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Abstract

Background: Gene covariation networks are commonly used to study biological processes. The inference of gene
covariation networks from observational data can be challenging, especially considering the large number of
players involved and the small number of biological replicates available for analysis.

Results: We propose a new statistical method for estimating the number of erroneous edges in reconstructed
networks that strongly enhances commonly used inference approaches. This method is based on a special
relationship between sign of correlation (positive/negative) and directionality (up/down) of gene regulation, and
allows for the identification and removal of approximately half of all erroneous edges. Using the mathematical
model of Bayesian networks and positive correlation inequalities we establish a mathematical foundation for our
method. Analyzing existing biological datasets, we find a strong correlation between the results of our method and
false discovery rate (FDR). Furthermore, simulation analysis demonstrates that our method provides a more accurate

estimate of network error than FDR.

Conclusions: Thus, our study provides a new robust approach for improving reconstruction of covariation

networks.

Reviewers: This article was reviewed by Eugene Koonin, Sergei Maslov, Daniel Yasumasa Takahashi.

Background

It is quite common, especially in biology, that in order to
understand how systems transition from one state to an-
other (e.g. from health to disease) scientists compare how
parameters such as gene expressions, protein levels, or
metabolite abundances differ between these states. One
result of such a comparison is a list of parameters up- or
down-regulated (due to the increase or decrease of some
numerical value attributed to the parameter) from the first
state to the second. In case of gene expression, these alter-
ations represent a consequence of the two key factors:
first, the original stimulus (e.g. mutation or environmental
perturbation) that underlies the transition of a biological
system from one state to another; and the second factor, a
biological process that drives regulatory relations between
individual genes independently on the presence of the
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stimulus. In other words, regulatory relations in biological
systems (as well as many other systems) are not generally
functions of the state but are rather pre-determined by
biological roles of the components.

Most frequently, the components like genes are not regu-
lated independently from each other; rather, they make up
regulatory networks [1-5]. A common approach and the first
step to the reconstruction of regulatory network structure is
the inference of a correlation network built from parameters
differentially abundant between two states. In particular, cor-
relation (or, for the purposes of this paper, co-variation) net-
works are widely used in gene expression analysis.

Indeed, gene expression networks have been widely used
to advance global understanding of principles that govern
regulatory processes in biology [6, 7], to disclose molecular
mechanisms of diseases [8], and even helping with finding
better drugs [9]. Indeed, medical fields such as cardiology
[8], endocrinology [10, 11], immunology [4, 12, 13], host-
microbiome interactions [10, 12] and others have benefited
from gene network analysis. Cancer is a very good example
of applications of gene expression networks because
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insights from network analyses were essential for identifica-
tion of key drivers of carcinogenesis for brain [14, 15],
breast [15], skin [9] and cervical [16] tumors.

Co-variation network analysis works under the assump-
tion that any edge (link) in a network, corresponding to a
correlation between two parameters/nodes, is the empirical
result of either direct or indirect (i.e. confounding) causal
relationships, unless the edge is erroneously drawn (i.e. the
observed correlation is an artifact of statistical error)
[17-19]. Thus, we hypothesized that in a co-expression net-
work there may be a relationship between the sign of cor-
relation (i.e. positive or negative) of two regulated genes
and the direction of their change between the two states
(i.e. up or down-regulation). In this paper, we demonstrated
the presence of this inter-dependence in different types of
data, found that a departure from this relation reflects a
proportion of erroneous edges in the regulatory networks,
and developed a mathematical theory of this phenomenon.

Results

The concept of unexpected correlations

In order to verify whether there is a relationship between
the direction of gene regulation and the sign of correlation
we used a gene co-expression network from our recently
published paper on network analysis in cervical cancer [16].
We felt that this network should provide excellent real data
for this analysis, as it was constructed from a robust meta-
analysis of five cancer gene expression datasets (GSE26342,
GSE7410, GSE9750, GSE6791, GSE7803) and thus validated
by large, independent sources. This network contained 738
nodes with 490 up and 248 down-regulated between cancer
and normal tissues. These nodes were connected by 3161
edges with 2882 representing positive and 279 negative
correlations. Relating these two types of information, we
observed a strong association between the direction of gene
expression change and the sign of correlation (Fig. 1a). Posi-
tively correlated genes in ~98 % cases had concordant
increases or decreases in gene expression (up-up or down-
down), and negatively correlated ones in ~92 % of cases
were regulated in opposite directions (up-down). At first
glance we found surprising such a strong association and
sought to further evaluate this phenomenon. Thus we
focused on a part of this big network, which is a bi-partite
network consisting of 626 correlations between gene-
regulators and gene-targets [16]. In this smaller network, in
which correlation links could more obviously correspond to
causal links (because gene-regulators have changed their ex-
pression as a result of chromosomal aberrations (Additional
file 1: Figure S1)), we found similar association between
direction of correlation and gene regulation (Fig. 1b).

We wondered whether such association can be general-
ized to other gene regulatory systems with two states (e.g.
health and disease) and two types of regulation (stimula-
tion and inhibition). In order to further investigate this,
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we propose a scheme in which we associate the sign of
correlation (+/-) of each network edge with the direction
(up/down) of gene regulation between system states. Sign
association follows a simple set of rules:

o If there is a correlation between two “up” or “down”
regulated genes (as in the top left panel in Fig. 1c),
the sign associated with the link is positive.

o If there is a link between an “up” regulated gene and
a “down” regulated gene (as in the bottom left panel
in Fig. 1c), the sign associated with the link is
negative.

The full set of possible combinations of gene regula-
tions and correlations are given in (Fig. 1d). We
hypothesize that correlations whose sign disagrees with
the corresponding association are erroneous, i.e. they are
the result of statistical error rather than causal relation-
ships; or, they can be the results of an external/indirect
influence, which is irrelevant for transitions between the
biological system states. We will hereafter call such
correlations unexpected (Fig. 1d), and their proportion
among all correlations in a network is abbreviated as
PUC (Proportion of Unexpected Correlations).

Since the original observation (Fig. 1) was made in
complex system we also wanted to test the association
between the sign of correlation and the direction of
change in gene expression in the system where cause of
gene regulation can be unambiguously defined. For this,
we employed a basic principle claiming that a result of
experimental perturbation represents a bona fide causal-
ity relationship. In the same cervical cancer work, we
had performed siRNA perturbation of gene LAMP3
(GSE29009), which was one of the key gene-drivers of
the antiviral subnetwork. Our theoretical prediction
would be that genes whose expression is affected by
perturbation of the gene-driver (ie. LAMP3) in vitro
and correlated to the expression of the gene-driver in
the original cancer data should present correlations of
the expected sign. For example, if a gene was down-
regulated by LAMP3 siRNA, it is expected to be positively
correlating to LAMP3 in the cancer gene expression data
and vice versa (ie. if gene is up after siRNA treatment
correlation should be negative). Thus we analyzed if the
direction of regulation of genes affected by LAMP3 siRNA
in the cell line was corresponding to the sign of correl-
ation between each gene and LAMP3 in four cervical
cancer datasets (GSE7410, GSE9750, GSE6791, GSE7803).
In these datasets, we observed that almost all correlations
between LAMP3 and genes whose expression was affected
by LAMP3 siRNA had correlation signs concordant to the
directions of gene regulations due to siRNA treatment
(Fig. 1e). Thus, this data provides the additional experi-
mental support for our hypothesis about non-random
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interdependence between sign of correlation and direction
of gene regulation.

