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Abstract. This paper concentrates on breaching the gap between the Smoluchowski
coagulation equations for Marcus-Lushnikov processes and the theory of random graphs.
It is known that in many cases the cluster dynamics of a random graph process can
be replicated with the corresponding coalescent process. The cluster dynamics of a co-
alescent process (without merger history) is reflected in a auxiliary process called the
Marcus-Lushnikov process. The merger dynamics of the Marcus-Lushnikov processes
will correspond to a greedy algorithm for finding the minimal spanning tree in the re-
spective random graph process. This observation allows one to express the limiting mean
length of a minimal spanning tree in terms of the solutions of the Smoluchowski coagu-
lation equations that represent the hydrodynamic limit of the Marcus-Lushnikov process
corresponding to the random graph process.

We concentrate on finding the limiting mean length of a minimal spanning tree on
an irregular graph. Specifically, an Erdős-Rényi random graph process on the bipartite
graph Kα[n],β[n] is considered with α[n] = αn + o(n) and β[n] = βn + o(n). There,
the following expression for the limiting mean length of the minimal spanning tree is
derived via the Smoluchowski coagulation equations of the Marcus-Lushnikov processes
with multidimensional weight vectors:

lim
n→∞

E[Ln] = γ +
1

γ
+

∑
i1≥1; i2≥1

(i1 + i2 − 1)!

i1!i2!

γi1ii2−11 ii1−12

(i1 + γi2)i1+i2
,

where γ = α
β . This is a completely new formula for the case of an irregular bipartite

graph γ 6= 1. In the case of γ = 1, the above series adds up to

lim
n→∞

E[Ln] = 2ζ(3)

as derived in Frieze and McDiarmid [14] for a regular bipartite graph. A generalization
of the approach is considered in the discussion section.

1. Introduction

We begin with the following quote from Aldous [1]: It turns out that there is a large
scientific literature relevant to the Marcus-Lushnikov process, mostly focusing on its de-
terministic approximation. Curiously, this literature has been largely ignored by random
graph theorists. The broader goal of this paper is in breaching the gap between the theory
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of the Smoluchowski coagulation equations for the Marcus-Lushnikov processes and the
random graph theory. This paper concentrates on extending the connection between coa-
lescent processes and random graph processes, e.g. Erdős-Rényi random graph evolution
as described in Subsection 2.1. In particular, deriving a formula for the limiting length
of the minimal spanning tree in a random graph process in terms of the solutions of the
Smoluchowski coagulation equations for the corresponding coalescent process.

In this paper we will concentrate on analyzing the length of the minimal spanning tree
as the prime example that demonstrates the usefulness of the Marcus-Lushnikov processes
and the coalescence theory in general for answering questions about random graphs. We
recall that the asymptotic limit for the mean length of a minimal spanning tree on Kn

was derived in Frieze [13], lim
n→∞

E[Ln] = ζ(3) =
∞∑
k=1

1
k3

. The mean length of a minimal

spanning tree on the complete bipartite graph Kn,n was shown to be lim
n→∞

E[Ln] = 2ζ(3).

See [14]. In Beveridge et al [5], the minimal spanning tree problem was addressed for
d-regular graphs. In this paper we will concentrate on finding lim

n→∞
E[Ln] for irregular

bipartite graphs by means of developing a connection between the coalescence theory and
the random graph theory.

We observe that in many cases the cluster dynamics of a random graph process can
be replicated with the corresponding coalescent process. For example, the Erdős-Rényi
random graph process on Kn can be tied to the n-particle multiplicative coalescent, and
there are many other, more elaborate examples. The cluster dynamics of a coalescent
process (without merger history) is reflected in a auxiliary process called the Marcus-
Lushnikov process. The merger dynamics of such coalescent processes corresponds to a
greedy algorithm for finding the minimal spanning tree in the respective random graph
process. This observation allows us to express the limiting mean length of a minimal
spanning tree in terms of the solutions of the Smoluchowski coagulation equations that
represent the hydrodynamic limit of the Marcus-Lushnikov process corresponding to the
random graph process. At the end of Subsection 2.3 a general approach for finding
lim
n→∞

E[Ln] via the Smoluchowski coagulation equations is proposed. As a particular

application of the proposed general approach, we find the asymtiotics for the mean length
of a minimal spanning tree on the complete bipartite graph Kαn,βn in Section 3. Observe
that for α 6= β, the asymmetric complete bipartite graph Kαn,βn is an irregular graph.

2. Erdős-Rényi process on Kn and multiplicative coalescent

2.1. Erdős-Rényi random graph. Recall that Erdős-Rényi random graph is a model
on a complete graph of n vertices, Kn, where each edge e of

(
n
2

)
edges there is an associated

uniform random variable Ue over [0, 1]. The random variables {Ue}e are assumed to be
independent. For the “time” parameter p ∈ [0, 1], an edge e is considered “open” if Ue ≤ p.
Erdős-Rényi random graph G(n, p) will consist of all n vertices and all open edges at time
p. The number of open edges is a binomial random variable with parameters

(
n
2

)
and p,
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and mean value
(
n
2

)
p ∼ pn2

2
. As we increase p, more and more edges open up, new clusters

are created, and cluster merges occur. Thus Erdős-Rényi random graph model can be
viewed as a dynamical model that describs an evolution of a random graph [7].

If we condition on the number of edges in G(n, p), the graph structure will no longer
depend on p. Let ξn,N be the number of components in an Erdős-Rényi random graph
with n vertices and N edges. For t > 0, letting N ∼ tn

2
, Theorem 6 in [7] by P. Erdős and

A. Rényi states that

(1)
E[ξn,N ]

n
=

1

t

∞∑
k=1

kk−2(te−t)k

k!
+Rt,

where the error term is

Rt =


O
(
1
n

)
if 0 < t < 1

O
(
logn
n

)
if t = 1

o(1) if t > 1

.

There ϕ(t) = 1
t

∞∑
k=1

kk−2(te−t)k

k!
reaches its maximum at t = 1, and ϕ(1) =

∞∑
k=1

kk−2e−k

k!
= 1

2
.

Let for t > 0,

(2) x(t) := min{x > 0 : xe−x = te−t}.
In other words x(t) is the unique x ∈ (0, 1] such that xe−x = te−t. Obviously, x(t) = t for
0 < t ≤ 1. It was pointed out by P. Erdős and A. Rényi that ϕ(t) in the equation (1) can
be represented via x(t) as follows,

ϕ(t) =
x(t)− x2(t)

2

t
.

Observe that here, since we are letting N ∼ tn
2

, parameter t is essentially equivalent to
np. So t is a scaled time parameter.

2.2. Multiplicative Coalescent. A general finite coalescent process begins with n sin-
gletons (clusters of mass one). The cluster formation is governed by a symmetric collision
rate kernel K(i, j) = K(j, i) > 0. Specifically, a pair of clusters with masses (weights)
i and j coalesces at the rate K(i, j)/n, independently of the other pairs, to form a new
cluster of mass i+ j. The process continues until there is a single cluster of mass n. See
[24, 2, 4, 3, 10] and references therein.

Formally, for a given n consider the space P[n] of partitions of [n] = {1, 2, . . . , n}. Let Π
(n)
0

be the initial partition in singletons, and Π
(n)
t (t ≥ 0) be a strong Markov process such

that Π
(n)
t transitions from partition π ∈ P[n] to π′ ∈ P[n] with rate K(i, j)/n provided that

partition π′ is obtained from partition π by merging two clusters of π of weights i and j. If

K(i, j) ≡ 1 for all positive integer masses i and j, the process Π
(n)
t is known as Kingman’s

n-coalescent process. If K(i, j) = i+ j the process is called n-particle additive coalescent.
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Finally, if K(i, j) = ij the process is called n-particle multiplicative coalescent. The so
called Marcus-Lushnikov process

MLn(t) =
(
ζ1,n(t), ζ2,n(t), . . . , ζn,n(t), 0, 0, . . .

)
is an auxiliary process to the corresponding coalescent process that keeps track of the
numbers of clusters in each weight category. Here ζk,n(t) denotes the number of clusters
of weight k at time t ≥ 0. See [20] and [19] for the original papers by Marcus and
Lushnikov. The latter work considered the gelation phenomenon emerging in some of
the Marcus-Lushnikov processes. The Marcus-Lushnikov process does not differentiate
between the clusters of the same weight, and therefore does not keep track of the merger
history of the n-particle coalescent process.

Let the number of vertices in a connected component of a random graph be referred
to as a weight of the cluster (or cluster size). Consider the Marcus-Lushnikov process
MLn(t) corresponding to the multiplicative coalescent process of n particles. Since the
coalescent process begins with n singletons, MLn(0) = (n, 0, 0, . . .). By construction, the
process MLn(t) describes cluster size dynamics of the Erdős-Rényi random graph process
G(n, p) with p = 1 − e−t/n. Here the scaled time parameter in the Erdős-Rényi process
is np = n

(
1 − e−t/n

)
∼ t. Thus the time scale is consistent with the one used in [7]

by P. Erdős and A. Rényi. This Marcus-Lushnikov process keeps track of the history of
cluster mergers and cluster sizes, but not of individual clusters’ history. Let ζk,n(t) be the
number of clusters of mass k in a multiplicative coalescent process of n particles at time

t. The deterministic dynamics of the limiting fractions ζk(t) = lim
n→∞

ζk,n(t)

n
is described by

the Smoluchowski coagulation equations [2, 23, 26] as follows

(3)
d

dt
ζk = −kζk

∞∑
j=1

jζj +
1

2

k−1∑
j=1

j(k − j)ζjζk−j (k = 1, 2, . . .) with ζk(0) = δ1,k.

