
§1 DLX1 INTRO 1

December 12, 2017 at 15:26

1. Intro. This program is part of a series of “exact cover solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.1 of The Art of Computer Programming. My intent is to have
a variety of compatible programs on which I can run experiments, in order to learn how different approaches
work in practice.

Indeed, this is the first of the series. I’ve tried to write it as a primitive baseline against which I’ll be able
to measure various technical improvements and extensions. DLX1 is based on the program DANCE, which I
wrote hastily in 1999 while preparing my paper about “Dancing Links.” [See Selected Papers on Fun and
Games (2011), Chapter 38, for a revised version of that paper, which first appeared in the book Millennial
Perspectives in Computer Science, a festschrift for C. A. R. Hoare (2000).] That program, incidentally, was
based on a program called XCOVER that I first wrote in 1994. After using DANCE as a workhorse for more
than 15 years, and after extending it in dozens of ways for a wide variety of combinatorial problems, I’m
finally ready to replace it with a more carefully crafted piece of code.

My intention is to make this program match Algorithm 7.2.2.1D, so that I can use it to make the
quantitative experiments that will ultimately be reported in Volume 4B.

Although this is the entry-level program, I’m taking care to adopt conventions for input and output that
will be essentially the same (or at least backward compatible) in all of the fancier versions that are to come.

We’re given a matrix of 0s and 1s, some of whose columns are called “primary” while the other columns
are “secondary.” Every row contains a 1 in at least one primary column. The problem is to find all subsets
of its rows whose sum is (i) exactly 1 in all primary columns; (ii) at most 1 in all secondary columns.

This matrix, which is typically very sparse, is specified on stdin as follows:

• Each column has a symbolic name, from one to eight characters long. Each of those characters can be any
nonblank ASCII code except for ‘:’ and ‘|’.

• The first line of input contains the names of all primary columns, separated by one or more spaces, followed
by ‘|’, followed by the names of all other columns. (If all columns are primary, the ‘|’ may be omitted.)

• The remaining lines represent the rows, by listing the columns where 1 appears.

• Additionally, “comment” lines can be interspersed anywhere in the input. Such lines, which begin with
‘|’, are ignored by this program, but they are often useful within stored files.

Later versions of this program solve more general problems by making further use of the reserved characters
‘:’ and ‘|’ to allow additional kinds of input.

For example, if we consider the matrix
0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1


which was (3) in my original paper, we can name the columns A, B, C, D, E, F, G. Suppose the first five are
primary, and the latter two are secondary. That matrix can be represented by the lines

| A simple example

A B C D E | F G

C E F

A D G

B C F

A D

B G

D E G

(and also in many other ways, because column names can be given in any order, and so can the individual
rows). It has a unique solution, consisting of the three rows A D and E F C and B G.

2 INTRO DLX1 §2

2. After this program finds all solutions, it normally prints their total number on stderr , together with
statistics about how many nodes were in the search tree, and how many “updates” were made. The running
time in “mems” is also reported, together with the approximate number of bytes needed for data storage.
One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include the time or
space needed to parse the input or to format the output.)

Here is the overall structure:

#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/
#define mod % /∗ used for percent signs denoting remainder in C ∗/
#define max level 500 /∗ at most this many rows in a solution ∗/
#define max cols 100000 /∗ at most this many columns ∗/
#define max nodes 25000000 /∗ at most this many nonzero elements in the matrix ∗/
#define bufsize (9 ∗max cols + 3) /∗ a buffer big enough to hold all column names ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
〈Type definitions 5 〉;
〈Global variables 3 〉;
〈Subroutines 9 〉;
main (int argc , char ∗argv [])
{

register int cc , i, j, k, p, pp , q, r, t, cur node , best col ;

〈Process the command line 4 〉;
〈 Input the column names 13 〉;
〈 Input the rows 16 〉;
if (vbose & show basics) 〈Report the successful completion of the input phase 20 〉;
if (vbose & show tots) 〈Report the column totals 21 〉;
imems = mems ,mems = 0;
〈Solve the problem 22 〉;

done : if (vbose & show tots) 〈Report the column totals 21 〉;
if (vbose & show profile) 〈Print the profile 33 〉;
if (vbose & show basics) {

fprintf (stderr , "Altogether "O"llu solution"O"s, "O"llu+"O"llu mems,", count ,
count ≡ 1 ? "" : "s", imems ,mems);

bytes = last col ∗ sizeof (column) + last node ∗ sizeof (node) + maxl ∗ sizeof (int);
fprintf (stderr , " "O"llu updates, "O"llu bytes, "O"llu nodes.\n", updates , bytes ,nodes);

}
}

§3 DLX1 INTRO 3

3. You can control the amount of output, as well as certain properties of the algorithm, by specifying
options on the command line:

• ‘v〈 integer 〉’ enables or disables various kinds of verbose output on stderr , given by binary codes such as
show choices ;