Mathematical formalism

Encouraged by these results, to better understand the
properties of this new metric (PUC) we went further to
establish a rigorous mathematical framework.

Our hypothesis that unexpected correlations are erro-
neous can be rigorously proven for systems that transi-
tion between two stable states with two types of
relationship between parameters: stimulation and inhib-
ition. Herein, as an example, we provide a proof of our
hypothesis using a simple Bayesian network® with two

equilibrium states and linear dependences between
nodes. The general case is considered in Section II.2 of
the Additional file 1.

In order to formulate our results, we begin by stating
the following mathematical notions and definitions. A
regulatory network is represented as a directed acyclic
graph (DAG) G=(V,E). Any edge e<E is an ordered
pair of vertices (nodes) e = (v, w) € V2. The order of verti-
ces in an edge represents the direction of causality in a
regulatory network (that is, in the edge (v, w), v regulates
w). For any node v we associate the set of its parents as
pa(v):={ueV:(u,v)eE}. We define the set of root-
nodes gf(G) for the graph G as the set of all nodes
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without parents: gf(G):={ve V:pa(v) = @}. For simpli-
city, we consider a regulatory network with only one
root-node, [glG)| =1, denoted by the vertex o. The case
with more than one root-node is covered by the general
model considered in Additional file 1, see Sectionl.et
graph G be weighted, meaning that every edge e = (v, w) €
E has an associated label (weight) c,,€R. With every
node veV we associate a random variable M,. Vari-
ables M,, veV, are connected by the following struc-
tural linear equations:

M, = ZCWVMW+8V' (1)

wepa(v)

Here, the random variables ¢, v eV, representing the
noise in the system, are mutually independent and iden-
tically distributed with mean O and variance o7. We
suppose heteroscedasticity with uniformly bounded vari-
ances: there exists o> such that o7 < o> for all ve V. By
defining the distribution of the root-node variable A,
we obtain a unique joint distribution of random vari-
ables M,, v e V. This joint distribution will be referred to
as equilibrium state.

In the previously discussed biological framework, a
graph G represents the entire gene expression network.
A node v represents a gene with the corresponding ex-
pression level M,. . An edge e = (v, w) represents a causal
link between two genes v and w in which the expression
of w is regulated by v, and c,,, is the interaction weight.
The sign of c,, reflects the direction of regulation: a
negative (positive) sign corresponds to inhibition (stimu-
lation). The parents of v are simply all genes which regu-
late v and the root-node of G is the primary regulator of
the entire network.

In order to define two distinct equilibrium states, say
P and Q (e.g. case and control, disease and health, etc.)
for a system defined by causal graph G and structural
equations (1), we need only to define two independent
root-node variables, MY and M2, together with mutu-
ally indepennt noise variables P Q yev. Let MP
and M'? denote the expressions of the gene at node v
in two distinct equilibrium states P and Q. For any v we
denote the changes in expression between states as 4,
=EM,r)-E(M,q), where E denotes the expectation
value (mean) of corresponding variable.

The mathematical definition of expected and unex-
pected links, as introduced informally in the introduc-
tion, is now formally expressed in the following
definition.

Definition. An edge e € E is called an expected link be-
tween nodes v, w € V if and only ifAl,chov(Msp), MP)y >
0 and A, A,cov(M?D, MQ) > 0. An edge which is not an
expected link is said to be an unexpected link.
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This definition effectively states that the directions of
regulation of two genes between two states should agree
with the sign of the correlation between them within
each state.

Note that the covariances in the definition can be
substituted by the coefficient of correlation (Pearson
correlation).

In the main lemma stated below, we show that here,
all unexpected links are produced by the noise in the
system: ie. if o* is small enough, then the system will
have no unexpected links.

Lemma 1. For any finite DAG with linear structural
equations (1) and two equilibrium states there exists
some oy such that zfa% < 0'(2)f01" all veV, then there are
no unexpected links in the system.

The proof is given in Section IL.1 of the Additional file 1.
Another very important property of the concept of
unexpected links is that PUC represents and identifies
approximately half of all erroneous correlations:

2E(PU C)~E(total proportion of false positive links) (2).

A formal proof of this statement (under certain condi-
tions) is given in Section III.3 of the Additional file 1, as
well as an explanation for why this makes intuitive sense.
The basic idea is that false edges are, in principle,
equally likely to have expected correlations as they are
to have unexpected correlations.

Unexpected correlations reflect the noise in real and
simulated networks
Lemma 1 shows that in regulatory networks unexpected
correlations must have appeared as a result of noise within
the network and that the proportion of unexpected correl-
ation thus reflects the noise level in a network.

Mathematical models are restricted by the domain of
their assumptions, which limits their applicability. Thus,
although we have empirically observed a small PUC in a
high confidence cervical cancer network (Fig. la-b), we
wanted to verify whether this correspondence would still
hold in different settings. We therefore analyzed 24
additional data sets retrieved from the BRB Array Tools
Archive (see Additional file 1) providing gene expression
network transitions in different types of cancer, and
found that PUC strongly correlated with FDR (correl-
ation coefficient of 0.87 CI95% 0.8117-0.9416). Turning
our attention to phenomena other than cancer, we also
analyzed the gene expression network perturbed as a re-
sult of colonization of intestinal tissue with normal
microbiota (i.e. the mix of microorganisms that live in
the gut). In these data (GSE60568) [13] and again found
that PUC is highly correlated with FDR (Fig. 2f).

Thus, the observation of strong correlation between
FDR and PUC in multiple datasets from diverse
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(f) and macroeconomic (g) data

Fig. 2 Comparison of PUC and FDR. a Two regulatory networks are simulated independently, then both networks’ node expression levels combined into
one data set. In a correlation network constructed from the simulated data, any correlations (links) between nodes from independent networks are known
to be erroneous; Bayesian simulations (b), as well as gene regulatory simulations performed GeneNetWeaver (c) suggest that PUC more accurately reflects
network error than FDR (Benjamini-Hochberg, FDR-BH); as network size grows, PUC more accurately reflects network error than FDR-BH (d) or its variation

with multiple hypothesis under dependence called FDR Benjamini-Yekutieli (FDR-BY) (e); PUC correlates with FDR in both gene expression

biological settings in two different species (Homo sapiens
and Mus musculus) provides additional support for our
prediction that PUC, similarly to FDR, quantitatively re-
flects network error.

An important question, however, is whether PUC
brings any advantage over the standard approach to
measuring the proportion of erroneous edges in a recon-
structed regulation network (i.e. FDR). Real data makes
such a comparison difficult, because though both
methods of analysis will return values for network error,
there is not necessarily any obvious way to determine
which is more accurate; i.e. in real data, the actual regu-
latory network is not known.

To investigate the behavior of PUC in a “controlled
environment” we simulated networks using two ap-
proaches. We have used simple Bayesian networks [20]
with structural equations (1) and the software GeneNet-
Weaver [21] which uses ordinary and stochastic differen-
tial equations as models for gene regulation. To
compare the effectiveness of PUC and FDR, we con-
struct a regulatory network as two distinct disjoint regu-
latory sub-networks, and gene expressions are simulated
independently according two equilibrium states. In an
empirical correlation network constructed from the sim-
ulated data, any correlations (link) between nodes from
distinct sub-networks are known to be erroneous
(Fig. 2a). This design allows for a true measure of net-
work error against which to compare PUC and FDR ana-
lysis results.

