<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">/******************************************************************************
 *  Compilation:  javac BSTDraw.java
 *  Execution:    java BSTDraw
 *  Dependencies: StdIn.java StdOut.java Queue.java
 *  Data files:   https://algs4.cs.princeton.edu/32bst/tinyST.txt  
 *
 *  A symbol table implemented with a binary search tree.
 * 
 *  % more tinyST.txt
 *  S E A R C H E X A M P L E
 *  
 *  % java BSTDraw &lt; tinyST.txt
 *  A 8
 *  C 4
 *  E 12
 *  H 5
 *  L 11
 *  M 9
 *  P 10
 *  R 3
 *  S 0
 *  X 7
 *
 ******************************************************************************/

import java.util.NoSuchElementException;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdDraw;

/**
 *  The {@code BSTDraw} class represents an ordered symbol table of generic
 *  key-value pairs.
 *  It supports the usual &lt;em&gt;put&lt;/em&gt;, &lt;em&gt;get&lt;/em&gt;, &lt;em&gt;contains&lt;/em&gt;,
 *  &lt;em&gt;delete&lt;/em&gt;, &lt;em&gt;size&lt;/em&gt;, and &lt;em&gt;is-empty&lt;/em&gt; methods.
 *  It also provides ordered methods for finding the &lt;em&gt;minimum&lt;/em&gt;,
 *  &lt;em&gt;maximum&lt;/em&gt;, &lt;em&gt;floor&lt;/em&gt;, &lt;em&gt;select&lt;/em&gt;, &lt;em&gt;ceiling&lt;/em&gt;.
 *  It also provides a &lt;em&gt;keys&lt;/em&gt; method for iterating over all of the keys.
 *  A symbol table implements the &lt;em&gt;associative array&lt;/em&gt; abstraction:
 *  when associating a value with a key that is already in the symbol table,
 *  the convention is to replace the old value with the new value.
 *  Unlike {@link java.util.Map}, this class uses the convention that
 *  values cannot be {@code null}â€”setting the
 *  value associated with a key to {@code null} is equivalent to deleting the key
 *  from the symbol table.
 *  &lt;p&gt;
 *  It requires that
 *  the key type implements the {@code Comparable} interface and calls the
 *  {@code compareTo()} and method to compare two keys. It does not call either
 *  {@code equals()} or {@code hashCode()}.
 *  &lt;p&gt;
 *  This implementation uses an (unbalanced) &lt;em&gt;binary search tree&lt;/em&gt;.
 *  The &lt;em&gt;put&lt;/em&gt;, &lt;em&gt;contains&lt;/em&gt;, &lt;em&gt;remove&lt;/em&gt;, &lt;em&gt;minimum&lt;/em&gt;,
 *  &lt;em&gt;maximum&lt;/em&gt;, &lt;em&gt;ceiling&lt;/em&gt;, &lt;em&gt;floor&lt;/em&gt;, &lt;em&gt;select&lt;/em&gt;, and
 *  &lt;em&gt;rank&lt;/em&gt;  operations each take &amp;Theta;(&lt;em&gt;n&lt;/em&gt;) time in the worst
 *  case, where &lt;em&gt;n&lt;/em&gt; is the number of key-value pairs.
 *  The &lt;em&gt;size&lt;/em&gt; and &lt;em&gt;is-empty&lt;/em&gt; operations take &amp;Theta;(1) time.
 *  The keys method takes &amp;Theta;(&lt;em&gt;n&lt;/em&gt;) time in the worst case.
 *  Construction takes &amp;Theta;(1) time.
 *  &lt;p&gt;
 *  For alternative implementations of the symbol table API, see {@link ST},
 *  {@link BinarySearchST}, {@link SequentialSearchST}, {@link RedBlackBSTDraw},
 *  {@link SeparateChainingHashST}, and {@link LinearProbingHashST},
 *  For additional documentation, see
 *  &lt;a href="https://algs4.cs.princeton.edu/32bst"&gt;Section 3.2&lt;/a&gt; of
 *  &lt;i&gt;Algorithms, 4th Edition&lt;/i&gt; by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */
public class BSTDraw&lt;Key extends Comparable&lt;Key&gt;, Value&gt; {