• ‘m〈 integer 〉’ causes every mth solution to be output (the default is m0, which merely counts them);
• ‘s〈 integer 〉’ causes the algorithm to make random choices in key places (thus providing some variety,

although the solutions are by no means uniformly random), and it also defines the seed for any random
numbers that are used;

• ‘d〈 integer 〉’ to sets delta , which causes periodic state reports on stderr after the algorithm has performed
approximately delta mems since the previous report;

• ‘c〈positive integer 〉’ limits the levels on which choices are shown during verbose tracing;
• ‘C〈positive integer 〉’ limits the levels on which choices are shown in the periodic state reports;
• ‘l〈nonnegative integer 〉’ gives a lower limit, relative to the maximum level so far achieved, to the levels

on which choices are shown during verbose tracing;
• ‘t〈positive integer 〉’ causes the program to stop after this many solutions have been found;
• ‘T〈 integer 〉’ sets timeout (which causes abrupt termination if mems > timeout at the beginning of a level).

#define show basics 1 /∗ vbose code for basic stats; this is the default ∗/
#define show choices 2 /∗ vbose code for backtrack logging ∗/
#define show details 4 /∗ vbose code for further commentary ∗/
#define show profile 128 /∗ vbose code to show the search tree profile ∗/
#define show full state 256 /∗ vbose code for complete state reports ∗/
#define show tots 512 /∗ vbose code for reporting column totals at start and end ∗/
#define show warnings 1024 /∗ vbose code for reporting rows without primaries ∗/
〈Global variables 3 〉 ≡

int random seed = 0; /∗ seed for the random words of gb rand ∗/
int randomizing ; /∗ has ‘s’ been specified? ∗/
int vbose = show basics + show warnings ; /∗ level of verbosity ∗/
int spacing ; /∗ solution k is output if k is a multiple of spacing ∗/
int show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int show choices gap = 1000000; /∗ below level maxl − show choices gap , show details is ignored ∗/
int show levels max = 1000000; /∗ above this level, state reports stop ∗/
int maxl = 0; /∗ maximum level actually reached ∗/
char buf [bufsize]; /∗ input buffer ∗/
ullng count ; /∗ solutions found so far ∗/
ullng rows ; /∗ rows seen so far ∗/
ullng imems , mems ; /∗ mem counts ∗/
ullng updates ; /∗ update counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ total number of branch nodes initiated ∗/
ullng thresh = 0; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 0; /∗ report every delta or so mems ∗/
ullng maxcount = #ffffffffffffffff; /∗ stop after finding this many solutions ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/

See also sections 7 and 23.

This code is used in section 2.

4 INTRO DLX1 §4

4. If an option appears more than once on the command line, the first appearance takes precedence.

〈Process the command line 4 〉 ≡
for (j = argc − 1, k = 0; j; j−−)

switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&vbose)− 1); break;
case ’m’: k |= (sscanf (argv [j] + 1, ""O"d",&spacing)− 1); break;
case ’s’: k |= (sscanf (argv [j] + 1, ""O"d",&random seed)− 1), randomizing = 1; break;
case ’d’: k |= (sscanf (argv [j] + 1, ""O"lld",&delta)− 1), thresh = delta ; break;
case ’c’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices max)− 1); break;
case ’C’: k |= (sscanf (argv [j] + 1, ""O"d",&show levels max)− 1); break;
case ’l’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices gap)− 1); break;
case ’t’: k |= (sscanf (argv [j] + 1, ""O"lld",&maxcount)− 1); break;
case ’T’: k |= (sscanf (argv [j] + 1, ""O"lld",&timeout)− 1); break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k) {
fprintf (stderr , "Usage: "O"s [v<n>] [m<n>] [s<n>] [d<n>]"" [c<n>] [C<n>] [l<n\

>] [t<n>] [T<n>] < foo.dlx\n", argv [0]);
exit (−1);
}
if (randomizing) gb init rand (random seed);

This code is used in section 2.

§5 DLX1 DATA STRUCTURES 5

5. Data structures. Each column of the input matrix is represented by a column struct, and each
row is represented as a list of node structs. There’s one node for each nonzero entry in the matrix.

More precisely, the nodes of individual rows appear sequentially, with “spacer” nodes between them. The
nodes are also linked circularly within each column, in doubly linked lists. The column lists each include
a header node, but the row lists do not. Column header nodes are aligned with a column struct, which
contains further info about the column.

Each node contains three important fields. Two are the pointers up and down of doubly linked lists,
already mentioned. The third points directly to the column containing the node.

A “pointer” is an array index, not a C reference (because the latter would occupy 64 bits and waste cache
space). The cl array is for column structs, and the nd array is for nodes. I assume that both of those arrays
are small enough to be allocated statically. (Modifications of this program could do dynamic allocation if
needed.) The header node corresponding to cl [c] is nd [c].

We count one mem for a simultaneous access to the up and down fields. I’ve added a spare field, so that
each node occupies two octabytes.