In order to determine which method (FDR or PUC)
better quantifies error, we look at all three measures of
error (FDR, PUC, and the true error) and compare the
accuracies of FDR and PUC. The results of both types of
simulations suggest that PUC is more accurate than
FDR in estimating true error, although there is a strong
correlation between the two metrics (Fig. 2b,c).

The FDR family of methods is the most popular pro-
cedure for large-scale p-value correction for multiple hy-
potheses [22-26]. All these FDR methods, however,
ignore the dependence structure between hypotheses,
which leads to the fact that FDR is an overly conserva-
tive approach (i.e. it overestimates the number of false
positives).

In the case of regulatory networks, each edge constitutes
a hypothesis; interdependency of regulatory network
hypotheses manifests in indirect regulation between genes.

Indeed, this is exactly the case with co-variation networks,
in which it is possible to find numerous indirect pathways
with only a few direct links.

Using PUC as a measure of error, however, does not
require any assumption about independence of hypoth-
eses. PUC may thus be more accurate than FDR for
error estimation in co-variation networks with a large
number of interconnected nodes. The “degree of de-
pendency” between hypotheses also depends on the size
and number of sub-networks that compose a network. A
network made up of twenty sub-networks consisting of
twenty nodes each should have a lower degree of hy-
pothesis interdependency than a single network consist-
ing of four hundred nodes lacking any well-defined sub-
networks.

In order to pinpoint this effect we simulated various
networks up to 400 nodes in disjoint sub-networks, each
with an equal number of nodes (for example, 20 disjoint
sub-networks with 20 nodes each). While both types of
simulations (Bayesian and GeneNetWeaver networks)
showed overall more accurate results for PUC, in Bayes-
ian networks we also observed lower efficiency of FDR
for large networks (Fig. 2d). This effect, however, was
less pronounced in GeneNetWeaver- simulated net-
works (Additional file 1: Figure S4). Furthermore, we ob-
tained similar results (Fig. 2e) by using another version
of FDR which was designed to correct for hypothesis
interdependency — Benjamini-Yekutieli, FDR-BY [27].

PUC in a non-biological system

The fact that we could mathematically prove the rela-
tionship between unexpected correlations and network
error suggests that this principle could be widespread
beyond gene interactions in biological systems. As a
proof-of-concept of PUC’s generality, we turned our
attention to economics. The justification for this choice
of subject relates to the presumption that economic
systems, similarly to biological systems, are governed by
cause-effect relationships and can, by extension, be
described by regulatory networks. We analyzed 1503
parameters retrieved from World Bank economic data-
bases for the year 2008 in 193 countries in such areas as
business, education, health, etc. (details provided in the
Additional file 1). Parameters with bimodal distributions
defined distinct states of economic networks for any
given country. Figure 2f shows PUC for parameter
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correlation networks with different FDR thresholds in
which a particular parameter (expenditure per student
on primary education as a percent of GDP per capita)
defined distinct network states; Figure S2 (in the
Additional file 1) shows similar graphs for various
other parameters. As expected, these networks dem-
onstrated a high concordance between the network
errors given by PUC and FDR. This result supports
the idea that the concept of unexpected correlations
can be extended to a large variety of causal networks
and that measurement of the proportion of unex-
pected correlations (PUC) can improve network ana-
lysis in a variety of scientific disciplines.

Estimating error using PUC

The entire procedure of PUC for calculating network
error is as such: first, all correlations in a differential
expression list are ranked by p-value. A network is
constructed with edges consisting of correlations within
an arbitrary p-value threshold (e.g. 0.01). Unexpected
links are identified, counted, and removed from the
network. The final measure of error in the remaining
network is given by, where and are respectively the num-
bers of total and unexpected links in the network prior
to removal of unexpected links. The reason for this for-
mula is explained in the last paragraph of mathematical
formalism section, and has to do with the fact that the
number of unexpected links in a network is approxi-
mately equal to half of the total number of false links.

Discussion

The growth of molecular biology has advanced such that
we can measure the expression of thousands of genes
simultaneously. Simply measuring the expression of
multiple individual genes, however, is insufficient to de-
scribe a systems issue such as complex diseases. To re-
late gene expression to physiological states (e.g. disease)
and other variables in an organism’s environment we
utilize gene expression networks. These networks enable
more intelligent identification of molecular subtypes of
diseases and molecular targets for treatment. The recon-
struction of gene expression networks, however, is not
easily accomplished. Constructing reliable gene expres-
sion networks with current methods requires obtaining
large data sets because a large number of hypotheses are
required to be tested for network inference.

Although the False Discovery Rate (FDR - Benjamini-
Hochberg) is the most popular multiple hypothesis cor-
rection method, its application for network inference is
a conservative procedure and makes the often unfitting
assumption of the independence between correlations in
gene networks. There are less popular versions of FDR,
for example Benjamini-Yekutieli [27], which take into
account various dependence structures between the
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hypotheses under consideration, but the usage of this
did not demonstrate any significant advantage over PUC
(see Fig. 2e). Consequently, these corrections tend to
have a high rate of false negative discovery (i.e. low
power) and require vast sample sizes in order attain de-
sirable degrees of certainty about reconstructed net-
works. There is thus a critical need for more powerful
methods of estimation of false positive connections
between genes in co-expression networks.

In this study we have revealed and mathematically
proved a new feature of co-expression networks. This
feature is based on the natural notion that any correl-
ation has direct or indirect causal components and noise
components. In the case when causal components pre-
vail over noise, the sign of a correlation between two
genes should be related to their up- or down- regulation
of the genes between two states (Fig. 1). We first
observed this relation empirically in gene expression
datasets [16, 28], and subsequently in macroeconomic
data (see Fig. 2f and Additional file 1: Figure S2). The
observation of this network feature (relation between
sign of correlation and direction of change) in data of
such a different nature (biology and economics) suggests
that this relation is a universal property of covariation
networks.

We proposed using this relation for identifying false
connections in co-variation networks increases network
accuracy and estimates network error. This approach
demonstrates clear advantage over the classic method
(FDR) not only by providing better estimates of error in
large co-variation networks, but also by allowing the
removal of approximately half of all erroneous edges.

The identification of unexpected correlations has two
primary impacts. Firstly, it provides a new method to
estimate the proportion of erroneous links in a network.
Secondly, it allows for the removal of approximately half
of the erroneous edges in the network (namely, those
that are unexpected), decreasing their proportion by a
factor of two and thereby improving the overall accuracy
of the reconstructed network.

The concept of expected and unexpected correlations
that we introduced is closely related to the concept of
monotone causal effects and the covariance between them
[29]. Where the authors proved (see the theorem 4 in the
paper [29]) that the covariation between any two positively
(negatively) monotonically associated variables is non-
negative (non-positive). It corresponds to our definition of
expected correlations. Lemma 1 we proved for linear rela-
tions should therefore hold for any monotone relationships;
this idea is expanded in Section I1.2. of the Additional file 1,
and the framework of PUC extended to a broader class of
networks than those mentioned thus far.

It is also important to further investigate how
non-monotonicity affects the notion and application of
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unexpected correlations. The concept of non-monotonicity
can be exemplified for our problem as different types of
relationships in two network states, such as a negative
correlation between parameters in one biological state and
a positive correlation in another. In such cases, despite
violation of monotonicity, we expect unexpected correla-
tions to arise primarily due to noise, rather than the change
in relationships. Nonetheless, we demonstrated (see Section
I1.4. of the Additional file 1) that there is no evidence for
non-monotonicity to suggest that these exceptionally rare
non-erroneous correlations are in fact responsible for the
observed changes in gene expression between states of a
biological system. Therefore, because the ultimate goal of
network inference is actually to model and understand the
transition of biological system from one state to another,
we can safely remove these unexpected correlations from
the reconstructed network for independent reasons (ie.
that they do not have causal contribution to system state
transition).

