removing at most $o(n^2)$ edges.</td>
</tr>
</tbody>
</table>
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most \(2^{n^2/8 + o(n^2)} \) maximal triangle-free graphs on \(n \) vertices.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a \(t < 2^{O(\log n \cdot n^{3/2})} \) and a set \(\{G_1, \ldots, G_t\} \) of graphs, each containing at most \(o(n^3) \) triangles, such that for every triangle-free graph \(H \) there is an \(i \in [t] \) such that \(H \subseteq G_i \). Note \(e(G_i) \leq n^2/4 + o(n^2) \).

Ruzsa–Szemerédi (1976)

Any graph \(G_n \) with at most \(o(n^3) \) triangles can be made triangle-free by removing at most \(o(n^2) \) edges.

Hujter–Tuza (1993)

Any triangle-free graph \(T_N \) has at most \(2^{N/2} \) maximal independent sets. Sharpness is by a perfect matching.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8 + o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) - T_i$ is triangle-free.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) - T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8 + o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) - T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.
- Form auxiliary graph: $V := E(G_i) - T_i$, $E = \{ef : \text{if } \exists \ g \in T_i \cap E(F_n), \text{ that } efg \text{ is a triangle.}\}$
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) - T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.
- Form auxiliary graph: $V := E(G_i) - T_i$, $E = \{ef : \text{if } \exists \ g \in T_i \cap E(F_n), \text{that } efg \text{ is a triangle.}\}$
- This graph is triangle-free;
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) - T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.
- Form auxiliary graph: $V := E(G_i) - T_i$, $E = \{ef : \text{if } \exists g \in T_i \cap E(F_n), \text{ that } efg \text{ is a triangle.}\}$
- This graph is triangle-free;
- Number of choices for $(F_n \cap G_i) - T_i$ is at most the number of maximal independent sets in the auxiliary graph.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8 + o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) - T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.
- Form auxiliary graph: $V := E(G_i) - T_i$, $E = \{ef : \exists g \in T_i \cap E(F_n), \text{ that } efg \text{ is a triangle.}\}$
- This graph is triangle-free;
- Number of choices for $(F_n \cap G_i) - T_i$ is at most the number of maximal independent sets in the auxiliary graph.
- $|V| \leq n^2/4$; Hujter–Tuza gives $\leq 2^{n^2/8}$ choices.
New applications of the “Counting Method”:

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.

(i) The number of intersecting families of permutations is $2(1+o(1))(n-1)!$.

(ii) Almost every intersecting permutation family is trivially intersecting.
New applications of the “Counting Method”:

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.
- Permutations ρ, π are **intersecting** if there is an i that $\rho(i) = \pi(i)$.

(i) The number of intersecting families of permutations is $2(1+o(1))(n-1)!$.

(ii) Almost every intersecting permutation family is trivially intersecting.
New applications of the “Counting Method”:

Definition

- **Permutation** \(\pi = \pi(n) \) is a bijective map from \([n]\) to \([n]\).
- Permutations \(\rho, \pi \) are **intersecting** if there is an \(i \) that \(\rho(i) = \pi(i) \).
- \(\Pi \) is an **intersecting family** of permutations if for every \(\rho, \pi \in \Pi \), \(\rho, \pi \) are intersecting.
New applications of the “Counting Method”:

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.
- Permutations ρ, π are **intersecting** if there is an i that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i, j) := \{\pi : \pi(i) = j\}$ is a **trivially intersecting family**; of size $(n - 1)!$.

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

(i) The number of intersecting families of permutations is $2(1 + o(1))(n - 1)!$.

(ii) Almost every intersecting permutation family is trivially intersecting.
New applications of the “Counting Method”:

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.
- Permutations ρ, π are **intersecting** if there is an i that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i, j) := \{\pi : \pi(i) = j\}$ is a **trivially intersecting family**; of size $(n - 1)!$.
- The number of intersecting families is at least $(1 - o(1)) \cdot n^2 \cdot 2^{(n-1)!}$.