    private Node root;             // root of BSTDraw
    private int k;                 // auxiliary variable for drawing
    
    private class Node {
        private Key key;           // sorted by key
        private Value val;         // associated data
        private Node left, right;  // left and right subtrees
        private int size;          // number of nodes in subtree
        private double xc, yc;     // for drawing
	
        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }

    /**
     * Initializes an empty symbol table.
     */
    public BSTDraw() {
    }

    /**
     * Returns true if this symbol table is empty.
     * @return {@code true} if this symbol table is empty; {@code false} otherwise
     */
    public boolean isEmpty() {
        return size() == 0;
    }

    /**
     * Returns the number of key-value pairs in this symbol table.
     * @return the number of key-value pairs in this symbol table
     */
    public int size() {
        return size(root);
    }

    // return number of key-value pairs in BSTDraw rooted at x
    private int size(Node x) {
        if (x == null) return 0;
        else return x.size;
    }

    /**
     * Does this symbol table contain the given key?
     *
     * @param  key the key
     * @return {@code true} if this symbol table contains {@code key} and
     *         {@code false} otherwise
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public boolean contains(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to contains() is null");
        return get(key) != null;
    }

    /**
     * Returns the value associated with the given key.
     *
     * @param  key the key
     * @return the value associated with the given key if the key is in the symbol table
     *         and {@code null} if the key is not in the symbol table
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Value get(Key key) {
        return get(root, key);
    }

    private Value get(Node x, Key key) {
        if (key == null) throw new IllegalArgumentException("calls get() with a null key");
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if      (cmp &lt; 0) return get(x.left, key);
        else if (cmp &gt; 0) return get(x.right, key);
        else              return x.val;
    }

    /**
     * Inserts the specified key-value pair into the symbol table, overwriting the old 
     * value with the new value if the symbol table already contains the specified key.
     * Deletes the specified key (and its associated value) from this symbol table
     * if the specified value is {@code null}.
     *
     * @param  key the key
     * @param  val the value
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("calls put() with a null key");
        if (val == null) {
            delete(key);
            return;
        }
        root = put(root, key, val);
        assert check();
    }

    private Node put(Node x, Key key, Value val) {
        if (x == null) return new Node(key, val, 1);
        int cmp = key.compareTo(x.key);
        if      (cmp &lt; 0) x.left  = put(x.left,  key, val);
        else if (cmp &gt; 0) x.right = put(x.right, key, val);
        else              x.val   = val;
        x.size = 1 + size(x.left) + size(x.right);
        return x;
    }


    /**
     * Removes the smallest key and associated value from the symbol table.
     *
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMin() {
        if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
        root = deleteMin(root);
        assert check();
    }

    private Node deleteMin(Node x) {
        if (x.left == null) return x.right;
        x.left = deleteMin(x.left);
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }

    /**
     * Removes the largest key and associated value from the symbol table.
     *
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMax() {
        if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
        root = deleteMax(root);
        assert check();
    }

    private Node deleteMax(Node x) {
        if (x.right == null) return x.left;
        x.right = deleteMax(x.right);
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }

    /**
     * Removes the specified key and its associated value from this symbol table     
     * (if the key is in this symbol table).    
     *
     * @param  key the key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("calls delete() with a null key");
        root = delete(root, key);
        assert check();
    }

    private Node delete(Node x, Key key) {
        if (x == null) return null;

        int cmp = key.compareTo(x.key);
        if      (cmp &lt; 0) x.left  = delete(x.left,  key);
        else if (cmp &gt; 0) x.right = delete(x.right, key);
        else { 
            if (x.right == null) return x.left;
            if (x.left  == null) return x.right;
            Node t = x;
            x = min(t.right);
            x.right = deleteMin(t.right);
            x.left = t.left;
        } 
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    } 