We believe that this work, besides revealing a new
feature of co-variation networks, introduces an en-
tirely new way of dealing with error in their recon-
struction. Indeed, statistical methods employed for
such problems normally estimate an error, but cannot
detect erroneous edges. We propose a method that
besides (according to simulations, potentially superior)
error estimation allows for identification and removal
of approximately half of total network error. Thus,
the identification and removal of unexpected correla-
tions decreases the proportion of irrelevant and erro-
neous connections and strongly increases the power
of network inferences.

Conclusion

This study reports a discovery of a new property of
interdependence between sign of correlation and direc-
tion of gene regulation for covariation networks first
observed by us in cervical cancer. It appears to be
universal as it has been further found in wide range of
phenomena within biology and economics. Furthermore,
the newly revealed property provides a basis for de-
veloping a method for measuring the proportion of
erroneous edges in a network. This method stands
out among standard approaches like the false discov-
ery rate (FDR), because besides estimating an error it
allows for the elimination of about half of all incor-
rect links in a network under a given statistical
threshold.

Reviewers’ comments
Reviewer’s report 1: Eugene Koonin, NIH
Reviewer comments:
In this paper, Yambartsev and colleagues develop a
new approach to the analysis of covariation networks
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that is specifically applied to networks of gene co-
expression from cancers and normal tissue controls.
They make a straightforward observation that to me is
quite intuitive, namely that there is a link between the
sign of correlation between between expression profiles
of a pair of genes and the directionality of their regula-
tion between the compared states. In other words, if in a
pair of genes, both are either down-regulated or up-reg-
ulated in cancer compared to normal tissue, they are ex-
pected to show a positive correlation. Conversely, if the
directions of the regulation in a pair of genes, are differ-
ent, they will show a negative correlation. The authors
demonstrate the validity of this connection on experi-
mentally characterized examples and simulated networks
and prove analytically that such a connection should
exist. They then employ this link to introduce a very
simple but apparently powerful metric for measuring
noise in covariation networks, namely PUC (proportion
of unexpected connections), i.e. the fraction of edges in
a network that violate the above rule. Remarkably, the
PUC appears to perform significantly better than FDR.
As far as I can see, the approach developed in this
work can become important in the analysis of
covariation networks, especially in the context of the
comparison between different states (disease vs
normal, normal vs stressed etc.) which is becoming
increasingly important.
Reviewer question/comment and authors’ response:

— The two most important ones seem to be the
description of the comparison of PUC vs FDR and
its statistical significance and the description of the
networks and correlations themselves.

Authors’ response: We agree that this is a very
relevant question that will be answered in our future
studies. However, in our simulation results we see so
striking differences that statistical significance is
obvious (Fig. 2b,c). Furthermore, despite we
performed two types simulations (that are considered
current standards in the field) it is not clear to what
extent these results can be extrapolated to real
biological systems. Therefore, we started a new
investigation that attempts to disclose which
properties of biological system are required for PUC
to outperform FDR. As suggested by reviewer, this
investigation actually involves statistical comparison
between FDR and PUC.

— Although less critical, I think it is highly desirable to
expand the Background section to provide an
adequate background on network analysis for cancer
and other disease states.

Authors’ response: We added the text in the
introduction devoted to usage of gene expression
networks in biology and biomedical research.
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Reviewer’s report 2: Sergei Maslov, University of lllinois at
Urbana-Champaign
Reviewer comments:

The manuscript describes a statistical method for fil-
tering spurious edges in co-expression networks and
thus estimating and improving the overall quality of the
network. The main idea of the method is simple and
seems to be correct as long as expression samples could
be subdivided into two principal subgroups capturing
the vast majority of expression variability (e.g. cancerous
vs. normal tissues in the example used in the manu-
script). In this case one expects the majority of positively
co-expressed edges to connect genes that both went up
or down in cancer-vs-normal comparison, while nega-
tively co-expressed edges to connect genes that change
in the opposite directions. This is true as long as the sys-
tem has only two main attractor states. What is missing
from the manuscript in my opinion is the rigorous dis-
cussion of conditions when this two-state model holds
and when it does not. How does one separate spurious
edges caused by statistical fluctuations from bona fide
biologically meaningful gene- gene interactions in at-
tractor states other than the one considered important
by the authors of the expression collection (e.g. Com-
parison of gene expression in cancer vs. normal tissues)?
In other words, the Eq. 1 indicates that the method
focuses on the eigenvector corresponding to a single
(the largest?) eigenvalue of the correlation matrix c_wv,
while classifying other potentially biologically meaning-
ful eigenvalues and eigenvectors as noise. I think that
authors should spend more time discussing this major
limitation of their approach.

Reviewer question/comment and authors’ response:

— What is missing from the manuscript in my opinion
is the rigorous discussion of conditions when this
two-state model holds and when it does not.
Authors’ response: Thanks for the question. We
made modifications to the text to clarify the notion
of equilibrium states in our paper.

In the paper we model a system as a Bayesian
probabilistic network on directed acyclic graph
(Which represents causal relation between
parameters) and with fixed structural equations. The
joint distribution of parameters (i.e. equilibrium
state) is defined by the distribution of noise variables
(it is a product of distributions with bounded
variances) and the distribution corresponding to
causal root-nodes. Thus, having two distinct distribu-
tions on root-node, we will have two equilibrium
states of a system.

In the section “Mathematical formalism” we
introduced the notion of equilibrium state more
explicitly. We are sure that it is possible to generalize
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the notion of expected and unexpected links for the
case of multi-state systems, but our scope here is only
two-state systems. The two-states systems are very
popular and commonly accepted in biology for
example case—control studies.

The notion of “equilibrium state” can refer also (as
the notion of attractor) to some (stochastic) process in
time. But it is possible to interpret an equilibrium
state as an invariant distribution of this stochastic
process. Changing some parameters of process we can
change an invariant distribution, obtaining two or
more equilibrium states. Moreover, we can deal with
invariant distribution (equilibrium state) without
considering directly an underlying process.

How does one separate spurious edges caused by
statistical fluctuations from bona fide biologically
meaningful gene- gene interactions in attractor
states other than the one considered important by
the authors of the expression collection (e.g.
Comparison of gene expression in cancer vs. normal
tissues)?

Authors’ response: Lemma 1 showed that in simple
mathematical models (Bayesian networks defined on
DAG with one root-node with monotone structural
relations) all unexpected links are generated by a
noise. The same is true for more general mathematical
models, when the distribution of parameters satisfy
some monotone relations. In practice, in rare occasions
the unexpected correlations may appear as a
result of true biological gene-gene interactions.
However, according to Lemma 4 (see Section 114
in Additional file 1) those rare interactions would
not contribute to changes in gene expression observed
between two states.

In other words, the Eq. 1 indicates that the method
focuses on the eigenvector corresponding to a single
(the largest?) eigenvalue of the correlation matrix
c_wv, while classifying other potentially biologically
meaningful eigenvalues and eigenvectors as noise. I
think that authors should spend more time
discussing this major limitation of their approach.
Authors’ response: We would like to study possible
extensions of our work, and really we want to discuss
more about limitations of the approach. We plan to
study how the structural equation can contribute in
the existence of unexpected links for example through
eigenvector of corresponding matrix of structural
equations. But we wanted to fix our first step with
the simplest cases considered in the paper.

