Importance sampling. Exercises. [RC] Chapter 3.

Anatoli Iambartsev IME-USP

Importance sampling.

Importance sampling is based on a alternative representation of the integral $\mathbb{E}_{f}(h(X))$. Given an arbitrary density g that is strictly positive when $h \cdot f$ is different from zero

$$
\mathbb{E}_{f}(h(X))=\int_{\operatorname{supp}(g)} h(x) \frac{f(x)}{g(x)} d x=\mathbb{E}_{g}\left[\frac{h(X) f(X)}{g(X)}\right]
$$

it justifies the use of the estimator

$$
m_{n}^{I S}=\frac{1}{n} \sum_{i=1}^{n} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right) \rightarrow \mathbb{E}_{f}(h(X))
$$

where $X_{i} \sim g$ and the convergence is almost sure if $\mathbb{E}_{g}\left|\frac{h(X) f(X)}{g(X)}\right|<\infty$.

Exercise 3.4 [RC]. For the computation of the expectation $E_{f}[h(X)]$ when f is the normal pdf and $h(x)=\exp \left(-(x-3)^{2} / 2\right)+\exp \left(-(x-6)^{2} / 2\right)$.
(a) Show that $E_{f}[h(X)]$ can be computed in closed form and derive its value.

$$
\begin{aligned}
& E_{f}[h(X)]=\frac{1}{\sqrt{2 \pi}} \int\left(e^{-\frac{(x-3)^{2}}{2}}+e^{-\frac{(x-6)^{2}}{2}}\right) e^{-\frac{x^{2}}{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int e^{-(x-3 / 2)^{2}-9 / 4} d x+\frac{1}{\sqrt{2 \pi}} \int e^{-(x-3)^{2}-9} d x \\
& =\frac{e^{-9 / 4}+e^{-9}}{\sqrt{2}} \cong 0.0746
\end{aligned}
$$

Exercise 3.4 [RC]. For the computation of the expectation $E_{f}[h(X)]$ when f is the normal pdf and $h(x)=\exp \left(-(x-3)^{2} / 2\right)+\exp \left(-(x-6)^{2} / 2\right)$.
(b) Construct a regular Monte Carlo approximation based on a normal $N(0,1)$ sample of size $n=10^{3}$ and produce an error evaluation.

$$
m_{n}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right) \rightarrow \mathbb{E}_{f}(h(X)), \operatorname{Var}_{f}\left(m_{n}\right)=\frac{\operatorname{Var}_{f} h(X)}{n}
$$

Let us calculate $\operatorname{Var}_{f} h(X)$.

Aula 4. Monte Carlo Integration II. Exercises.

Exercise 3.4 [RC]. For the computation of the expectation $E_{f}[h(X)]$ when f is the normal pdf and $h(x)=\exp \left(-(x-3)^{2} / 2\right)+$ $\exp \left(-(x-6)^{2} / 2\right)$.
(b) Construct a regular Monte Carlo approximation based on a normal $N(0,1)$ sample of size $n=10^{3}$ and produce an error evaluation.

$$
\begin{aligned}
& \mathbb{E}_{f}\left(e^{-\frac{(X-3)^{2}}{2}}\right)=\frac{e^{-9 / 4}}{\sqrt{2}}, \quad \mathbb{E}_{f}\left(e^{-\frac{(X-6)^{2}}{2}}\right)=\frac{e^{-9}}{\sqrt{2}} . \\
& \mathbb{E}_{f}\left(e^{-(X-3)^{2}}\right)=\frac{1}{\sqrt{2 \pi}} \int e^{-\frac{3}{2}(x-2)^{2}-3} d x=\frac{e^{-3}}{\sqrt{3}} \\
& \mathbb{E}_{f}\left(e^{-(X-6)^{2}}\right)=\frac{1}{\sqrt{2 \pi}} \int e^{-\frac{3}{2}(x-4)^{2}-12} d x=\frac{e^{-12}}{\sqrt{3}} \\
& \operatorname{Var}_{f}\left(e^{-\frac{(X-3)^{2}}{2}}\right)=\frac{e^{-3}}{\sqrt{3}}-\frac{e^{-9 / 2}}{2}, \quad \operatorname{Var}_{f}\left(e^{-\frac{(X-6)^{2}}{2}}\right)=\frac{e^{-12}}{\sqrt{3}}-\frac{e^{-18}}{2} \\
& \mathbb{E}_{f}\left(e^{-\frac{(X-3)^{2}}{2}} e^{-\frac{(X-6)^{2}}{2}}\right)=\frac{1}{\sqrt{2 \pi}} \int e^{-\frac{3}{2}(x-3)^{2}-9} d x=\frac{e^{-9}}{\sqrt{3}} \\
& \operatorname{cov}_{f}\left(e^{-\frac{(X-3)^{2}}{2}}, e^{-\frac{(X-6)^{2}}{2}}\right)=\frac{e^{-9}}{\sqrt{3}}-\frac{e^{-(9 / 4+9)}}{2} .
\end{aligned}
$$

Aula 4. Monte Carlo Integration II. Exercises.