Although the column-list pointers are called up and down , they need not correspond to actual positions
of matrix entries. The elements of each column list can appear in any order, so that one row needn’t be
consistently “above” or “below” another. Indeed, when randomizing is set, we intentionally scramble each
column list.

This program doesn’t change the col fields after they’ve first been set up. But the up and down fields will
be changed frequently, although preserving relative order.

Exception: In the node nd [c] that is the header for the list of column c, we use the col field to hold the
length of that list (excluding the header node itself). We also might use its spare field for special purposes.
The alternative names len for col and aux for spare are used in the code so that this nonstandard semantics
will be more clear.

A spacer node has col ≤ 0. Its up field points to the start of the preceding row; its down field points to
the end of the following row. Thus it’s easy to traverse a row circularly, in either direction.

If all rows have length m, we can do without the spacers by simply working modulo m. But the majority
of my applications have rows of variable length, so I’ve decided not to use that trick.

[Historical note: An earlier version of this program, DLX0, was almost identical to this one except that it
used doubly linked lists for the rows as well as for the columns. Thus it had two additional fields, left and
right , in each node. When I wrote DLX1 I expected it to be a big improvement, because I thought there
would be fewer memory accesses in all of the inner loops where rows are being traversed. However, I failed
to realize that the col and right fields were both stored in the same octabyte; hence the cost per node is
the same—and DLX1 actually performs a few more mems, as it handles the spacer node transitions! This
additional mem cost is compensated by the smaller node size, hence greater likelihood of cache hits. But
the gain from pure sequential allocation wasn’t as great as I’d hoped.]

#define len col /∗ column list length (used in header nodes only) ∗/
#define aux spare /∗ an auxiliary quantity (used in header nodes only) ∗/
〈Type definitions 5 〉 ≡

typedef struct node struct {
int up , down ; /∗ predecessor and successor in column ∗/
int col ; /∗ the column containing this node ∗/
int spare ; /∗ padding, not used in DLX1 ∗/
} node;

See also section 6.

This code is used in section 2.

6 DATA STRUCTURES DLX1 §6

6. Each column struct contains three fields: The name is the user-specified identifier; next and prev
point to adjacent columns, when this column is part of a doubly linked list.

As backtracking proceeds, nodes will be deleted from column lists when their row has been blocked by
other rows in the partial solution. But when backtracking is complete, the data structures will be restored
to their original state.

We count one mem for a simultaneous access to the prev and next fields.

〈Type definitions 5 〉 +≡
typedef struct col struct {

char name [8]; /∗ symbolic identification of the column, for printing ∗/
int prev , next ; /∗ neighbors of this column ∗/
} column;

7. 〈Global variables 3 〉 +≡
node nd [max nodes]; /∗ the master list of nodes ∗/
int last node ; /∗ the first node in nd that’s not yet used ∗/
column cl [max cols + 2]; /∗ the master list of columns ∗/
int second = max cols ; /∗ boundary between primary and secondary columns ∗/
int last col ; /∗ the first column in cl that’s not yet used ∗/

8. One column struct is called the root. It serves as the head of the list of columns that need to be
covered, and is identifiable by the fact that its name is empty.

#define root 0 /∗ cl [root] is the gateway to the unsettled columns ∗/

§9 DLX1 DATA STRUCTURES 7

9. A row is identified not by name but by the names of the columns it contains. Here is a routine that
prints a row, given a pointer to any of its nodes. It also prints the position of the row in its column.

〈Subroutines 9 〉 ≡
void print row (int p,FILE ∗stream)
{

register int k, q;

if (p < last col ∨ p ≥ last node ∨ nd [p].col ≤ 0) {
fprintf (stderr , "Illegal row "O"d!\n", p);
return;

}
for (q = p; ;) {

fprintf (stream , " "O".8s", cl [nd [q].col].name);
q++;
if (nd [q].col ≤ 0) q = nd [q].up ; /∗ −nd [q].col is actually the row number ∗/
if (q ≡ p) break;

}
for (q = nd [nd [p].col].down , k = 1; q 6= p; k++) {

if (q ≡ nd [p].col) {
fprintf (stream , " (?)\n"); return; /∗ row not in its column! ∗/

} else q = nd [q].down ;
}
fprintf (stream , " ("O"d of "O"d)\n", k,nd [nd [p].col].len);
}
void prow (int p)
{

print row (p, stderr);
}

See also sections 10, 11, 25, 26, 31, and 32.

This code is used in section 2.