A minor comment: on line 46 of the same page as
Eq. 1 authors use EM as opposed to a more
traditional notation E(M) to denote the expectation
value of M. Both notations are potentially confusing
as just a few lines below E denotes the set of edges
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in the network. I recommend switching to or M_bar
to denote the mean value.

Authors’ response: We thank the reviewer and we
fixed the notations of expectation using suggested
traditional ones.

Reviewer’s report 3: Daniel Yasumasa Takahashi,
Princeton University
Reviewer comments:

This is a well written and very creative work that I
enjoyed reading. The authors introduce a new concept
called expected/unexpected link to infer which links on
a network can be the result of noise (i.e., independent of
the phenomena of interest). The idea is quite simple and
elegant: If the relationship between the nodes is mono-
tonic, the sign of the changes of the values associated to
pairs of nodes in two different conditions should be the
same. The assumption of monotonicity is quite general,
at least comparing to most of the assumption in any net-
work analysis of biological data, e.g., linear relationship.
Therefore, the proposed method is expected to be quite
useful and general. The application on cervical cancer
network that motivates the article is very convincing.
The idea of using siRNA experiment to validate the find-
ings is excellent. The mathematical model and the proof
of the claims seem to be correct to best of my under-
standing. The comparison with FDR is quite striking and
this section alone should be enough to motivate people
to look into the proposed method (myself included). The
proposed method has the potential to become a land-
mark tool in network analysis.

Reviewer question/comment and authors’ response:

I have only minor comments:

1) On Fig. 1le, it would be insightful to also show the
proportion of expected/unexpected correlations
between LAMP3 and the genes whose expression
was NOT affected by LAMP3 siRNA. Given that the
article is about false positive control and not so
much about false negative control, the figure I am
proposing could be in the Additional file 1.

Authors’ response: We understand the interest
reviewer to evaluate what happens with genes not
affected by siRNA treatment. The problem with the
request to “show the proportion of expected/
unexpected correlations between LAMP3 and the
genes whose expression was NOT affected by
LAMP3 siRNA” is that in order to define
correlations as expected or unexpected they have to
be regulated. Therefore, if there is no regulation of
given gene (by siRNA) we cannot classify correlation
between this gene and LAMP3 in any category.

2) The title for the subsection “Mathematical formalism
relating causation and the sign of correlation” is
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misleading as most people would associate causation
to direct links in a network. Probably something like
“Mathematical formalism relating causal propagation
and the sign of correlation” should be more
adequate, as the authors use the word “causal
propagation” later in the proofs.

Authors’ response: We agree about misleading and
we decided to change the title for simplest
“Mathematical formalism”.

3) In the section “Mathematical formalism relating
causation and the sign of correlation”, I recommend
the authors to try to give concrete and biologically
motivated examples for the concepts that they
introduce. That will make this section more readable
and interesting. For example, what is the meaning of
a weight Cvw? What is the meaning of two
equilibrium states? The authors can say explicitly
that in their cervical cancer example, states P and Q
represent normal and cancer, for example. The
authors also can say that the assumption of
equilibrium states implies that the effect of
perturbation in some subnetworks had time to
propagate to the entire network. In eq (1) what does
mean that the variance is small?

Authors’ response: We revised this section adding
interpretation of the weights as force of interactions
between genes and adding the definition of the
notion of equilibriums state as a joint distribution of
parameters (gene expressions). We hope that in
revised version it is more clear that the perturbation
variables in structural equations (1) correspond to
the internal noise in the system. The lemma says
that if the internal noise is small enough (i.e. the
variance of the perturbed terms is small) then there
are no unexpected links in the system, it means, in
our interpretation, that the unexpected links appear
in these systems as a result of a noise.

4) The authors should discuss in more detail the work
by VandeWeele and Robins (2010) in the Discussion
of the main text. Currently the reference only
appears as a note in the Additional file 1.

Authors’ response: The work by VandeWeele and
Robins (2010) has the reference number 20 in the
main text. We added a comment about this work in
discussion. They proved that if the structural
equations satisfy strong monotone conditions then it
is possible to give a sign for a link: positively
monotonically associated variables have positive
correlation and negatively — negative correlation.
Essentially the authors deal with expected
correlations. They showed also that if the strong
monotone condition will be substituted by weaker
monotone condition then the rule of signs does not
hold in general. In our case the monotone conditions
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appears from the comparisons of mean values, and
there are the possibility to have unexpected links.
Our aim is, starting from the definition of expected
links, to prove the noise source of the appearance of
unexpected links. Thus we prefer to mention the
work instead of deep discussion of their results.

5) First paragraph in “Additional file 1, I1.3. PUC
represents 50 % of erroneous” - I think that the
sentence “... are random such that ... ” should be
changed to “... are mutually independent such that

Authors’ response: We decided to maintain the
joint distribution of perturbed variables as it is. This
noise distribution is a result of the noise propagation
in a system, and it cannot be considered as a
product distribution, because of nonzero covariances
between them. The condition we posed on this
distribution is: the half of their correlations of noise
variables should be positive asymptotically.
6) The authors should improve the quality of Additional
file 1: Figure S1.
Authors’ response: Done

7) The authors might want to provide a simple
computational program to run the proposed method
on real or simulated data sets. That might help not
only to popularize the method, but also to clarify the
idea for some readers.

Authors’ response: We add the algorithm in
Additional file 1 and accompanying text with
comments.

Additional file

[ Additional file 1: Supporting results. (DOCX 1036 kb) J
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Additional file 1

Unexpected links reflect the noise in networks

Authors:  Anatoly Yambartsev', Michael A. Perlin?, Yevgeniy Kovchegov?, Natalia
Shulzhenko®, Karina L. Mine>, Xiaoxi Dong?®, Andrey Morgun®.

I. Experimental procedures

I.1. Statistically significant correlations between differentially expressed genes (DEGSs)
and show expected signs

In our recent study (Nature Commun. 2013;4:1806) we have shown that key drivers of
cervical carcinogenesis are located in regions of frequent chromosomal aberrations and
that these genes cause most of the alteration in gene expression in cervical cancer.
Therefore, in order to evaluate whether statistically significant correlations between DEGs
which result from known causal relations follow our prediction we performed the
following analysis:

First, we selected two groups of genes from DEGs discovered in our previous study: 1)
genes in which it has been determined that chromosomal aberrations are responsible for
the change in regulation; and 2) genes located in regions in which aberrations are rare,
defined by FqG — FgL between -0.1 and 0.1 (Figure S1). Next, we analyzed gene co-
expression in tumors samples in order to find correlations between those two groups of
DEGs. We found 626 correlated gene-gene pairs with FDR 5%. We used data from the
following datasets for our meta-analysis (performed as described in Nature Commun.
2013;4:1806): GSE26342, GSE7410, GSE9750, GSE6791, GSE7803. In brief, we calculated
correlations within the tumor samples of each dataset. If correlations presented the same
sign in all datasets, then we calculated a corresponding Fisher meta-analysis p-value. We
then computed the FDR for these correlations. The results provided support to our
hypothesis that significant correlations should have “expected” signs. Indeed, 95% (594 of
626 total pairs) of significant correlations had expected signs.

