Counting independent sets in hypergraphs and its applications

József Balogh
U. of Illinois at U.C.

2014

Transference theorems

Theorem (Conlon-Gowers [2009+], Schacht [2009+])

extremal result \mathcal{R} $+\quad \Longrightarrow \quad$ random analogue of \mathcal{R}.
supersaturation

Sir W.T. Gowers

Dr M. Schacht

Szemerédi's theorem

Theorem (Szemerédi [1975])
For every $k \geqslant 3$, the largest subset of $\{1, \ldots, n\}$ with no k-term AP has $o(n)$ elements.

Endre Szemerédi

Random analogue of Szemerédi's theorem

Theorem (Kohayakawa-Łuczak-Rödl [1996])

For every $\delta>0$, there exists a C such that if $p(n) \geqslant C n^{-1 / 2}$, then a.a.s.: the p-random subset $\left[n_{p}\right.$] satisfies:

Every $A \subseteq[n]_{p}$ with $|A| \geqslant \delta\left|[n]_{p}\right|$ contains a 3-term AP.

Y. Kohayakawa

T. Łuczak

V. Rödl

Transference theorems - corollary

Theorem (Conlon-Gowers [2009+], Schacht [2009+]) extremal result \mathcal{R}

$$
\begin{gathered}
+ \\
\text { supersaturation }
\end{gathered} \quad \Longrightarrow \quad \text { random analogue of } \mathcal{R}
$$

Transference theorems - corollary

Theorem (Conlon-Gowers [2009+], Schacht [2009+])

 extremal result $\mathcal{R}$$\underset{\text { supersaturation }}{+} \Longrightarrow \quad$ random analogue of \mathcal{R}

Corollary (Random analogue of Szemerédi's theorem)

For every $k \geqslant 3$ and $\delta>0$, if $p(n) \geqslant C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_{p}$ satisfies that every $A \subseteq[n]_{p}$ with $|A| \geqslant \delta\left|[n]_{p}\right|$ contains a k-term AP.

Transference theorems - corollary

Theorem (Turán [1941])
For every $k \geq 3$,

$$
\operatorname{ex}\left(n, K_{k}\right)=e\left(T_{k-1}(n)\right)=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2} .
$$

Transference theorems - corollary

Theorem (Turán [1941])

For every $k \geq 3$,

$$
\operatorname{ex}\left(n, K_{k}\right)=e\left(T_{k-1}(n)\right)=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2} .
$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl. by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu,...

Transference theorems - corollary

Theorem (Turán [1941])

For every $k \geq 3$,

$$
\operatorname{ex}\left(n, K_{k}\right)=e\left(T_{k-1}(n)\right)=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2} .
$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl. by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu,...

Theorem (Conlon-Gowers [2009+], Schacht [2009+])

For $p=p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

Transference theorems - corollary

Theorem (Turán [1941])

For every $k \geq 3$,

$$
e x\left(n, K_{k}\right)=e\left(T_{k-1}(n)\right)=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2} .
$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl. by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu,...

Theorem (Conlon-Gowers [2009+], Schacht [2009+])

For $p=p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

$$
\operatorname{ex}\left(G(n, p), K_{k}\right)=\left(1-\frac{1}{k-1}+o(1)\right) \cdot e(G(n, p))
$$

This is usually referred to as the random analogue of Turán's theorem.

Authors I. [at the time of the submission of the paper]

W. Samotij

R. Morris

Authors II. [at the time of the submission of the paper]

Authors I. [at the time of the acceptance of the paper]

W. Samotij

R. Morris

Authors II. [at the time of the acceptance of the paper]

Counting Independent sets in Hypergraphs

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

Certain hypergraphs have only few independent sets.

Counting Independent sets in Hypergraphs

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi's theorem)

For every $k \geqslant 3$ and $\delta>0$, if $p(n) \geqslant C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_{p}$ satisfies that every $A \subseteq[n]_{p}$ with $|A| \geqslant \delta\left|[n]_{p}\right|$ contains a k-term AP.

Counting Independent sets in Hypergraphs

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi's theorem)

For every $k \geqslant 3$ and $\delta>0$, if $p(n) \geqslant C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_{p}$ satisfies that every $A \subseteq[n]_{p}$ with $|A| \geqslant \delta\left|[n]_{p}\right|$ contains a k-term AP.

Corollary (Random analogue of Turán's theorem)

For $p=p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

$$
\operatorname{ex}\left(G(n, p), K_{k}\right)=\left(1-\frac{1}{k-1}+o(1)\right) \cdot e(G(n, p))
$$

Counting Independent sets in Hypergraphs

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

Certain hypergraphs have only few independent sets.

Counting Independent sets in Hypergraphs

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi's theorem)

For every $k \geq 3$ and $\delta>0$, if $m \geq C(k, \delta) n^{1-\frac{1}{k-1}}$, then

$$
\# m \text {-subsets of }[n] \text { with no } k \text {-term AP } \leq\binom{\delta n}{m}
$$

Counting Independent sets in Hypergraphs

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi's theorem)

For every $k \geq 3$ and $\delta>0$, if $m \geq C(k, \delta) n^{1-\frac{1}{k-1}}$, then $\# m$-subsets of $[n]$ with no k-term AP $\leq\binom{\delta n}{m}$.

Theorem (Erdős-Kleitman-Rothschild [1976])

There are at most $2^{(1+o(1)) \cdot e x\left(n, K_{k}\right)} K_{k}$-free graphs on n vertices.

The Cameron-Erdős problem

Question

How many integers from $\{1, \ldots, n\}$ can we select without creating a solution of

$$
x+y=z ?
$$

The Cameron-Erdős problem

Question

How many integers from $\{1, \ldots, n\}$ can we select without creating a solution of

$$
x+y=z ?
$$

Observation

- Set of odds is sum-free.

The Cameron-Erdős problem

Question

How many integers from $\{1, \ldots, n\}$ can we select without creating a solution of

$$
x+y=z ?
$$

Observation

- Set of odds is sum-free.
- $\{n / 2+1, n / 2+2, \ldots, n\}$ is sum-free.
- $\{n / 2, n / 2+1, \ldots, n-1\}$ is sum-free.

The Cameron-Erdős problem

Question

How many integers from $\{1, \ldots, n\}$ can we select without creating a solution of

$$
x+y=z ?
$$

Observation

- Set of odds is sum-free.
- $\{n / 2+1, n / 2+2, \ldots, n\}$ is sum-free.
- $\{n / 2, n / 2+1, \ldots, n-1\}$ is sum-free.