    /**
     * Returns the smallest key in the symbol table.
     *
     * @return the smallest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
        return min(root).key;
    } 

    private Node min(Node x) { 
        if (x.left == null) return x; 
        else                return min(x.left); 
    } 

    /**
     * Returns the largest key in the symbol table.
     *
     * @return the largest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
        return max(root).key;
    } 

    private Node max(Node x) {
        if (x.right == null) return x; 
        else                 return max(x.right); 
    } 

    /**
     * Returns the largest key in the symbol table less than or equal to {@code key}.
     *
     * @param  key the key
     * @return the largest key in the symbol table less than or equal to {@code key}
     * @throws NoSuchElementException if there is no such key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key floor(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to floor() is null");
        if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
        Node x = floor(root, key);
        if (x == null) throw new NoSuchElementException("argument to floor() is too small");
        else return x.key;
    } 

    private Node floor(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp &lt;  0) return floor(x.left, key);
        Node t = floor(x.right, key); 
        if (t != null) return t;
        else return x; 
    } 

    public Key floor2(Key key) {
        Key x = floor2(root, key, null);
        if (x == null) throw new NoSuchElementException("argument to floor() is too small");
        else return x;

    }

    private Key floor2(Node x, Key key, Key best) {
        if (x == null) return best;
        int cmp = key.compareTo(x.key);
        if      (cmp  &lt; 0) return floor2(x.left, key, best);
        else if (cmp  &gt; 0) return floor2(x.right, key, x.key);
        else               return x.key;
    } 

    /**
     * Returns the smallest key in the symbol table greater than or equal to {@code key}.
     *
     * @param  key the key
     * @return the smallest key in the symbol table greater than or equal to {@code key}
     * @throws NoSuchElementException if there is no such key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key ceiling(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
        if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
        Node x = ceiling(root, key);
        if (x == null) throw new NoSuchElementException("argument to floor() is too large");
        else return x.key;
    }

    private Node ceiling(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp &lt; 0) { 
            Node t = ceiling(x.left, key); 
            if (t != null) return t;
            else return x; 
        } 
        return ceiling(x.right, key); 
    } 

    /**
     * Return the key in the symbol table of a given {@code rank}.
     * This key has the property that there are {@code rank} keys in
     * the symbol table that are smaller. In other words, this key is the
     * ({@code rank}+1)st smallest key in the symbol table.
     *
     * @param  rank the order statistic
     * @return the key in the symbol table of given {@code rank}
     * @throws IllegalArgumentException unless {@code rank} is between 0 and
     *        &lt;em&gt;n&lt;/em&gt;â€“1
     */
    public Key select(int rank) {
        if (rank &lt; 0 || rank &gt;= size()) {
            throw new IllegalArgumentException("argument to select() is invalid: " + rank);
        }
        return select(root, rank);
    }

    // Return key in BSTDraw rooted at x of given rank.
    // Precondition: rank is in legal range.
    private Key select(Node x, int rank) {
        if (x == null) return null;
        int leftSize = size(x.left);
        if      (leftSize &gt; rank) return select(x.left,  rank);
        else if (leftSize &lt; rank) return select(x.right, rank - leftSize - 1); 
        else                      return x.key;
    }

    /**
     * Return the number of keys in the symbol table strictly less than {@code key}.
     *
     * @param  key the key
     * @return the number of keys in the symbol table strictly less than {@code key}
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public int rank(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to rank() is null");
        return rank(key, root);
    } 

    // Number of keys in the subtree less than key.
    private int rank(Key key, Node x) {
        if (x == null) return 0; 
        int cmp = key.compareTo(x.key); 
        if      (cmp &lt; 0) return rank(key, x.left); 
        else if (cmp &gt; 0) return 1 + size(x.left) + rank(key, x.right); 
        else              return size(x.left); 
    } 