We begin with
∑∞

j=1 jζj(0) = 1, and following McLeod [21], we have

d

dt

∞∑
j=1

jζj =
∞∑
j=1

j
d

dt
ζj = −

∞∑
i,j=1

ij2ζjζi +
1

2

∞∑
j=1

j−1∑
i=1

(
i+ (j − i)

)
i(j − i)ζiζj−i

= −
∞∑

i,j=1

ij2ζjζi +
1

2

∞∑
i,j=1

(
i+ j

)
ijζiζj = 0

provided convergence of
∞∑
j=1

j2ζj(t). Thus there exists a time Tgel ∈ [0,∞], defined as

Tgel := sup
{
t > 0 :

∞∑
j=1

j2ζj(t) converges
}
,
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such that the following conservation of mass formula is satisfied up to time Tgel,

∞∑
j=1

jζj(t) = 1.

Time Tgel > 0, if finite, is called the gelation time. The kernel function K(·, ·) for which
such Tgel < ∞ is called the gelling kernel. It is well known [21] that the multiplicative
kernel K(i, j) = ij is a gelation kernel with the gelling time Tgel = 1. Indeed, as it was
done in [21], the Smoluchowski coagulation equations reduce to

(4)
d

dt
ζk = −kζk +

1

2

k−1∑
j=1

j(k − j)ζjζk−j (k = 1, 2, . . .) with ζk(0) = δ1,k

which can be explicitly solved:

(5) ζk(t) =
kk−2tk−1

k!
e−kt for t ≥ 0.

The above reduced Smoluchowski system (4) is also known as the Flory’s coagulation
system of equations (named after Flory [12]). Notice, that for the solution (5) of system
(4), 

∞∑
k=1

kζk(t) = 1 if t ≤ Tgel
∞∑
k=1

kζk(t) < 1 if t > Tgel.

The phenomenon of loosing total mass after a certain finite time Tgel is called gelation. It
is an important phenomenon that was studied extensively in the coagulations equations
literature. See [1, 2, 28, 17, 19].

The hydrodynamic limit lim
n→∞

ζk,n(t)

n
= ζk(t) is proven in formula (41) of Subsection 4.2 of

this paper, where for a fixed time T > 0, it is shown that

lim
n→∞

sup
s∈[0,T ]

∣∣n−1ζk,n(s)− ζk(s)
∣∣ = 0 a.s.

for each k ≥ 1. Also, for a given integer K > 0, we have

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣
K∑
k=1

n−1ζk,n(s)−
K∑
k=1

ζk(s)

∣∣∣∣∣ = 0 a.s.
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Recall the function x(t) defined in (2). It was observed in [21] that since
∞∑
k=1

kk−1(te−t)k

k!
=

x(t), the first moment of ζk,
∞∑
k=1

kζk(t) =
1

t

∞∑
k=1

kk−1(te−t)k

k!
=
x(t)

t
.

Thus,
∞∑
k=1

kζk(t) = 1 if and only if t ≤ 1, and
∞∑
k=1

kζk(t) < 1 for t > 1. Therefore

Tgel = 1.

It is important to observe that we are interested in the solution ζk(t) (as in (5)) of the
reduced system (4) of Smoluchowski coagulation equations as the hydrodynamic limit of
ζk,n(t)

n
over the whole time interval [0,∞). The reason for considering t ∈ [0,∞) is based

on mass conservation property in the Marcus-Lushnikov processes for all t ≥ 0:
∞∑
k=1

k
ζk,n(t)

n
= 1.

While for the solution of (3), the mass is conserved only until Tgel, and
∞∑
k=1

kζk(t) < 1

for t > Tgel = 1. As we know, in the Erdős-Rényi process, Tgel corresponds to a time after
which a single giant component emerges, and continues to absorb components of smaller
size. The giant cluster dynamics is unobserved in (3), while the reduced Smoluchowski
system (4) captures its influence on the dynamics of the smaller size clusters.

Indeed, in [7], P. Erdős and A. Rényi showed that the cycles are rare for a given fixed t > 0,
and the clusters of size k at time t consist mainly of isolated trees of order k. Specifically,
if τk denotes the number of isolated trees of order k, Theorem 4b in [7] asserts that

(6) lim
n→∞

kE[τk]

n
=
kk−2tk−1

k!
e−kt = ζk(t)

and

(7) lim
n→∞

∞∑
k=1

kE[τk]

n
= lim

n→∞

n∑
k=1

kE[τk]

n
=
x(t)

t
.

Moreover, Theorem 9b in [7] proves the emergence of one giant component after Tgel = 1.
There, if we let γn(t) denote the size of the greatest component at time t, then

lim
n→∞

γn(t)

n
= 1− x(t)

t
in probability.

So the dynamics of g(t) := 1−
∞∑
k=1

kζk(t) = 1− x(t)
t

represents the asymptotic size of the

giant component.
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2.3. The length of the minimal spanning tree in Kn. Recall that in the construction
of the Erdős-Rényi random graph model, each edge e of the complete graph Kn had
a random variable Ue associated with it. Here we considered Ue to be uniform over
[0, 1]. However, in general, various types of probability distributions are considered in the
extensive literature on the topic. Now, thinking of Ue as the length of the edge e, one can
construct a minimal spanning tree on Kn. Let random variable Ln denote the length of
such minimal spanning tree. The asymptotic limit of the mean value of Ln was considered
in Frieze [13]. There, the results (6) and (7) from P. Erdős and A. Rényi [7] are used in
proving the following limit

(8) lim
n→∞

E[Ln] =

∞∫
0

x(t)

t
dt =

∞∑
k=1

∞∫
0

kk−2tk−1

k!
e−ktdt = ζ(3),

where ζ(3) =
∞∑
k=1

1
k3

= 1.202 . . . is the value of the Riemann zeta function at 3.

Consider a coalescent process with a kernel K(x, y) for which Tgel < ∞ has been
proved. See [1, 17]. Then for a corresponding random graph model, we use the following
S. Janson’s formula [16]

(9) lim
n→∞

E[Ln] = lim
n→∞

1∫
0

E[κ(G(n, p))]dp− 1,

where κ(G(n, p)) is the number of components in the Erdős-Rényi random graph G(n, p),
and prove the following statement.

Theorem 2.1. The average length of the minimal spanning tree of the corresponding
graph is

(10) lim
n→∞

E[Ln] =
∞∑
k=1

∞∫
0

ζk(t)dt,

where ζk(t) are the solutions (5) of the corresponding system of Smoluchowski coagulation
equations (4).

Observe that the above equation (10) is consistent with result (8) of Frieze [13].

We already observed that the Marcus Lushnikov process MLn(t) corresponding to the
multiplicative coalescent process that begins with n singletons is equivalent to the cluster
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size dynamics in the process G(n, 1− e−t/n). Here

lim
n→∞

E[Ln] = lim
n→∞

1∫
0

E[κ(G(n, p))] dp− 1 = lim
n→∞

∞∫
0

1

n
E[κ(G(n, 1− e−t/n))]e−t/ndt− 1

= lim
n→∞

∞∫
0

∞∑
k=1

1

n
E[κer(k, n, 1− e−t/n)]e−t/ndt− 1

= lim
n→∞

∞∫
0

∞∑
k=1

E[ζk,n(t)]

n
e−t/ndt− 1,

where κer(k, n, p) is the number of components of size k in G(n, p) and p = 1 − e−t/n.
Therefore, one could informally calculate the limit as follows:

lim
n→∞

E[Ln] =
∞∑
k=1

∞∫
0

ζk(t)dt+ lim
n→∞

∞∫
Tgel

1

n
e−t/ndt− 1

=
∞∑
k=1

∞∫
0

ζk(t)dt+ lim
n→∞

e−Tgel/n − 1 =
∞∑
k=1

∞∫
0

ζk(t)dt,(11)

Here
∞∫

Tgel

1
n
e−t/ndt represents the emergence of one giant component at time Tgel = 1.

Beveridge et al [5] extended S. Janson’s formula (9) to all connected graphs with i.i.d.
uniform [0, 1] edge lengths:

E[Ln] =

1∫
0

E[κ(G(n, p))]dp− 1.