10. When I’m debugging, I might want to look at one of the current column lists.

〈Subroutines 9 〉 +≡
void print col (int c)
{

register int p;

if (c < root ∨ c ≥ last col) {
fprintf (stderr , "Illegal column "O"d!\n", c);
return;

}
if (c < second)

fprintf (stderr , "Column "O".8s, length "O"d, neighbors "O".8s and "O".8s:\n",
cl [c].name ,nd [c].len , cl [cl [c].prev].name , cl [cl [c].next].name);

else fprintf (stderr , "Column "O".8s, length "O"d:\n", cl [c].name ,nd [c].len);
for (p = nd [c].down ; p ≥ last col ; p = nd [p].down) prow (p);
}

8 DATA STRUCTURES DLX1 §11

11. Speaking of debugging, here’s a routine to check if redundant parts of our data structure have gone
awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
〈Subroutines 9 〉 +≡

void sanity (void)
{

register int k, p, q, pp , qq , t;

for (q = root , p = cl [q].next ; ; q = p, p = cl [p].next) {
if (cl [p].prev 6= q) fprintf (stderr , "Bad prev field at col "O".8s!\n", cl [p].name);
if (p ≡ root) break;
〈Check column p 12 〉;

}
}

12. 〈Check column p 12 〉 ≡
for (qq = p, pp = nd [qq].down , k = 0; ; qq = pp , pp = nd [pp].down , k++) {

if (nd [pp].up 6= qq) fprintf (stderr , "Bad up field at node "O"d!\n", pp);
if (pp ≡ p) break;
if (nd [pp].col 6= p) fprintf (stderr , "Bad col field at node "O"d!\n", pp);
}
if (nd [p].len 6= k) fprintf (stderr , "Bad len field in column "O".8s!\n", cl [p].name);

This code is used in section 11.

§13 DLX1 INPUTTING THE MATRIX 9

13. Inputting the matrix. Brute force is the rule in this part of the code, whose goal is to parse and
store the input data and to check its validity.

#define panic(m)
{ fprintf (stderr , ""O"s!\n"O"d: "O".99s\n",m, p, buf); exit (−666); }

〈 Input the column names 13 〉 ≡
if (max nodes ≤ 2 ∗max cols) {

fprintf (stderr , "Recompile me: max_nodes must exceed twice max_cols!\n");
exit (−999);
} /∗ every column will want a header node and at least one other node ∗/
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Input line way too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
last col = 1;
break;
}
if (¬last col) panic("No columns");
for (; o, buf [p];) {

for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])); j++) {
if (buf [p + j] ≡ ’|’ ∨ buf [p + j] ≡ ’:’) panic("Illegal character in column name");
o, cl [last col].name [j] = buf [p + j];

}
if (j ≡ 8 ∧ ¬isspace (buf [p + j])) panic("Column name too long");
〈Check for duplicate column name 14 〉;
〈 Initialize last col to a new column with an empty list 15 〉;
for (p += j + 1; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’) {

if (second 6= max cols) panic("Column name line contains | twice");
second = last col ;
for (p++; o, isspace (buf [p]); p++) ;

}
}
if (second ≡ max cols) second = last col ;
o, cl [root].prev = second − 1; /∗ cl [second − 1].next = root since root = 0 ∗/
last node = last col ; /∗ reserve all the header nodes and the first spacer ∗/
o,nd [last node].col = 0;

This code is used in section 2.

14. 〈Check for duplicate column name 14 〉 ≡
for (k = 1; o, strncmp(cl [k].name , cl [last col].name , 8); k++) ;
if (k < last col) panic("Duplicate column name");

This code is used in section 13.

15. 〈 Initialize last col to a new column with an empty list 15 〉 ≡
if (last col > max cols) panic("Too many columns");
if (second ≡ max cols) oo , cl [last col − 1].next = last col , cl [last col].prev = last col − 1;
else o, cl [last col].next = cl [last col].prev = last col ; /∗ nd [last col].len = 0 ∗/
o,nd [last col].up = nd [last col].down = last col ;
last col ++;

This code is used in section 13.

10 INPUTTING THE MATRIX DLX1 §16

16. I’m putting the row number into the spacer that follows it, as a possible debugging aid. But the
program doesn’t currently use that information.

〈 Input the rows 16 〉 ≡
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Row line too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
i = last node ; /∗ remember the spacer at the left of this row ∗/
for (pp = 0; buf [p];) {

for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])); j++) o, cl [last col].name [j] = buf [p + j];
if (j ≡ 8 ∧ ¬isspace (buf [p + j])) panic("Column name too long");
if (j < 8) o, cl [last col].name [j] = ’\0’;
〈Create a node for the column named in buf [p] 17 〉;
for (p += j + 1; o, isspace (buf [p]); p++) ;

}
if (¬pp) {

if (vbose & show warnings) fprintf (stderr , "Row ignored (no primary columns): "O"s", buf);
while (last node > i) {
〈Remove last node from its column 19 〉;
last node −−;

}
} else {
o,nd [i].down = last node ;
last node ++; /∗ create the next spacer ∗/
if (last node ≡ max nodes) panic("Too many nodes");
rows ++;
o,nd [last node].up = i + 1;
o,nd [last node].col = −rows ;

}
}

This code is used in section 2.