Cameron - Erdős Conjecture (1990)

The number of sum-free subsets of $[n]$ is $O\left(2^{n / 2}\right)$.

The Cameron-Erdős problem

Question

How many integers from $\{1, \ldots, n\}$ can we select without creating a solution of

$$
x+y=z ?
$$

Observation

- Set of odds is sum-free.
- $\{n / 2+1, n / 2+2, \ldots, n\}$ is sum-free.
- $\{n / 2, n / 2+1, \ldots, n-1\}$ is sum-free.

Cameron - Erdős Conjecture (1990)

The number of sum-free subsets of $[n]$ is $O\left(2^{n / 2}\right)$.

Remark

The number of sum-free subsets of $[n]$ is more than $2 \times 2^{n / 2}$.
Any subset of $\{n / 2, n / 2+1, \ldots, n-1\}$ is sum-free, etc...

The Cameron-Erdős problem

Cameron - Erdős Conjecture (1990)

The number of sum-free subsets of $[n]$ is $O\left(2^{n / 2}\right)$.
Green (2004), Sapozhenko (2003)
There are constans c_{e} and c_{o} s.t. the number of sum-free subsets of $[n]$ is

$$
(1+o(1)) c_{e} 2^{n / 2}, \quad(1+o(1)) c_{o} 2^{n / 2}
$$

depending on the parity of n.

The Cameron-Erdős problem

Cameron - Erdős Conjecture (1999)

There is $c>0$ that the number of maximal sum-free subsets of $[n]$ is

$$
O\left(2^{n / 2-c n}\right)
$$

There are at least $2^{n / 4}$ maximal sum-free subsets of $[n]$.

The Cameron-Erdős problem

Cameron - Erdős Conjecture (1999)

There is $c>0$ that the number of maximal sum-free subsets of $[n]$ is

$$
O\left(2^{n / 2-c n}\right)
$$

There are at least $2^{n / 4}$ maximal sum-free subsets of $[n]$.
Łuczak and Schoen (2001)
The number of maximal sum-free subsets of $[n]$ is at most $O\left(2^{n / 2-2^{-28} n}\right)$.

The Cameron-Erdős problem

Cameron - Erdős Conjecture (1999)

There is $c>0$ that the number of maximal sum-free subsets of $[n]$ is

$$
O\left(2^{n / 2-c n}\right)
$$

There are at least $2^{n / 4}$ maximal sum-free subsets of $[n]$.
Łuczak and Schoen (2001)
The number of maximal sum-free subsets of $[n]$ is at most $O\left(2^{n / 2-2^{-28} n}\right)$.

Wolfowitz (2009)

The number of maximal sum-free subsets of $[n]$ is at most $2^{3 n / 8-o(n)}$.

The Cameron-Erdős problem

Cameron - Erdős Conjecture (1999)

There is $c>0$ that the number of maximal sum-free subsets of $[n]$ is

$$
O\left(2^{n / 2-c n}\right)
$$

There are at least $2^{n / 4}$ maximal sum-free subsets of $[n]$.
Łuczak and Schoen (2001)
The number of maximal sum-free subsets of $[n]$ is at most $O\left(2^{n / 2-2^{-28} n}\right)$.

Wolfowitz (2009)

The number of maximal sum-free subsets of $[n]$ is at most $2^{3 n / 8-o(n)}$.

Balogh-H. Liu-Sharifzadeh-Treglown [2014+]

The number of maximal sum-free subsets of $[n]$ is $2^{n / 4+o(n)}$.

The Cameron-Erdős problem

Cameron - Erdős Conjecture (1999)

There is $c>0$ that the number of maximal sum-free subsets of $[n]$ is

$$
O\left(2^{n / 2-c n}\right)
$$

There are at least $2^{n / 4}$ maximal sum-free subsets of $[n]$.

Łuczak and Schoen (2001)

The number of maximal sum-free subsets of $[n]$ is at most $O\left(2^{n / 2-2^{-28} n}\right)$.

Wolfowitz (2009)

The number of maximal sum-free subsets of $[n]$ is at most $2^{3 n / 8-o(n)}$.

Balogh-H. Liu-Sharifzadeh-Treglown [2014?]

The number of maximal sum-free subsets of $[n]$ is $O\left(2^{n / 4}\right)$.

New applications of the "Counting Method":

Theorem (Erdős-Kleitman-Rothschild [1976])

Almost all triangle-free graphs are bipartite.

New applications of the "Counting Method":

Theorem (Erdős-Kleitman-Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

New applications of the "Counting Method":

Theorem (Erdős-Kleitman-Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

New applications of the "Counting Method":

Theorem (Erdős-Kleitman-Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

$$
2^{n^{3 / 2+o(1)}}
$$

New applications of the "Counting Method":

Theorem (Erdős-Kleitman-Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

$$
2^{n^{3 / 2+o(1)}} \quad 2^{o\left(n^{2}\right)}
$$

New applications of the "Counting Method":

Theorem (Erdős-Kleitman-Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

$$
2^{n^{3 / 2+o(1)}} \quad 2^{o\left(n^{2}\right)} \quad 2^{n^{2} / 8}
$$

New applications of the "Counting Method":

Theorem (Erdős-Kleitman-Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

$$
2^{n^{3 / 2+o(1)}} \quad 2^{o\left(n^{2}\right)} \quad 2^{n^{2} / 8} \quad 2^{(1 / 4-c) n^{2}}
$$

New applications of the "Counting Method":

Theorem (Erdős-Kleitman-Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

$$
2^{n^{n^{3 / 2+o(1)}}} \quad 2^{o\left(n^{2}\right)} \quad 2^{n^{2} / 8} \quad 2^{(1 / 4-c) n^{2}} \quad 2^{n^{2} / 4}
$$

New applications of the "Counting Method":

Folklore

There are at least $2^{n^{2} / 8}$ maximal triangle-free graphs on n vertices.

New applications of the "Counting Method":

Folklore

There are at least $2^{n^{2} / 8}$ maximal triangle-free graphs on n vertices.

- Let $X:=\left\{u_{1} v_{1}, \ldots, u_{n / 4} v_{n / 4}\right\}$ be a matching;

New applications of the "Counting Method":

Folklore

There are at least $2^{n^{2} / 8}$ maximal triangle-free graphs on n vertices.

- Let $X:=\left\{u_{1} v_{1}, \ldots, u_{n / 4} v_{n / 4}\right\}$ be a matching;
- Y be an independent set of size $n / 2$.

