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[RC] Missing-data models. Demarginalization.

The term EM algorithms has been around for a long
time by [DLR].

Consider the case where the density of the observa-
tions can be expresses as

gθ(x) =

∫
fθ(x, z)dz, gθ(x)→ fθ(x, z).

“This representation occurs in many statistical set-
tings, including censoring models and mixtures and
latent variable models (tobit, probit, arch, stochastic
volatility, ect.).”
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[RC] Example 5.12

The mixture model of Example 5.2 (see previous lecture),

0.25N(µ1,1) + 0.75N(µ2,1),

can be expressed as a missing-data model even though the (ob-
served) likelihood can be computed in a manageable time. In-
deed, if we introduce a vector z = (z1, . . . , zn) ∈ {1,2}n in addi-
tion to the sample x = (x1, . . . , xn) such that

Pθ(Zi = 1) = 1− Pθ(Zi = 2) = 0.25, Xi | Zi = z ∼ N(µz,1).

we recover the mixture model from the Example 5.2 as the
marginal distribution of Xi. The (observed) likelihood is then
obtained as E(H(x, z)) for

H(x, z) ∝
∏
i:zi=1

1

4
exp
{
−

(xi − µ1)2

2

} ∏
i:zi=2

3

4
exp
{
−

(xi − µ2)2

2

}
.
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[RC] Example 5.12 The (observed) likelihood is
then obtained as E(H(x, z)) for

H(x, z) ∝
∏
i:zi=1

1

4
exp
{
−

(xi − µ1)2

2

} ∏
i:zi=2

3

4
exp
{
−

(xi − µ2)2

2

}
:

Indeed,

gµ1,µ2(x) =

∫
fµ1,µ2(x, z)dz =

∑
z∈{1,2}n

H(x, z)

(
√

2π)n

=
∑

z∈{1,2}n

∏
i:zi=1

1

4

e−
(xi−µ1)2

2

√
2π

∏
i:zi=2

3

4

e−
(xi−µ2)2

2

√
2π

=
n∏
i=1

(1

4

e−
(xi−µ1)2

2

√
2π

+
3

4

e−
(xi−µ2)2

2

√
2π

)
.
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[RC] Example 5.13

Censored data may come from experiments where
some potential observations are replaced with a lower
bound because they take too long to observe. Sup-
pose that we observe Y1, . . . , Ym, iid, from f(y−θ) and
that the (n−m) remaining (Ym+1, . . . , Yn) are censored
at the threshold a. The corresponding likelihood func-
tion is then

L(θ | y) =
(
1− F (a− θ)

)n−m m∏
i=1

f(yi − θ),

where F is the cdf associated with f and y = (y1, . . . , ym).
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[RC] Example 5.13

L(θ | y) =
(

1− F (a− θ)
)n−m m∏

i=1

f(yi − θ).

If we had observed the last n−m values, say z = (zm+1, . . . , zn),
with zi ≥ a(i = m + 1, . . . , n), we could have constructed the
(complete data) likelihood

Lc(θ | y, z) =

m∏
i=1

f(yi − θ)

n∏
i=m+1

f(zi − θ).

Note that

L(θ | y) = E
(
Lc(θ | y, Z)

)
=

∫
Lc(θ | y, z)f(z | y, θ)dz,

where f(z | y, θ) is the density of the missing data conditional
on the observed data, namely the product of the f(zi − θ)/(1−
F (a− θ))’s; i.e., f(z − θ) restricted to (a,+∞).
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Main Idea of EM algorithms

Demarginalization: gθ(x)→ fθ(x, z), gθ(x) =
∫
fθ(x, z)dz.

A values from z can be generated by the conditional
distribution

kθ(z | x) =
fθ(x, z)

gθ(x)
.

Take a logarithm

log gθ(x) = log fθ(x, z)− log kθ(z | x).

In notations of likelihood function

logL(θ | x) = logLc(θ | x, z)− log kθ(z | x),

where Lc stands for complete likelihood function.
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Main Idea of EM algorithms

logL(θ | x) = logLc(θ | x, z)− log kθ(z | x),

Let us fix a value θ0 and calculate the expectation
according to the distribution kθ0

(z | x):

logL(θ | x) = Ek,θ0
logLc(θ | x, z)− Ek,θ0

log kθ(z | x)
=: Q(θ | θ0, x)−H(θ | θ0, x).

