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Motivation example. [FCN]

Consider the beta distribution. Suppose that X1, . . . , Xn ∼
B(p, q) and i.i.d. The density is

f(x; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1−x)q−1, p, q > 0, x ∈ (0,1),

where Γ(z) =
∫∞

0 tz−1e−tdt is gamma function. Note
that the uniform distribution is the particular case of
gamma distribution with p = q = 1. Here

E(Xi) =
p

p+ q
and Var(Xi) =

pq

(p+ q)2(p+ q + 1)
.
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Motivation example. [FCN]

Likelihood function for gamma distribution:
let x = (x1, . . . , xn)

L ≡ L(p, q;x) =
n∏
i=1

Γ(p+ q)

Γ(p)Γ(q)
xp−1
i (1− xi)q−1

=
(Γ(p+ q)

Γ(p)Γ(q)

)n n∏
i=1

xp−1
i (1− xi)q−1.

Log-likelihood function for gamma distribution:

` ≡ `(p, q;x) = n ln
(
Γ(p+ q)

)
− n ln

(
Γ(p)

)
− n ln

(
Γ(q)

)
+ (p− 1)

n∑
i=1

ln(xi) + (q − 1)
n∑
i=1

ln(1− xi).
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Motivation example. [FCN]

In order to find the maximum likelihood estimator we
have to resolve the following system of equations

∂`

∂p
= 0 and

∂`

∂q
= 0.

We have no “closed” solution of the system. Thus
we need to maximize the log-likelihood function nu-
merically (no-linear optimization problem).

Question: how to find the maximum numerically?
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Optimization.

Optimization problems:

(i) To find an extreme points of a function h(θ) in
a domain θ ∈ Θ.

(ii) To find a solution (solutions) of an equation g(θ) =
0 in a domain θ ∈ Θ.

Two type of problem can be considered as equivalent:

(i) → (ii) Reformulate the problem (ii) in the form
of (i) by choosing h(θ) = g2(θ).

(ii)→ (i) Reformulate the problem (i) in the form of

(ii) by choosing g(θ) = dh(θ)
dθ

.
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Optimization.

• Continuous versus Discrete Optimization

• Constrained versus Unconstrained Optimization

• Global versus Local Optimization

• Stochastic versus Deterministic Optimization
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Optimization. Line search. [FCN]

Ideia. To find a maximum of a target function using
iterative scheme.

Start at some inicial θ0. If after n iterations θn is still
not optimal value, calculate directional vector ∆n and
step-length λn and calculate the next value

θn+1 = θn + λn∆n.

This is our general iterative scheme.

[NW] call this strategy as line search. Note that for
a given θn and direction ∆n the method need a sec-
ondary optimization in order to find an optimal value
of the step-length λn.
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Optimization. Line search. [FCN]

θn+1 = θn + λn∆n.

[NW] call this strategy as line search. Note that for
a given θn and direction ∆n the method need a sec-
ondary optimization in order to find an optimal value
of the step-length λn.

Observation: If we add in the search strategy an op-
timal value of λn, it makes the search computation-
ally hard. Thus, the secondary optimization problem
in this step in general is substituted by ad hoc rules.
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Optimization. Trust Region. [NW. Chapter 2.2]

“In the second algorithmic strategy, known as trust region, the
information gathered about target function f is used to con-
struct a model function mn whose behavior near the current
point xn is similar to that of the actual objective function f .
Because the model mn may not be a good approximation of f
when θ is far from θn, we restrict the search for minimizer of mn

to some region around θn. In other words we find the candidate
step p by approximately solving the following subproblem:

min
p
mn(θn + p),

where θn + p lies inside the trust region.”
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Gradient methods. [FCN]

More common algorithms are gradient methods. Here

∆n = Wngn,

where Wn is some positive definite matrix and gn ≡
g(θn) is the gradient of the objective function F :

gn = 5F (θn) ≡
∂F

∂θ

∣∣∣
θn
.

(obs.: the vectors are column vectors)
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Background of Gradient Methods. [FCN]

Consider the Taylor expansion of F (θn+1) around the
point corresponding λn = 0:

F (θn+1) ≡ F (θn + λn∆n) ≈ F (θn) + λn5 F (θn)T∆n.

Let Fn+1 ≡ F (θn+1) and Fn ≡ F (θn) then

Fn+1 − Fn ≈ λn5 F (θn)T∆n ≡ λngTn∆n.

If ∆n = Wngn (gradient methods), then

Fn+1 − Fn ≈ λngTnWngn.

If gn 6= 0 and λn is sufficiently small, then Fn+1 − Fn
must be positive.
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[FCN, NW]. Gradient Methods. Steepest de-
scent method.

Different choices of W provide different methods.

Steepest descent method based on the following
choice of Wn:

Wn = I,

where I is the identity matrix (in this case ∆n = gn)
with the following choice of step-length

λn = −
gTn gn

gTnHngn
,

where

Hn ≡ H(θn) = 52F (θn) ≡
∂2F (θ)

∂θ2

∣∣∣
θn
.

(Hn is Hessian matrix)
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[NW Chapter 3.3]. Steepest descent method.

The rationalization on the choice of step-length can
be illustrated on the ideal case for this method – when
the objective function is quadratic (in this case the
line searches are exact). Suppose that

F (θ) = bTθ −
1

2
θTQθ,

where Q is some symmetric and positive definite ma-
trix. The gradient is given by 5F (θ) = b − Qθ, and
the maximizer θ∗ is the unique solution of the linear
system Qθ = b.
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[NW Chapter 3.3]. Steepest descent method.

