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Bootstrap. The use of the term bootstrap derives from the
phrase to pull oneself up by ones bootstraps, widely thought
to be based on one of the eighteenth century “The Surprising
Adventures of Baron Munchausen” by Rudolph Erich Raspe:
The Baron had fallen to the bottom of a deep lake. Just when
it looked like all was lost, he thought to pick himself up by his
own bootstraps.
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Bootstrap. [CL, p.5].

Let T (·) be a functional of interest, for example estimator of a
parameter. We are interested in estimation of T (F ), where F
is population distribution. Let Fn be an empirical distribution
based on sample x = (x1, . . . , xn). Bootstrap:

1. generate a sample x∗ = (x∗1, . . . , x
∗
n) with replacement from

the empirical distribution Fn for the data (boostrap sam-
ple);

2. compute T (F ∗n) the bootstrap estimate of T (F ). This is
a replacement of the original sample x with a bootstrap
sample x∗ and the bootstrap estimate of T (F ) in place of
the sample estimate of T (F );

3. M times repeat steps 1 and 2 where M is large, say 100000.
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Bootstrap. [CL, p.5].

Now a very important thing to remember is that with the Monte
Carlo approximation to the bootstrap, there are two sources of
error:

1. the Monte Carlo approximation to the bootstrap distribu-
tion, which can be made as small as you like by making M
large;

2. the approximation of the bootstrap distribution F ∗n to the
population distribution F .

If T (F ∗n) converges to T (F ) as n→∞, then bootstrapping works.
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Bootstrap. [CL, p.5].

“If T (F ∗n) converges to T (F ) as n → ∞, then bootstrapping
works. It is nice that this works out often, but it is not guar-
anteed. We know by a theorem called the Glivenko-Cantelli
theorem that Fn converges to F uniformly. Often, we know that
the sample estimate is consistent (as is the case for the sample
mean). So, (1) T (Fn) converges to T (F ) as n → ∞. But this
is dependent on smoothness conditions on the functional T . So
we also need (2) T (F ∗n) − T (Fn) to tend to 0 as n → ∞. In
proving that bootstrapping works (i.e., the bootstrap estimate
is consistent for the population parameter), probability theorists
needed to verify (1) and (2). One approach that is commonly
used is by verifying that smoothness conditions are satisfied for
expansions like the Edgeworth and Cornish-Fisher expansions.
Then, these expansions are used to prove the limit theorems.”
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Bootstrap. [CL, p.24].

“One function in the basic R packages that lies at the heart of
resampling is the sample() function, whose syntax is

sample(x, size, replace = FALSE, prob = NULL)

The first argument x is the vector of data, that is, the original
sample. size is the size of the resample desired. replace is TRUE
if resampling is with replacement, and FALSE if not (the default).
prob is a vector of probability weights if the equalweight default
is not used. Any arguments omitted will assume the default. If
size is omitted, it will default to the length of x.”
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Bootstrap. [CL, p.24-25].

“For our purposes, it will usually be easiest to resample the
indices of the data from a sample of size n, rather than the data
itself. For example, if we have five data in our set, say

> x=c(-0.3, 0.5, 2.6, 1.0, -0.9)

> x

[1] -0.3 0.5 2.6 1.0 -0.9

then

> i = sample(1:5, 5, replace=TRUE)

> i

[1] 3 2 3 2 2

> x[i]

[1] 2.6 0.5 2.6 0.5 0.5

is the resample of the original data.”
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Bootstrap standard error.

From bootstrap sampling we can estimate any aspect
of the distribution of θ̂ = s(y) (which is any quantity
computed from the data y = (y1, . . . , yn), for example
its standard error is

s.e.b.(θ̂) =
( 1

B − 1

B∑
b=1

(
θ̂∗(b)− θ̂∗(·)

)2
)1/2

where θ̂∗(b) is the bootstrap replication of s(y) and

θ̂∗(·) =
1

B

B∑
b=1

θ̂∗(b).
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Example [EG]. The 15 points represent various entering classes
at American law schools in 1973. On x-axis the average average
LSAT score of entering students at school i, on y-axis under-
graduate GPA score of entering students at school i.
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Example [EG].

We want to attach a nonparametric (bootstrap) estimate of
standard error to observed Pearson coefficient for these n = 15
pairs, which is ρ̂ = 0.777. Let B1 = 1000(B2 = 100000), the
number of bootstrap replications.

The standard errors are σ̂B1 = 0.135 and σ̂B2 = 0.133 corre-

spondingly. When σ̂Norm = 1−ρ̂2
√
n−3

= 0.110.
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Example.

[EG]: “One thing is obvious about the bootstrap procedure: it
can be applied just as well to any statistic, simple or complicated,
as to the correlation coefficient”

Assume we want calculate the standard error for the median of
LSAT. Use bootstrap:
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Bootstrap bias-reduction.

Let θ̂ be a consistent estimator, but biased. Target: to reduce
the bias of the estimator.