17. 〈Create a node for the column named in buf [p] 17 〉 ≡
for (k = 0; o, strncmp(cl [k].name , cl [last col].name , 8); k++) ;
if (k ≡ last col) panic("Unknown column name");
if (o,nd [k].aux ≥ i) panic("Duplicate column name in this row");
last node ++;
if (last node ≡ max nodes) panic("Too many nodes");
o,nd [last node].col = k;
if (k < second) pp = 1;
o, t = nd [k].len + 1;
〈 Insert node last node into the list for column k 18 〉;

This code is used in section 16.

§18 DLX1 INPUTTING THE MATRIX 11

18. Insertion of a new node is simple, unless we’re randomizing. In the latter case, we want to put the
node into a random position of the list.

We store the position of the new node into nd [k].aux , so that the test for duplicate columns above will be
correct.

As in other programs developed for TAOCP, I assume that four mems are consumed when 31 random bits
are being generated by any of the GB FLIP routines.

〈 Insert node last node into the list for column k 18 〉 ≡
o,nd [k].len = t; /∗ store the new length of the list ∗/
nd [k].aux = last node ; /∗ no mem charge for aux after len ∗/
if (¬randomizing) {
o, r = nd [k].up ; /∗ the “bottom” node of the column list ∗/
ooo ,nd [r].down = nd [k].up = last node ,nd [last node].up = r,nd [last node].down = k;
} else {

mems += 4, t = gb unif rand (t); /∗ choose a random number of nodes to skip past ∗/
for (o, r = k; t; o, r = nd [r].down , t−−) ;
ooo , q = nd [r].up ,nd [q].down = nd [r].up = last node ;
o,nd [last node].up = q,nd [last node].down = r;
}

This code is used in section 17.

19. 〈Remove last node from its column 19 〉 ≡
o, k = nd [last node].col ;
oo ,nd [k].len −−,nd [k].aux = i− 1;
o, q = nd [last node].up , r = nd [last node].down ;
oo ,nd [q].down = r,nd [r].up = q;

This code is used in section 16.

20. 〈Report the successful completion of the input phase 20 〉 ≡
fprintf (stderr , "("O"lld rows, "O"d+"O"d columns, "O"d entries successfully read)\n",

rows , second − 1, last col − second , last node − last col);

This code is used in section 2.

21. The column lengths after input should agree with the column lengths after this program has finished.
I print them (on request), in order to provide some reassurance that the algorithm isn’t badly screwed up.

〈Report the column totals 21 〉 ≡
{

fprintf (stderr , "Column totals:");
for (k = 1; k < last col ; k++) {

if (k ≡ second) fprintf (stderr , " |");
fprintf (stderr , " "O"d",nd [k].len);

}
fprintf (stderr , "\n");
}

This code is used in section 2.

12 THE DANCING DLX1 §22

22. The dancing. Our strategy for generating all exact covers will be to repeatedly choose always the
column that appears to be hardest to cover, namely the column with shortest list, from all columns that still
need to be covered. And we explore all possibilities via depth-first search.

The neat part of this algorithm is the way the lists are maintained. Depth-first search means last-in-first-
out maintenance of data structures; and it turns out that we need no auxiliary tables to undelete elements
from lists when backing up. The nodes removed from doubly linked lists remember their former neighbors,
because we do no garbage collection.

The basic operation is “covering a column.” This means removing it from the list of columns needing to
be covered, and “blocking” its rows: removing nodes from other lists whenever they belong to a row of a
node in this column’s list.

〈Solve the problem 22 〉 ≡
level = 0;

forward : nodes ++;
if (vbose & show profile) profile [level]++;
if (sanity checking) sanity ();
〈Do special things if enough mems have accumulated 24 〉;
〈Set best col to the best column for branching 29 〉;
cover (best col);
oo , cur node = choice [level] = nd [best col].down ;

advance : if (cur node ≡ best col) goto backup ;
if ((vbose & show choices) ∧ level < show choices max) {

fprintf (stderr , "L"O"d:", level);
print row (cur node , stderr);
}
〈Cover all other columns of cur node 27 〉;
if (o, cl [root].next ≡ root) 〈Record solution and goto recover 30 〉;
if (++level > maxl) {

if (level ≥ max level) {
fprintf (stderr , "Too many levels!\n");
exit (−4);

}
maxl = level ;
}
goto forward ;

backup : uncover (best col);
if (level ≡ 0) goto done ;
level −−;
oo , cur node = choice [level], best col = nd [cur node].col ;

recover : 〈Uncover all other columns of cur node 28 〉;
oo , cur node = choice [level] = nd [cur node].down ; goto advance ;

This code is used in section 2.