Let us compute the step length λn that maximizes
F (θn + λ5 F (θn)). By differentiating

F (θn + λpn) = bT(θn + λpn)−
1

2
(θn + λpn)TQ(θn + λpn)

with respect to λ

bTpn −
1

2
θTnQpn −

1

2
pTnQθn − λpTnQpn

= (pn +Qθn)Tpn −
1

2
θTnQpn −

1

2
pTnQθn − λpTnQpn

= pTnpn − λpTnQpn = 0,

we obtain

λn =
pTnpn

pTnQpn
≡
5F (θn)T 5 F (θn)

5F (θn)TQ5 F (θn)
.
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[NW Chapter 3.3]. Steepest descent method.

Finally

θn+1 = θn +
5F (θn)T 5 F (θn)

5F (θn)TQ5 F (θn)
5 F (θn).

Remembering that around a maximum the second or-
der Taylor expansion the Hessian is negative definite,
then we can choose Q = −Hn, thus

θn+1 = θn −
5F (θn)T 5 F (θn)

5F (θn)THn5 F (θn)
5 F (θn).
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[NW, Chapter 2.2, p. 23]. Newton-Raphson
method.

It based on the second-order Taylor series approxima-
tion to F (θn + p), which is

F (θn+p) ≈ F (θn)+pT5F (θn)+
1

2
pT52F (θn)p =: mn(p).

Assuming for the moment that 52F (θn) is negative
definite, we obtain the Newton direction by finding
the vector p that maximizes mn(p). By simply set-
ting the derivative of mn(p) to zero, we obtain the
following explicit formula:

pn = −
(
52F (θn)

)−15 F (θn).
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[NW, Chapter 2.2, p. 23]. Newton-Raphson
method.

The Newton direction is

pn = −
(
52F (θn)

)−15 F (θn).

Supposing that λn ≡ 1, we obtain the following itera-
tive formula

θn+1 = θn −
(
52F (θn)

)−15 F (θn).
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Newton-Raphson method, observation:

The high rate of convergence of the method is achieved
due to the fact that it is a second-order method.
Thus, its iteration is much more labor-intensive than,
for example, the iteration of gradient methods. For-
tunately, on the basis of Newton’s method, there ex-
ist so-called quasi-Newtonian methods that are only
slightly inferior to Newton’s method on convergence
rate, and their iterations are just a little more labori-
ous than the iterations of gradient methods.
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[FCN] Quasi-Newton methods.

θn+1 = θn+λn∆n, ∆n = Wngn, gn = 5F (θn) ≡
∂F

∂θ

∣∣∣
θn
.

A wide class of efficient algorithms called Quasi-Newton
methods are based on the following idea: the iteration
of the matrix Wn follows the rule

Wn+1 = Wn + En,

where En is a some negative (positive) definite ma-
trix. Note that if W0 is negative (positive) definite
(in general W0 = I is used), then Wn are positive
(negative) definite for any n ≥ 0.



Aula 6. Optimization Methods I. 19

[FCN] Quasi-Newton methods.

θn+1 = θn+λn∆n, ∆n = Wngn, gn = 5F (θn) ≡
∂F

∂θ

∣∣∣
θn
.

A wide class of efficient algorithms called Quasi-Newton
methods are based on the following idea: the iteration
of the matrix Wn follows the rule

Wn+1 = Wn + En,

where En is a some negative (positive) definite matrix.
The two algorithms are known

a) DFP (Davidon-Fletcher-Powell) method;

b) BFGS (Broyden-Fletcher-Goldfarb-Shanno) meth-
ods.
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[FCN] Quasi-Newton: Davidon-Fletcher-Powell
method

Based on paper of C.G.Broyden published 1969.

Let δn = λn∆n (or θn+1− θn = δn) and let γn = gn+1−
gn. The DFP algorithm uses the following recursion

Wn+1 = Wn +
δnδTn
δTnγn

+
WnγnγTnWn

γTnWnγn
.

Note that the formula can be represented in a way

Wn+1 = Wn + aaT + bbT = Wn + [a, b][a, b]T .

A matrix with two column [a, b] has a rank 2. Thus
one say that the algorithm DFP has a correction of
rank two.
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[FCN] Quasi-Newton: Broyden-Fletcher-Goldfarb-
Shanno method.

It is an algorithm of the so-called correction of rank
three. Let

νn = γTnWnγn.

The algorithm use the following recurrent formula

Wn+1 = Wn +
δnδTn
δTnγn

+
WnγnγTnWn

γTnWnγn
− νndndTn .

where

dn =
( 1

δTnγn

)
δn −

( 1

γTWnγn

)
Wnγn.

There are evidences that this method is more efficient
then the method DFP.
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[FCN] Quasi-Newton methods.

Wn+1 = Wn + En,

where En is a some negative (positive) definite ma-
trix. The objective of the quasi-Newton algorithms
is to obtain a good approximation for the inverse of
Hessian:

Wn ≈ −H−1,

when n is large enough.

Attention: a final matrix W can be a not good
approximation for −H−1. Some authors suggest to
restart an algorithm and execute some more itera-
tions.
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[FCN] Convergence criteria.

We say that there is a convergence when the iteration
achieves a stability.

There are various convergence criteria that can be
used. Lot of them are based on a relative variations
of a function and/or parameters.

In the case of Newton’s like algorithms we can stop
an algorithm when∣∣gTn+1H

−1
n+1gn+1 − gTnH−1

n gn
∣∣ < ε,

for some given small ε.
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