    /**
     * Returns all keys in the symbol table as an {@code Iterable}.
     * To iterate over all of the keys in the symbol table named {@code st},
     * use the foreach notation: {@code for (Key key : st.keys())}.
     *
     * @return all keys in the symbol table
     */
    public Iterable&lt;Key&gt; keys() {
        if (isEmpty()) return new Queue&lt;Key&gt;();
        return keys(min(), max());
    }

    /**
     * Returns all keys in the symbol table in the given range,
     * as an {@code Iterable}.
     *
     * @param  lo minimum endpoint
     * @param  hi maximum endpoint
     * @return all keys in the symbol table between {@code lo} 
     *         (inclusive) and {@code hi} (inclusive)
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *         is {@code null}
     */
    public Iterable&lt;Key&gt; keys(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");

        Queue&lt;Key&gt; queue = new Queue&lt;Key&gt;();
        keys(root, queue, lo, hi);
        return queue;
    } 

    private void keys(Node x, Queue&lt;Key&gt; queue, Key lo, Key hi) { 
        if (x == null) return; 
        int cmplo = lo.compareTo(x.key); 
        int cmphi = hi.compareTo(x.key); 
        if (cmplo &lt; 0) keys(x.left, queue, lo, hi); 
        if (cmplo &lt;= 0 &amp;&amp; cmphi &gt;= 0) queue.enqueue(x.key); 
        if (cmphi &gt; 0) keys(x.right, queue, lo, hi); 
    } 

    /**
     * Returns the number of keys in the symbol table in the given range.
     *
     * @param  lo minimum endpoint
     * @param  hi maximum endpoint
     * @return the number of keys in the symbol table between {@code lo} 
     *         (inclusive) and {@code hi} (inclusive)
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *         is {@code null}
     */
    public int size(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to size() is null");

        if (lo.compareTo(hi) &gt; 0) return 0;
        if (contains(hi)) return rank(hi) - rank(lo) + 1;
        else              return rank(hi) - rank(lo);
    }

    /**
     * Returns the height of the BSTDraw (for debugging).
     *
     * @return the height of the BSTDraw (a 1-node tree has height 0)
     */
    public int height() {
        return height(root);
    }
    private int height(Node x) {
        if (x == null) return -1;
        return 1 + Math.max(height(x.left), height(x.right));
    }

    /**
     * Returns the keys in the BSTDraw in level order (for debugging).
     *
     * @return the keys in the BSTDraw in level order traversal
     */
    public Iterable&lt;Key&gt; levelOrder() {
        Queue&lt;Key&gt; keys = new Queue&lt;Key&gt;();
        Queue&lt;Node&gt; queue = new Queue&lt;Node&gt;();
        queue.enqueue(root);
        while (!queue.isEmpty()) {
            Node x = queue.dequeue();
            if (x == null) continue;
            keys.enqueue(x.key);
            queue.enqueue(x.left);
            queue.enqueue(x.right);
        }
        return keys;
    }

  /*************************************************************************
    *  Check integrity of BSTDraw data structure.
    ***************************************************************************/
    private boolean check() {
        if (!isBSTDraw())            StdOut.println("Not in symmetric order");
        if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
        if (!isRankConsistent()) StdOut.println("Ranks not consistent");
        return isBSTDraw() &amp;&amp; isSizeConsistent() &amp;&amp; isRankConsistent();
    }

    // does this binary tree satisfy symmetric order?
    // Note: this test also ensures that data structure is a binary tree since order is strict
    private boolean isBSTDraw() {
        return isBSTDraw(root, null, null);
    }

    // is the tree rooted at x a BSTDraw with all keys strictly between min and max
    // (if min or max is null, treat as empty constraint)
    // Credit: Bob Dondero's elegant solution
    private boolean isBSTDraw(Node x, Key min, Key max) {
        if (x == null) return true;
        if (min != null &amp;&amp; x.key.compareTo(min) &lt;= 0) return false;
        if (max != null &amp;&amp; x.key.compareTo(max) &gt;= 0) return false;
        return isBSTDraw(x.left, min, x.key) &amp;&amp; isBSTDraw(x.right, x.key, max);
    } 