Theorem. Let θ1 maximizes the Q, i.e.,

Q(θ1 | θ0, x) = max
θ

Q(θ | θ0, x).

Then

logL(θ1 | x) ≥ logL(θ0 | x).
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Main Idea of EM algorithms. Proof.

Q(θ1 | θ0, x) = max
θ

Q(θ | θ0, x)⇒ logL(θ1 | x) ≥ logL(θ0 | x).

Proof.

logL(θ1 | x)− logL(θ0 | x)(
Q(θ1 | θ0, x)−Q(θ0 | θ0, x)

)
−
(
H(θ1 | θ0, x)−H(θ0 | θ0, x)

)
Note that by definition of θ1

Q(θ1 | θ0, x)−Q(θ0 | θ0, x) ≥ 0.
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Main Idea of EM algorithms. Proof.

logL(θ1 | x)− logL(θ0 | x)(
Q(θ1 | θ0, x)−Q(θ0 | θ0, x)

)
−
(
H(θ1 | θ0, x)−H(θ0 | θ0, x)

)
and

H(θ1 | θ0, x)−H(θ0 | θ0, x)
= Ek,θ0

log kθ1
(Z | x)− Ek,θ0

log kθ0
(Z | x)

= Ek,θ0
log

kθ1
(Z | x)

kθ0
(Z | x)

≤ log Ek,θ0

kθ1
(Z | x)

kθ0
(Z | x)

= log 1 = 0,

where Jensen inequality was used E log ξ ≤ log Eξ.
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Main Idea of EM algorithms. Proof.

logL(θ1 | x)− logL(θ0 | x)(
Q(θ1 | θ0, x)−Q(θ0 | θ0, x)

)
−
(
H(θ1 | θ0, x)−H(θ0 | θ0, x)

)
We have

Q(θ1 | θ0, x)−Q(θ0 | θ0, x) ≥ 0,
H(θ1 | θ0, x)−H(θ0 | θ0, x) ≤ 0,

thus

logL(θ1 | x)− logL(θ0 | x) ≥ 0.

This completes the proof of the theorem. �
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Main Idea of EM algorithms.

Each iteration EM algorithm maximizes a function Q.
Let θt be a sequence obtained recurcively

Q(θt+1 | θt, x) = max
θ

Q(θ | θt, x).

This recurrent scheme consists on two steps expec-
tation and maximization, that gives the name for the
scheme: EM algorithm.
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EM algorithm.

Choose the initial parameter θ0 and repeat:

• E-step. Calculate the expectation

Q(θ | θt, x) = Ek,θt logLc(θ | x, Z)

with respect to the distribution kθt(z | x).

• M-step. Maximize Q(θ | θt, x) on θ and determine
the next value

θt+1 = arg max
θ

Q(θ | θt, x),

define t = t+ 1, return to the E-step
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[RC]. Example 5.14 (Cont. of Example 5.13)

Let again Y1, . . . , Ym are iid com density f(y − θ) and others
Ym+1, . . . , Yn are censured at the level a. The likelihood function

L(θ | y) =
(

1− F (a− θ)
)n−m m∏

i=1

f(yi − θ),

where F (a − θ) = P(Yi ≤ a). If we had observed the last n −m
values, say z = (zm+1, . . . , zn), with zi ≥ a(i = m + 1, . . . , n), we
could have constructed the (complete data) likelihood

Lc(θ | y, z) =

m∏
i=1

f(yi − θ)

n∏
i=m+1

f(zi − θ).

and

kθ(z | y) =

n−m∏
i=1

f(zi − θ)

1− F (a− θ)
.
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[RC]. Example 5.14 (Cont. of Example 5.13)

Suppose that f(y− θ) corresponds to the N(θ,1) dis-
tribution, the complete-data likelihood is

Lc(θ | y, z) ∝
m∏
i=1

e−(yi−θ)2/2
n∏

i=m+1

e−(zi−θ)2/2,

resulting in the expected complete-data log-likelihood

Q(θ | θ0, y) = −
1

2

m∑
i=1

(yi − θ)2 −
1

2

n∑
i=m+1

Ek,θ0

(
Zi − θ)2

)
,

where the missing observations Zi are distributed from
a normal N(θ,1) distribution truncated in a. Doing
the M-step (i.e., differentiating the function Q(θ |
θ0, y) in θ) and setting it equal to 0 then leads to
the EM update

θ̂ =
mȳ + (n−m)Ek,θ0

(Z1)

n
.
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[RC]. Example 5.14 (Cont. of Example 5.13)

Doing the M-step ... the EM update

θ̂ =
mȳ + (n−m)Ek,θ0

(Z1)

n
.

