List 7 IBI 5081 - Optimization II.

1. An urn contains N white balls and one red ball. Let $X_{i}, i=1, \ldots, n+m$ be i.i.d. variables, where X_{i} the number of attempts until one removes a red ball. And let $Y_{i}, i=1, \ldots, m$ be i.i.d. variables from another experiment: we permit only M trails before the red ball, i.e.

$$
Y_{i}=\left\{\begin{array}{rl}
X_{n+i}, & \text { if } X_{n+i} \leq M \\
M+1, & \text { if } X_{n+i}>M
\end{array}, i=1, \ldots, m\right.
$$

(1) Write likelihood function for this experiment, and suggest an optimization method for finding the maximum likelihood estimation for the number of white balls, \hat{N}.
(2) Suggest the recurrent formula for finding \hat{N} using EM algorithm. Write the complete likelihood function and provide E-step, M-step of EM algorithm.
2. Consider the first exercise about litebulbs from Bernard Flury and Alice Zoppe "Exercises in EM" The American Statistician, Vol. 54, No. 3, 2000. Suppose $N=5$ and the observations from the first experiment are

$$
5.37,0.71,2.32,0.69,3.27
$$

For the second experiment let $t=2$ and $M=5$. Suppose that $Z=2$, where Z is the number of litebulbs that are still alive at time $t=2$.
(1) Numerically find the estimation of the mean $\hat{\theta}$ using EM algorithm.
(2) Write the likelihood function and find numerically the maximum using common optimization method like Newton-Raphson method.