New applications of the "Counting Method":

Folklore

There are at least $2^{n^{2} / 8}$ maximal triangle-free graphs on n vertices.

- Let $X:=\left\{u_{1} v_{1}, \ldots, u_{n / 4} v_{n / 4}\right\}$ be a matching;
- Y be an independent set of size $n / 2$.
- For every i : partition $Y:=A_{i} \cup B_{i}$.

New applications of the "Counting Method":

Folklore

There are at least $2^{n^{2} / 8}$ maximal triangle-free graphs on n vertices.

- Let $X:=\left\{u_{1} v_{1}, \ldots, u_{n / 4} v_{n / 4}\right\}$ be a matching;
- Y be an independent set of size $n / 2$.
- For every i : partition $Y:=A_{i} \cup B_{i}$.
- Add all edges between u_{i} and A_{i}; add all edges between v_{i} and B_{i}.

New applications of the "Counting Method":

Folklore

There are at least $2^{n^{2} / 8}$ maximal triangle-free graphs on n vertices.

- Let $X:=\left\{u_{1} v_{1}, \ldots, u_{n / 4} v_{n / 4}\right\}$ be a matching;
- Y be an independent set of size $n / 2$.
- For every i : partition $Y:=A_{i} \cup B_{i}$.
- Add all edges between u_{i} and A_{i}; add all edges between v_{i} and B_{i}.
- Most of these graphs will be maximal triangle-free.

New applications of the "Counting Method":

Folklore

There are at least $2^{n^{2} / 8}$ maximal triangle-free graphs on n vertices.

- Let $X:=\left\{u_{1} v_{1}, \ldots, u_{n / 4} v_{n / 4}\right\}$ be a matching;
- Y be an independent set of size $n / 2$.
- For every i : partition $Y:=A_{i} \cup B_{i}$.
- Add all edges between u_{i} and A_{i}; add all edges between v_{i} and B_{i}.
- Most of these graphs will be maximal triangle-free.
- Number of graphs: $\left(2^{n / 2}\right)^{n / 4}=2^{n^{2} / 8}$.

New applications of the "Counting Method":

Folklore

There are at least $2^{n^{2} / 8}$ maximal triangle-free graphs on n vertices.

- Let $X:=\left\{u_{1} v_{1}, \ldots, u_{n / 4} v_{n / 4}\right\}$ be a matching;
- Y be an independent set of size $n / 2$.
- For every i : partition $Y:=A_{i} \cup B_{i}$.
- Add all edges between u_{i} and A_{i}; add all edges between v_{i} and B_{i}.
- Most of these graphs will be maximal triangle-free.
- Number of graphs: $\left(2^{n / 2}\right)^{n / 4}=2^{n^{2} / 8}$.

Balogh-Petříčková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

New applications of the "Counting Method":

Balogh-H. Liu-Petrickova-Sharifzadeh [2014+++]

Almost every maximal triangle-free graph has the above structure.

The number of triangle-free graphs:

 Regularity Lemma approachTheorem (Erdős-Kleitman-Rothschild [1976])
The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

- Apply Szemerédi Regularity Lemma for a G_{n} triangle-free graph.

The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

- Apply Szemerédi Regularity Lemma for a G_{n} triangle-free graph.
- Obtain cluster graph R_{t}.

The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

- Apply Szemerédi Regularity Lemma for a G_{n} triangle-free graph.
- Obtain cluster graph R_{t}.
- Clean G_{n} : remove edges inside clusters, between sparse pairs, and irregular pairs.

The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

- Apply Szemerédi Regularity Lemma for a G_{n} triangle-free graph.
- Obtain cluster graph R_{t}.
- Clean G_{n} : remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_{n}:=$ blow up R_{t} to n vertices.

The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

- Apply Szemerédi Regularity Lemma for a G_{n} triangle-free graph.
- Obtain cluster graph R_{t}.
- Clean G_{n} : remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_{n}:=$ blow up R_{t} to n vertices.
- C_{n} contains all but $o\left(n^{2}\right)$ edges of G_{n}. [Approximate Container]

The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

- Apply Szemerédi Regularity Lemma for a G_{n} triangle-free graph.
- Obtain cluster graph R_{t}.
- Clean G_{n} : remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_{n}:=$ blow up R_{t} to n vertices.
- C_{n} contains all but $o\left(n^{2}\right)$ edges of G_{n}. [Approximate Container]
- C_{n} is triangle-free, hence $e\left(C_{n}\right) \leqslant n^{2} / 4$.

The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

- Apply Szemerédi Regularity Lemma for a G_{n} triangle-free graph.
- Obtain cluster graph R_{t}.
- Clean G_{n} : remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_{n}:=$ blow up R_{t} to n vertices.
- C_{n} contains all but $o\left(n^{2}\right)$ edges of G_{n}. [Approximate Container]
- C_{n} is triangle-free, hence $e\left(C_{n}\right) \leqslant n^{2} / 4$.
- Number of choices for C_{n} is $O(1) \cdot n^{n}$.

The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

- Apply Szemerédi Regularity Lemma for a G_{n} triangle-free graph.
- Obtain cluster graph R_{t}.
- Clean G_{n} : remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_{n}:=$ blow up R_{t} to n vertices.
- C_{n} contains all but $o\left(n^{2}\right)$ edges of G_{n}. [Approximate Container]
- C_{n} is triangle-free, hence $e\left(C_{n}\right) \leqslant n^{2} / 4$.
- Number of choices for C_{n} is $O(1) \cdot n^{n}$.
- Number of choices for G_{n} is

$$
O(1) \cdot n^{n}
$$

The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

- Apply Szemerédi Regularity Lemma for a G_{n} triangle-free graph.
- Obtain cluster graph R_{t}.
- Clean G_{n} : remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_{n}:=$ blow up R_{t} to n vertices.
- C_{n} contains all but $o\left(n^{2}\right)$ edges of G_{n}. [Approximate Container]
- C_{n} is triangle-free, hence $e\left(C_{n}\right) \leqslant n^{2} / 4$.
- Number of choices for C_{n} is $O(1) \cdot n^{n}$.
- Number of choices for G_{n} is

$$
O(1) \cdot n^{n} \cdot 2^{n^{2} / 4}
$$

The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

- Apply Szemerédi Regularity Lemma for a G_{n} triangle-free graph.
- Obtain cluster graph R_{t}.
- Clean G_{n} : remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_{n}:=$ blow up R_{t} to n vertices.
- C_{n} contains all but $o\left(n^{2}\right)$ edges of G_{n}. [Approximate Container]
- C_{n} is triangle-free, hence $e\left(C_{n}\right) \leqslant n^{2} / 4$.
- Number of choices for C_{n} is $O(1) \cdot n^{n}$.
- Number of choices for G_{n} is

$$
O(1) \cdot n^{n} \cdot 2^{n^{2} / 4} \cdot\binom{n^{2}}{o\left(n^{2}\right)}=2^{n^{2} / 4+o\left(n^{2}\right)}
$$

The number of triangle-free graphs: 'New approach'

Theorem (Erdős-Kleitman-Rothschild [1976])
The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

The number of triangle-free graphs: 'New approach'

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t<2^{O\left(\log n \cdot n^{3 / 2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is an $i \in[t]$ such that $H \subseteq G_{i}$.