    // are the size fields correct?
    private boolean isSizeConsistent() { return isSizeConsistent(root); }
    private boolean isSizeConsistent(Node x) {
        if (x == null) return true;
        if (x.size != size(x.left) + size(x.right) + 1) return false;
        return isSizeConsistent(x.left) &amp;&amp; isSizeConsistent(x.right);
    } 

    // check that ranks are consistent
    private boolean isRankConsistent() {
        for (int i = 0; i &lt; size(); i++)
            if (i != rank(select(i))) return false;
        for (Key key : keys())
            if (key.compareTo(select(rank(key))) != 0) return false;
        return true;
    }

    /***************************************************************************
     *  Drawing routines.
     ***************************************************************************/

    public void draw(double y, double lineWidth, double nodeSize)
    {
        StdDraw.clear(StdDraw.LIGHT_GRAY);
        k = 0;
        setCoords(root, y);
        StdDraw.setPenColor(StdDraw.BLACK);
        StdDraw.setPenRadius(lineWidth);
        drawLines(root);
        StdDraw.setPenColor(StdDraw.WHITE);
        drawNodes(root, nodeSize);
    }

    public void setCoords(Node x, double d)
    {
        if (x == null) return;
        setCoords(x.left, d - .04);
        x.xc = (16.0 / 9.0)*(2 + k++)/(size() + 3); // ad hoc scaling
        x.yc = d - .04;
        setCoords(x.right, d - .04);
    }

    public void drawLines(Node x)
    {
        if (x == null) return;
        drawLines(x.left);
        if (x.left != null)
        {
            StdDraw.setPenColor(StdDraw.BLACK);
            StdDraw.line(x.xc, x.yc, x.left.xc, x.left.yc);
        }
        if (x.right != null)
        {
            StdDraw.setPenColor(StdDraw.BLACK);
            StdDraw.line(x.xc, x.yc, x.right.xc, x.right.yc);
        }
        drawLines(x.right);
    }

    public void drawNodes(Node x, double nodeSize)
    {
        if (x == null) return;
        drawNodes(x.left, nodeSize);
        StdDraw.filledCircle(x.xc, x.yc, nodeSize);
        drawNodes(x.right, nodeSize);
    }

    public void drawPrepare(int width) {
        StdDraw.setCanvasSize(width, (int)Math.round((9.0 / 16.0) * width));
        double ymax = 1.0;
        double xmax = 16.0 / 9.0; // ad hoc scaling
        StdDraw.setXscale(0.0, xmax);
        StdDraw.setYscale(0.0, ymax);
    }

    /***************************************************************************
     *  Other parameters.
     ***************************************************************************/

    public int iplP() {
        return iplP(root);
    }

    public int iplP(Node x) {
        if (x == null) return 0;
        return x.size - 1 + iplP(x.left) + iplP(x.right);
    }

    /***************************************************************************
     * Unit tests the {@code BSTDraw} data type.
     *
     * @param args the command-line arguments
     ***************************************************************************/
    public static void main(String[] args) { 
        BSTDraw&lt;String, Integer&gt; st = new BSTDraw&lt;String, Integer&gt;();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }

        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));

	// StdOut.println();
        // for (String s : st.levelOrder())
        //     StdOut.println(s + " " + st.get(s));

        StdOut.println("N = " + st.size());
        StdOut.println("Plain height = " + st.height());
        StdOut.println("IPL = " + st.iplP());

        st.drawPrepare(800);
        StdDraw.enableDoubleBuffering();
        st.draw(.95, .003, .004);
        StdDraw.show();
    }
}

/******************************************************************************
 *  Copyright 2002-2020, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/
</pre></body></html>