This allows us to state our general objective as follows. Consider a Marcus-Lushnikov
processes equivalent to the cluster size dynamics in a general random graph model. The
solutions ζk(t) for the corresponding reduced Smoluchowski coagulation equations are

considered with k in a certain index space, e.g. k ∈ Z2
+ \
{[

0
0

]}
in the model analyzed

in Section 3. In case of a gelling kernel, the following generalization of formula (10) is
proposed as a method for computing the mean length of the minimal spanning tree:

lim
n→∞

E[Ln] =
∑
k

∞∫
0

ζk(t)d(t).
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2.4. Proof of Theorem 2.1. Here we give a rigorous proof of the approach in formula
(11). Note that unlike the original proof in Frieze [13], our proof will not rely on knowing
the distribution of sizes and the geometry of clusters in the Erdős-Rényi process as pro-
vided in [7]. Nor will it require knowing anything about large clusters or the emergence
of a unique giant component at time Tgel = 1. All that we use is the weak convergence
results of Kurtz [9, 18] that we applied to the Marcus-Lushnikov processes in Section 4.

Proof. Observe that

(12) lim
t→∞

∞∑
k=1

kζk(t) = lim
t→∞

∞∑
k=1

kk−1tk−1

k!
e−kt = lim

t→∞

x(t)

t
= 0.

Thus, for any given ε ∈ (0, 1/4), we can fix T � Tgel so large that

(13)
∞∑
k=1

kζk(T ) ≤ ε

2
.

Notice that the above inequality (13) ties T to ε.

Fix integer K > 0. Since we know from Section 4 that lim
n→∞

ζk,n(t)

n
= ζk(t) a.s. over the

interval [0, T ] for all k ∈ {1, 2, . . . , K}, the probability of the complement of the event

(14) Qε
K,T,n :=

{
K∑
k=1

kζk,n(T )

n
≤ ε

}

is decreasing to zero as n→∞. Moreover,

qεK,T (n) := P (Qε
K,T,n) = o(n−1)

by equation (47) in Subsection 4.4.



10 YEVGENIY KOVCHEGOV, PETER T. OTTO, AND ANATOLY YAMBARTSEV

We will split
∞∫
0

∞∑
k=1

E[ζk,n(t)]

n
e−t/ndt as follows.

∞∫
0

∞∑
k=1

E[ζk,n(t)]

n
e−t/ndt =

T∫
0

K∑
k=1

E[ζk,n(t)]

n
e−t/ndt (Term I)

+

T∫
0

∞∑
k=K+1

E[ζk,n(t)]

n
e−t/ndt (Term II)

+
(
1− qεK,T (n)

) ∞∫
T

K∑
k=1

E[ζk,n(t) | Qε
K,T,n]

n
e−t/ndt (Term III)

+
(
1− qεK,T (n)

) ∞∫
T

∞∑
k=K+1

E[ζk,n(t) | Qε
K,T,n]

n
e−t/ndt (Term IV)

+ qεK,T (n)

∞∫
T

∞∑
k=1

E[ζk,n(t) | Qε
K,T,n]

n
e−t/ndt (Term V)(15)

Next, we estimate the terms I-V in (15).

Term I. As it is proven in Section 4, lim
n→∞

ζk,n(t)

n
= ζk(t) a.s. on [0, T ] for all k =

1, 2, . . . , K. Therefore,

lim
n→∞

T∫
0

K∑
k=1

E[ζk,n(t)]

n
e−t/ndt =

K∑
k=1

T∫
0

ζk(t)dt.

Term II. Observe that,

∞∑
k=K+1

ζk,n(t)

n
≤ 1

Kn

∞∑
k=K+1

kζk,n(t) =
1

K

(
1−

K∑
k=1

kζk,n(t)

n

)
≤ 1

K
.

Thus,
T∫

0

∞∑
k=K+1

E[ζk,n(t)]

n
e−t/ndt = O

(
T

K

)
regardless of the value of n > 0.

Term III. Recall that in the theory of Marcus-Lushnikov processes the gel is the set of
all “large” clusters. By analogy, we define the K-gel to be the collection of all clusters of
mass bigger than K. Let MK gel(t) denote the total mass of all clusters in the K-gel at
time t ≥ 0.
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Now, conditioning on the event Qε
K,T,n, the mass of the K-gel is MK gel(t) ≥ (1 − ε)n for

all t ≥ T . Thus each cluster not in K-gel will be gravitating toward the K-gel with the

rate of at least
MK gel(t)

n
≥ 1− ε. Consider a cluster that was not in K-gel at time T . Let

T + L be the time it becomes a part of the K-gel. Then, its contribution to the integral
∞∫
T

K∑
k=1

E[ζk,n(t) | QεK,T,n]
n

e−t/ndt is at most

∞∫
T

E[1[T,T+L](t) | Qε
K,T,n]

n
e−t/ndt ≤

∞∫
T

E[1[T,T+L](t) | Qε
K,T,n]dt

n
e−T/n

=
E[L | Qε

K,T,n]

n
e−T/n ≤ 1

(1− ε)n
,

where

1A =

{
1 if t ∈ A
0 if t 6∈ A

.

The number of clusters not in K-gel at time t ≥ T is

K∑
k=1

ζk,n(t) ≤
K∑
k=1

kζk,n(t) ≤ εn.

Therefore,
∞∫
T

K∑
k=1

E[ζk,n(t) | Qε
K,T,n]

n
e−t/ndt ≤ εn

(1− ε)n
=

ε

1− ε
< 2ε.

Term IV. We let C = {C1, C2, C3, . . . , CM} denote the set of all clusters that ever ex-
ceeded mass K in the whole history of the process

{
MLn(t)

}
t∈[0,∞)

. There are less than

n/K such clusters, i.e. M < n/K. For each Ci, the emergence time ai is the time when
a pair of clusters of mass not exceeding K mergers into a new cluster Ci of mass greater
than K. We enumerate these clusters in the order they emerge.

Let Mi(t) denote the mass of cluster Ci at time t. Consider a pair of clusters, Ci and Cj,
coexisting in the K-gel at time t, each of mass smaller than n/2. We split their merger
rate into two by saying that Ci absorbs Cj with rate 1

2n
Mi(t)Mj(t), and Cj absorbs Ci

with rate 1
2n
Mi(t)Mj(t). In other words, Ci and Cj merge with rate 1

n
Mi(t)Mj(t), and

which one of the two clusters absorbs the other is decided with a toss of an independent
fair coin.

There is a finite stopping time

t∗ = min{t ≥ 0 : ∃Ci ∈ C with Mi(t) ≥ n/2}
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when a cluster Ci∗ has its mass Mi∗(t
∗) ≥ n/2. After t∗, the rules of interactions of cluster

Ci∗ with the other clusters in C change as follows. For t > t∗, Ci∗ absorbs Cj with rate
1
n
Mi∗(t)Mj(t), while Ci∗ itself cannot be absorbed by any other cluster in C.

Let bi denote the time when cluster Ci is absorbed by another cluster in collection C.
Naturally, there will be only one survivor Ci∗ with bi∗ = ∞. Let Ji = [ai, bi) ∩ [T,∞)
denote the lifespan of cluster Ci. Note that a cluster Ci from the set C existing at time
t ∈ [ai, bi) is absorbed into one of the clusters in the K-gel with the total instantaneous
rate of

λi(t) ≥
1

2n
Mi(t)

(
MK gel(t)−Mi(t)

)
.

Conditioning on the event Qε
K,T,n defined in (14), we have that if Mi(t) < n/2 for t ∈ Ji,

then the rate of absorption of Ci into the K-gel is

λi(t) ≥
1

2n
Mi(t)

(
(1− ε)n− 1

2
n

)
≥ 1

2n
Mi(t)

(
3

4
n− 1

2
n

)
≥ 1

8
Mi(t) >

K

8
.

Next,

(16)

∞∫
T

∞∑
k=K+1

E[ζk,n(t) | Qε
K,T,n]

n
e−t/ndt =

∞∫
T

1

n
e−t/ndt+ E

where
∞∫
T

1
n
e−t/ndt is due to the event Qε

K,T,n which guarantees the existence of at least one

component from C in the K-gel for all t ∈ [T,∞) and the second term E is responsible
for all the times t ≥ T when the number of clusters in the K-gel is greater than one. The
term E is bounded as follows

E ≤
∞∫
T

E

[ ∑
i: i 6=i∗

1Ji(t)
∣∣ Qε

K,T,n

]
n

e−t/ndt.

Now, each cluster Ci is gravitating towards the rest of the K-gel with the rate of at least
K/8. Thus, for each i 6= i∗,

∞∫
T

E
[
1Ji(t) | Qε

K,T,n

]
n

e−t/ndt ≤
E[|Ji| | Qε

K,T,n]

n
e−

T
n ≤ 8

nK
.

Hence, since the cardinality of set C is M < n/K,

E < n

K
· 8

nK
=

8

K2
,
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and from (16), we obtain

∞∫
T

∞∑
k=K+1

E[ζk,n(t) | Qε
K,T,n]

n
e−t/ndt = 1 +O(K−2) +O

(
T

n

)
as n→∞,

where the term O(K−2) does not depend on the value of n > 0.

Term V. Here

qεK,T (n)

∞∫
T

∞∑
k=1

E[ζk,n(t) | Qε
K,T,n]

n
e−t/ndt ≤ nqεK,T (n)

∞∫
T

1

n
e−t/ndt ≤ nqεK,T (n) = o(1).