1.2. PUC correlates with FDR in macroeconomic data

The macroeconomic data we analyzed was a combination of all data for the year 2008 on
official UN member states in the following World Bank databases: Doing Business,
Education Statistics, Gender Statistics, Health and Nutrition Population Statistics, IDA
Results Measurement System; Poverty and Inequality Database, World Development
Indicators and Global Development Finance. From this data set, we removed all
duplications of macroeconomic parameters, as well as all parameters for which data only



existed for < 25 countries. Of the remaining parameters, we used a dip test to determine
those which were non-unimodal with a p-value of < 2.2x10716, From the resulting set of
parameters, we selected several with bimodal distributions, each of which we used to
define two distinct states of a macroeconomic parameter network. We then computed
PUC for parameter correlation networks at different FDR thresholds using each of these
definitions. The results of these calculations are shown in Figure S2.
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Figure S1: Genes directly regulated by chromosomal aberrations can also in turn regulate genes located outside of the
aberrations. (a) Genes regulated by chromosomal aberrations in the expected direction (located in the regions FqG —
Fql < —0.2 or FqG — FqL > 0.3) were considered as potential regulators, and genes located within the regions of
very rare aberrations (|[FqG — FqL| < 0.1) were considered to be potential targets. The green (red) line represents up-
regulated (down-regulated) genes. (b) The reconstructed regulatory network with correlations in agreement with
gene expression. The two green (red/purple) circles are made of up down-regulated (up-regulated) nodes, the middle
(side) circles are made up of targets (regulators), and the black (cyan) lines represent positive (negative) correlations.
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Figure S2: PUC and FDR correlate strongly when reconstructing macroeconomic networks using various bimodal

parameters to define system states. Parameters shown: ADA - Duration of compulsory education; AIA - Cause of death,
by communicable diseases and maternal, prenatal and nutrition conditions (% of total); AVS - Manufactures exports (%
of merchandise exports); BEG - Educational expenditure in pre-primary as % of total educational expenditure; QZ -
Private credit bureau coverage (% of adults); RW - Strength of legal rights index; UU Passenger cars (per 1,000 people)

Il. Theoretical basis.

Here we provide some formal definitions of concepts used in the paper and all necessary
proofs. This section consists of four parts: 1) we introduce the mathematical machinery
for PUC using Bayesian networks; 2) we generalize the previous formalism to handle a
broader set of cases; 3) we demonstrate that PUC reflects half of total network error; and
4) we address concerns with network non-monotonicity.

11.1. PUC on Bayesian networks.

In order to apply the new concept of noise estimator we use Bayesian Networks as a
convenient model for gene expression. Let G = (V,E) be some network, which is
directed acyclic graph (DAG). Any edge e € E is an ordered pair of vertices e = (v,w): and
direction of edge is from the first vertex v to the second vertex w. We assume that the
graph is weighted graph — any edge e = (v, w) has its labels (weight), c,,, , which is some
real number ¢,,, € R. For any node v we associate the set of parents of the node v:

pa(v) =={w € V:(w,v) € E} (1)
We define the set of root-nodes for the graph G:

gf (G) = {v € V:pa(v) = @0} (2)



With any node (gene) v € VV we associate the random variable (gene expression) M,,. The
random variables satisfy the following linear relations (structure equations): for any

v €& gf(G)
Mv = Zpra(v) CWUMW + &, (3)

where ¢, are i.i.d. random variable (intrinsic noise) with mean 0 and variance o2.
Moreover, for simplicity we suppose that there exists only one grandfather |gf (G)| =1
and let us denote it as a vertex o.

A path m(v,w) of length n from a vertex v to a vertex wis a sequence of edgese; =
(v, viz1),i = 1,...,n— 1, with v; = vand v, = w. The weight of the path W (rr(v,w)) is
the product of weights of edges from this path:

W(TT(U, W)) = l_[i CVi'Ui+1 ( 4 )
Let [1(v, w) be the set of all paths connecting nodes v and w. And let
W,w) = Znel’[(v,w) W(TT(U, W)) (5)

The graph coupled with expressions we consider as a model of regulatory signaling paths
system. The distribution of expressions within the system is determined by the topology
of the graph, weights and the distribution of expressions of root-nodes.

For example, let o be the root-node vertex and M(SP) and M(SQ) its expressions in these two
different states. Denote by d?,d the variance and standard deviation for root-node
expression in two states, and suppose that they do not depend on the state: d? :=

War(M(SP)) = Var (M(SQ)). Denote the mean changes in expression of root-node’s gene as

A= IEM(SP) - IEM(SQ). Expression for any non-root-node vertex v can be expressed for any
state S € {P, Q} by the formula:

M = MPW (0,0) + Zweno e W W, v) (6)
The mean change in the expression of a gene v € I\ o is given by:

Ayi= EMP) — EMQ = A, W (0, v). (7)
Moreover, forany S € {P,Q}:

cov(Ml(,S),M‘fvs)) = d*W (o, )W(0o,w) + Xyren\o af,W(v’, VWw',w) (8)



Definition. We say that a pair of genes v,w € V satisfy expected correlation inequality if
and only if

A, Ay, cov(MISP),M‘EVP)) = 0, A, A, cov(Ml(,Q),M&,Q)) =0 (9)

If (9) holds then we say that the two gene expressions M,EP),M‘S,P) or M,SQ),M&,Q) have
expected correlations. If one or both expected correlations inequalities are not satisfied,

we say that MISP), M&,P) or Mng), M‘S,Q) have unexpected correlations.

Note that in the considered model, by (8) the co-variations in (9) do not depend on a
state: cov(MIEP),M‘EVP)) = cov(MéQ),M‘EVQ)). This independence means that we can use

co-variation only in one state in our definition. In this case the following statement takes
place.

Lemma 1. For any finite DAG network with linear relations between variables there exists
some o such that if 62 < 6¢ for any v € V, then there are no unexpected correlations
into the network.

Proof. Direct from formulas (7), (8). By definition (9) and by representations (7), (8) we
have:

A, A, cov(MISP), M‘SVP)) =
AZW (0, v)W (0, w) (d*W (0, V)W (0, W) + Tyrno 65 W W, )W (¥, W) =
A2d2W2(0,v)W2(0,w) + A2W (0, V)W (0, W) Xprno W (0, )W (¥, W) (10)

Here the first term is necessarily positive and the second can be made arbitrarily small by
choice of avZ, small enough for all v’ € V. Thus A, A, cov(MISP),M‘SVP)) can always be

made positive (implying that there are no unexpected correlations) by a choice of a
sufficiently small variance o2. This statement is precisely Lemma 1.

The formula (8) shows that any link/correlation between two nodes in a network can be
represented as a sum of two parts: causal propagation from causal node and noise
propagation part:

cov(Ml(,S),M‘fvs)) =d?W (o, V)W (0,w) + X0 af;W(v’, vWw',w) (11)

causal propagation noise propagation

Here, it is easy to see that if the root-node variance d? increases, then the causal
propagation will determine the sign of the covariance after some threshold. It means that
it determines a link to be expected or unexpected.



Moreover, Lemma 1 says that if we observe in such regulation networks (DAGs with linear
relationships between variables) unexpected correlations, it means that they appeared as
a result of noise propagation within the network. Thus, the proportion of unexpected
correlation reflects the noise level in a network (to the extent to which this mathematical
framework, or that generalized in Section I1.2 below, accurately reflects the system being
modeled).

Note 1. The concept of expected correlations was also observed in VanderWeele and
Robins, 2010, as a rule governing the relationship between monotonic links and the sign of
covariance between variables.

Note 2. The linear relations between variables can be generalized: the expression X,, =
fv({Xw}vIEpa(v) ; ev), where f,, is a monotone function, and &, is internal network noise. If

structural functions are monotonic function, then the lemma holds also.