23. 〈Global variables 3 〉 +≡
int level ; /∗ number of choices in current partial solution ∗/
int choice [max level]; /∗ the node chosen on each level ∗/
ullng profile [max level]; /∗ number of search tree nodes on each level ∗/

§24 DLX1 THE DANCING 13

24. 〈Do special things if enough mems have accumulated 24 〉 ≡
if (delta ∧ (mems ≥ thresh)) {

thresh += delta ;
if (vbose & show full state) print state ();
else print progress ();
}
if (mems ≥ timeout) {

fprintf (stderr , "TIMEOUT!\n"); goto done ;
}

This code is used in section 22.

25. When a row is blocked, it leaves all lists except the list of the column that is being covered. Thus a
node is never removed from a list twice.

Note: I could have saved some mems in this routine, and in similar routines below, by not updating
the len fields of secondary columns. But I chose not to make such an optimization because it might well
be misleading: The insertion of a mem-free new branch ‘if (cc < second)’ can be costly since it makes
hardware branch prediction less effective. Furthermore those len fields are in column header nodes, which
tend to remain in cache memory where they’re readily accessible.

〈Subroutines 9 〉 +≡
void cover (int c)
{

register int cc , l, r, rr , nn , uu , dd , t;

o, l = cl [c].prev , r = cl [c].next ;
oo , cl [l].next = r, cl [r].prev = l;
updates ++;
for (o, rr = nd [c].down ; rr ≥ last col ; o, rr = nd [rr].down)

for (nn = rr + 1; nn 6= rr ;) {
o, uu = nd [nn].up , dd = nd [nn].down ;
o, cc = nd [nn].col ;
if (cc ≤ 0) {

nn = uu ;
continue;
}
oo ,nd [uu].down = dd ,nd [dd].up = uu ;
updates ++;
o, t = nd [cc].len − 1;
o,nd [cc].len = t;
nn ++;

}
}

14 THE DANCING DLX1 §26

26. I used to think that it was important to uncover a column by processing its rows from bottom to top,
since covering was done from top to bottom. But while writing this program I realized that, amazingly, no
harm is done if the rows are processed again in the same order. So I’ll go downward again, just to prove the
point. Whether we go up or down, the pointers execute an exquisitely choreographed dance that returns
them almost magically to their former state.

〈Subroutines 9 〉 +≡
void uncover (int c)
{

register int cc , l, r, rr , nn , uu , dd , t;

for (o, rr = nd [c].down ; rr ≥ last col ; o, rr = nd [rr].down)
for (nn = rr + 1; nn 6= rr ;) {

o, uu = nd [nn].up , dd = nd [nn].down ;
o, cc = nd [nn].col ;
if (cc ≤ 0) {

nn = uu ;
continue;
}
oo ,nd [uu].down = nd [dd].up = nn ;
o, t = nd [cc].len + 1;
o,nd [cc].len = t;
nn ++;

}
o, l = cl [c].prev , r = cl [c].next ;
oo , cl [l].next = cl [r].prev = c;
}

27. 〈Cover all other columns of cur node 27 〉 ≡
for (pp = cur node + 1; pp 6= cur node ;) {
o, cc = nd [pp].col ;
if (cc ≤ 0) o, pp = nd [pp].up ;
else cover (cc), pp ++;
}

This code is used in section 22.

28. When I learned that the covering of individual columns can be done safely in various orders, I almost
convinced myself that I’d be able to blithely ignore the ordering—I could apparently undo the covering of
column a then b by uncovering a first. However, that argument is fallacious: When a is uncovered, it can
resuscitate elements in column b that would mess up the uncovering of b. The choreography is delicate
indeed.

(Incidentally, the cover and uncover routines both went to the right. That was okay. But we must then
go left here.)

〈Uncover all other columns of cur node 28 〉 ≡
for (pp = cur node − 1; pp 6= cur node ;) {
o, cc = nd [pp].col ;
if (cc ≤ 0) o, pp = nd [pp].down ;
else uncover (cc), pp −−;
}

This code is used in section 22.

§29 DLX1 THE DANCING 15

29. The “best column” is considered to be a column that minimizes the number of remaining choices. If
there are several candidates, we choose the leftmost — unless we’re randomizing, in which case we select one
of them at random.

〈Set best col to the best column for branching 29 〉 ≡
t = max nodes ;
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap)

fprintf (stderr , "Level "O"d:", level);
for (o, k = cl [root].next ; k 6= root ; o, k = cl [k].next) {

if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap)
fprintf (stderr , " "O".8s("O"d)", cl [k].name ,nd [k].len);

if (o,nd [k].len ≤ t) {
if (nd [k].len < t) best col = k, t = nd [k].len , p = 1;
else {
p++; /∗ this many columns achieve the min ∗/
if (randomizing ∧ (mems += 4,¬gb unif rand (p))) best col = k;

}
}
}
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap)

fprintf (stderr , " branching on "O".8s("O"d)\n", cl [best col].name , t);

This code is used in section 22.

30. 〈Record solution and goto recover 30 〉 ≡
{

count ++;
if (spacing ∧ (count mod spacing ≡ 0)) {

printf (""O"lld:\n", count);
for (k = 0; k ≤ level ; k++) print row (choice [k], stdout);
fflush (stdout);

}
if (count ≥ maxcount) goto done ;
goto recover ;
}

This code is used in section 22.