Exercise 3.4 [RC]. For the computation of the expectation $E_{f}[h(X)]$ when f is the normal pdf and $h(x)=\exp \left(-(x-3)^{2} / 2\right)+$ $\exp \left(-(x-6)^{2} / 2\right)$.
(b) Construct a regular Monte Carlo approximation based on a normal $N(0,1)$ sample of size $n=10^{3}$ and produce an error evaluation.

$$
\begin{aligned}
\operatorname{Var}_{f} h(X) & =\operatorname{Var}_{f}\left(e^{-\frac{(X-3)^{2}}{2}}\right)+\operatorname{Var}_{f}\left(e^{-\frac{(X-6)^{2}}{2}}\right)+2 \operatorname{cov}_{f}\left(e^{-\frac{(X-3)^{2}}{2}}, e^{-\frac{(X-6)^{2}}{2}}\right) \\
& =\frac{e^{-3}}{\sqrt{3}}-\frac{e^{-9 / 2}}{2}+\frac{e^{-12}}{\sqrt{3}}-\frac{e^{-18}}{2}+2\left(\frac{e^{-9}}{\sqrt{3}}-\frac{e^{-(9 / 4+9)}}{2}\right) \\
& =\frac{e^{-3}+e^{-12}+2 e^{-9}}{\sqrt{3}}-\frac{e^{-9 / 2}+e^{-18}+2 e^{-(9 / 4+9)}}{2} \\
& \cong 0.0233 \\
r_{n} & =0.6745 \sqrt{\frac{0.0233}{n}} \cong 0.0032 \\
r_{n}^{0.95} & =1.96 \sqrt{\frac{0.0233}{n}} \cong 0.0094
\end{aligned}
$$

Aula 4. Monte Carlo Integration II. Exercises.

Exercise 3.4 [RC]. For the computation of the expectation $E_{f}[h(X)]$ when f is the normal pdf and $h(x)=\exp \left(-(x-3)^{2} / 2\right)+$ $\exp \left(-(x-6)^{2} / 2\right)$.
(b) Construct a regular Monte Carlo approximation based on a normal $N(0,1)$ sample of size $n=10^{3}$ and produce an error evaluation.

$$
\mathbb{E}_{f}\left(e^{-\frac{(X-3)^{2}}{2}}+e^{-\frac{(X-6)^{2}}{2}}\right) \cong 0.0746
$$

$>x=\operatorname{rnorm}(1000)$
$>y=\exp \left(-(x-3)^{\wedge} 2 / 2\right)+\exp \left(-(x-6)^{\wedge} 2 / 2\right)$
$>$ mean(y)
>0.07764772

$$
\begin{aligned}
C I_{95 \%}\left(\mathbb{E}_{f}\left(e^{-\frac{(X-3)^{2}}{2}}+e^{-\frac{(X-6)^{2}}{2}}\right)\right) & \cong 0.0776 \pm 0.0094 \\
& =(0.0682,0.087)
\end{aligned}
$$

Aula 4. Monte Carlo Integration II. Exercises.

Exercise 3.4 [RC]. For the computation of the expectation $E_{f}[h(X)]$ when f is the normal pdf and $h(x)=\exp \left(-(x-3)^{2} / 2\right)+$ $\exp \left(-(x-6)^{2} / 2\right)$.
(c) Compare the above with an importance sampling approximation based on an importance function g corresponding to the $U[-8,-1]$ distribution and a sample of size $\mathrm{Nsim}=10^{\wedge} 3$. (Warning: This choice of g does not provide a converging approximation of $\left.\mathbb{E}_{f}[h(X)]\right)$

$$
m_{n}^{I S}=\frac{1}{n} \sum_{i=1}^{n} \frac{7}{\sqrt{2 \pi}} e^{-X_{i}^{2} / 2}\left(e^{-\left(X_{i}-3\right)^{2} / 2}+e^{-\left(X_{i}-6\right)^{2} / 2}\right)
$$

where $X_{i} \sim U[-8,-1]$.

$$
\begin{aligned}
& \mathbb{E}_{g}\left(\frac{7}{\sqrt{2 \pi}} e^{-X^{2} / 2} h(X)\right)=\frac{1}{\sqrt{2 \pi}} \int_{-8}^{-1} e^{-x^{2} / 2}\left(e^{-(x-3)^{2} / 2}+e^{-(x-6)^{2} / 2}\right) d x \\
& \neq \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2}\left(e^{-(x-3)^{2} / 2}+e^{-(x-6)^{2} / 2}\right) d x=\mathbb{E}_{f}(h(X))
\end{aligned}
$$

Aula 4. Monte Carlo Integration II. Exercises.

Defensive sampling.

[RC, p 81] "Given that importance sampling primarily applies in settings where f is not easy to study, this constraint on the tails of f is often not easy to implement, especially when the dimensionality is high. A generic solution nonetheless exists based on the artificial incorporation of a fat tail component in the importance function g. This solution is called defensive sampling by Hesterberg (1995)* and can be achieved by substituting a mixture density for the density g,

$$
\rho g(x)+(1-\rho) \ell(x), \quad 0<\rho<1,
$$

where ρ is close to 1 and the density ℓ is chosen for its heavy tails (for instance, a Cauchy or a Pareto distribution), not necessarily in conjunction with the problem at hand."
*Hesterberg, T. (1995). Weighted average importance sampling and defensive mixture distributions. Technometrics, 37:185-194.

Example 3.9 [RC]. Consider the computing of the integral

$$
\begin{aligned}
\int_{1}^{\infty} \sqrt{\frac{x}{x-1}} t_{2}(x) d x & =\frac{\Gamma(3 / 2)}{\sqrt{2 \pi}} \int_{1}^{\infty} \sqrt{\frac{x}{x-1}} \frac{d x}{\left(1+x^{2} / 2\right)^{3 / 2}} \\
& =\mathbb{E}\left(\sqrt{\frac{X}{X-1}} \mathbb{1}(X>1)\right) \text { where } X \sim t_{2}
\end{aligned}
$$

The expectation exists despite of the singularity at $x=1$, but the second moment is infinite.
This feature means that a mixture of the t_{2} density with a wert $E(z)$ behaved ℓ is required. To achieve integrability of $h^{2}(x) f(x) / \ell(x)$ calls for ℓ to be divergent in $x=1$ and for ℓ to decrease faster than x^{5} (??) when x goes to infinity. Those boundary conditions suggest that

$$
\ell(x) \propto \frac{1}{\sqrt{x-1}} \frac{1}{x^{3 / 2}} \mathbb{1}(x>1)
$$

(which is defined up to a constant) is an acceptable density.
decrease flown
rarbbeat5e
then $\left.x^{-5}\right\}$ because

Aula 4. Monte Carlo Integration II. Exercises.

Example 3.9 [RC].

To characterize this density, you can check that
$\int_{1}^{y} \frac{d x}{\sqrt{x-1} x^{3 / 2}}=\int_{0}^{y-1} \frac{d w}{\sqrt{w}(w+1)^{3 / 2}}=\int_{0}^{\sqrt{y-1}} \frac{2 d \omega}{\left(\omega^{2}+1\right)^{3 / 2}}$
density of t_{2}.

This implies that $\ell(x)$ corresponds to the density of $\left(1+T^{2} / 2\right)$ when $T \sim t_{2}^{2}(? ?)$, namely

$$
\ell(x)=\frac{\Gamma(3 / 2)}{\sqrt{\pi}} \frac{1}{\sqrt{x-1} x^{3 / 2}} \mathbb{1}(x>1) .
$$

$>$ integrate(function $(x)\left\{\right.$ gamma(3/2)/sqrt(pi) $\left./ \operatorname{sqrt}(x-1) / x^{\wedge} 1.5\right\}, 1$, Inf $)$
1 with absolute error $<2.7 \mathrm{e}-13$
The comparison of defensive sampling with the original importance sampler thus consists in adding a small sample from ℓ to

Example 3.9 [RC].

$>h=$ function $(x)\{z=x ; z[z<1]=0 ; y=\operatorname{sqrt}(z /(z-1)) ; y\}$
$>$ int $=$ integrate(function $(x) \operatorname{sqrt}(x /(x-1)) * d t(x, d f=2), 1$, Inf $) \$ v a l$
$>\operatorname{sam} 1=r t\left(.95 * 10^{\wedge} 4, d f=2\right)$
$>\operatorname{sam} 2=1+.5^{*} r t\left(.05 * 10^{\wedge} 4, d f=2\right)^{\wedge} 2$
$>$ sam $=$ sample $\left(c(\operatorname{sam} 1, \operatorname{sam} 2), .95^{*} 10^{\wedge} 4\right)$
$>$ weit $=\mathrm{dt}($ sam, $\mathrm{df}=2) /\left(0.95^{*} \mathrm{dt}(\right.$ sam, $\mathrm{df}=2)+.05^{*}(\text { sam }>0)^{*}$ $\left.\mathrm{dt}\left(\operatorname{sqrt}\left(2^{*} \operatorname{abs}(\operatorname{sam}-1)\right), \mathrm{df}=2\right) * \operatorname{sqrt}(2) / \operatorname{sqrt}(\operatorname{abs}(\operatorname{sam}-1))\right)$
$>\operatorname{plot}\left(\right.$ cumsum $(\mathrm{h}(\operatorname{sam} 1)) /(1$:length $(\operatorname{sam} 1))$, ty $\left.=" l^{\prime \prime}\right)$
$>$ lines(cumsum(weit*h(sam))/1:length(sam1),col="blue")
$>$ abline($a=$ int, $b=0$, col=" red" $)$

Aula 4. Monte Carlo Integration II. Exercises.

Example 3.9 [RC].

Aula 4. Monte Carlo Integration II. Exercises.

Example 3.9 [RC].

Aula 4. Monte Carlo Integration II. Exercises. 14

Example 3.9 [RC].

Homework:

- Doubts in Example 3.9.
- Example 3.8.
- Exercise 3.6, 3.10, 3.12

References:

[RC] Cristian P. Robert and George Casella. Introducing Monte Carlo Methods with R. Series "Use R!". Springer