Estimation of noise. Error estimation is based on the following: if two genes belong to two
independent subnetworks (see Figure 2a), then the correlation between their respective
expression levels has to be equal to 0. Observable correlations, however, can be
significantly different from O due to noise, in which case the observable correlation is
positive (or negative) in roughly 50% of the cases (see formula (22)). On average, then,
half of all random correlations between any pair of genes from unrelated subnetworks can
be classified as unexpected, as in (9). Thus 2 - PUC can be used as an estimate of total
error.

Moreover, it is possible to prove for tree like graphs that within one network the noise
propagation (see the formula (12)) has the same property as stated in formula (22).

Indeed, the representation (6) means that any variable MISS) can be decomposed into the
causal component X(SS)W(O,U) and the noise component 555): = Ywero e‘g,s)W(w, V).

Then the covariance between 5,55) and E‘S,S) can be calculated exactly (compare with
formula (10))

cov(&,657) = Tuey GZW (W V)W (1, w). (12)

If c,» are mutually independent, identically distributed, with positive probabilities for
being positive or negative, then the covariance (12) for any S € {P, Q} will be negative
approximately in half of all cases.

Note that our results are related to mathematical aspect of the phenomenon. In practice
we deals with observations, and we should estimate the corresponding variables such as
covariances and mean values. Let
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be observation matrices for two equilibrium states P and Q, wherex is the observed
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(Q) is the

is the number of samples we have for the state P; and, correspondingly, x
observed expression level of i-th gene, i =1,...,p, in state Q in j'-th sample j'=
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Estimation of mean difference of i-th gene, A;, between states we denote A;:= x(P)

(Q) . And denote ", (@ empirical correlation between geneiandi’ in state P and Q.
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The statistical analogy of our definition of expected and unexpected links will be the
following.

Definition. An edge e € E is called an expected link between genes i,j € {1, ...,p} if and
only /fA A r( )>0 andA A r(Q) > 0. An edge which is not an expected link is said to be

an unexpected link.

Moreover, in practice we calculate correlation matrix only for one of the state of main
interest. For example, in cancer study, first we choose only differentially expressed genes,
i.e. the genes which have statistical significant difference Ei, and calculate correlations
using only observation sampled from cancer group. Indeed, in practice if for some genes i

and j in a state P the condition A A r( ) > 0 holds true, then extremely rarely cases when

the condition Al-Ajrig.Q) > (0 does not hold in state Q. Let the state P be the our main

interest state, then the PUC calculation will be the following.

input: X x@;.
1. choose a set V of differentially expressed genes i: ﬁﬁt 0;

2. calculate correlation matrix with elements r( ) for [,j from the setV;

3. choose a set of edges E of statistically significant correlations (i, j): rig.P) * 0;

let |E| be the number of edges into the set of edges E;



~

4. choose a set U of unexpected links from the set E: (i,j) € E s.t. EiAjriS.P) <0;

let |U| be the number of edges into the set of edges U;

output: PUC = |U|/|E|; error= |U|/(|E| — |U]).

11.2. Definitions and generalization.

Here we study the concept of unexpected links in a more general framework. The positive
and negative correlation inequalities are an active research direction in the field of
probability and statistical mechanics. We believe these inequalities will allow us to
generalize the concept of unexpected correlations in the PUC method. The following
framework connects FKG (Fortuin—Kasteleyn—Ginibre) inequality in Statistical Mechanics
to the concept of expected and unexpected links.

Let () be the underlying sample space of a biological system. As an example of a biological
system we consider a gene regulatory network, where () represents the set of all possible
gene expression configurations. We can suppose that the state space () has an ordering

(or partial ordering) “<” assigned to pairs of its elements.

Definition. A random variable X = X(w) is said to be increasing if w < w' implies
X(w) < X(w"). Similarly, a random variable is decreasing if w < w' implies X(w) >
X(w"). Both types of random variables, increasing and decreasing, are said to be
monotone random variables.

In the field of statistical mechanics and probabilistic combinatory, the FKG inequality
(Fortuin—Kasteleyn—Ginibre inequality) explains most of the results involving monotone
random variables and monotone (increasing or decreasing) events. It states that for two
increasing random variables X and Y,

E(XY) = E(X)E(Y) (13)

In some applications, such as percolation models, partial ordering of (2 is sufficient for the
FKG to hold (Grimmett, 1999). Many important results in applied mathematics and
physics, such as the exact value of critical probability in two-dimensional percolation
models, would have been impossible without the FKG inequality.

Let G = (V,E) be a graph (network) with vertices (nodes) V and edges E. Nodesv € V
represent the genes. Let X,,(w) be monotone functions (random variables) assigned to
each node v € V. Here X, represents the noiseless gene expressions. In this framework it



is convenient represent the state system as a probability measure. Consider two
probability measures P and Q over (2 such that forallw € (2:

PlceN:c<w)=2Q(cEN:0<w) (14)

Here P and Q correspond to the two states of a biological system. Let us denote, as
before, A,:= Ep[X,] — Eq[X,]. We repeat the definition of expected and unexpected
links.

Definition. We say that random variables X,, and X,, modeling gene expressions in a pair of
genes satisfy expected correlation inequality if and only if

A, Ay, covp (X, X)) = 0, A, Ay covy(Xy, Xy) = 0, (15)

in which case we say that the two gene expressions X,, and X,, have expected correlations.
If one or both expected correlations inequalities are not satisfied, we say that X,, and X,
have unexpected correlations.

Lemma 2. If X, and X,, are monotone functions, and probability measures P and Q satisfy
the condition (13), then X,, and X,, satisfy expected correlation inequality (or X,, and X,
have expected correlations).

Proof. Indeed, if X,, is an increasing (decreasing) variable, then A,< 0 (A,= 0). Now, if
both X,, and X,, are either increasing or decreasing the FKG inequality (13) implies non-
negative correlations, so that for any state S € {P, Q}

covs(X,, X,): = E¢[X, X, ] — Es[X,]Es[X,] =0, Vu,veEV, (16)
which implies expected correlation inequalities (15).

Similarly, if one of the two variables (i.e. X;, or X;,) is increasing while the other is
decreasing, the FKG inequality (13) implies non-positive correlations, such that for any
state S € {P, Q},

COUS(Xu'Xv): = ES [XuXv] - IE:5 [Xu][ES [Xv] < 0; YuveE |4 ( 17 )

implying (15) hold once again. It proves the Lemma 2. O

Next, let £, denote the errors for each node v € V. We assume that the random variables
&, v €V are functions over a probability space Z, independent from any probability



measure over ), such as P and Q. Let u be the joint distribution of &, v € V and E, [&,]1 =
0 forany v € V. The measured gene expression we quantify as a random variable

M,=X,+¢&, veV, (18)

over the product space 2 X Z, and the two different states of a biological system
correspond to two different probability product measures, P X p and Q X u. Note that for
any gene v:

]EPX[L[MU] - Equ [Mv] = [EP [XU] - IE:Q [Xv] ::Av (19)
The following Lemma is an analogous of the Lemma 1 for the general framework.

Lemma 3. If the variances of errors a; = Var(&,) are small enough for allv € V, then
the pairs of measured gene expression M,, will also satisfy the inequalities (15). Thus in the
noiseless networks we foresee no unexpected correlations.

Proof. The proof is a direct consequence of the covariance calculation.