The number of triangle-free graphs: 'New approach'

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t<2^{O\left(\log n \cdot n^{3 / 2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is an $i \in[t]$ such that $H \subseteq G_{i}$.

- For each F_{n} triangle-free graph there is an i that $F_{n} \subset G_{i}$.

The number of triangle-free graphs: 'New approach'

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t<2^{O\left(\log n \cdot n^{3 / 2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is an $i \in[t]$ such that $H \subseteq G_{i}$.

- For each F_{n} triangle-free graph there is an i that $F_{n} \subset G_{i}$.
- $e\left(G_{i}\right) \leqslant n^{2} / 4+o\left(n^{2}\right)$.

The number of triangle-free graphs: 'New approach'

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t<2^{O\left(\log n \cdot n^{3 / 2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is an $i \in[t]$ such that $H \subseteq G_{i}$.

- For each F_{n} triangle-free graph there is an i that $F_{n} \subset G_{i}$.
- $e\left(G_{i}\right) \leqslant n^{2} / 4+o\left(n^{2}\right)$.
- Number of choices for F_{n} is

The number of triangle-free graphs: 'New approach'

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t<2^{O\left(\log n \cdot n^{3 / 2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is an $i \in[t]$ such that $H \subseteq G_{i}$.

- For each F_{n} triangle-free graph there is an i that $F_{n} \subset G_{i}$.
- $e\left(G_{i}\right) \leqslant n^{2} / 4+o\left(n^{2}\right)$.
- Number of choices for F_{n} is t.

The number of triangle-free graphs: 'New approach'

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t<2^{O\left(\log n \cdot n^{3 / 2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is an $i \in[t]$ such that $H \subseteq G_{i}$.

- For each F_{n} triangle-free graph there is an i that $F_{n} \subset G_{i}$.
- $e\left(G_{i}\right) \leqslant n^{2} / 4+o\left(n^{2}\right)$.
- Number of choices for F_{n} is $t \cdot 2^{n^{2} / 4+o\left(n^{2}\right)}=2^{n^{2} / 4+o\left(n^{2}\right)}$.

The number of triangle-free graphs: 'New approach'

Theorem (Erdős-Kleitman-Rothschild [1976])

The number of triangle-free graphs is $2^{n^{2} / 4+o\left(n^{2}\right)}$.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t<2^{O\left(\log n \cdot n^{3 / 2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is an $i \in[t]$ such that $H \subseteq G_{i}$.

- For each F_{n} triangle-free graph there is an i that $F_{n} \subset G_{i}$.
- $e\left(G_{i}\right) \leqslant n^{2} / 4+o\left(n^{2}\right)$.
- Number of choices for F_{n} is $t \cdot 2^{n^{2} / 4+o\left(n^{2}\right)}=2^{n^{2} / 4+o\left(n^{2}\right)}$.

There is a $t=2^{o\left(n^{2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is $i \in[t]$ such that $H \subseteq G_{i}$.

The number of maximal triangle-free graphs

Balogh-Petríččková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

The number of maximal triangle-free graphs

Balogh-Petrícičková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t<2^{O\left(\log n \cdot n^{3 / 2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is an $i \in[t]$ such that $H \subseteq G_{i}$. Note $e\left(G_{i}\right) \leqslant n^{2} / 4+o\left(n^{2}\right)$.

The number of maximal triangle-free graphs

Balogh-Petříčková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t<2^{O\left(\log n \cdot n^{3 / 2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is an $i \in[t]$ such that $H \subseteq G_{i}$. Note $e\left(G_{i}\right) \leqslant n^{2} / 4+o\left(n^{2}\right)$.

Ruzsa-Szemerédi (1976)

Any graph G_{n} with at most $o\left(n^{3}\right)$ triangles can be made triangle-free by removing at most $o\left(n^{2}\right)$ edges.

The number of maximal triangle-free graphs

Balogh-Petříčková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

Balogh-Morris-Samotij, Saxton-Thomason [2012+]

There is a $t<2^{O\left(\log n \cdot n^{3 / 2}\right)}$ and a set $\left\{G_{1}, \ldots, G_{t}\right\}$ of graphs, each containing at most $o\left(n^{3}\right)$ triangles, such that for every triangle-free graph H there is an $i \in[t]$ such that $H \subseteq G_{i}$. Note $e\left(G_{i}\right) \leqslant n^{2} / 4+o\left(n^{2}\right)$.

Ruzsa-Szemerédi (1976)

Any graph G_{n} with at most $o\left(n^{3}\right)$ triangles can be made triangle-free by removing at most $o\left(n^{2}\right)$ edges.

Hujter-Tuza (1993)

Any triangle-free graph T_{N} has at most $2^{N / 2}$ maximal independent sets. Sharpness is by a perfect matching.

The number of maximal triangle-free graphs

Balogh-Petrícičková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

The number of maximal triangle-free graphs

Balogh-Petříčková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

- For F_{n} triangle-free graph there is a G_{i} containing it. $2^{O\left(\log n \cdot n^{3 / 2}\right)}$ choices.

The number of maximal triangle-free graphs

Balogh-Petříčková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

- For F_{n} triangle-free graph there is a G_{i} containing it. $2^{O\left(\log n \cdot n^{3 / 2}\right)}$ choices.
- Fix a $T_{i} \subset E\left(G_{i}\right)$ that $\left|T_{i}\right|=o\left(n^{2}\right)$ and $E\left(G_{i}\right)-T_{i}$ is triangle-free.