(i) The number of intersecting families of permutations is $2(1 + o(1))(n - 1)!$.

(ii) Almost every intersecting permutation family is trivially intersecting.
New applications of the “Counting Method”:

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permutation $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.</td>
</tr>
<tr>
<td>Permutations ρ, π are intersecting if there is an i that $\rho(i) = \pi(i)$.</td>
</tr>
<tr>
<td>Π is an intersecting family of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.</td>
</tr>
<tr>
<td>$\Pi(i, j) := {\pi : \pi(i) = j}$ is a trivially intersecting family; of size $(n - 1)!$.</td>
</tr>
<tr>
<td>The number of intersecting families is at least $(1 - o(1)) \cdot n^2 \cdot 2^{(n-1)!}$.</td>
</tr>
</tbody>
</table>

(i) The number of intersecting families of permutations is

$$2^{(1+o(1))(n-1)!}.$$
New applications of the “Counting Method”:

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.
- Permutations ρ, π are **intersecting** if there is an i that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i, j) := \{\pi : \pi(i) = j\}$ is a **trivially intersecting family**; of size $(n-1)!$.
- The number of intersecting families is at least $(1 - o(1)) \cdot n^2 \cdot 2^{(n-1)!}$.

(i) The number of intersecting families of permutations is

$$2^{(1+o(1))(n-1)!}.$$

(ii) Almost every intersecting permutation family is trivially intersecting.

The number of intersecting families of permutations is

\[2^{(1+o(1))(n-1)!}. \]

Proof follows Alon–Balogh–Morris–Samotij [2014]:
The number of intersecting families of permutations is

\[2^{(1+o(1))(n-1)!}. \]

Proof follows **Alon–Balogh–Morris–Samotij [2014]:**

- Form graph: \(V := \text{permutations}, E := \text{non-intersecting pairs}. \)
The number of intersecting families of permutations is

\[2^{(1+o(1))(n-1)!}. \]

Proof follows Alon–Balogh–Morris–Samotij [2014]:
- Form graph: \(V := \) permutations, \(E := \) non-intersecting pairs.
- Apply Alon–Chung Expander-Mixing Lemma:
The number of intersecting families of permutations is
\[2^{(1+o(1))(n-1)!}. \]

Proof follows Alon–Balogh–Morris–Samotij [2014]:
- Form graph: \(V := \) permutations, \(E := \) non-intersecting pairs.
- Apply Alon–Chung Expander-Mixing Lemma:
 Let \(G \) be a \(D \)-regular graph on \(N \) vertices, and let \(\lambda \) be its smallest eigenvalue. Then for all \(S \subseteq V(G) \),
 \[
e(G[S]) \geq \frac{D}{2N} |S|^2 + \frac{\lambda}{2N} |S| (N - |S|).
\]
Permutations:

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

The number of intersecting families of permutations is

\[2^{(1+o(1))(n-1)!} \, . \]

- Proof follows **Alon–Balogh–Morris–Samotij** [2014]:
- Form graph: \(V := \) permutations, \(E := \) non-intersecting pairs.
- Apply **Alon–Chung** Expander-Mixing Lemma:
 Let \(G \) be a \(D \)-regular graph on \(N \) vertices, and let \(\lambda \) be its smallest eigenvalue. Then for all \(S \subseteq V(G) \),

 \[e(G[S]) \geq \frac{D}{2N} |S|^2 + \frac{\lambda}{2N} |S| (N - |S|) \, . \]

- **Ellis**: \(\lambda = \left(-\frac{1}{e} + o(1) \right)(n - 1)! \),

 \(N = n! \), \(D = \left(\frac{1}{e} + o(1) \right)N \), \(|S| = (1 + o(1))(n - 1)! \)
The number of intersecting families of permutations is

\[2^{(1+o(1))(n-1)!} \].

Proof follows Alon–Balogh–Morris–Samotij [2014]:

Form graph: \(V := \) permutations, \(E := \) non-intersecting pairs.

