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Motivation example. [FCN]

Consider the beta distribution. Suppose that X1,..., X, ~
B(p,q) and i.i.d. The density is

I_(p—l—q) -1 -1
flz;p,q) = 2’ (1-2)7", p,q>0,z¢€ (0,1),
r(p)r(q)
where '(z) = fO°° t*~le~tdt is gamma function. Note
that the uniform distribution is the particular case of

gamma distribution with p =q¢ = 1. Here

E(X@-)=Z%q and  Var(X;) =

pq
(p+q9)2(p+qg+1)
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Motivation example. [FCN]

Likelihood function for gamma distribution:
let x = (x1,...,7n)

B , B F(p+q) o1 N
L=Lpge) = Zle<p>r<q>Z (=)™

r(p_l_Q) xp—l — q—1
(Forw) 13 e

Log-likelihood function for gamma distribution:

(=4(p,q,x) = nln(l_(p—l—q))—nln(l_(p))—nln(l_(q))

+ (-1 In(@)+(g—1) ) In(1—z).
1=1 =1
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Motivation example. [FCN]

In order to find the maximum likelihood estimator we
have to resolve the following system of equations

% =0 and % = 0.
Op dq
We have no ‘closed” solution of the system. Thus

we need to maximize the log-likelihood function nu-
merically (no-linear optimization problem).

Question: how to find the maximum numerically?
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Optimization.

Optimization problems:

(1) To find an extreme points of a function h(#) in
a domain 0 € ©,

(47) To find a solution (solutions) of an equation g(#) =
O in a domain 0 € ©.

Two type of problem can be considered as equivalent:

(1) — (1) Reformulate the problem (ii) in the form
of (i) by choosing h(0) = ¢2(0).

(1) — (1) Reformulate the problem (¢) in the form of

(4) by choosing g(§) = %0,
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Optimization.
e Continuous versus Discrete Optimization
e Constrained versus Unconstrained Optimization
e Global versus Local Optimization

e Stochastic versus Deterministic Optimization
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Optimization. Line search. [FCN]

Ideia. To find a maximum of a target function using
iterative scheme.

Start at some inicial 6q. If after n iterations 6,, is still
not optimal value, calculate directional vector A\,, and
step-length \,, and calculate the next value

6)n—l—l = 0, + MAn.
This is our general iterative scheme.

[INW] call this strategy as line search. Note that for
a given 6, and direction A, the method need a sec-
ondary optimization in order to find an optimal value
of the step-length \,.
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Optimization. Line search. [FCN]

9n—|—1 = 0, + MAn.

INW] call this strategy as line search. Note that for
a given 6, and direction A, the method need a sec-
ondary optimization in order to find an optimal value
of the step-length \,.

Observation: If we add in the search strategy an op-
timal value of \,, it makes the search computation-
ally hard. Thus, the secondary optimization problem
in this step in general is substituted by ad hoc rules.
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Optimization. Trust Region. [NW. Chapter 2.2]

“In the second algorithmic strategy, known as trust region, the
information gathered about target function f is used to con-
struct a model function m, whose behavior near the current
point z, is similar to that of the actual objective function f.
Because the model m, may not be a good approximation of f
when 0 is far from 0,,, we restrict the search for minimizer of m,,
to some region around 60,,. In other words we find the candidate
step p by approximately solving the following subproblem:

min my, (6, + p),
p

where 60, + p lies inside the trust region.”
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Gradient methods. [FCN]

More common algorithms are gradient methods. Here
An — ndn,

where W, is some positive definite matrix and g, =
g(0,) is the gradient of the objective function F:

oOF

n=<F(0,) = —| .
gn = VF(0n) 59 o,

(obs.: the vectors are column vectors)
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Background of Gradient Methods. [FCN]

Consider the Taylor expansion of F'(6,4+1) around the
point corresponding A\, = O:

F(0p11) = F(0, 4+ M) = F(6,) + Mosv F(0,)T AL
Let F,41 = F(0,41) and F, = F(6,) then
Foi1— Fy = v F(0,)T A0 = Mgl A
If A, = W,g, (gradient methods), then
Foyi1—F, =~ )\ngangn.

If g, 7 0 and X, is sufficiently small, then F,41 — F,
must be positive.
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[FCN, NWI]. Gradient Methods. Steepest de-
scent method.

Different choices of W provide different methods.
Steepest descent method based on the following
choice of W,,:

Wy, =1,

where I is the identity matrix (in this case A, = g,)
with the following choice of step-length

\ — __ 9ngn
" gangn)
where
82 F(0)
H, = H(0,)) = v°F(0,) = )
(0n) = V°F(0,) 502 o,

(H, is Hessian matrix)
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[INW Chapter 3.3]. Steepest descent method.

The rationalization on the choice of step-length can
be illustrated on the ideal case for this method — when
the objective function is quadratic (in this case the
line searches are exact). Suppose that

1
F(0) =blo — EHTQG,

where @ is some symmetric and positive definite ma-
trix. The gradient is given by vF(0) = b — Q6, and
the maximizer 6% is the unique solution of the linear
system Q86 = b.
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[NW Chapter 3.3]. Steepest descent method.