The number of maximal triangle-free graphs

Balogh-Petříčková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

- For F_{n} triangle-free graph there is a G_{i} containing it. $2^{O\left(\log n \cdot n^{3 / 2}\right)}$ choices.
- Fix a $T_{i} \subset E\left(G_{i}\right)$ that $\left|T_{i}\right|=o\left(n^{2}\right)$ and $E\left(G_{i}\right)-T_{i}$ is triangle-free. Decide on $T_{i} \cap E\left(F_{n}\right)$. Number of choices is $2^{o\left(n^{2}\right)}$.

The number of maximal triangle-free graphs

Balogh-Petříčková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

- For F_{n} triangle-free graph there is a G_{i} containing it. $2^{O\left(\log n \cdot n^{3 / 2}\right)}$ choices.
- Fix a $T_{i} \subset E\left(G_{i}\right)$ that $\left|T_{i}\right|=o\left(n^{2}\right)$ and $E\left(G_{i}\right)-T_{i}$ is triangle-free. Decide on $T_{i} \cap E\left(F_{n}\right)$. Number of choices is $2^{o\left(n^{2}\right)}$.
- Form auxiliary graph: $V:=E\left(G_{i}\right)-T_{i}$, $E=\left\{\right.$ ef : if $\exists g \in T_{i} \cap E\left(F_{n}\right)$, that efg is a triangle. $\}$

The number of maximal triangle-free graphs

Balogh-Petříčková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

- For F_{n} triangle-free graph there is a G_{i} containing it. $2^{O\left(\log n \cdot n^{3 / 2}\right)}$ choices.
- Fix a $T_{i} \subset E\left(G_{i}\right)$ that $\left|T_{i}\right|=o\left(n^{2}\right)$ and $E\left(G_{i}\right)-T_{i}$ is triangle-free. Decide on $T_{i} \cap E\left(F_{n}\right)$. Number of choices is $2^{o\left(n^{2}\right)}$.
- Form auxiliary graph: $V:=E\left(G_{i}\right)-T_{i}$,

$$
E=\left\{\text { ef : if } \exists g \in T_{i} \cap E\left(F_{n}\right) \text {, that efg is a triangle. }\right\}
$$

- This graph is triangle-free;

The number of maximal triangle-free graphs

Balogh-Petříčková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

- For F_{n} triangle-free graph there is a G_{i} containing it. $2^{O\left(\log n \cdot n^{3 / 2}\right)}$ choices.
- Fix a $T_{i} \subset E\left(G_{i}\right)$ that $\left|T_{i}\right|=o\left(n^{2}\right)$ and $E\left(G_{i}\right)-T_{i}$ is triangle-free. Decide on $T_{i} \cap E\left(F_{n}\right)$. Number of choices is $2^{o\left(n^{2}\right)}$.
- Form auxiliary graph: $V:=E\left(G_{i}\right)-T_{i}$, $E=\left\{\right.$ ef : if $\exists g \in T_{i} \cap E\left(F_{n}\right)$, that efg is a triangle. $\}$
- This graph is triangle-free;
- Number of choices for $\left(F_{n} \cap G_{i}\right)-T_{i}$ is at most the number of maximal independent sets in the auxilary graph.

The number of maximal triangle-free graphs

Balogh-Petříčková [2014+]

There are at most $2^{n^{2} / 8+o\left(n^{2}\right)}$ maximal triangle-free graphs on n vertices.

- For F_{n} triangle-free graph there is a G_{i} containing it. $2^{O\left(\log n \cdot n^{3 / 2}\right)}$ choices.
- Fix a $T_{i} \subset E\left(G_{i}\right)$ that $\left|T_{i}\right|=o\left(n^{2}\right)$ and $E\left(G_{i}\right)-T_{i}$ is triangle-free. Decide on $T_{i} \cap E\left(F_{n}\right)$. Number of choices is $2^{o\left(n^{2}\right)}$.
- Form auxiliary graph: $V:=E\left(G_{i}\right)-T_{i}$, $E=\left\{\right.$ ef : if $\exists g \in T_{i} \cap E\left(F_{n}\right)$, that efg is a triangle. $\}$
- This graph is triangle-free;
- Number of choices for $\left(F_{n} \cap G_{i}\right)-T_{i}$ is at most the number of maximal independent sets in the auxilary graph.
- $|V| \leqslant n^{2} / 4$; Hujter-Tuza gives $\leqslant 2^{n^{2} / 8}$ choices.

New applications of the "Counting Method":

Definition

- Permutation $\pi=\pi(n)$ is a bijective map from [n] to [n].

New applications of the "Counting Method":

Definition

- Permutation $\pi=\pi(n)$ is a bijective map from [n] to [$n]$.
- Permutations ρ, π are intersecting if there is an i that $\rho(i)=\pi(i)$.

New applications of the "Counting Method":

Definition

- Permutation $\pi=\pi(n)$ is a bijective map from [n] to [$n]$.
- Permutations ρ, π are intersecting if there is an i that $\rho(i)=\pi(i)$.
- Π is an intersecting family of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.

New applications of the "Counting Method":

Definition

- Permutation $\pi=\pi(n)$ is a bijective map from [n] to [$n]$.
- Permutations ρ, π are intersecting if there is an i that $\rho(i)=\pi(i)$.
- Π is an intersecting family of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i, j):=\{\pi: \pi(i)=j\}$ is a trivially intersecting family; of size $(n-1)$!.

New applications of the "Counting Method":

Definition

- Permutation $\pi=\pi(n)$ is a bijective map from [n] to [$n]$.
- Permutations ρ, π are intersecting if there is an i that $\rho(i)=\pi(i)$.
- Π is an intersecting family of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i, j):=\{\pi: \pi(i)=j\}$ is a trivially intersecting family; of size $(n-1)$!.
- The number of intersecting families is at least $(1-o(1)) \cdot n^{2} \cdot 2^{(n-1)!}$.

New applications of the "Counting Method":

Definition

- Permutation $\pi=\pi(n)$ is a bijective map from [n] to [$n]$.
- Permutations ρ, π are intersecting if there is an i that $\rho(i)=\pi(i)$.
- Π is an intersecting family of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i, j):=\{\pi: \pi(i)=j\}$ is a trivially intersecting family; of size $(n-1)$!.
- The number of intersecting families is at least $(1-o(1)) \cdot n^{2} \cdot 2^{(n-1)!}$.