Finally, by putting together the analysis in Terms I-V in the equation (15), we obtain for
a given fixed ε ∈ (0, 1/4), sufficiently large fixed T � Tgel satisfying (13), and arbitrarily
large K,
(17)
∞∫
0

∞∑
k=1

E[ζk,n(t)]

n
e−t/ndt =

K∑
k=1

T∫
0

ζk(t)dt+ 1 +O

(
T

K

)
+O(K−2) +O(ε) +O

(
T

n

)
+ o(1),

which, when we increase n to infinity will yield

lim sup
n→∞

∣∣∣∣∣∣
∞∫
0

∞∑
k=1

E[ζk,n(t)]

n
e−t/ndt−

∞∑
k=1

∞∫
0

ζk(t)dt− 1

∣∣∣∣∣∣ =
∞∑

k=K+1

T∫
0

ζk(t)dt+
∞∑
k=1

∞∫
T

ζk(t)dt

+O

(
T

K

)
+O(K−2) +O(ε).

Consequently, taking lim sup
K→∞

, we obtain

lim sup
n→∞

∣∣∣∣∣∣
∞∫
0

∞∑
k=1

E[ζk,n(t)]

n
e−t/ndt−

∞∑
k=1

∞∫
0

ζk(t)dt− 1

∣∣∣∣∣∣ =
∞∑
k=1

∞∫
T

ζk(t)dt+O(ε).

Finally, formula (13) guarantees that decreasing ε down to zero will propel T to +∞, and

lim
n→∞

∞∫
0

∞∑
k=1

E[ζk,n(t)]

n
e−t/ndt =

∞∑
k=1

∞∫
0

ζk(t)dt+ 1.

Thus we confirmed formula (10) for the case of the multiplicative coalescent process. �



14 YEVGENIY KOVCHEGOV, PETER T. OTTO, AND ANATOLY YAMBARTSEV

2.5. Gelation. Here, we would like to summarize the main results regarding the gelation
phenomenon. Consider a general system of Smoluchowski coagulation equations with a
positive symmetric kernel K(i, j) = K(j, i) > 0,

d

dt
ζj = −ζj

∞∑
j=1

K(i, j)ζi +
1

2

j−1∑
i=1

K(i, j − i)ζiζj−i (k = 1, 2, . . .) with ζj(0) = δ1,j.

Then, following [21], we use the above Smoluchowski coagulation equations to obtain

d

dt

∞∑
j=1

jζj =
∞∑
j=1

j
d

dt
ζj = −

∞∑
i,j=1

jK(i, j)ζjζi +
1

2

∞∑
j=1

j−1∑
i=1

(
i+ (j − i)

)
K(i, j − i)ζiζj−i

= −
∞∑

i,j=1

jK(i, j)ζjζi +
1

2

∞∑
i,j=1

(
i+ j

)
K(i, j)ζiζj = 0

provided convergence of
∞∑

i,j=1

jK(i, j)ζjζi. Therefore, letting

Tgel := sup
{
t > 0 :

∞∑
i,j=1

jK(i, j)ζj(t)ζi(t) converges
}
,

we have d
dt

∑∞
j=1 jζj = 0 for t ∈ [0, Tgel), which in turn implies

∑∞
j=1 jζj(t) = 1 for

t ∈ [0, Tgel).
The question whether Tgel <∞ is the question of whether gelation phenomenon occurs

in a given system of Smoluchowski equations. The first mathematical proof of gelation
was produced in McLeod [21] for the multiplicative kernel. Historically, that happened
around the time when the formation of a giant cluster was proved by P. Erdős and A.
Rényi [7]. The overlap in mathematical formulas obtained in the two papers, [21] and [7],
representing the two different branches of mathematics is quite remarkable. The work
of finding a mathematically solid proof of gelation phenomenon for other conjectured
gelling kernels began fifteen years later with a work by Lushnikov [19]. It continued
with publications of Ziff [29], Ernst et al. [8], van Dongen and Ernst [28], and many other
mathematicians and mathematical physicists. In Spouge [27], the gelation is demonstrated
numerically for the general bilinear kernel K(i, j) = A+B(i+ j) +Cij. While in Aldous

[1], the gelation is proved for K(i, j) = 2(ij)γ

(i+j)γ−iγ−jγ , where γ ∈ (1, 2). There γ = 2 would

correspond to the multiplicative kernel for which, as we know, gelatin also occurs. Jeon
[17] proved that complete and instantaneous gelation occurs if K(i, j) ≥ ijψ(i, j), where

ψ(i, j) is a function increasing in both variables, i and j, such that
∞∑
j=1

1
jψ(i,j)

< ∞ for

all i. This includes K(i, j) = (ij)α, α > 1, as a primary example.
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3. Erdős-Rényi process on Kαn,βn and cross-multiplicative coalescent

For α, β > 0, consider two integer valued functions, α[n] = αn + o(n) and β[n] =
βn+o(n). Consider an Erdős-Rényi random graph process on the bipartite graph Kα[n],β[n]

with α[n] vertices on the left side and β[n] vertices on the right side. There each edge e
of ∼ αβn2 edges has an associated random variable Ue. The random variables Ue are
assumed to be independent and uniform over [0, 1]. For the time parameter p ∈ [0, 1], an
edge e is considered open if Ue ≤ p. Erdős-Rényi random graph G(n, p) will consist of all
n vertices and all open edges at time p.

Next, consider a coalescent process corresponding to an Erdős-Rényi random graph pro-
cess on Kα[n],β[n]. Specifically, let each cluster connecting i1 vertices on the left side of
the bipartite graph with i2 vertices on the right side of the bipartite graph be assigned

a two-dimensional weight vector i =

[
i1
i2

]
. There i1, i2 ≥ 0 and i1 + i2 > 0. Define the

coalescence kernel as follows. For any pair of clusters with weight vectors i =

[
i1
i2

]
and

j =

[
j1
j2

]
, let

(18) K(i, j) := i1j2 + i2j1.

The coalescent process begins with α[n] + β[n] singletons, of which α[n] singletons are

of weight

[
1
0

]
and the other β[n] singletons are of weight

[
0
1

]
. There, each pair of

clusters of respective weights i and j would coalesce into a cluster of weight i + j with

rate K(i, j)/n. The last merger will create a cluster of weight

[
α[n]
β[n]

]
. We will call this

a cross-multiplicative coalescent process.

3.1. Smoluchowski coagulation equations. Consider the Marcus-Lushnikov process
MLn(t) that keeps track of cluster counts in the above defined cross-multiplicative coa-
lescent process that begins with the α[n]+β[n] singletons of the two types, α[n] of weight[

1
0

]
and β[n] of weight

[
0
1

]
. Specifically, let ζ

[n]
i1,i2

(t) denote the number of the compo-

nents in the cross-multiplicative coalescent process of weight i =

[
i1
i2

]
at time t. Then

MLn(t) is the infinite-dimensional process with coordinates ζ
[n]
i1,i2

(t), i.e.

MLn(t) =
(
ζ
[n]
i1,i2

(t)
)
i1,i2

.
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The Smoluchowski coagulation equations for the Marcus-Lushnikov process MLn(t) with
bipartite multiplicative kernel are written as follows:

d

dt
ζi1,i2(t) = −ζi1,i2(t)

∑
j1,j2

(i1j2 + i2j1)ζj1,j2(t) +
1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t)

(19)

with the initial conditions ζ1,0(0) = α and ζ0,1(0) = β.

A reduced system of differential equation corresponding to the above Smoluchowski coag-
ulation equations (19) will be given in (20). It will take into account the mass conservation
property of the above Marcus-Lushnikov process MLn(t), and therefore will represent the
smaller cluster dynamics over the whole time interval [0,∞).

First, we notice that here the initial total mass is
∑
i1,i2

(i1 + i2)ζi1,i2(0) = α + β. More-

over, the initial total ‘left mass’ is
∑
i1,i2

i1ζi1,i2(0) = α and the initial total ‘right mass’ is∑
i1,i2

i2ζi1,i2(0) = β.

Next, we consider the rate of change for the total left mass and the total right mass,
and use (19) to obtain

d

dt

∑
i1,i2

i1ζi1,i2(t) = −
∑

i1,i2,j1,j2

i1(i1j2 + i2j1)ζi1,i2(t)ζj1,j2(t)

+
1

2

∑
`1,k1,`2,k2

(`1 + k1)(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t) = 0

and

d

dt

∑
i1,i2

i2ζi1,i2(t) = −
∑

i1,i2,j1,j2

i2(i1j2 + i2j1)ζi1,i2(t)ζj1,j2(t)

+
1

2

∑
`1,k1,`2,k2

(`2 + k2)(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t) = 0

whenever
∑
i1,i2

(i1 + i2)
2ζi1,i2(t) converges. Thus in order to establish whether the kernel

defined in (18) is a gelling kernel, we need to consider whether

Tgel := sup
{
t > 0 :

∑
i1,i2

(i1 + i2)
2ζi1,i2(t) converges

}
is finite.
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Here, for t < Tgel,
∑
j1,j2

j1ζj1,j2(t) = α and
∑
j1,j2

j2ζj1,j2(t) = β. Therefore, for any i1 and

i2,
∑
j1,j2

(i1j2 + i2j1)ζj1,j2(t) = βi1 + αi2. Thus we can consider the following reduced

Smoluchowski coagulation equations:

(20)
d

dt
ζi1,i2(t) = −(βi1 + αi2)ζi1,i2(t) +

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t)

with the initial conditions ζ1,0(0) = α and ζ0,1(0) = β. Once again, the solutions of
Smoluchowski coagulation system (19) and the above reduced Smoluchowski coagulation
system (20) will match up until Tgel. Consecutively, the solution (24) of the reduced
Smoluchowski system of equations (20) will be used in Subsection 3.3 in establishing the
finiteness of the gelation time and for finding its value, Tgel.

