### PROVA 1

# MAT0122 ÁLGEBRA LINEAR I (BCC) $2^O~SEMESTRE~DE~2025$

| Nome completo:                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NUSP:                                                                                                                                                                                                                          |
| Instruções:                                                                                                                                                                                                                    |
| (1) Esta prova é individual.                                                                                                                                                                                                   |
| $(\mathcal{Z})$ A prova consiste de 4 questões (contando a Questão 0 nesta página). Note que é possível                                                                                                                        |
| tirar mais de 10 nesta prova :-)                                                                                                                                                                                               |
| (3) Para ter nota integral em uma questão, a escrita de sua solução deve estar boa.                                                                                                                                            |
| (4) Enuncie claramente qualquer resultado que você usar. Você só pode usar conceitos e resultados estudados nesta disciplina até agora. (Por exemplo, não conhecemos e muito menos desenvolvemos o conceito de determinantes.) |
| (5) As respostas devem estar nos locais indicados.                                                                                                                                                                             |
| (6) Não é permitido o uso de aparelhos eletrônicos de qualquer natureza.                                                                                                                                                       |
| (7) Não destaque as folhas deste caderno.                                                                                                                                                                                      |
| (8) Não use folhas avulsas para rascunho. Não é necessário apagar seus rascunhos.                                                                                                                                              |
| (9)Não é permitido consultar nenhum material ou consultar colegas.                                                                                                                                                             |
| Assinatura:                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                |
| Sua assinatura acima atesta a autenticidade e originalidade de seu trabalho e que você comprome-                                                                                                                               |
| te-se a seguir o código de ética da USP em todas as suas atividades, incluindo esta prova.                                                                                                                                     |

#### Boa sorte!

| Q    | 0 | 1 | 2 | 3 | Total |
|------|---|---|---|---|-------|
| Nota |   |   |   |   |       |

**Q0.** [0.5 pontos] Leia o conteúdo desta página e preencha os itens requisitados. Assine acima, e atente ao significado de sua assinatura.

 $Data \colon 2025/10/23, \: 7{:}47\mathrm{am}$ 

## Q1. [4 pontos]

- (i) Sejam dados  $A\in\mathbb{F}^{m\times n}$ e  $\mathbf{b}\in\mathbb{F}^m.$  Considere as seguintes duas afirmações:
  - $(A\,)$  Existe  $\mathbf{v}\in\mathbb{F}^n$  tal que  $A\mathbf{v}=\mathbf{b}.$
  - (B) Existe  $\mathbf{u} \in \mathbb{F}^m$  tal que  $\mathbf{u}^\top A = \mathbf{0}$  e  $\mathbf{u}^\top \mathbf{b} \neq 0$ .

Prove que as afirmações (A) e (B) não podem valer simultaneamente.

Resposta:

(ii) Considere agora as seguintes matrizes com entradas em GF(2):

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}, \tag{1}$$

 $\mathbf{e}$ 

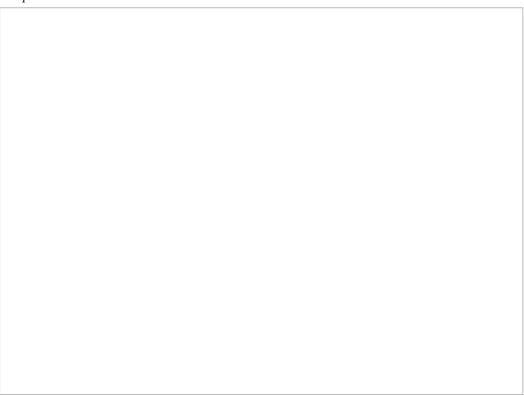
$$N = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}. \tag{2}$$

Calcule os produtos MA e NM.