The bias of θ̂ is the systematic error bias = EF θ̂− θ. Em general
the bias depends on the unknown parameter θ, because why we
cannot to have θ̂ − bias.

Consider the following bootstrap bias correction

θ̂B = θ̂ − ˆbias.

where

ˆbias = ˆEF θ̂ − θ̂ = θ̂∗(·) − θ̂,
where θ̂∗

(·) is the average of bootstrap estimators, i.e.

θ̂∗(·) =
1

B

B∑
b=1

θ̂∗b .

Thus

θ̂B = θ̂ − ˆbias = 2θ̂ − θ̂∗(·)
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Bootstrap bias-reduction. Example.
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Jackknife.

In some sense the bootstrap method is a generaliza-
tion of the method jackknife, in the sense that the
resampling is made randomly and not deterministi-
cally as in jackknife “leave-one-out”.
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Jackknife.

1. We have a sample y = (y1, . . . , yn) and estimator
θ̂ = s(y).

2. Target: estimate the bias and standard error of
the estimator.

3. The leave-one-out observation samples

y(i) = (y1, . . . , yi−1, yi+1, . . . , yn),

for i = 1, . . . , n are called jackknife samples.

4. Jackknife estimators are θ̂(i) = s(y(i)).
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Jackknife bias-reduction. Quenouille bias.

The bias of θ̂ = s(y) is defined as

biasJ(θ̂) = (n− 1)
(
θ̂(·) − θ̂

)
,

where θ̂(·) is the average of Jackknife estimators θ̂(i)

θ̂(·) =
1

n

n∑
i=1

θ̂(i).

This leads to a bias-reduced jackknife estimator of
parameter θ

θ̂J = θ̂ − biasJ(θ̂) = nθ̂ − (n− 1)θ̂(·)
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Jackknife bias-reduction. Quenouille bias.

> theta=6

> n=15

> set.seed(123)

> Data=theta*runif(n)

> Data

[1] 1.7254651 4.7298308 2.4538615 5.2981044 5.6428037 0.2733390
3.1686329 5.3545143 3.3086101 2.7396884

[11] 5.7410001 2.7200049 4.0654238 3.4358004 0.6175481

The maximal value is 5.7410001 and the second maximal value
is 5.6428037.
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Jackknife bias-reduction. Quenouille bias.

The maximal value is 5.7410001 and the second maximal value
is 5.6428037.

The average of Jackknife estimators θ̂(i)

θ̂(·) =
1

n

n∑
i=1

θ̂(i) =
5.6428037 + 14 · 5.7410001

15
= 5.734454.

The bias-reduced jackknife estimator of parameter θ

θ̂J = nθ̂ − (n− 1)θ̂(·)
= 15 · 5.7410001− 14 · 5.734454 = 5.832645.

The bias-reduced bootstrap estimator of parameter θ was 5.815999.
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Bootstrap hypotheses testing.

• Set the two hypotheses.

• Choose a test statistic T that can discriminate between
the two hypotheses. We do not care that our statistic has
a known distribution under the null hypothesis.

• Calculate the observed value tobs of the statistic for the
sample.

• Generate B samples from the distribution implied by the
null hypothesis.

• For each sample calculate the value t(i) of the statistic,
i = 1, . . . , B.

• Find the proportion of times the sampled values are more
extreme than the observed.

• Accept or reject according to the significance level.
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Bootstrap hypotheses testing.

Suppose two samples x = (x1, . . . , xn) and y = (y1, . . . , ym). We
wish to test the hypothesis that the mean of two populations
are equal, i.e.

H : µx = µy vs A : µx 6= µy

Use as a test statistic T = x̄− ȳ.

Under the null hypothesis a good estimate of the population
distribution is the combined sample z = (x1, . . . , xn, y1, . . . , ym)

For each of the bootstrap sample calculate T ∗
(i)

, i = 1, . . . , B.

Estimate the p-value of the test as

p̂ =
1

B

B∑
i=1

1(T ∗(i) ≥ tobs) or p̃ =
1

B + 1

(
1 +

B∑
i=1

1(T ∗(i) ≥ tobs)
)
.

Other test statistics are applicable, as for example t-statistics.
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Bootstrap hypotheses testing. One-sample problem.

We want to test H0 : µ = µ0 vs H1 : µ 6= µ0. What is the
appropriate way to estimate the null distribution? The empirical
distribution F̂ is not an appropriate estimation, because it does
not obey H0. We can use the empirical distribution of the points:
xi = xi − x̄+ µ0, i = 1, . . . , n. Which has a mean of µ0.
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Bootstrap hypotheses testing. One-sample prob-
lem.
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Bootstrap hypotheses testing. Two-sample prob-
lem.
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Bootstrap hypotheses testing. Two-sample prob-
lem.
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Bootstrap hypotheses testing. Two-sample prob-
lem.
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Bootstrap hypotheses testing. Two-sample prob-
lem.
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