The following hydrodynamic limit is proven in the equation (43) of Subsection 4.3. Fix a
pair of positive integers K1 and K2, and a real T > 0. Then,

lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]i1,i2
(s)− ζi1,i2(s)

∣∣∣ = 0 a.s.

for all i1, i2 ≥ 1. Consequently,

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣∣∣n−1
∑

1≤i1≤K1
1≤i2≤K2

ζ
[n]
i1,i2

(s)−
∑

1≤i1≤K1
1≤i2≤K2

ζi1,i2(s)

∣∣∣∣∣∣∣ = 0 a.s.

3.2. Solution ζi1,i2(t) of (20). Observe that as it was the case with the multiplicative
coalescent, we will consider the above reduced system of differential equations (20) over
the whole time interval [0,∞) because the mass conservation property∑

i1,i2

i1ζi1,i2(t) = α and
∑
i1,i2

i2ζi1,i2(t) = β

in the Marcus-Lushnikov process MLn(t) holds for all t ∈ [0,∞). Thus, while the solutions
to (19) and (20) are identical over [0, Tgel), the reduced system (20) continues to reflect
the dynamics of the smaller clusters even after Tgel.

Next, we want to find the solution ζi1,i2(t) of reduced system (20) for all t ≥ 0. Here we
observe that ζ1,0(t) = αe−βt and ζ0,1(t) = βe−αt, and extend the approach of McLeod [21]
by considering the solutions of the following form

(21) ζi1,i2(t) = αi1βi2Si1,i2e
−(βi1+αi2)tti1+i2−1
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and plugging them into the equation (20). After cancelations, we arrive with the following
recursion

(22) (i1 + i2 − 1)Si1,i2 =
1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)S`1,`2Sk1,k2

with the initial conditions Si,0 = S0,i = δ1,i. Here, Si1,i2 = Si2,i1 .

Here, we managed to solve the problem of finding Si1,i2 combinatorially.

Proposition 3.1. The system of equations (22) with the initial conditions Si,0 = S0,i =
δ1,i has the following unique solution

Si1,i2 =
ii2−11 ii1−12

i1!i2!
.

Proof. In Theorem 1.1(3) of [15], F. Huang and B. Liu generalize the Abel’s binomial
theorem as follows:

i1∑
k1=0

i2∑
k2=0

(
i1
k1

)(
i2
k2

)(
v + zi1 − zk1

)k2−1(− z(i1 − k1)
)i2−k2(−zk2)k1(u+ zk2)

i1−k1−1

=
[uv − i1i2z2]ui1−1vi2−1

(v + i1z)(u+ i2z)
(23)
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Then, we use (23) with z = −1 to confirm our candidate solution satisfies (22) by plugging
it into the right hand side of (22) as follows.

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)S`1,`2Sk1,k2 =
∑

`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

`1k2S`1,`2Sk1,k2

=
∑

`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2,

(k1,k2),(`1,`2)6=(0,0)

``21 `
`1−1
2 kk2−11 kk12
`1!`2!k1!k2!

=
1

i1!i2!

∑
k1: 0≤k1≤i1,
k2: 0≤k2≤i2,

(k1,k2)6=(0,0),(i1,i2)

(
i1
k1

)(
i2
k2

)
kk2−11 (i1 − k1)i2−k2kk12 (i2 − k2)i1−k1−1

=
1

i1!i2!
lim
v→i1,
u→i2

{ i1∑
k1=0

i2∑
k2=0

(
i1
k1

)(
i2
k2

)(
v − i1 + k1

)k2−1(i1 − k1)i2−k2kk12 (u− k2)i1−k1−1

− ii21 u
i1−1

v − i1
− ii12 v

i2−1

u− i2

}
=

1

i1!i2!
lim
v→i1,
u→i2

{ [uv − i1i2]ui1−1vi2−1

(v − i1)(u− i2)
− ii21 u

i1−1

v − i1
− ii12 v

i2−1

u− i2

}
=

1

i1!i2!
lim
v→i1,
u→i2

{i1vi2−1ui1−1
v − i1

+
ui1vi2−1

u− i2
− ii21 u

i1−1

v − i1
− ii12 v

i2−1

u− i2

}
Hence,

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)S`1,`2Sk1,k2 =
1

i1!i2!
lim
v→i1,
u→i2

{
i1u

i1−1v
i2−1 − ii2−11

v − i1
+ vi2−1

ui1 − ii12
u− i2

}

=
1

i1!i2!

(
(i2 − 1) · ii2−11 ii1−12 + i1 · ii2−11 ii1−12

)
= (i1 + i2 − 1)

ii2−11 ii1−12

i1!i2!

= (i1 + i2 − 1)Si1,i2

thus completing the proof. �

The solution of equations (20) follows from (21) and Proposition 3.1,

(24) ζi1,i2(t) =
ii2−11 ii1−12 αi1βi2

i1!i2!
e−(βi1+αi2)tti1+i2−1.
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3.3. Gelation in Kαn,βn. Next, we prove the finiteness of the gelation time

Tgel := sup
{
t > 0 :

∑
i1,i2

(i1 + i2)
2ζi1,i2(t) converges

}
.

From equation (24) we know that Tgel is the radius of convergence for the series

∑
i1,i2

(i1 + i2)
2ζi1,i2(t) =

∑
i1,i2

(i1 + i2)
2 i
i2−1
1 ii1−12 αi1βi2

i1!i2!
e−(βi1+αi2)tti1+i2−1.

Here, by Stirling’s approximation, Tgel solves 1− (α ∧ β)t+ ln((α ∨ β)t) = 0.

We also notice that the mass of the system in (20) is conserved until Tgel, after which it
begins to dissipate, i.e.

∑
i1,i2

(i1 + i2)ζi1,i2(t) = α + β if t ≤ Tgel∑
i1,i2

(i1 + i2)ζi1,i2(t) < α + β if t > Tgel.

3.4. The length of the minimal spanning tree on Kαn,βn via ζi1,i2(t). Once again,
let us consider Ue to be the length of the edge e. Then one can construct a minimal
spanning tree on Kαn,βn. Let random variable Ln denote the length of such minimal
spanning tree. We want to represent the asymptotic limit of the mean value of Ln via
ζi1,i2(t).

For a random graph process G(n, p) over Kαn,βn, Lemma 1 in Beveridge et al [5] implies

(25) E[Ln] =

1∫
0

E[κ(G(n, p))]dp− 1

provided the latter limit exists, where κ(G(n, p)) is the number of components in the
random graph process G(n, p) at time p. This will be used in establishing the following
theorem that will be proved in Subsection 3.5.

Theorem 3.2. The limiting mean length of the minimal spanning tree is

(26) lim
n→∞

E[Ln] =
∞∑
i1,i2

∞∫
0

ζi1,i2(t)d(t).
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Observe that if we plug-in the solutions (21) of the reduced system of Smoluchowski
coagulation equations (20) into the right hand side of (26), we get

∞∑
i1,i2

∞∫
0

ζi1,i2(t)d(t) =
α

β
+
β

α
+

∑
i1≥1: i2≥1

αi1βi2Si1,i2

∞∫
0

ti1+i2−1e−(βi1+αi2)tdt

=
α

β
+
β

α
+

∑
i1≥1: i2≥1

αi1βi2Si1,i2
(βi1 + αi2)i1+i2

(i1 + i2 − 1)!

= γ +
1

γ
+

∑
i1≥1: i2≥1

γi1Si1,i2
(i1 + γi2)i1+i2

(i1 + i2 − 1)!(27)

with γ = α
β
.

Next, by combining Proposition 3.1 with (27) we obtained the following main theorem.

Theorem 3.3. The limiting mean length of the minimal spanning tree is

lim
n→∞

E[Ln] = γ +
1

γ
+

∑
i1≥1; i2≥1

(i1 + i2 − 1)!

i1!i2!

γi1ii2−11 ii1−12

(i1 + γi2)i1+i2
.

Theorem 3.3 is consistent with [14], where it was shown that for α = β, lim
n→∞

E[Ln] =

2ζ(3). Indeed, we have the following Corollary reproducing the results in [14]. Observe
however that for α 6= β the bipartite graph is irregular and the results in Frieze and
McDiarmid [14] no longer apply.

