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Transference theorems

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result R
+ =⇒ random analogue of R.

supersaturation

Dr D. Conlon Sir W.T. Gowers Dr M. Schacht



Szemerédi’s theorem

Theorem (Szemerédi [1975])

For every k > 3, the largest subset of {1, . . . , n} with no k-term AP has
o(n) elements.

Endre Szemerédi



Random analogue of Szemerédi’s theorem

Theorem (Kohayakawa– Luczak–Rödl [1996])

For every δ > 0, there exists a C such that if p(n) > Cn−1/2, then a.a.s.:
the p-random subset [np] satisfies:

Every A ⊆ [n]p with |A| > δ|[n]p| contains a 3-term AP.

Y. Kohayakawa T.  Luczak V. Rödl



Transference theorems — corollary

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result R
+ =⇒ random analogue of R

supersaturation

Corollary (Random analogue of Szemerédi’s theorem)

For every k > 3 and δ > 0, if p(n) > C (k , δ) · n−
1

k−1 , then
a.a.s. [n]p satisfies that every A ⊆ [n]p with |A| > δ|[n]p| contains a
k-term AP.
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Transference theorems — corollary

Theorem (Turán [1941])

For every k ≥ 3,

ex(n,Kk) = e(Tk−1(n)) =

(
1− 1

k − 1
+ o(1)

)(
n

2

)
.

Motivated by: Haxell, Kohayakawa,  Luczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer,
Steger, Szabó, Sudakov, Vu,. . .

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

For p = p(n)� n−
2

k+1 a.a.s.:

ex
(
G (n, p),Kk

)
=

(
1− 1

k − 1
+ o(1)

)
· e

(
G (n, p)

)
.

This is usually referred to as the random analogue of Turán’s theorem.
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Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi’s theorem)
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Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi’s theorem)

For every k ≥ 3 and δ > 0, if m ≥ C (k , δ)n1−
1

k−1 , then

#m-subsets of [n] with no k-term AP ≤
(
δn

m

)
.

Theorem (Erdős–Kleitman–Rothschild [1976])

There are at most 2(1+o(1))·ex(n,Kk ) Kk -free graphs on n vertices.
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The Cameron–Erdős problem

Question

How many integers from {1, . . . , n} can we select without creating a
solution of

x + y = z?

Observation

Set of odds is sum-free.

{n/2 + 1, n/2 + 2, . . . , n} is sum-free.

{n/2, n/2 + 1, . . . , n − 1} is sum-free.

Cameron – Erdős Conjecture (1990)

The number of sum-free subsets of [n] is O(2n/2).

Remark

The number of sum-free subsets of [n] is more than 2× 2n/2.
Any subset of {n/2, n/2 + 1, . . . , n − 1} is sum-free, etc...
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The Cameron–Erdős problem

Cameron – Erdős Conjecture (1990)

The number of sum-free subsets of [n] is O(2n/2).

Green (2004), Sapozhenko (2003)

There are constans ce and co s.t. the number of sum-free subsets of [n] is

(1 + o(1))ce2n/2, (1 + o(1))co2n/2

depending on the parity of n.

Ben Green Alexand Sapozhenko



The Cameron–Erdős problem

Cameron – Erdős Conjecture (1999)

There is c > 0 that the number of maximal sum-free subsets of [n] is

O(2n/2−cn).

There are at least 2n/4 maximal sum-free subsets of [n].

 Luczak and Schoen (2001)

The number of maximal sum-free subsets of [n] is at most O(2n/2−2−28n).

Wolfowitz (2009)

The number of maximal sum-free subsets of [n] is at most 23n/8−o(n).

Balogh–H. Liu–Sharifzadeh–Treglown [2014+]

The number of maximal sum-free subsets of [n] is 2n/4+o(n).
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New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only “few” complete
bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

2n
3/2+o(1)

2o(n
2) 2n

2/8 2(1/4−c)n2 2n
2/4.
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New applications of the “Counting Method”:

Folklore

There are at least 2n
2/8 maximal triangle-free graphs on n vertices.