31. 〈Subroutines 9 〉 +≡
void print state (void)
{

register int l;

fprintf (stderr , "Current state (level "O"d):\n", level);
for (l = 0; l < level ; l++) {

print row (choice [l], stderr);
if (l ≥ show levels max) {

fprintf (stderr , " ...\n");
break;

}
}
fprintf (stderr , " "O"lld solutions, "O"lld mems, and max level "O"d so far.\n", count ,

mems ,maxl);
}

16 THE DANCING DLX1 §32

32. During a long run, it’s helpful to have some way to measure progress. The following routine prints a
string that indicates roughly where we are in the search tree. The string consists of character pairs, separated
by blanks, where each character pair represents a branch of the search tree. When a node has d descendants
and we are working on the kth, the two characters respectively represent k and d in a simple code; namely,
the values 0, 1, . . . , 61 are denoted by

0, 1, . . . , 9, a, b, . . . , z, A, B, . . . , Z.

All values greater than 61 are shown as ‘*’. Notice that as computation proceeds, this string will increase
lexicographically.

Following that string, a fractional estimate of total progress is computed, based on the näıve assumption
that the search tree has a uniform branching structure. If the tree consists of a single node, this estimate
is .5; otherwise, if the first choice is ‘k of d’, the estimate is (k−1)/d plus 1/d times the recursively evaluated
estimate for the kth subtree. (This estimate might obviously be very misleading, in some cases, but at least
it grows monotonically.)

〈Subroutines 9 〉 +≡
void print progress (void)
{

register int l, k, d, c, p;
register double f, fd ;

fprintf (stderr , " after "O"lld mems: "O"lld sols,",mems , count);
for (f = 0.0, fd = 1.0, l = 0; l < level ; l++) {
c = nd [choice [l]].col , d = nd [c].len ;
for (k = 1, p = nd [c].down ; p 6= choice [l]; k++, p = nd [p].down) ;
fd ∗= d, f += (k − 1)/fd ; /∗ choice l is k of d ∗/
fprintf (stderr , " "O"c"O"c", k < 10 ? ’0’ + k : k < 36 ? ’a’ + k − 10 : k < 62 ? ’A’ + k − 36 : ’*’,

d < 10 ? ’0’ + d : d < 36 ? ’a’ + d− 10 : d < 62 ? ’A’ + d− 36 : ’*’);
if (l ≥ show levels max) {

fprintf (stderr , "...");
break;

}
}
fprintf (stderr , " "O".5f\n", f + 0.5/fd);
}

33. 〈Print the profile 33 〉 ≡
{

fprintf (stderr , "Profile:\n");
for (level = 0; level ≤ maxl ; level ++) fprintf (stderr , ""O"3d: "O"lld\n", level , profile [level]);
}

This code is used in section 2.

§34 DLX1 INDEX 17

34. Index.

advance : 22.
argc : 2, 4.
argv : 2, 4.
aux : 5, 17, 18, 19.
backup : 22.
best col : 2, 22, 29.
buf : 3, 13, 16.
bufsize : 2, 3, 13, 16.
bytes : 2, 3.
c: 10, 25, 26, 32.
cc : 2, 25, 26, 27, 28.
choice : 22, 23, 30, 31, 32.
cl : 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

22, 25, 26, 29.
col : 5, 9, 12, 13, 16, 17, 19, 22, 25, 26, 27, 28, 32.
col struct: 6.
column: 2, 6, 7, 8.
count : 2, 3, 30, 31, 32.
cover : 22, 25, 27, 28.
cur node : 2, 22, 27, 28.
d: 32.
dd : 25, 26.
delta : 3, 4, 24.
done : 2, 22, 24, 30.
down : 5, 9, 10, 12, 15, 16, 18, 19, 22, 25, 26, 28, 32.
exit : 4, 13, 22.
f : 32.
fd : 32.
fflush : 30.
fgets : 13, 16.
forward : 22.
fprintf : 2, 4, 9, 10, 11, 12, 13, 16, 20, 21, 22,

24, 29, 31, 32, 33.
gb init rand : 4.
gb rand : 3.
gb unif rand : 18, 29.
i: 2.
imems : 2, 3.
isspace : 13, 16.
j: 2.
k: 2, 9, 11, 32.
l: 25, 26, 31, 32.
last col : 2, 7, 9, 10, 13, 14, 15, 16, 17, 20,

21, 25, 26.
last node : 2, 7, 9, 13, 16, 17, 18, 19, 20.
left : 5.
len : 5, 9, 10, 12, 15, 17, 18, 19, 21, 25, 26, 29, 32.
level : 22, 23, 29, 30, 31, 32, 33.
main : 2.
max cols : 2, 7, 13, 15.
max level : 2, 22, 23.