CoVsxu (My, My) = cOVgyy (Xy + Sy, Xy + &) = covs(Xy, Xy) + cov, (§u, ) (20)
By Cauchy-Schwarz inequality

|covs(§u $v)| < 0y, (21)

the second covariance in (19) can be made so small that the sign of covg(M,,, M,,) and the
sign of covg(X,, X,,) will coincide. This proves Lemma. O

However in the noisy networks, the expected correlations rule (14) can be violated. Here
the fraction of edges (u, v) violating (15) that we call the Proportion of the Unexpected
Correlations (PUC) becomes an estimator of the frequency of false edges.

11.3. PUC represents 50% of erroneous.

For anyu,v € V;S € {P,Q}; and u € £, let us assume that the error random variables
¢y, v € V have the following asymptotic property, cov, ($y, $y) is positive for half of the

(|‘2/|) edges (u, v), and negative for the rest of the pairs:

#[(u,v): cov#(fu,fv)>0} — 1 #[(u,v): Covﬂ(fu,fv)<0} 1
V] — My|-e V] -7
(5) (7)

2
If the covariance covsy,(My, M,) is of a different sign than covs(X,,X,) (i.e. if a

lim|V|_>oo ( 22 )

particular correlation (u, v) is unexpected), it must hold that (see (20)):



CoVgx yu(My,My) covs(Xy,Xy) covs Xy, Xy) 2 covs(Xy,Xy)
2 = <0. (23)
(Covﬂ(fu,fv)) covy (§u,éy) covy (§u.év)

covs(Xy,Xyp)

This condition is of the form R? + R < 0, where R = 2
Covu(fu'fv)

which trivially has the

solution:

1 _ covp(§udv) < _1

R covs(Xy,Xy) (24)

The resulting inequality is satisfied under two conditions, which are thus requisite for a
correlation to be unexpected, namely:

ICO’UH ('Su; 617) | > |COUS (Xu' Xv)l ( 25 )
cov, (&, $v)covs(Xy, X,) <0 (26)

The first condition (25) is interpreted as a drowning out of the causal link between two
nodes by error; that is, the magnitude of error in the correlation between two nodes’
expressions is greater than the magnitude of real correlation between them. The second
condition (26) is interpreted as a counteracting of error to causal connections: the
contribution to the empirical correlation between two nodes due to error must counteract
the contribution due to causal mechanisms.

Condition (26) implies that, given the condition (22) for error distribution, PUC will
statistically detect 50% of total false correlations for which the causal contribution is
negligibly small, as the signs of the error and causal contribution are equally likely to be
the same as they are to be opposite.

11.4. Unexpected correlations under non-monotonicity.

Here we prove the proposition in the conclusion about non-monotonic links. The
statement says that a non-monotonic link between two nodes with an unexpected
correlation cannot cause a transition between two distinct states of a network. We
provide an extreme example of non-monotonicity, in which the dependence between two
nodes changes in sign in the two states of a network (e.g. stimulation in one state of a
biological system and inhibition in the other).

Assume we are given n+ 2 gene expressions in two biological state P and Q :
Xp,Yp, X1 p) s Xnp and X, Yy, X1, ..., Xpno - We assume linear (or almost linear)
dependence of Y on X within any one given biological state, stated as follows: Y, =



apXp +¢&p and ¥y = apXy + &, where &p is a function of X;p,...,X,p, and &, is a
function of X, 4,...,Xno, and apay # 0. We suppose that Xp (X,) and &p (&) are

independent. Recall that all gene expression values are positive and remember that
AX = Ep[X] — Eo[X] = E[Xp] — E[X,].

Lemma 4. Suppose apay < 0 (implying that the relation between X and Y is non-
monotonic), then:

(a) X and Y have unexpected correlations.
(b) The sign of AY may not depend on the sign of AX, but instead mostly depends on
the sign of AE.

Proof. Observe that, due to independence of X (X,) and &p ($p):
covp(X,Y) = cov(Xp, Yp) = apVar[Xp], (27)
covy(X,Y) = cov(Xy, Yy) = apVar[Xy). (28)

Therefore, covp(X,Y)covy(X,Y) < 0 (so that the expected correlation inequalities do
not hold simultaneously) if and only if apay < 0. This proves the item (a) of the lemma.

Let us prove (b). Without loss of generality, covp(X,Y) < 0, implying ap < 0 and ay > 0.
Hence:

AY = E(Yp — Yy) = E(apXp — apXy) + E(&p — &) (29)

Note that [E(aPXP - aQXQ) < O regardless of the values of Xp and X, (both of which are

strictly positive). Thus in the case A§ > 0 the change AY will still be negative. The sign of
AY will be positive only if A& >> 0.



lll. Simulations using GeneNetWeaver.

We tested PUC using GeneNetWeaver (GNW), a software package designed for rigorous
testing of gene network inference methods. We used GNW to generate various networks
ranging in size from 40 to 740 nodes, each broken into two disjoint subnetworks in a
similar manner as with the previous simulations. Distinct equilibrium network states were
made by performing a 50% knockdown on the node in each subnetwork with the most
connections. Networks were simulated 100 times both stochastically and analytically. In
the case of analytic simulations, in order to get distinct equilibria in different simulations
all genes were given normally distributed microperturbations, i.e. proportional up/down
regulations with mean 0 and a standard deviation of 1.25%. After each simulation, we
selected those genes which were differentially expressed with FDR < 0.01%, and
calculated correlations between them in each class separately. We computed PUC and
true error for the resulting regulatory networks consisting of at least 20 nodes at various
FDR cutoffs. The results are summarized in figures S3 a,b
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Figure S3. Comparison between PUC and FDR in networks simulated by GNW.

X axes represent actual error; y axes actual error (black line), PUC- blue dots, FDR -red
dots (Benjamini-Hochberg- left panel; Benjamini-Yekutieli- right panel).



proportion of error

Figure S4. PUC, FDR-BH (a,c), FDR-BY (b,d) and error in networks of different sizes (number
of nodes) simulated by GNW. Panels a) and b) show values for each metric (PUC, FDR or
error). Panels c) and d) show the distance from error for FDR and PUC. Overall, PUC is
closer to error than FDR.

a) b)
0.6 7 0.6
O
+0
0.5 o N 0.5
o
04 O 504
Oo - o
O PUC c O puc
0.3 €@OI'D)—0® S 0.3 0NN ———e—ed
@ +FDR—BH g Cp O +FDR—BY
02 + O-~0O 202 % oo
@) O error a O error
01 Fognd ¢ & 01 o
0 ‘ ‘ ‘ ‘ 0 o@D 6@
0 50 100 150 200 0 50 100 150 200
Network size (nodes) Network size
c) d)
0.6 0.4 -
0.5 o
S
s 603 (
T 0.4 2 ‘FQ‘. (I
£ o 0) °
203 g s
o OPUC 0.2 o @ OPUC
g 3
'..3 0.2 .FDR—BH § .FDR-BY
© 2
0.1 ©0.1 - O
o
0 ‘ X o
200 0 ’(M)@Z)% T CD\ 1
0 50 100 150 200

Network size .
Network size



List of datasets from BRB Array Tools Archive used for analysis:
GEO IDs:

GDS1021, GDS232, GDS408, GDS470, GDS484, GDS507, GDS531, GDS535, GDS536, GDS619,
GDS690, GDS715, GDS760, GDS806, GDS838, GDS845-8, GDS884, GDS971, GDS978.

Note: for datasets that we could not find GEO ID we provide PUBMED IDs. All datasets were
downloaded from BRB Array Tools Archive.

PUBMED IDs:

PMID:10359783, PMID:11707567, PMID:12925757, PMID:15548776, PMID:11707590.
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