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

(i) The number of intersecting families of permutations is

$$
2^{(1+o(1))(n-1)!}
$$

New applications of the "Counting Method":

Definition

- Permutation $\pi=\pi(n)$ is a bijective map from [n] to [$n]$.
- Permutations ρ, π are intersecting if there is an i that $\rho(i)=\pi(i)$.
- Π is an intersecting family of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i, j):=\{\pi: \pi(i)=j\}$ is a trivially intersecting family; of size $(n-1)$!.
- The number of intersecting families is at least $(1-o(1)) \cdot n^{2} \cdot 2^{(n-1)!}$.

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

(i) The number of intersecting families of permutations is

$$
2^{(1+o(1))(n-1)!}
$$

(ii) Almost every intersecting permutation family is trivially intersecting.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

The number of intersecting families of permutations is

$$
2^{(1+o(1))(n-1)!}
$$

- Proof follows Alon-Balogh-Morris-Samotij [2014]:

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

The number of intersecting families of permutations is

$$
2^{(1+o(1))(n-1)!}
$$

- Proof follows Alon-Balogh-Morris-Samotij [2014]:
- Form graph: $V:=$ permutations, $E:=$ non-intersecting pairs.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

The number of intersecting families of permutations is

$$
2^{(1+o(1))(n-1)!} .
$$

- Proof follows Alon-Balogh-Morris-Samotij [2014]:
- Form graph: $V:=$ permutations, $E:=$ non-intersecting pairs.
- Apply Alon-Chung Expander-Mixing Lemma:

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

The number of intersecting families of permutations is

$$
2^{(1+o(1))(n-1)!}
$$

- Proof follows Alon-Balogh-Morris-Samotij [2014]:
- Form graph: $V:=$ permutations, $E:=$ non-intersecting pairs.
- Apply Alon-Chung Expander-Mixing Lemma:

Let G be a D-regular graph on N vertices, and let λ be its smallest eigenvalue. Then for all $S \subseteq V(G)$,

$$
e(G[S]) \geq \frac{D}{2 N}|S|^{2}+\frac{\lambda}{2 N}|S|(N-|S|)
$$

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

The number of intersecting families of permutations is

$$
2^{(1+o(1))(n-1)!}
$$

- Proof follows Alon-Balogh-Morris-Samotij [2014]:
- Form graph: $V:=$ permutations, $E:=$ non-intersecting pairs.
- Apply Alon-Chung Expander-Mixing Lemma:

Let G be a D-regular graph on N vertices, and let λ be its smallest eigenvalue. Then for all $S \subseteq V(G)$,

$$
e(G[S]) \geq \frac{D}{2 N}|S|^{2}+\frac{\lambda}{2 N}|S|(N-|S|)
$$

- Ellis: $\lambda=\left(-\frac{1}{e}+o(1)\right)(n-1)$!, $N=n!, D=\left(\frac{1}{e}+o(1)\right) N,|S|=(1+o(1))(n-1)!$

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

The number of intersecting families of permutations is

$$
2^{(1+o(1))(n-1)!} .
$$

- Proof follows Alon-Balogh-Morris-Samotij [2014]:
- Form graph: $V:=$ permutations, $E:=$ non-intersecting pairs.
- Apply Alon-Chung Expander-Mixing Lemma:

Let G be a D-regular graph on N vertices, and let λ be its smallest eigenvalue. Then for all $S \subseteq V(G)$,

$$
e(G[S]) \geq \frac{D}{2 N}|S|^{2}+\frac{\lambda}{2 N}|S|(N-|S|)
$$

- Ellis: $\lambda=\left(-\frac{1}{e}+o(1)\right)(n-1)$!,

$$
N=n!, D=\left(\frac{1}{e}+o(1)\right) N,|S|=(1+o(1))(n-1)!
$$

- $G[S]$ spans many edges $\rightarrow G$ does not have 'many' independent sets.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

Shagnik Das

Maryam S. - Hong L. - Michelle D.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma):=\left\{\pi \in S_{n}: \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\right\}$.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma):=\left\{\pi \in S_{n}: \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\right\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma)=\Pi$.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma):=\left\{\pi \in S_{n}: \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\right\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma)=\Pi$.
- Every Π has DIFFERENT minimal generating sets.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma):=\left\{\pi \in S_{n}: \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\right\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma)=\Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma):=\left\{\pi \in S_{n}: \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\right\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma)=\Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_{i} \in \Gamma$ there is a $\pi_{i} \notin \Pi$ that $\left(\rho_{i}, \pi_{i}\right)$ is not an intersecting pair, but $\forall \rho_{j} \in \Gamma$ with $i \neq j,\left(\rho_{j}, \pi_{i}\right)$ is an intersecting pair.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma):=\left\{\pi \in S_{n}: \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\right\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma)=\Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_{i} \in \Gamma$ there is a $\pi_{i} \notin \Pi$ that $\left(\rho_{i}, \pi_{i}\right)$ is not an intersecting pair, but $\forall \rho_{j} \in \Gamma$ with $i \neq j,\left(\rho_{j}, \pi_{i}\right)$ is an intersecting pair.
- $\rho \rightarrow\{(i, \rho(i): i \in[n]\}$ maps an n-uniform hypergraph.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma):=\left\{\pi \in S_{n}: \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\right\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma)=\Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_{i} \in \Gamma$ there is a $\pi_{i} \notin \Pi$ that $\left(\rho_{i}, \pi_{i}\right)$ is not an intersecting pair, but $\forall \rho_{j} \in \Gamma$ with $i \neq j,\left(\rho_{j}, \pi_{i}\right)$ is an intersecting pair.
- $\rho \rightarrow\{(i, \rho(i): i \in[n]\}$ maps an n-uniform hypergraph.
- Bollobás set-pair inequality: $|\Gamma| \leqslant\binom{ 2 n}{n}$.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma):=\left\{\pi \in S_{n}: \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\right\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma)=\Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_{i} \in \Gamma$ there is a $\pi_{i} \notin \Pi$ that $\left(\rho_{i}, \pi_{i}\right)$ is not an intersecting pair, but $\forall \rho_{j} \in \Gamma$ with $i \neq j,\left(\rho_{j}, \pi_{i}\right)$ is an intersecting pair.
- $\rho \rightarrow\{(i, \rho(i): i \in[n]\}$ maps an n-uniform hypergraph.
- Bollobás set-pair inequality: $|\Gamma| \leqslant\binom{ 2 n}{n}$.
- Ellis (2011): Largest non-trivial intersecting permutation family has size at most $\left(1-\frac{1}{e}+o(1)\right)(n-1)$!.