Apply Alon–Chung Expander-Mixing Lemma:
Let \(G \) be a \(D \)-regular graph on \(N \) vertices, and let \(\lambda \) be its smallest eigenvalue. Then for all \(S \subseteq V(G) \),

\[e(G[S]) \geq \frac{D}{2N} |S|^2 + \frac{\lambda}{2N} |S| (N - |S|). \]

Ellis: \(\lambda = (-\frac{1}{e} + o(1))(n - 1)! \),
\(N = n! \), \(D = (\frac{1}{e} + o(1))N \), \(|S| = (1 + o(1))(n - 1)! \)

\(G[S] \) spans many edges \(\rightarrow \) \(G \) does not have `many` independent sets.
Almost every intersecting permutation family is trivially intersecting.
Almost every intersecting permutation family is trivially intersecting.

Almost every intersecting permutation family is trivially intersecting.

Count maximal intersecting families. Let Π be such family.

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let \(\Pi \) be such family.
- \(\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \} \).
Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.

Ellis (2011): Largest non-trivial intersecting permutation family has size at most $(1 - \frac{1}{e} + o(1))(n - 1)!$.

Bollobás set-pair inequality: $|\Gamma| \leq \left(\frac{2}{n}\right)^n$.

$(\frac{n!}{(2n)^n}) \cdot 2^{(1 - \frac{1}{e} + o(1))(n - 1)!} \ll 2^{\frac{n}{2}} \cdot 2^{2n} \cdot 2^{(1 - \frac{1}{e} + o(1))(n - 1)!} \ll 2^{n \log n}$.

Count $\textbf{maximal}$ intersecting families. Let Π be such family.

Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let Π be such family.
- $I(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}$.
- $\Gamma \subset \Pi$ is a **generating set** of Π if $I(\Gamma) = \Pi$.
- Every Π has DIFFERENT **minimal generating sets**.
Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}$.
- $\Gamma \subset \Pi$ is a **generating set** of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has **DIFFERENT minimal generating sets**.
- Count minimal generating sets!
Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \not\in \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}$.
- $\Gamma \subset \Pi$ is a **generating set** of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has **DIFFERENT** minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \notin \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \rightarrow \{(i, \rho(i) : i \in [n]\}$ maps an n-uniform hypergraph.
Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let Π be such family.

 $\mathcal{I}(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}$.

- $\Gamma \subset \Pi$ is a **generating set** of Π if $\mathcal{I}(\Gamma) = \Pi$.

- Every Π has DIFFERENT **minimal generating sets**.

- Count minimal generating sets!

- $\forall \rho_i \in \Gamma$ there is a $\pi_i \not\in \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.

- $\rho \rightarrow \{(i, \rho(i) : i \in [n]\}$ maps an n-uniform hypergraph.

- **Bollobás** set-pair inequality: $|\Gamma| \leq \binom{2n}{n}$.
Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let Π be such family.
 - $\mathcal{I}(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}$.
 - $\Gamma \subset \Pi$ is a **generating set** of Π if $\mathcal{I}(\Gamma) = \Pi$.
 - Every Π has DIFFERENT **minimal generating sets**.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \not\in \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \rightarrow \{(i, \rho(i) : i \in [n]\}$ maps an n-uniform hypergraph.
- **Bollobás** set-pair inequality: $|\Gamma| \leq \binom{2n}{n}$.
- **Ellis (2011):** Largest non-trivial intersecting permutation family has size at most $(1 - \frac{1}{e} + o(1))(n - 1)!$.
Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}$.
- $\Gamma \subset \Pi$ is a **generating set** of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has **DIFFERENT minimal generating sets**.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \not\in \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \rightarrow \{(i, \rho(i)) : i \in [n]\}$ maps an n-uniform hypergraph.
- **Bollobás** set-pair inequality: $|\Gamma| \leq \binom{2n}{n}$.
- **Ellis (2011):** Largest non-trivial intersecting permutation family has size at most $(1 - \frac{1}{e} + o(1))(n - 1)!$.
- $\left(\begin{array}{c} n! \\ 2^n \end{array}\right)$
Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \notin \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \rightarrow \{(i, \rho(i) : i \in [n]\}$ maps an n-uniform hypergraph.
- Bollobás set-pair inequality: $|\Gamma| \leq \left(\begin{array}{c} 2n \\ n \end{array}\right)$.
- Ellis (2011): Largest non-trivial intersecting permutation family has size at most $(1 - \frac{1}{e} + o(1))(n-1)!$.
- $\left(\begin{array}{c} n! \\ 2n \end{array}\right) \cdot 2(1-1/e+o(1))(n-1)! \ll 2^n \log n \cdot 2^{2n} \cdot 2(1-1/e+o(1))(n-1)! \ll 2(n-1)!$.
Example (Erdős–Turán problem)