Let X := {u1v1, . . . , un/4vn/4} be a matching;

Y be an independent set of size n/2.

For every i : partition Y := Ai ∪ Bi .

Add all edges between ui and Ai ; add all edges between vi and Bi .

Most of these graphs will be maximal triangle-free.

Number of graphs:
(
2n/2

)n/4
= 2n

2/8.

Balogh–Peťŕıčková [2014+]

There are at most 2n
2/8+o(n2) maximal triangle-free graphs on n vertices.
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New applications of the “Counting Method”:

Balogh–H. Liu–Petrickova–Sharifzadeh [2014+++]

Almost every maximal triangle-free graph has the above structure.



The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is 2n
2/4+o(n2).

Apply Szemerédi Regularity Lemma for a Gn triangle-free graph.

Obtain cluster graph Rt .

Clean Gn: remove edges inside clusters, between sparse pairs, and
irregular pairs.

Cn := blow up Rt to n vertices.

Cn contains all but o(n2) edges of Gn. [Approximate Container]

Cn is triangle-free, hence e(Cn) 6 n2/4.

Number of choices for Cn is O(1) · nn.

Number of choices for Gn is

O(1) · nn · 2n2/4 ·
(

n2

o(n2)

)
= 2n

2/4+o(n2).
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Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is 2n
2/4+o(n2).
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The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is 2n
2/4+o(n2).

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a t < 2O(log n·n3/2) and a set {G1, . . . ,Gt} of graphs, each
containing at most o(n3) triangles, such that for every triangle-free graph
H there is an i ∈ [t] such that H ⊆ Gi .

For each Fn triangle-free graph there is an i that Fn ⊂ Gi .
e(Gi ) 6 n2/4 + o(n2).
Number of choices for Fn is t · 2n2/4+o(n2) = 2n

2/4+o(n2).

Szemerédi container lemma

There is a t = 2o(n
2) and a set {G1, . . . ,Gt} of graphs, each containing at

most o(n3) triangles, such that for every triangle-free graph H there is
i ∈ [t] such that H ⊆ Gi .
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The number of maximal triangle-free graphs

Balogh–Peťŕıčková [2014+]

There are at most 2n
2/8+o(n2) maximal triangle-free graphs on n vertices.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a t < 2O(log n·n3/2) and a set {G1, . . . ,Gt} of graphs, each
containing at most o(n3) triangles, such that for every triangle-free graph
H there is an i ∈ [t] such that H ⊆ Gi . Note e(Gi ) 6 n2/4 + o(n2).

Ruzsa–Szemerédi (1976)

Any graph Gn with at most o(n3) triangles can be made triangle-free by
removing at most o(n2) edges.

Hujter–Tuza (1993)

Any triangle-free graph TN has at most 2N/2 maximal independent sets.
Sharpness is by a perfect matching.
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The number of maximal triangle-free graphs

Balogh–Peťŕıčková [2014+]

There are at most 2n
2/8+o(n2) maximal triangle-free graphs on n vertices.

For Fn triangle-free graph there is a Gi containing it.
2O(log n·n3/2) choices.

Fix a Ti ⊂ E (Gi ) that |Ti | = o(n2) and E (Gi )− Ti is triangle-free.
Decide on Ti ∩ E (Fn). Number of choices is 2o(n

2).

Form auxiliary graph: V := E (Gi )− Ti ,
E = {ef : if ∃ g ∈ Ti ∩ E (Fn), that efg is a triangle.}
This graph is triangle-free;

Number of choices for (Fn ∩ Gi )− Ti is at most the number of
maximal independent sets in the auxilary graph.

|V | 6 n2/4; Hujter–Tuza gives 6 2n
2/8 choices.
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New applications of the “Counting Method”:

Definition

Permutation π = π(n) is a bijective map from [n] to [n].

Permutations ρ, π are intersecting if there is an i that ρ(i) = π(i).

Π is an intersecting family of permutations if for every ρ, π ∈ Π,
ρ, π are intersecting.

Π(i , j) := {π : π(i) = j} is a trivially intersecting family; of size
(n − 1)!.