Resposta:

|     | Kesposta (continuação):     |
|-----|-----------------------------|
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     | $\operatorname{matriz} M.]$ |
|     | Resposta:                   |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
|     |                             |
| - 1 |                             |
|     |                             |
|     |                             |
|     |                             |

| Resposta: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |


# **Q2.** [3.5 pontos]

(i) Sejam  $\mathbf{v}_1, \dots, \mathbf{v}_n$  vetores em um espaço vetorial sobre um corpo  $\mathbb{F}$ . O que é uma combinação linear desses vetores  $\mathbf{v}_i$ ?

|       | Resposta:                                                                                                                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
| (ii)  | Sejam $\mathbf{v}_i$ $(1 \le i \le n)$ como no item anterior. O que é o conjunto $\mathrm{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ gerado por esses $\mathbf{v}_i$ ? |
|       | Resposta:                                                                                                                                                              |
|       | nesposia.                                                                                                                                                              |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
| (iii) | Sejam $\mathbf{v}_i$ $(1 \le i \le n)$ como no item anterior. O que significa dizer que esses vetores são linearmente independentes?                                   |
|       | Resposta:                                                                                                                                                              |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |
|       |                                                                                                                                                                        |

| rtcsposta (                            | continuação):                                            |                  |                               |                                                        |
|----------------------------------------|----------------------------------------------------------|------------------|-------------------------------|--------------------------------------------------------|
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
| considerad                             | a matriz $M$ da Quos como vetores em ntes. [Sugestão. Co | $GF(2)^5$ . Prov | ve que os $\mathbf{v}_i$ (1 : | $\leq 5$ ) as colunas de $\leq i \leq 5$ ) são linearm |
| Resposta:                              | nes. [Dagestab. Ce                                       | nisidere a mat   | 11Z 1V.]                      |                                                        |
| —————————————————————————————————————— |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |
|                                        |                                                          |                  |                               |                                                        |

Resposta:



**Q3.** [4 pontos] Seja G=(V,E) o grafo da Figura 1. Para cada aresta  $e=\{x,y\}$  de G, consideramos o vetor característico  $\mathbb{1}_e=\mathbb{1}_{\{x,y\}}\in \mathrm{GF}(2)^V$  associado. A matriz de incidência M de G é a matriz  $V\times E$  cuja e-ésima coluna é  $\mathbb{1}_e$   $(e\in E)$ .

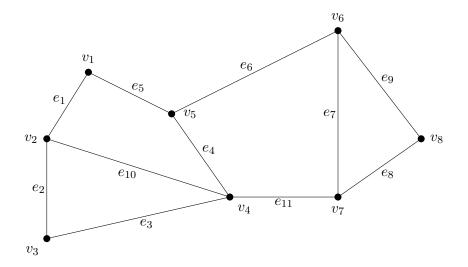



FIGURA 1. O grafo G, com 8 vértices e 11 arestas

(i) Seja  $F=\{e_1,e_4,e_5,e_6\}\subset E$ e  $F'=F\cup\{e_{10}\}.$  Calcule  $M1\!\!1_F$ e  $M1\!\!1_{F'}.$ 

| Resposta:                                                                       |                                                                                                                                                                                                                     |                                                 |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Resposta:                                                                       |                                                                                                                                                                                                                     |                                                 |
|                                                                                 | F) é uma floresta geradora de $G$ se $F$ é                                                                                                                                                                          |                                                 |
| Lembre que $T = (V,$ $(a)$ $ac\'{i}clico$ , isto $\'{e}$ $(b)$ $aresta-gerador$ | $F)$ é uma floresta geradora de $G$ se $F$ é , os vetores $\mathbb{1}_f$ $(f \in F)$ são linearmente in , isto é, para todo $e \in E$ , vale que $\mathbb{1}_e \in S$ ta geradora $T = (V, F)$ de $G$ tal que a que | $\operatorname{pan}\{\mathbb{1}_f\colon f\in F$ |

é a menor possível (isto é, queremos minimizar a soma dos índices das arestas em F). Dê sua resposta em uma figura. Diga em poucas palavras como você encontrou sua resposta.

| Resposta:                   |                                |                |                 |       |
|-----------------------------|--------------------------------|----------------|-----------------|-------|
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
| Encontre uma floresta ger   |                                |                | a quantidade    |       |
|                             | $\sum \{i \colon e_i \in F'\}$ | -              |                 | (4    |
| é a maior possível (isto é, |                                |                |                 |       |
| em $F'$ ). Dê sua resposta  |                                |                |                 |       |
| quantidade em (4).          | Justinque por c                | que o que voce | iez de iato max | amnza |
| Resposta:                   |                                |                |                 |       |
| encontrou sua resposta.     |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |
|                             |                                |                |                 |       |

| Resposta (continuação): |  |  |
|-------------------------|--|--|
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |

\* \* \*

| Rascunho: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

| Rascunho: |
|-----------|
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |