1. In Exercise $3.5[\mathrm{RC}]$ The value of $\mathbb{P}(Z>4.5)$ was estimated by Importance Sampling technique. The argument is that the direct Monte Carlo standard normal Z simulation hits a region $[4.5, \infty)$ very rarely - once in about 3 million iterations. We can produce the direct estimation in alternative way using the relation $\mathbb{P}(Z>$ $4.5)=1-\mathbb{P}(Z \leq 4.5)$ and simulating $Z_{i} \sim N(0,1)$ and estimating $\mathbb{P}(Z \leq 4.5)$.
(1) Construct the standard Monte Carlo estimator for $\mathbb{P}(Z>4.5)$ using the relation $\mathbb{P}(Z>4.5)=1-\mathbb{P}(Z \leq 4.5)$.
(2) Compare the rate of convergence with Importance Sampling estimator considered in Exercise 3.5 [RC$]$ plotting the absolute error for both estimators. Comment.
Following the scheme of Exercise 3.5, provide the Monte Carlo estimation of the probability $\mathbb{P}(X>5)$, where X has Cauchy distribution $\mathcal{C}(0,1)$:
(1) Describe the consequences of choosing standard normal variable as an instrumental variable (Hint: Exercise 3.8).
(2) Suggest an instrumental variable with density g which avoids the problem of previous item.
(3) Using the exact value of the probability $\mathbb{P}(X>5)$ plot the absolute error of the estimator.
2. [RC1, p.112, Problem 3.10] Compare (in a simulation experiment) the perfomances of the regular Monte Carlo estimator of

$$
\int_{1}^{2} \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x=\Phi(2)-\Phi(1)
$$

with those of an estimator based on an optimal choice of instrumental distribution.