- $V = \{1, \ldots, n\}$,
- $\mathcal{H} = k$-term APs in $[n]$.

Example (Turán problem)

- V are edges of K_n,
- H are edge-sets of copies of K_k in K_n.

Example (sum-free sets)

- V are an Abelian group,
- H are sets of the form $\{x, y, z\}$ with $x + y = z$ (Schur triples).
Example (Erdős–Turán problem)

- $V = \{1, \ldots, n\}$,
- $\mathcal{H} = k$-term APs in $[n]$.

Example (Turán problem)

- $V = \text{edges of } K_n$,
- $\mathcal{H} = \text{edge-sets of copies of } K_k \text{ in } K_n$.

General framework — examples

Example (Erdős–Turán problem)
- \(V = \{1, \ldots, n\} \),
- \(\mathcal{H} = k\)-term APs in \([n]\).

Example (Turán problem)
- \(V = \) edges of \(K_n \),
- \(\mathcal{H} = \) edge-sets of copies of \(K_k \) in \(K_n \).

Example (sum-free sets)
- \(V = \) an Abelian group,
- \(\mathcal{H} = \) sets of the form \(\{x, y, z\} \) with \(x + y = z \) (Schur triples).
Transference Theorem

Theorem (Balogh–Morris–Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{\nu(\mathcal{H})}.$$
Theorem (Balogh–Morris–Samotij [2012+])

For every k, c, ϵ there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_{\ell}(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{ A \subseteq V : |\mathcal{H}[A]| \geq \epsilon \cdot e(\mathcal{H}) \}.$
Transference Theorem

Theorem (Balogh–Morris–Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
Transference Theorem

Theorem (Balogh–Morris–Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $
abla \in [k]$, $p \in [0, 1]$

$$\Delta_{\nabla}(\mathcal{H}) \leq c \cdot p^{\nabla-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
- $f : S \to \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
Transference Theorem

Theorem (Balogh–Morris–Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{ A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H}) \}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
- $f : S \rightarrow \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g : \mathcal{I}(\mathcal{H}) \rightarrow S$,

Similar result was obtained independently by Saxton and Thomason.

Explain: Example of triangle-free graphs.
Transference Theorem

Theorem (Balogh–Morris–Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k], \ p \in [0, 1]$,

$$\Delta_{\ell}(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{ A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H}) \}$. Then there are:

- a **very small** family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of **labels**,
- $f : S \rightarrow \mathcal{F}^c$ (maps each label to a set that is **sparse** in \mathcal{H}),
- a **labeling function** $g : \mathcal{I}(\mathcal{H}) \rightarrow S$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,
Transference Theorem

Theorem (Balogh–Morris–Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{ A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H}) \}$. Then there are:

- a very small family $S \subseteq \binom{\mathcal{V}(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
- $f : S \rightarrow \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g : \mathcal{I}(\mathcal{H}) \rightarrow S$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,

$$g(I) \subseteq I \quad \text{and} \quad I \setminus g(I) \subseteq f(g(I)).$$

Similar result was obtained independently by Saxton and Thomason.
Transference Theorem

Theorem (Balogh–Morris–Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{ A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H}) \}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
- $f : S \rightarrow \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g : \mathcal{I}(\mathcal{H}) \rightarrow S$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,

$$g(I) \subseteq I \quad \text{and} \quad I \setminus g(I) \subseteq f(g(I)).$$

Similar result was obtained independently by Saxton and Thomason.

