So the convo-
luted recurrence
has led us to an
oft-recurring con-
volution.
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Step 3 is also easy. We solve for C(z) by the quadratic formula:

Clz) = 1:|:\/1—4z'

2z

But should we choose the + sign or the — sign? Both choices yield a function
that satisfies C(z) = zC(z)? + 1, but only one of the choices is suitable for our
problem. We might choose the + sign on the grounds that positive thinking
is best; but we soon discover that this choice gives C(0) = oo, contrary to
the facts. (The correct function C(z) is supposed to have C(0) = Co = 1.)
Therefore we conclude that

Clz) = 1-Vi1-4z )

2z
Finally, Step 4. What is [z"] C(z)? The binomial theorem tells us that
1/2 " 1/-1/2 "
1—4z = —4 =1 — —4z)%;
V= go(k)( 2) +;2k(k_1)( 2,

hence, using (5.37),

1-/1 -4z ](_]/2>(—4z)k1

2z ki\k—1

1
=1/2\ (—4z)™ 2n\ z"
( n ) n+1 Z(n)n—H'

n=0

~
\%

n=0

WV

The number of ways to parenthesize, C,,, is (211‘) %H

We anticipated this result in Chapter 5, when we introduced the sequence
of Catalan numbers (1,1,2,5,14,...) = (Cy,). This sequence arises in dozens
of problems that seem at first to be unrelated to each other [46], because
many situations have a recursive structure that corresponds to the convolution
recurrence (7.66).

For example, let’s consider the following problem: How many sequences

(ar,az...,azn) of +1's and —1’s have the property that
aj+ax+---+am =0

and have all their partial sums
ay, ay+az, ..., a+az+---+azm

nonnegative? There must be n occurrences of +1 and n occurrences of —1.
We can represent this problem graphically by plotting the sequence of partial



360 GENERATING FUNCTIONS

sums S, = 2221 ay as a function of n: The five solutions for n = 3 are

AA, YAVAVANS

These are “mountain ranges” of width 2n that can be drawn with line seg-
ments of the forms / and \ It turns out that there are exactly C,, ways to
do this, and the sequences can be related to the parenthesis problem in the

following way: Put an extra pair of parentheses around the entire formula, so
that there are n pairs of parentheses corresponding to the n multiplications.
Now replace each ‘-’ by +1 and each ‘)’ by —1 and erase everything else.
For example, the formula xg - ((x1 x2)-(x3 -X4)) corresponds to the sequence
(+1,+1,=1,+1,+1,—1,—1,—1) by this rule. The five ways to parenthesize
X0 X1 -X2 X3 correspond to the five mountain ranges for n = 3 shown above.

Moreover, a slight reformulation of our sequence-counting problem leads
to a surprisingly simple combinatorial solution that avoids the use of gener-
ating functions: How many sequences (ap, aj, az,...,azn) of +1's and —1’s
have the property that

at+at+a+---+ay =1,
when all the partial sums
ao, ao+aj, a+ay+a, ..., dt+ay+---+am

are required to be positive? Clearly these are just the sequences of the pre-
vious problem, with the additional element ap = +1 placed in front. But
the sequences in the new problem can be enumerated by a simple counting
argument, using a remarkable fact discovered by George Raney [302] in 1959:
If (x1,x2,...,xm) Is any sequence of integers whose sum is +1, exactly one
of the cyclic shifts

(X1,%2, ooy Xy (X2, ey Xmy X1 )y weny (X, X1y e ooy Xm—1)

has all of its partial sums positive. For example, consider the sequence
(3,-5,2,-2,3,0). Its cyclic shifts are

(3,-5,2,-2,3,0) (—2,3,0,3,-5,2)
<_572)_2»370a3> <3»0»3»_5»2)_2> v
<2v72a3)0)3v75> <0)3)75a2a72)3>

and only the one that’s checked has entirely positive partial sums.



Ah, if stock prices
would only continue
to rise like this.

(Attention, com-
puter scientists:
The partial sums

in this problem
represent the stack
size as a function of
time, when a prod-
uct of n+ 1 factors
is evaluated, be-
cause each “push”
operation changes
the size by +1 and
each multiplication
changes it by —1.)
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Raney’s lemma can be proved by a simple geometric argument. Let’s
extend the sequence periodically to get an infinite sequence

<X1vX2a ey Xmy X1,X2, 000y Xm,y X1, X2, .. >)
thus we let Xy = Xk for all k > 0. If we now plot the partial sums
Sn = X1 + -+ xp as a function of n, the graph of s,, has an “average slope”
of 1/m, because sy yn = Sn + 1. For example, the graph corresponding to
our example sequence (3,—5,2,—2,3,0,3,—5,2,...) begins as follows:

VN
The entire graph can be contained between two lines of slope 1/m, as shown;
we have m = 6 in the illustration. In general these bounding lines touch the
graph just once in each cycle of m points, since lines of slope 1/m hit points
with integer coordinates only once per m units. The unique lower point of
intersection is the only place in the cycle from which all partial sums will
be positive, because every other point on the curve has an intersection point
within m units to its right.

With Raney’s lemma we can easily enumerate the sequences (ao, ..., Qon)
of +1’s and —1’s whose partial sums are entirely positive and whose total
sum is +1. There are (2“:1
occurrences of +1, and Raney’s lemma tells us that exactly 1/(2n + 1) of
these sequences have all partial sums positive. (List all N = (z“n+1) of these
sequences and all 2n + 1 of their cyclic shifts, in an N x (2n+ 1) array. Each
row contains exactly one solution. Each solution appears exactly once in each
column. So there are N/(2n+1) distinct solutions in the array, each appearing
(2n 4 1) times.) The total number of sequences with positive partial sums is

2n+1 1 _(2n 1 _c
n J2n+1  \n/n+1 T

Example 5: A recurrence with m-fold convolution.

) sequences with n occurrences of —1 and n + 1

We can generalize the problem just considered by looking at sequences

(ag, ..., amn) of +1’s and (1 — m)’s whose partial sums are all positive and