Corollary 3.4. If γ = 1,
lim
n→∞

E[Ln] = 2ζ(3).

Proof. Abel’s binomial theorem [25] states that
n∑
i=0

(
n

i

)
(w + n− i)n−i−1(z + i)i = w−1(z + w + n)n.

Plugging-in z = w = −n, we obtain
n∑
i=0

(
n

i

)
in−i−1(n− i)i = nn−1

and therefore, ∑
i1,i2: i1+i2=n

i1Si1,i2 =
∑

i1,i2: i1+i2=n

i1
ii2−11 ii1−12

i1!i2!
=
nn−1

n!
.

Hence,

n ·
∑

i1,i2: i1+i2=n

Si1,i2 =
∑

i1,i2: i1+i2=n

(i1 + i2)Si1,i2 = 2
∑

i1,i2: i1+i2=n

i1Si1,i2 = 2
nn−1

n!
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and ∑
i1,i2: i1+i2=n

Si1,i2 = 2
nn−2

n!
.

Plugging the above into (27) with γ = 1, we obtain

lim
n→∞

E[Ln] = 2 +
∑

i1≥1: i2≥1

Si1,i2
(i1 + i2)i1+i2

(i1 + i2 − 1)!

= 2 +
∞∑
n=2

( ∑
i1,i2: i1+i2=n

Si1,i2
nn

)
(n− 1)!

= 2 +
∞∑
n=2

2
nn−2

n!
· 1

nn
(n− 1)!

= 2 +
∞∑
n=2

2

n3
= 2ζ(3).(28)

Thus confirming the results in [14]. �

3.5. Proof of Theorem 3.2. Let us give a rigorous proof of Theorem 3.2. Here, we will
follow the strategy used for proving Theorem 2.1 in Subsection 2.4.

Proof. Observe that

(29) lim
t→∞

∑
i1,i2

i1ζi1,i2(t) = 0 and lim
t→∞

∑
i1,i2

i2ζi1,i2(t) = 0.

Indeed, by plugging in ζi1,i2(t) as in (24), we obtain

d

dt

∑
i1,i2

i1ζi1,i2(t) =
∑
i1,i2

i1ζi1,i2(t)

(
i1 + i2 − 1

t
− (βi1 + αi2)

)
≤ −α ∧ β

2

∑
i1,i2

i1ζi1,i2(t)

for t > 1
α∧β . Thus,

∑
i1,i2

i1ζi1,i2(t), and similarly
∑
i1,i2

i2ζi1,i2(t), would decrease to zero

exponentially fast when t > 1
α∧β .

Now, having established (29), for any given ε ∈ (0, 1/4), we can fix T � Tgel so large that

(30)
∑
i1,i2

i1ζi1,i2(t) ≤
αε

2
and

∑
i1,i2

i2ζi1,i2(t) ≤
βε

2
.

Notice that the above inequalities (30) ties T to ε.

Fix integers K1 > 0 and K2 > 0, and let R := R(K1, K2) = {1, 2, . . . , K1}×{1, 2, . . . , K2}.

Since we know from Section 4 that lim
n→∞

ζ
[n]
i1,i2

(t)

n
= ζi1,i2(t) a.s. over the interval [0, T ] for
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all i =

[
i1
i2

]
∈ R, the probability of the complement of the event

(31) Qε
R,T,n :=

{∑
i∈R

i1
ζ
[n]
i1,i2

(T )

n
≤ 3

4
αε and

∑
i∈R

i2
ζ
[n]
i1,i2

(T )

n
≤ 3

4
βε

}

is decreasing to zero as n→∞. Moreover,

qεR,T (n) := P (Qε
R,T,n) = o(n−1)

by equation (47) in Subsection 4.4.

We know from (25) that

lim
n→∞

E[Ln] = lim
n→∞

1∫
0

E[κ(G(n, p))]dp− 1 = lim
n→∞

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt− 1

provided the latter limit exists.

We will split
∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt as follows.

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

T∫
0

∑
i∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt (Term I)

+

T∫
0

∑
i6∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt (Term II)

+
(
1− qεR,T (n)

) ∞∫
T

∑
i∈R

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt (Term III)

+
(
1− qεR,T (n)

) ∞∫
T

∑
i6∈R

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt (Term IV)

+ qεR,T (n)

∞∫
T

∑
i1,i2

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt (Term V)(32)

Next, we estimate the terms I-V in (32).
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Term I. As it is proven in Section 4, lim
n→∞

ζ
[n]
i1,i2

(t)

n
= ζi1,i2(t) a.s. on [0, T ] for all i =[

i1
i2

]
∈ R. Therefore,

lim
n→∞

T∫
0

∑
i∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

∑
i∈R

T∫
0

ζi1,i2(t)dt.

Term II. Observe that,∑
i6∈R

ζ
[n]
i1,i2

(t)

n
≤ 1

n

∑
i1>K1

∑
i2

ζ
[n]
i1,i2

(t) +
1

n

∑
i1

∑
i2>K2

ζ
[n]
i1,i2

(t)

≤ 1

K1n

∑
i1>K1

∑
i2

i1ζ
[n]
i1,i2

(t) +
1

nK2

∑
i1

∑
i2>K2

i2ζ
[n]
i1,i2

(t)

≤ α[n]

K1n
+
β[n]

nK2

≤ 2
α

K1

+ 2
β

K2

for all n large enough. Thus,

T∫
0

∑
i6∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt = O

(
T

K1

)
+O

(
T

K2

)
.

Term III. We define the R-gel to be the collection of all clusters whose mass vector is
not in R. Let

(33) MRgel(t) =

[
m1(t)
m2(t)

]
denote the total mass vector of all clusters in the R-gel at time t ≥ 0.

Now, conditioning on the event Qε
R,T,n, we have m1(t) ≥ α(1− ε)n and m2(t) ≥ β(1− ε)n

for all t ≥ T , and n large enough. Thus each cluster in R will be gravitating toward the
R-gel with the rate of at least (α ∧ β)(1 − ε). Consider a cluster in R at time T . Let
T + L be the time it becomes a part of the R-gel. Then, its contribution to the integral
∞∫
T

∑
i∈R

E[ζ
[n]
i1,i2

(t) | QεR,T,n]
n

e−t/ndt is at most

∞∫
T

E[1[T,T+L](t) | Qε
R,T,n]

n
e−t/ndt ≤

E[L | Qε
R,T,n]

n
e−T/n ≤ 1

(α ∧ β)(1− ε)n
.
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The number of clusters in R at time t ≥ T is∑
i∈R

ζ
[n]
i1,i2

(t) ≤
∑
i∈R

(i1 + i2)ζ
[n]
i1,i2

(t) ≤ (α + β)εn.

Therefore,

∞∫
T

∑
i∈R

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt ≤ (α + β)εn

(α ∧ β)(1− ε)n
=

2ε

1− ε
< 3ε.

Term IV. We let C = {C1, C2, C3, . . . , CM} denote the set of all clusters whose mass
vectors ever exceeded K1 in the first coordinate and/or ever exceeded K2 in the second
coordinate in the history of the process MLn(t), i.e. all clusters that were ever a part
of R-gel. The number of clusters in C is less than α[n]/K1 + β[n]/K2. For each Ci, the
emergence time ai is the time of a merger of a pair of clusters in R, resulting in appearance
of a new cluster Ci in R-gel. We enumerate these clusters in the order they emerge.

Let Mi(t) =

[
m1,i(t)
m2,i(t)

]
denote the mass vector of cluster Ci at time t. Consider a

pair of clusters, Ci and Cj, coexisting in the R-gel at time t, such that m1,i,m1,j <
αn/2 and m2,i,m2,j < βn/2. We split their merger rate into two by saying that Ci
absorbs Cj with rate 1

2n

(
m1,i(t)m2,j(t) + m2,i(t)m1,j(t)

)
, and Cj absorbs Ci with rate

1
2n

(
m1,i(t)m2,j(t) +m2,i(t)m1,j(t)

)
.

There is a finite stopping time

t∗ = min{t ≥ 0 : ∃Ci ∈ C with m1,i(t) ≥ αn/2 or m2,i(t) ≥ βn/2}

when a cluster Ci∗ has its mass vector satisfying either m1,i∗(t
∗) ≥ αn/2 or m2,i∗(t

∗) ≥
βn/2. After time t∗ the rules of interactions of cluster Ci∗ with the other clusters in C
change as follows. For t > t∗, Ci∗ absorbs Cj with rate 1

n

(
m1,i∗(t)m2,j(t)+m2,i∗(t)m1,j(t)

)
,

while Ci∗ itself cannot be absorbed by any other cluster in C.