max nodes : 2, 7, 13, 16, 17, 29.
maxcount : 3, 4, 30.
maxl : 2, 3, 22, 29, 31, 33.
mems : 2, 3, 18, 24, 29, 31, 32.
mod: 2, 30.
name : 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 29.
nd : 5, 7, 9, 10, 12, 13, 15, 16, 17, 18, 19, 21,

22, 25, 26, 27, 28, 29, 32.
next : 6, 10, 11, 13, 15, 22, 25, 26, 29.
nn : 25, 26.
node: 2, 5, 7.
node struct: 5.
nodes : 2, 3, 22.
O: 2.
o: 2.
oo : 2, 15, 19, 22, 25, 26.
ooo : 2, 18.
p: 2, 9, 10, 11, 32.
panic : 13, 14, 15, 16, 17.
pp : 2, 11, 12, 16, 17, 27, 28.
prev : 6, 10, 11, 13, 15, 25, 26.
print col : 10.
print progress : 24, 32.
print row : 9, 22, 30, 31.
print state : 24, 31.
printf : 30.
profile : 22, 23, 33.
prow : 9, 10.
q: 2, 9, 11.
qq : 11, 12.
r: 2, 25, 26.
random seed : 3, 4.
randomizing : 3, 4, 5, 18, 29.
recover : 22, 30.
right : 5.
root : 8, 10, 11, 13, 22, 29.
rows : 3, 16, 20.
rr : 25, 26.
sanity : 11, 22.
sanity checking : 11, 22.
second : 7, 10, 13, 15, 17, 20, 21, 25.
show basics : 2, 3.
show choices : 3, 22.
show choices gap : 3, 4, 29.
show choices max : 3, 4, 22, 29.
show details : 3, 29.
show full state : 3, 24.
show levels max : 3, 4, 31, 32.
show profile : 2, 3, 22.
show tots : 2, 3.
show warnings : 3, 16.

18 INDEX DLX1 §34

spacing : 3, 4, 30.
spare : 5.
sscanf : 4.
stderr : 2, 3, 4, 9, 10, 11, 12, 13, 16, 20, 21, 22,

24, 29, 31, 32, 33.
stdin : 1, 13, 16.
stdout : 30.
stream : 9.
strlen : 13, 16.
strncmp : 14, 17.
t: 2, 11, 25, 26.
thresh : 3, 4, 24.
timeout : 3, 4, 24.
uint: 2.
ullng: 2, 3, 23.
uncover : 22, 26, 28.
up : 5, 9, 12, 15, 16, 18, 19, 25, 26, 27.
updates : 2, 3, 25.
uu : 25, 26.
vbose : 2, 3, 4, 16, 22, 24, 29.

DLX1 NAMES OF THE SECTIONS 19

〈Check column p 12 〉 Used in section 11.

〈Check for duplicate column name 14 〉 Used in section 13.

〈Cover all other columns of cur node 27 〉 Used in section 22.

〈Create a node for the column named in buf [p] 17 〉 Used in section 16.

〈Do special things if enough mems have accumulated 24 〉 Used in section 22.

〈Global variables 3, 7, 23 〉 Used in section 2.

〈 Initialize last col to a new column with an empty list 15 〉 Used in section 13.

〈 Input the column names 13 〉 Used in section 2.

〈 Input the rows 16 〉 Used in section 2.

〈 Insert node last node into the list for column k 18 〉 Used in section 17.

〈Print the profile 33 〉 Used in section 2.

〈Process the command line 4 〉 Used in section 2.

〈Record solution and goto recover 30 〉 Used in section 22.

〈Remove last node from its column 19 〉 Used in section 16.

〈Report the column totals 21 〉 Used in section 2.

〈Report the successful completion of the input phase 20 〉 Used in section 2.

〈Set best col to the best column for branching 29 〉 Used in section 22.

〈Solve the problem 22 〉 Used in section 2.

〈Subroutines 9, 10, 11, 25, 26, 31, 32 〉 Used in section 2.

〈Type definitions 5, 6 〉 Used in section 2.

〈Uncover all other columns of cur node 28 〉 Used in section 22.

DLX1

Section Page
Intro . 1 1
Data structures . 5 5
Inputting the matrix . 13 9
The dancing . 22 12
Index . 34 17

	Intro
	Data structures
	Inputting the matrix
	The dancing
	Index
	Names of the sections
	Check column p
	Check for duplicate column name
	Cover all other columns of cur_node
	Create a node for the column named in buf[p]
	Do special things if enough mems have accumulated
	Global variables
	Initialize last_col to a new column with an empty list
	Input the column names
	Input the rows
	Insert node last_node into the list for column k
	Print the profile
	Process the command line
	Record solution and goto recover
	Remove last_node from its column
	Report the column totals
	Report the successful completion of the input phase
	Set best_col to the best column for branching
	Solve the problem
	Subroutines
	Type definitions
	Uncover all other columns of cur_node