Explain: Example of triangle-free graphs.
Transference Theorem: — illustration

- dense sets
- independent sets
- small sets (labels)

\mathcal{F}

$I(\mathcal{H})$

S
Transference Theorem: — illustration

\mathcal{F}

dense sets

covering sets

$I(\mathcal{H})$

independent sets

$f(S)$

small sets (labels)
Transference Theorem: illustration

- Dense sets
- Covering sets
- Independent sets
- Small sets (labels)

\(\mathcal{F}\)

\(f(S)\)

\(\mathcal{I}(\mathcal{H})\)

\(S\)
Transference Theorem: — illustration

\mathcal{F}

$f(\mathcal{S})$

$\mathcal{I}(\mathcal{H})$

g

$g(l)$

dense sets

covering sets

independent sets

small sets (labels)
Transference Theorem: — illustration

- Dense sets
- Independent sets
- Small sets (labels)
- Covering sets

\[f(g(I)) \]
\[f(S) \]

\[f(\mathcal{H}) \]
\[I(\mathcal{H}) \]
Transference Theorem: — illustration

- Dense sets
- Covering sets
- Independent sets
- Small sets (labels)

\[f(g(I)) \]

\[f(S) \]

\[I(H) \]

\[g(I) \]
How to use Transference Theorem?

- Let $V(H) = E(K_n)$, $E(H)$ = copies of K_{r+1}.
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \left(\frac{n^2/2}{Cn^{2-1/r}} \right)$. There are G_1, \ldots, G_t graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.

How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \binom{n^2/2}{Cn^2-1/r}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \left(\frac{n^2}{2C_{n^2-1/r}}\right)$. There are $G_1, \ldots G_t$ graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each i:
 \[e(G_i) < (1 - \frac{1}{r} + o(1)) \frac{n^2}{2}. \]
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1}.

- An I independent set in \mathcal{H} is a K_{r+1}-free graph.

- Let $t = \binom{n^2/2}{Cn^2 - 1/r}$. There are $G_1, \ldots G_t$ graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.

- The number of K_{r+1} in each G_i is $o(n^{r+1})$.

- Super-saturation implies that for each i:
 \[e(G_i) < (1 - \frac{1}{r} + o(1)) \frac{n^2}{2}. \]

- Super-saturation – Stability theorems implies that each G_i is
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \left(\frac{n^2}{2C_{n^2-1/r}}\right)$. There are $G_1, \ldots G_t$ graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each i:

 $$e(G_i) < \left(1 - \frac{1}{r} + o(1)\right) \frac{n^2}{2}.$$

- Super-saturation – Stability theorems implies that each G_i is either almost r-partite or
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \left(\frac{n^2/2}{C_{n^2-1/r}}\right)$. There are $G_1, \ldots G_t$ graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each i:
 \[e(G_i) < (1 - \frac{1}{r} + o(1)) \frac{n^2}{2}. \]
- Super-saturation – Stability theorems implies that each G_i is either almost r-partite or
 \[e(G_i) < (1 - \frac{1}{r} - c) \frac{n^2}{2}. \]
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \left(\frac{n^2}{2} \right)_{Cn^{2-1/r}}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each i:
 \[e(G_i) < (1 - \frac{1}{r} + o(1)) \frac{n^2}{2}. \]
- Super-saturation – Stability theorems implies that each G_i is either almost r-partite or
 \[e(G_i) < (1 - \frac{1}{r} - c) \frac{n^2}{2}. \]
- Computation gives: Almost all K_{r+1}-free graph is almost r-partite.
 \[\left(\frac{n^2/2}{Cn^{2-1/r}} \right) 2^{(1-1/r-c)n^2/2} \ll 2^{(1-1/r)n^2/2}. \]