Let bi denote the time when cluster Ci is absorbed by another cluster in collection C.
Naturally, there will be only one survivor Ci∗ with bi∗ = ∞. Let Ji = [ai, bi) ∩ [T,∞)
denote the lifespan of cluster Ci. Note that a cluster Ci from the collection C existing at
time t ∈ [ai, bi) is absorbed into one of the clusters in the R-gel with the total instantaneous
rate of

λi(t) ≥
1

2n

(
m1,i(t)

(
m2(t)−m2,i(t)

)
+m2,i(t)

(
m1(t)−m1,i(t)

))
,

where m1(t) and m2(t) are as defined in (33). Conditioning on the event Qε
R,T,n defined

in (31), we have that if m1,i(t) < αn/2 and m2,i(t) < βn/2 for t ∈ Ji, then the rate of
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absorption of Ci into the R-gel is

λi(t) ≥
1

2n
m1,i(t)β

(
(1− ε)n− 1

2
n

)
+

1

2n
m2,i(t)α

(
(1− ε)n− 1

2
n

)
≥ 1

2n
m1,i(t)β

(
3

4
n− 1

2
n

)
+

1

2n
m2,i(t)α

(
3

4
n− 1

2
n

)
≥ m1,i(t)β +m2,i(t)α

8
>
K1β +K2α

8
.

Next,

(34)

∞∫
T

∑
i 6∈R

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt =

∞∫
T

1

n
e−t/ndt+ E

where
∞∫
T

1
n
e−t/ndt is due to the event Qε

R,T,n which guarantees the existence of at least one

component from C in the R-gel for all t ∈ [T,∞) and the second term E is responsible
for all the times t ≥ T when the number of clusters in the R-gel is greater than one. The
term E is bounded as follows

E ≤
∞∫
T

E

[ ∑
i: i 6=i∗

1Ji(t)
∣∣ Qε

R,T,n

]
n

e−t/ndt.

Now, each cluster Ci is gravitating towards the rest of the R-gel with the rate of at least
K1β+K2α

8
. Thus, for each i 6= i∗,

∞∫
T

E
[
1Ji(t) | Qε

R,T,n

]
n

e−t/ndt ≤
E[|Ji| | Qε

R,T,n]

n
e−

T
n ≤ 8

n(K1β +K2α)
.

Hence, since the cardinality of set C is M < α[n]/K1 + β[n]/K2,

E < (α[n]/K1 + β[n]/K2) ·
8

n(K1β +K2α)
=

8(α/K1 + β/K2)

K1β +K2α
+ o(1),

and from (16), we obtain

∞∫
T

∑
i6∈R

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt = 1 +O(K−21 ) +O(K−22 ) +O

(
T

n

)
+ o(1) as n→∞.
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Term V. Here

qεR,T (n)

∞∫
T

∑
i1,i2

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt ≤ qεR,T (n)

∞∫
T

α[n] + β[n]

n
e−t/ndt

≤ (α[n] + β[n])qεR,T (n) = o(1)

as qεR,T (n) = o(n−1).

Finally, by putting together the analysis in Terms I-V in the equation (32), we obtain for
a given fixed ε ∈ (0, 1/4), sufficiently large fixed T � Tgel satisfying (30), and arbitrarily
large K1 and K2,

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

∑
i∈R(K1,K2)

T∫
0

ζi1,i2(t)dt+ 1 +O

(
T

K1

)
+O

(
T

K2

)

+O(K−21 ) +O(K−22 ) +O(ε) +O

(
T

n

)
+ o(1),(35)

which when we increase n to infinity will yield

lim
n→∞

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

∑
i1,i2

∞∫
0

ζi1,i2(t)dt+ 1.

�

4. Hydrodynamic limits for Marcus-Lushnikov processes

In [9] a certain class of Markov processes, called density dependent population process,
was considered. These are jump Markov processes which depend on some parameter
which can be interpreted depending on context of the model. For example, it could be the
population size. Coalescence processes can be considered as a case of density dependent
population processes when we choose the total population mass n as a parameter for the
processes. Specifically, assuming the process starts with n clusters of unit mass each (aka
singletons). In Chapter 11 of Ethier and Kurtz [9], the law of large numbers and the
central limit theorems were established for such class of processes, as n→∞.

4.1. Density dependent population processes. We first formulate the framework for
the convergence result of Kurtz as stated in Theorem 2.1 in Chapter 11 of [9] (Theorem
8.1 in [18]). There, the density dependent population processes are defined as continuous
time Markov processes with state spaces in Zd, and transition intensities represented as
follows

(36) q(n)(k, k + `) = n

[
β`

(
k

n

)
+O

(
1

n

)]
,

where `, k ∈ Zd, and β` is a given collection of rate functions.
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In Section 5.1 of [2], Aldous observes that the results from Chapter 11 of Ethier and Kurtz
[9] can be used to prove the weak convergence of a Marcus-Lushnikov process to the solu-
tions of Smoluchowski system of equations in the case when the Marcus-Lushnikov process
can be formulated as a finite dimensional density dependent population process. Specifi-
cally, the Marcus-Lushnikov processes corresponding to the multiplicative and Kingman
coalescent with the monodisperse initial conditions (n singletons) can be represented as
finite dimensional density dependent population processes defined above.

Define F (x) =
∑̀
β`(x). Then, Theorem 2.1 in Chapter 11 of [9] (Theorem 8.1 in [18])

states the following law of large numbers. Let X̂n(t) be the Markov process with the

intensities q(n)(k, k+`) given in (36), and let Xn(t) = n−1X̂n(t). Finally, let |x| =
√∑

x2i
denote the Euclidean norm in Rd.

Theorem 4.1. Suppose for all compact K ⊂ Rd,∑
`

|`| sup
x∈K

β`(x̄) <∞,

and there exists MK > 0 such that

(37) |F (x)− F (y)| ≤MK|x− y|, for all x, y ∈ K.
Suppose lim

n→∞
Xn(0) = x0, and X(t) satisfies

(38) X(t) = X(0) +

∫ t

0

F (X(s))ds,

for all T ≥ 0. Then

(39) lim
n→∞

sup
s∈[0,T ]

|Xn(s)−X(s)| = 0 a.s.

4.2. Hydordynamic limit for multiplicative coalescent process. Consider a mul-
tiplicative coalescent process with kernel K(i, j) = ij. Recall that in the definition of a
coalescent process given in Subsection 2.2, a pair of clusters with masses i and j coalesces
at the rate K(i, j)/n. Consider the corresponding Marcus-Lushnikov process

MLn(t) =
(
ζ1,n(t), ζ2,n(t), . . . , ζn,n(t), 0, 0, . . .

)
that keeps track for the numbers of clusters in each weight category. There, the initial
conditions will be MLn(0) = (n, 0, 0, . . .) = ne1, where ei denotes the i-th coordinate
vector.

Next, for a fixed positive integer K, let X̂n(t) be the restriction of process MLn(t) to the
first K dimensions, i.e.

X̂n(t) =
(
ζ1,n(t), ζ2,n(t), . . . , ζK,n(t)

)
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with the initial conditions X̂n(0) = ne1. Apparently, X̂n(t) is itself a (finite dimensional)

Markov process with the following transition rates of X̂n(t) stated as in (36). Let x =
(x1, x2, . . . , xK). Then, for any positive 1 ≤ i < j ≤ K, the change vector ` = −ei −
ej + ei+j1i+j≤K corresponding to a merger of clusters of respective sizes i and j would be
assigned the rate

q(n)(x, x+ `) = nijxixj = nβ`(x),

where β`(x) = ijxixj.
For a given 1 ≤ i ≤ K, the change vector ` = −2ei + e2i12i≤K corresponding to a

merger of a pair of clusters of size i will be assigned the rate

q(n)(x, x+ `) = n

[
i2x2i

2
− i2xi

2n

]
= n

[
β`(x) +O

(
1

n

)]
,

where β`(x) = i2
x2i
2

.
For a given 1 ≤ i ≤ K, the change vector ` = −ei corresponding to a cluster of mass i

merging with a cluster of mass greater than K will be assigned the rate

q(n)(x, x+ `) = nixi

[
1−

K∑
j=1

jxj

]
= nβ`(x),

where β`(x) = ixi

(
1−

K∑
j=1

jxj

)
.

Then, by Theorem 4.1, Xn(t) = n−1X̂n(t) converges to X(t) as in (39), where X(t)
satisfies (38) with

F (x) :=
∑
`

β`(x) =
∑

ij: 1≤i<j≤K

ijxixj[−ei − ej + ei+j1i+j≤K ]

+
1

2

K∑
i=1

i2x2i [−2ei + e2i12i≤K ]−
K∑
i=1

ixi

(
1−

K∑
j=1

jxj

)
ei

=
K∑
i=1

−ixi +
1

2

∑
1≤i1,i2≤K
i1+i2=i

i1i2xi1xi2

 ei.(40)

Here, F (x) is naturally satisfying the Lipschitz continuity conditions (37), and the initial
conditions X(0) = Xn(0) = e1.

Observe that the system of equations (38) with F (x) as in (40) will yield the reduced
system of Smoluckowski coagulation equations (4) also known as the Flory’s coagulation
system [12]. Thus, for a given integer K > 0 and a fixed real T > 0,

(41) lim
n→∞

sup
s∈[0,T ]

∣∣n−1ζk,n(s)− ζk(s)
∣∣ = 0 a.s.
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for k = 1, 2, . . . , K.