Since Ek,θ0
(Z1) = θ + φ(a−θ)

1−Φ(a−θ)
, where φ and Φ are the

normal pdf and cdf, respectively, the EM sequence is

θt+1 =
m

n
ȳ +

n−m
n

(
θt +

φ(a− θt)
1−Φ(a− θt)

)
.
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Principle of missing information (informally)

logL(θ | x) = logLc(θ | x, z)− log kθ(z | x)

⇒ −
∂2 logL(θ | x)

∂θ2
= −

∂2 logLc(θ | x, z)

∂θ2
+
∂2 log kθ(z | x)

∂θ2

Observed information = Complete information−
− Missing information

Informally about a convergence rate of EM algo-
rithms: if a proportion of missing information in-
creases with iterations, then a rate of convergence
of an algorithm decreases.
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EM algorithms for exponential family models.

It is more easy to implement an algorithm when a
complete data (z, x) has the exponential family type
of distribution in a canonic form:

p(z, x | θ) = b(z, x)
exp(θTs(z, x))

a(θ)

Let y = (z, x) be a vector of complete data. We have

log p(y | θ) = log b(y) + θTs(y)− log a(θ)
∂

∂θ
log p(y | θ) = s(y)−

1

a(θ)

∂a(θ)

∂θ

Remember that

a(θ) =

∫
b(y) exp(θTs(y))dy
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EM algorithms for exponential family models.

∂

∂θ
log p(y | θ) = s(y)−

1

a(θ)

∂a(θ)

∂θ
, a(θ) =

∫
b(y) exp(θTs(y))dy

we have

∂ log a(θ)

∂θ
=

1

a(θ)

∂a(θ)

∂θ
=

1

a(θ)

∫
b(y)

∂ exp(θTs(y))

∂θ
dy

=
1

a(θ)

∫
b(y)s(y) exp(θTs(y))dy

=

∫
s(y)

b(y) exp(θTs(y))

a(θ)
dy = E(s(y) | θ)

Thus,

∂

∂θ
log p(y | θ) = 0⇔ s(y) = E(s(y) | θ)
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EM algorithms for exponential family models.

Implementation of EM algorithm: E-step

Q(θ | θt) =

∫
log p(z, x | θ)p(z | θt, x)dz

=

∫
b(z, x)p(z | θt, x)dz + θT

∫
s(z, x)p(z | θt, x)dz − log a(θ)

Note that the first term will not participate in M-step. M-step:
we obtain extreme point

∂Q(θ | θt)
∂θ

=

∫
s(z, x)p(z | θt, x)dz −

1

a(θ)

∂a(θ)

∂θ

= E(s(z, x) | θt, x)− E(s(z, x) | θ)

Remember that E(s(z, x) | θ) = 1
a(θ)

∂a(θ)
∂θ
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EM algorithms for exponential family models.

Thus the maximization of Q(θ | θt, x) in M-step is equivalent to
solve the following equation

E(s(z, x) | θt, x) = E(s(z, x) | θ)

If the solution exists, then it is unique.
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Monte Carlo for E-step.

Given θt we need to calculate Q(θ | θt, x) = Ek,θt logLc(θ |
Z, x). When it is difficult to calculate explicitly we can
calculate approximately using Monte Carlo:

1. generate z1, . . . , zm according kθ(z | x);

2. calculate Q(θ | θt) = 1
m

∑m
i=1 logLc(θ | zi, x);

during M-step one maximizes Q by θ in order to obtain
θt+1.
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EM algorithm.

[H] Hunter, D.R. On the Geometry of EM algorithms.:
this paper demonstrates how the geometry of EM al-
gorithms can help explain how their rate of conver-
gence is related to the proportion of missing data.

In footnote [H] wrote: “In a footnote, [DLR] refer
to the comment of a referee, who noted that the
use of the word “algorithm” may be criticized since
EM is not, strictly speaking, an algorithm. However,
EM is a recipe for creating algorithms, and thus we
consider the set of “EM algorithms” to consist of all
algorithms baked according to the EM recipe.”
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