The number of intersecting families is at least (1− o(1)) · n2 · 2(n−1)!.

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

(i) The number of intersecting families of permutations is

2(1+o(1))(n−1)!.

(ii) Almost every intersecting permutation family is trivially intersecting.
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Permutations:
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The number of intersecting families of permutations is

2(1+o(1))(n−1)!.

Proof follows Alon–Balogh–Morris–Samotij [2014]:

Form graph: V := permutations, E := non-intersecting pairs.

Apply Alon–Chung Expander-Mixing Lemma:
Let G be a D-regular graph on N vertices, and let λ be its smallest
eigenvalue. Then for all S ⊆ V (G ),

e(G [S ]) ≥ D

2N
|S |2 +

λ

2N
|S | (N − |S |) .

Ellis: λ = (−1
e + o(1))(n − 1)!,

N = n!, D = (1e + o(1))N, |S | = (1 + o(1))(n − 1)!

G [S ] spans many edges → G does not have ‘many’ independent sets.
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Almost every intersecting permutation family is trivially intersecting.

Count maximal intersecting families. Let Π be such family.

I(Γ) := {π ∈ Sn : π ∩ ρ 6= ∅, ∀ρ ∈ Γ}.
Γ ⊂ Π is a generating set of Π if I(Γ) = Π.

Every Π has DIFFERENT minimal generating sets.

Count minimal generating sets!

∀ρi ∈ Γ there is a πi 6∈ Π that (ρi , πi ) is not an intersecting pair,
but ∀ρj ∈ Γ with i 6= j , (ρj , πi ) is an intersecting pair.

ρ→ {(i , ρ(i) : i ∈ [n]} maps an n-uniform hypergraph.

Bollobás set-pair inequality: |Γ| 6
(2n
n

)
.

Ellis (2011): Largest non-trivial intersecting permutation family has
size at most (1− 1

e + o(1))(n − 1)!.( n!
(2nn )

)
· 2(1−1/e+o(1))(n−1)! � 2n log n·2

2n · 2(1−1/e+o(1))(n−1)! � 2(n−1)!.
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General framework — examples

Example (Erdős–Turán problem)

V = {1, . . . , n},
H = k-term APs in [n].

Example (Turán problem)

V = edges of Kn,

H = edge-sets of copies of Kk in Kn.

Example (sum-free sets)

V = an Abelian group,

H = sets of the form {x , y , z} with x + y = z (Schur triples).
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Transference Theorem

Theorem (Balogh–Morris–Samotij [2012+])

For every k, c , ε there is a C that the following holds. Let H ⊆
(
V
k

)
such that for

` ∈ [k], p ∈ [0, 1]

∆`(H) 6 c · p`−1 e(H)

v(H)
.

Let F = {A ⊆ V : |H[A]| > ε · e(H)}. Then there are:

a very small family S ⊆
( V (H)
6Cp·v(H)

)
of labels,

f : S → Fc (maps each label to a set that is sparse in H),

a labeling function g : I(H)→ S,

such that for every I ∈ I(H),

g(I ) ⊆ I and I \ g(I ) ⊆ f (g(I )).

Similar result was obtained independently by Saxton and Thomason.

Explain: Example of triangle-free graphs.
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such that for every I ∈ I(H),
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How to use Transference Theorem?

Let V (H) = E (Kn), E (H) = copies of Kr+1.

An I independent set in H is a Kr+1-free graph.

Let t =
( n2/2

Cn2−1/r

)
. There are G1, . . .Gt graphs that for any H

Kr+1-free graph there is an i that H ⊂ Gi .

The number of Kr+1 in each Gi is o(nr+1).

Super-saturation implies that for each i :

e(Gi ) < (1− 1
r + o(1))n

2

2 .

Super-saturation – Stability theorems implies that each Gi is
either almost r -partite or

e(Gi ) < (1− 1
r − c)n

2

2 .

Computation gives: Almost all Kr+1-free graph is almost r -partite.(
n2/2

Cn2−1/r

)
2(1−1/r−c)n2/2 � 2(1−1/r)n2/2.
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