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma):=\left\{\pi \in S_{n}: \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\right\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma)=\Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_{i} \in \Gamma$ there is a $\pi_{i} \notin \Pi$ that $\left(\rho_{i}, \pi_{i}\right)$ is not an intersecting pair, but $\forall \rho_{j} \in \Gamma$ with $i \neq j,\left(\rho_{j}, \pi_{i}\right)$ is an intersecting pair.
- $\rho \rightarrow\{(i, \rho(i): i \in[n]\}$ maps an n-uniform hypergraph.
- Bollobás set-pair inequality: $|\Gamma| \leqslant\binom{ 2 n}{n}$.
- Ellis (2011): Largest non-trivial intersecting permutation family has size at most $\left(1-\frac{1}{e}+o(1)\right)(n-1)$!.
- $\binom{n!}{\binom{n}{n}}$

Permutations:

Balogh-Das-Delcourt-Liu-Sharifzadeh [2014++]

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma):=\left\{\pi \in S_{n}: \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\right\}$.
- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma)=\Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
- $\forall \rho_{i} \in \Gamma$ there is a $\pi_{i} \notin \Pi$ that $\left(\rho_{i}, \pi_{i}\right)$ is not an intersecting pair, but $\forall \rho_{j} \in \Gamma$ with $i \neq j,\left(\rho_{j}, \pi_{i}\right)$ is an intersecting pair.
- $\rho \rightarrow\{(i, \rho(i): i \in[n]\}$ maps an n-uniform hypergraph.
- Bollobás set-pair inequality: $|\Gamma| \leqslant\binom{ 2 n}{n}$.
- Ellis (2011): Largest non-trivial intersecting permutation family has size at most $\left(1-\frac{1}{e}+o(1)\right)(n-1)$!.
$\bullet\binom{n!}{\binom{n}{n}} \cdot 2^{(1-1 / e+o(1))(n-1)!} \ll 2^{n \log n \cdot 2^{2 n}} \cdot 2^{(1-1 / e+o(1))(n-1)!} \ll 2^{(n-1)!}$.

General framework - examples

> Example (Erdős-Turán problem)
> - $V=\{1, \ldots, n\}$,
> - $\mathcal{H}=k$-term APs in $[n]$.

General framework - examples

> Example (Erdős-Turán problem)
> - $V=\{1, \ldots, n\}$,
> - $\mathcal{H}=k$-term APs in $[n]$.

Example (Turán problem)

- $V=$ edges of K_{n},
- $\mathcal{H}=$ edge-sets of copies of K_{k} in K_{n}.

General framework - examples

Example (Erdős-Turán problem)

- $V=\{1, \ldots, n\}$,
- $\mathcal{H}=k$-term APs in [n].

Example (Turán problem)

- $V=$ edges of K_{n},
- $\mathcal{H}=$ edge-sets of copies of K_{k} in K_{n}.

Example (sum-free sets)

- $V=$ an Abelian group,
- $\mathcal{H}=$ sets of the form $\{x, y, z\}$ with $x+y=z$ (Schur triples).

Transference Theorem

Theorem (Balogh-Morris-Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq\binom{V}{k}$ such that for $\ell \in[k], p \in[0,1]$

$$
\Delta_{\ell}(\mathcal{H}) \leqslant c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})} .
$$

Transference Theorem

Theorem (Balogh-Morris-Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq\binom{V}{k}$ such that for $\ell \in[k], p \in[0,1]$

$$
\Delta_{\ell}(\mathcal{H}) \leqslant c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}
$$

Let $\mathcal{F}=\{A \subseteq V:|\mathcal{H}[A]| \geqslant \varepsilon \cdot e(\mathcal{H})\}$.

Transference Theorem

Theorem (Balogh-Morris-Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq\binom{V}{k}$ such that for $\ell \in[k], p \in[0,1]$

$$
\Delta_{\ell}(\mathcal{H}) \leqslant c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}
$$

Let $\mathcal{F}=\{A \subseteq V:|\mathcal{H}[A]| \geqslant \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq\left(\begin{array}{c}\underset{\leqslant(\mathcal{H})}{(\mathcal{H} \cdot \vee \mathcal{H})})\end{array}\right)$ of labels,

Transference Theorem

Theorem (Balogh-Morris-Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq\binom{V}{k}$ such that for $\ell \in[k], p \in[0,1]$

$$
\Delta_{\ell}(\mathcal{H}) \leqslant c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}
$$

Let $\mathcal{F}=\{A \subseteq V:|\mathcal{H}[A]| \geqslant \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq\binom{V(\mathcal{H})}{\leqslant C_{p} \cdot v(\mathcal{H})}$ of labels,
- $f: \mathcal{S} \rightarrow \mathcal{F}^{c}$ (maps each label to a set that is sparse in \mathcal{H}),

Transference Theorem

Theorem (Balogh-Morris-Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq\binom{V}{k}$ such that for $\ell \in[k], p \in[0,1]$

$$
\Delta_{\ell}(\mathcal{H}) \leqslant c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}
$$

Let $\mathcal{F}=\{A \subseteq V:|\mathcal{H}[A]| \geqslant \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq\binom{V(\mathcal{H})}{\leqslant C \cdot v(\mathcal{H})}$ of labels,
- $f: \mathcal{S} \rightarrow \mathcal{F}^{c}$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g: \mathcal{I}(\mathcal{H}) \rightarrow \mathcal{S}$,

Transference Theorem

Theorem (Balogh-Morris-Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq\binom{V}{k}$ such that for $\ell \in[k], p \in[0,1]$

$$
\Delta_{\ell}(\mathcal{H}) \leqslant c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}
$$

Let $\mathcal{F}=\{A \subseteq V:|\mathcal{H}[A]| \geqslant \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq\binom{V(\mathcal{H})}{\leqslant C_{p} \cdot v(\mathcal{H})}$ of labels,
- $f: \mathcal{S} \rightarrow \mathcal{F}^{c}$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g: \mathcal{I}(\mathcal{H}) \rightarrow \mathcal{S}$,
such that for every $I \in \mathcal{I}(\mathcal{H})$,

Transference Theorem

Theorem (Balogh-Morris-Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq\binom{V}{k}$ such that for $\ell \in[k], p \in[0,1]$

$$
\Delta_{\ell}(\mathcal{H}) \leqslant c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}
$$