Note that the above limit no longer requires a fixed K for each individual k in (41).
However, we will mainly need the following limit in our calculations,

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣
K∑
k=1

n−1ζk,n(s)−
K∑
k=1

ζk(s)

∣∣∣∣∣ = 0 a.s.

4.3. Hydordynamic limit for cross-multiplicative coalescent processes. Fix in-
tegers K1 > 0 and K2 > 0, and let R := R(K1, K2) = {1, 2, . . . , K1} × {1, 2, . . . , K2}.

Let ei be the standard basis vectors in RK1K2 , enumerated by i =

[
i1
i2

]
∈ R. Consider

a restriction of a Marcus-Lushnikov processes with the cross-multiplicative kernel ζi1,i2(t)

to

[
i1
i2

]
∈ R. Let

X̂n(t) =
{
ζ
[n]
i1,i2

(t)
}

i∈R

with the initial conditions X̂n(0) = α[n]e0′ + β[n]e0′′ , where 0′ =

[
1
0

]
and 0′′ =

[
0
1

]
.

We observe the following transition rates of X̂n(t) stated as in (36). Let x =
∑
i∈R

xiei.

Then, for any i and j in R, the change vector ` = −ei − ej + 1{i+j∈R}ei+j corresponding
to a merger of clusters of respective weights i and j would be assigned the rate

q(n)(x, x+ `) = n(i1j2 + i2j1)xixj = nβ`(x),

where β`(x) = (i1j2 + i2j1)xixj.
For a given i ∈ R, the change vector ` = −ei corresponding to the merger of clusters

whose weight vector is i with clusters whose weight vectors are not in R will be assigned
the rate

q(n)(x, x+ `) = n

[
i1xi

(
β −

∑
j∈R

j2xj

)
+ i2xi

(
α−

∑
j∈R

j1xj

)]
= nβ`(x),

where β`(x) = i1xi

(
β −

∑
j∈R j2xj

)
+ i2xi

(
α−

∑
j∈R j1xj

)
.
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Thus, by Theorem 4.1, Xn(t) converges to X(t) as in (39), where X(t) satisfies (38) with

F (x) :=
∑
`

`β`(x) =
1

2

∑
i,j∈R

[
−ei − ej + 1{i+j∈R}ei+j

]
(i1j2 + i2j1)xixj

−
∑
i∈R

eii1xi

(
β −

∑
j∈R

j2xj

)
−
∑
i∈R

eii2xi

(
α−

∑
j∈R

j1xj

)

=
∑
i∈R

ei

(
−(βi1 + αi2)xi +

1

2

∑
`,k: `+k=i

(`1k2 + `2k1)x`xk

)
(42)

for a fixed T > 0. The system of equations (38) with F (x) given in (42) will yield the
reduced system of Smoluckowski coagulation equations (20). So, for a fixed a pair of
positive integers K1 and K2, and a fixed real number T > 0,

(43) lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]i1,i2
(s)− ζi1,i2(s)

∣∣∣ = 0 a.s.

for all

[
i1
i2

]
∈ R. Therefore,

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣∣∣n−1
∑

1≤i1≤K1
1≤i2≤K2

ζ
[n]
i1,i2

(s)−
∑

1≤i1≤K1
1≤i2≤K2

ζi1,i2(s)

∣∣∣∣∣∣∣ = 0 a.s.

4.4. Central Limit Theorem and related results. The usefulness of the framework
set in [9, 18] for proving weak convergence is that the law of large numbers Theorem 4.1
is enhanced with the corresponding central limit theorem (see Theorem 4.2 below) and
the large deviation theory [11]. The following central limit theorem is derived in Theorem
8.2 in [18] (and Theorem 2.3 in Chapter 11 of [9]).

Theorem 4.2. Suppose for all compact K ⊂ Rd,

(44)
∑
`

|`|2 sup
x∈K

β`(x) <∞

and that the β` and ∂F are continuous. Suppose Xn and X are as in Theorem 4.1, and
suppose Vn =

√
n(Xn −X) is such that limn→∞ Vn(0) = V (0), where V (0) is a constant.

Then Vn converges in distribution to V , which is the solution of

(45) V (t) = V (0) + U(t) +

∫ t

0

∂F (X(s))V (s)ds,

where U(t) is a Gaussian process and ∂F (X(s)) = (∂jFi(X(s)))i,j.
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The proof of Theorem 4.2 is based on representing Vn(t) as follows. Let Y` be independent
Poisson processes with rate one. Then,

(46) Vn(t) = Vn(0) + Un(t) +

∫ t

0

√
n
(
F (Xn(s))− F (X(s))

)
ds,

where

Un(t) =
∑
`

`W
(n)
`

(∫ t

0

β`(Xn(s))ds
)
,

W
(n)
` (u) = n−1/2Ŷ`(nu), and Ŷ`(u) := Y`(u)− u are centralized Poisson processes.

Next, we will use formula (46) in order to derive an upper bound (47) on probability
P (|Xn(T )−X(T )| ≥ δ). Let us consider a simple case of a density dependent population
process on Rd for which the following three conditions are satisfied.

• Vn(0) = 0.
• There are finitely many vectors ` ∈ Rd.
• Both Xn(t) and X(t) live on a compact set K.

Notice that the above conditions are satisfied for the Marcus-Lushnikov processes con-
sidered here, with the general bilinear kernel as in Subsection 4.2 and with the cross-
multiplicative kernel as in Subsection 4.3. Specifically, for a given m > 0, let

Km =
{
x ∈ Rd

+ :
∑
i

xi ≤ m
}
.

Then, in Subsection 4.2, Xn(t), X(t) ∈ K2, and in Subsection 4.3, Xn(t), X(t) ∈ Km,
where m > α + β.

Proposition 4.3. Assuming the above conditions are satisfied together with the Lipschitz
continuity conditions (37), we have

(47) P (|Xn(T )−X(T )| ≥ δ) = O(n−2).

Proof. Here,
√
n
∣∣F (Xn(s))− F (X(s))

∣∣ ≤ √nMK|Xn(s)−X(s)| = MK|Vn(s)|
and for a fixed T > 0 and any t ≤ T ,

|Un(t)| ≤ εn(T ) :=
∑
`

|`| max

{∣∣∣W (n)
` (s)

∣∣∣ : s ∈
[
0, T sup

x∈K
β`(x)

]}
.

Hence, for a fixed T > 0 ,equation (46) implies the following inequality,

|Vn(t)| ≤ εn(T ) +MK

∫ t

0

|Vn(s)|ds for all t ∈ [0, T ].

Then, by Grönwall’s inequality (see Appendix 5 in [9]),

(48) |Vn(t)| ≤ εn(T )eMKt.
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In particular, we use equation (48) together with Markov inequality to obtain the following
simple bound for any δ > 0,

(49) P (|Xn(T )−X(T )| ≥ δ) ≤ V 4
n (T )

n2δ4
≤ E[ε4n(T )]e4MKT

n2δ4
.

Here, for any fixed real S > 0, integer r > 0, and any real λ > 0, we have by Doob’s
martingale inequality,

P

(
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣r ≥ λ

)
= P

(
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣ ≥ λ1/r
)
≤
E

[(
W

(n)
` (S)

)2+2r
]

λ2+2/r

as
∣∣∣W (n)

` (s)
∣∣∣ is a non-negative sub-martingale. Therefore,

E
[∣∣∣W (n)

` (s)
∣∣∣r] ≤ 1 +

∞∫
1

P

(
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣r ≥ λ

)
dλ ≤ 1 +(1 + 2/r)E

[(
W

(n)
` (S)

)2+2r
]
,

where by the classical central limit theorem,

lim
n→∞

E

[(
W

(n)
` (S)

)2+2r
]

= S1+rE[Z2+2r], Z - standard normal r.v.

Thus, E[ε4n(T )] = O(1), and (47) follows from (49). �

5. Discussion: generalizations and open problems.

As the natural next step we see finding the limit mean length of the minimal spanning
tree of random graph processes on irregular multipartite graphs via the corresponding
Marcus-Lushnikov processes with multidimensional weight vectors. Note that the theory
presented here extends to other irregular graphs beyond multipartite graphs.

The gelation of bipartite Marcus-Lushnikov processes and other coalescent processes
with multidimensional weight vectors has not been studied before. This on its own pro-
vides an interesting problem. We will look for a generalizing the existing gelation results
[27, 1, 17] for the Smoluchowski coagulation equations of the Marcus-Lushnikov processes
with multidimensional weight vectors.

One of the issues facing the use of coalescent processes in genetics as models of genetic
drift viewed backwards in time is that of genetic recombination. There, distinct gene loci
would follow different pathways of ancestry, resulting in different gene genealogies. As a
biological application, it will be useful to consider a coalescent process with multidimen-
sional weight vectors as a means of addressing the issue of genetic recombination, and
possibly, the issue of biological compatibility.

Finally, analyzing the convergence rates in the hydrodynamic limits, we could obtain a
central limit theorem for Ln on Kαn,βn similar to the central limit theorem for Ln on Kn

proved in Jensen [16]. Specifically, we hope to apply Theorem 4.2 in the analysis. Also,
similarly to [6], we could examine the second and third order terms in E[Ln].
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