Let us compute the step length A, that maximizes
F(0,+ X<y F(6,)). By differentiating

1
F(0n + Apn) = bT(en + Apn) — 5(9?1 + )\pn)TQ(Qn + Apn)

with respect to A

1 1
b pp — 5@2 Qpn — EpZQen — Ap;. Qpn
1

1
— (pn + Qen)Tpn - EGTTLQpn — EPZQHTL — Angpn
= plpn — AP Qp, = 0,

we obtain
N — pfpn _ VF(6,)" 7 F(6n)
prQpn  VF(0,)TQ <7 F(6r)
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[NW Chapter 3.3]. Steepest descent method.

Finally
VF(6,)! 7 F(6n)
VEO)TQ Fo,y ¥ )

Remembering that around a maximum the second or-
der Taylor expansion the Hessian is negative definite,
then we can choose Q = —H,, thus

_ VF(O:)" v F(6)
VE ()T Hy 7 F(6n)

en—i—l =0, +

9n+1 = 9n V F(@n)
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[INW, Chapter 2.2, p. 23]. Newton-Raphson
method.

It based on the second-order Taylor series approxima-
tion to F(6, + p), which is

1
F(9n+p) ~ F(Qn)—|—pTVF(9n)—|—§pTV2F(Qn)p =. mn(p)

Assuming for the moment that v?F(6,) is negative
definite, we obtain the Newton direction by finding
the vector p that maximizes m,(p). By simply set-
ting the derivative of m,(p) to zero, we obtain the
following explicit formula:

pn = —(V2F(6,)) " 7 F(6,).
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[INW, Chapter 2.2, p. 23]. Newton-Raphson
method.

The Newton direction is

pn = —(V2F(0,)) " v F(6,).

Supposing that A\, = 1, we obtain the following itera-
tive formula

Opt1 = On — (V2F(0,)) " 7 F(0n).
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Newton-Raphson method, observation:

The high rate of convergence of the method is achieved
due to the fact that it is a second-order method.

Thus, its iteration is much more |labor-intensive than,

for example, the iteration of gradient methods. For-

tunately, on the basis of Newton’'s method, there ex-

ist so-called quasi-Newtonian methods that are only

slightly inferior to Newton’'s method on convergence

rate, and their iterations are just a little more labori-

ous than the iterations of gradient methods.
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[FCN] Quasi-Newton methods.

oF
en—l—l — 0n+>\nAn7 An — ndn, gn — VF(en) = % 0 .

A wide class of efficient algorithms called Quasi-Newton
methods are based on the following idea: the iteration
of the matrix W,, follows the rule

Wn—l—l =W, + E,,

where E, is a some negative (positive) definite ma-
trix. Note that if Wy is negative (positive) definite
(in general Wy = I is used), then W, are positive
(negative) definite for any n > 0.
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[FCN] Quasi-Newton methods.

OF
en—l—l — 0n+>\nAn7 A, = ndn, Gn — VF(en) = % 0 .

A wide class of efficient algorithms called Quasi-Newton
methods are based on the following idea: the iteration
of the matrix W,, follows the rule

Wn—l—l =W, + E,,

where E, is a some negative (positive) definite matrix.
The two algorithms are known

a) DFP (Davidon-Fletcher-Powell) method;

b) BFGS (Broyden-Fletcher-Goldfarb-Shanno) meth-
ods.
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[FCN] Quasi-Newton: Davidon-Fletcher-Powell
method

Based on paper of C.G.Broyden published 1969.

Let 6, = \pA, (Or 0,41 — 0, = 0,) and let v, = gpt1 —
gn. T he DFP algorithm uses the following recursion

5n57§f n Wn'yn'y,:f Wi,

57:5%1 %?Wn’yn -

Note that the formula can be represented in a way
Wha1 = Wy + aa’ + bb" = W, + [a, b][a, b]”.

A matrix with two column [a,b] has a rank 2. Thus
one say that the algorithm DFP has a correction of
rank two.

Wn-l—l = Wy +
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[FCN] Quasi-Newton: Broyden-Fletcher-Goldfarb-
Shanno method.

It is an algorithm of the so-called correction of rank
three. Let

Up = fngn’yn.
The algorithm use the following recurrent formula
ool W, W,
Wn+1 =W, + k + n T T - Vndndz;

57? Tn ’Yg Whn
where

1 1
5TTL Tn ’YTWn’Yn

There are evidences that this method is more efficient
then the method DFP.
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[FCN] Quasi-Newton methods.

where FE, is a some negative (positive) definite ma-
trix. The objective of the quasi-Newton algorithms
is to obtain a good approximation for the inverse of
Hessian:

W, ~—H1!,
when n is large enough.

Attention: a final matrix W can be a not good
approximation for —H-1. Some authors suggest to
restart an algorithm and execute some more itera-
tions.
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[FCN] Convergence criteria.

We say that there is a convergence when the iteration
achieves a stability.

There are various convergence criteria that can be
used. Lot of them are based on a relative variations
of a function and/or parameters.

In the case of Newton's like algorithms we can stop
an algorithm when

T -1 Trr—1
for some given small «.
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