Let $\mathcal{F}=\{A \subseteq V:|\mathcal{H}[A]| \geqslant \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq\binom{V(\mathcal{H})}{\leqslant C_{p} \cdot v(\mathcal{H})}$ of labels,
- $f: \mathcal{S} \rightarrow \mathcal{F}^{c}$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g: \mathcal{I}(\mathcal{H}) \rightarrow \mathcal{S}$,
such that for every $I \in \mathcal{I}(\mathcal{H})$,

$$
g(I) \subseteq I \quad \text { and } \quad I \backslash g(I) \subseteq f(g(I))
$$

Transference Theorem

Theorem (Balogh-Morris-Samotij [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq\binom{V}{k}$ such that for $\ell \in[k], p \in[0,1]$

$$
\Delta_{\ell}(\mathcal{H}) \leqslant c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}
$$

Let $\mathcal{F}=\{A \subseteq V:|\mathcal{H}[A]| \geqslant \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq\binom{V(\mathcal{H})}{\leqslant C \cdot \cdot \mathcal{H})}$ of labels,
- $f: \mathcal{S} \rightarrow \mathcal{F}^{c}$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g: \mathcal{I}(\mathcal{H}) \rightarrow \mathcal{S}$,
such that for every $I \in \mathcal{I}(\mathcal{H})$,

$$
g(I) \subseteq I \quad \text { and } \quad I \backslash g(I) \subseteq f(g(I))
$$

Similar result was obtained independently by Saxton and Thomason. Explain: Example of triangle-free graphs.

Transference Theorem: — illustration

How to use Transference Theorem?

- Let $V(\mathcal{H})=E\left(K_{n}\right), E(\mathcal{H})=$ copies of K_{r+1}.

How to use Transference Theorem?

- Let $V(\mathcal{H})=E\left(K_{n}\right), E(\mathcal{H})=$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1} free graph.

How to use Transference Theorem?

- Let $V(\mathcal{H})=E\left(K_{n}\right), E(\mathcal{H})=$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t=\binom{n^{2} / 2}{C n^{2}-1 / r}$. There are $G_{1}, \ldots G_{t}$ graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_{i}$.

How to use Transference Theorem?

- Let $V(\mathcal{H})=E\left(K_{n}\right), E(\mathcal{H})=$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t=\binom{n^{2} / 2}{C n^{2}-1 / r}$. There are $G_{1}, \ldots G_{t}$ graphs that for any H K_{r+1} free graph there is an i that $H \subset G_{i}$.
- The number of K_{r+1} in each G_{i} is $o\left(n^{r+1}\right)$.

How to use Transference Theorem?

- Let $V(\mathcal{H})=E\left(K_{n}\right), E(\mathcal{H})=$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1} free graph.
- Let $t=\binom{n^{2} / 2}{C n^{2-1 / r}}$. There are $G_{1}, \ldots G_{t}$ graphs that for any H $K_{r+1^{-}}$free graph there is an i that $H \subset G_{i}$.
- The number of K_{r+1} in each G_{i} is $o\left(n^{r+1}\right)$.
- Super-saturation implies that for each i :

$$
e\left(G_{i}\right)<\left(1-\frac{1}{r}+o(1)\right) \frac{n^{2}}{2} .
$$

How to use Transference Theorem?

- Let $V(\mathcal{H})=E\left(K_{n}\right), E(\mathcal{H})=$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t=\binom{n^{2} / 2}{C n^{2-1 / r}}$. There are $G_{1}, \ldots G_{t}$ graphs that for any H K_{r+1} free graph there is an i that $H \subset G_{i}$.
- The number of K_{r+1} in each G_{i} is $o\left(n^{r+1}\right)$.
- Super-saturation implies that for each i :

$$
e\left(G_{i}\right)<\left(1-\frac{1}{r}+o(1)\right) \frac{n^{2}}{2} .
$$

- Super-saturation - Stability theorems implies that each G_{i} is

How to use Transference Theorem?

- Let $V(\mathcal{H})=E\left(K_{n}\right), E(\mathcal{H})=$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t=\binom{n^{2} / 2}{C n^{2-1 / r}}$. There are $G_{1}, \ldots G_{t}$ graphs that for any H $K_{r+1^{-}}$free graph there is an i that $H \subset G_{i}$.
- The number of K_{r+1} in each G_{i} is $o\left(n^{r+1}\right)$.
- Super-saturation implies that for each i :

$$
e\left(G_{i}\right)<\left(1-\frac{1}{r}+o(1)\right) \frac{n^{2}}{2} .
$$

- Super-saturation - Stability theorems implies that each G_{i} is either almost r-partite or

How to use Transference Theorem?

- Let $V(\mathcal{H})=E\left(K_{n}\right), E(\mathcal{H})=$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t=\binom{n^{2} / 2}{C n^{2-1 / r}}$. There are $G_{1}, \ldots G_{t}$ graphs that for any H $K_{r+1^{-}}$free graph there is an i that $H \subset G_{i}$.
- The number of K_{r+1} in each G_{i} is $o\left(n^{r+1}\right)$.
- Super-saturation implies that for each i :

$$
e\left(G_{i}\right)<\left(1-\frac{1}{r}+o(1)\right) \frac{n^{2}}{2} .
$$

- Super-saturation - Stability theorems implies that each G_{i} is either almost r-partite or

$$
e\left(G_{i}\right)<\left(1-\frac{1}{r}-c\right) \frac{n^{2}}{2}
$$

How to use Transference Theorem?

- Let $V(\mathcal{H})=E\left(K_{n}\right), E(\mathcal{H})=$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t=\binom{n^{2} / 2}{C n^{2-1 / r}}$. There are $G_{1}, \ldots G_{t}$ graphs that for any H $K_{r+1^{-}}$free graph there is an i that $H \subset G_{i}$.
- The number of K_{r+1} in each G_{i} is $o\left(n^{r+1}\right)$.
- Super-saturation implies that for each i :

$$
e\left(G_{i}\right)<\left(1-\frac{1}{r}+o(1)\right) \frac{n^{2}}{2}
$$

- Super-saturation - Stability theorems implies that each G_{i} is either almost r-partite or

$$
e\left(G_{i}\right)<\left(1-\frac{1}{r}-c\right) \frac{n^{2}}{2} .
$$

- Computation gives: Almost all K_{r+1}-free graph is almost r-partite.

$$
\binom{n^{2} / 2}{C n^{2-1 / r}} 2^{(1-1 / r-c) n^{2} / 2} \ll 2^{(1-1 / r) n^{2} / 2}
$$

