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Importance sampling.

Importance sampling is based on a alternative repre-
sentation of the integral Ef(h(X)). Given an arbitrary
density g that is strictly positive when h ·f is different
from zero

Ef(h(X)) =

∫
supp(g)

h(x)
f(x)

g(x)
dx = Eg

[h(X)f(X)

g(X)

]
.

it justifies the use of the estimator

mIS
n =

1

n

n∑
i=1

f(Xi)

g(Xi)
h(Xi)→ Ef(h(X)),

where Xi ∼ g and the convergence is almost sure if

Eg
∣∣∣h(X)f(X)

g(X)

∣∣∣ <∞.
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Exercise 3.4 [RC]. For the computation of the
expectation Ef [h(X)] when f is the normal pdf and
h(x) = exp(−(x− 3)2/2) + exp(−(x− 6)2/2).

(a) Show that Ef [h(X)] can be computed in closed
form and derive its value.

Ef [h(X)] =
1√
2π

∫ (
e−

(x−3)2

2 + e−
(x−6)2

2

)
e−

x2

2 dx

=
1√
2π

∫
e−(x−3/2)2−9/4dx+

1√
2π

∫
e−(x−3)2−9dx

=
e−9/4 + e−9

√
2

∼= 0.0746.
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Exercise 3.4 [RC]. For the computation of the
expectation Ef [h(X)] when f is the normal pdf and
h(x) = exp(−(x− 3)2/2) + exp(−(x− 6)2/2).

(b) Construct a regular Monte Carlo approximation
based on a normal N(0,1) sample of size n = 103

and produce an error evaluation.

mn =
1

n

n∑
i=1

h(Xi)→ Ef(h(X)), Varf(mn) =
Varfh(X)

n

Let us calculate Varfh(X).
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Exercise 3.4 [RC]. For the computation of the expectation
Ef [h(X)] when f is the normal pdf and h(x) = exp(−(x−3)2/2)+
exp(−(x− 6)2/2).

(b) Construct a regular Monte Carlo approximation based on
a normal N(0,1) sample of size n = 103 and produce an error
evaluation.

Ef
(
e−

(X−3)2

2

)
=
e−9/4

√
2
, Ef

(
e−

(X−6)2

2

)
=
e−9

√
2
.

Ef
(
e−(X−3)2

)
=

1
√

2π

∫
e−

3
2

(x−2)2−3dx =
e−3

√
3

Ef
(
e−(X−6)2

)
=

1
√

2π

∫
e−

3
2

(x−4)2−12dx =
e−12

√
3

Varf
(
e−

(X−3)2

2

)
=
e−3

√
3
−
e−9/2

2
, Varf

(
e−

(X−6)2

2

)
=
e−12

√
3
−
e−18

2

Ef
(
e−

(X−3)2

2 e−
(X−6)2

2

)
=

1
√

2π

∫
e−

3
2

(x−3)2−9dx =
e−9

√
3

covf
(
e−

(X−3)2

2 , e−
(X−6)2

2

)
=
e−9

√
3
−
e−(9/4+9)

2
.
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Exercise 3.4 [RC]. For the computation of the expectation
Ef [h(X)] when f is the normal pdf and h(x) = exp(−(x−3)2/2)+
exp(−(x− 6)2/2).

(b) Construct a regular Monte Carlo approximation based on
a normal N(0,1) sample of size n = 103 and produce an error
evaluation.

Varfh(X) = Varf
(
e−

(X−3)2

2

)
+ Varf

(
e−

(X−6)2

2

)
+ 2covf

(
e−

(X−3)2

2 , e−
(X−6)2

2

)
=

e−3

√
3
−
e−9/2

2
+
e−12

√
3
−
e−18

2
+ 2
(
e−9

√
3
−
e−(9/4+9)

2

)
=

e−3 + e−12 + 2e−9

√
3

−
e−9/2 + e−18 + 2e−(9/4+9)

2
∼= 0.0233

rn = 0.6745

√
0.0233

n
∼= 0.0032

r0.95
n = 1.96

√
0.0233

n
∼= 0.0094
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Exercise 3.4 [RC]. For the computation of the expectation
Ef [h(X)] when f is the normal pdf and h(x) = exp(−(x−3)2/2)+
exp(−(x− 6)2/2).

(b) Construct a regular Monte Carlo approximation based on
a normal N(0,1) sample of size n = 103 and produce an error
evaluation.

Ef

(
e−

(X−3)2

2 + e−
(X−6)2

2

)
∼= 0.0746.

x=rnorm(1000)
y=exp(-(x-3)^2/2) + exp(-(x-6)^2/2)
mean(y)
> 0.07764772

CI95%

(
Ef

(
e−

(X−3)2

2 + e−
(X−6)2

2

))
∼= 0.0776± 0.0094

= (0.0682,0.087)
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Exercise 3.4 [RC]. For the computation of the expectation
Ef [h(X)] when f is the normal pdf and h(x) = exp(−(x−3)2/2)+
exp(−(x− 6)2/2).

(c) Compare the above with an importance sampling approxi-
mation based on an importance function g corresponding to the
U [−8,−1] distribution and a sample of size Nsim=10ˆ3. (Warn-
ing: This choice of g does not provide a converging approxima-
tion of Ef [h(X)])

mIS
n =

1

n

n∑
i=1

7
√

2π
e−X

2
i
/2
(
e−(Xi−3)2/2 + e−(Xi−6)2/2

)
where Xi ∼ U [−8,−1].

Eg
( 7
√

2π
e−X

2/2h(X)
)

=
1
√

2π

∫ −1

−8

e−x
2/2
(
e−(x−3)2/2 + e−(x−6)2/2

)
dx

6=
1
√

2π

∫ ∞

−∞
e−x

2/2
(
e−(x−3)2/2 + e−(x−6)2/2

)
dx = Ef

(
h(X)

)
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Defensive sampling.

[RC, p 81] “Given that importance sampling primarily applies
in settings where f is not easy to study, this constraint on the
tails of f is often not easy to implement, especially when the
dimensionality is high. A generic solution nonetheless exists
based on the artificial incorporation of a fat tail component in the
importance function g. This solution is called defensive sampling
by Hesterberg (1995)∗ and can be achieved by substituting a
mixture density for the density g,

ρg(x) + (1− ρ)`(x), 0 < ρ < 1,

where ρ is close to 1 and the density ` is chosen for its heavy tails
(for instance, a Cauchy or a Pareto distribution), not necessarily
in conjunction with the problem at hand.”

∗Hesterberg, T. (1995). Weighted average importance sam-
pling and defensive mixture distributions. Technometrics,
37:185-194.
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Example 3.9 [RC]. Consider the computing of the integral∫ ∞

1

√
x

x− 1
t2(x)dx =

Γ(3/2)
√

2π

∫ ∞

1

√
x

x− 1

dx

(1 + x2/2)3/2

= E
(√

X

X − 1
1(X > 1)

)
where X ∼ t2.

The expectation exists despite of the singularity at x = 1, but
the second moment is infinite.

This feature means that a mixture of the t2 density with a well-
behaved ` is required. To achieve integrability of h2(x)f(x)/`(x)
calls for ` to be divergent in x = 1 and for ` to decrease slower
than x−5 when x goes to infinity. Those boundary conditions
suggest that

`(x) ∝
1

√
x− 1

1

x3/2
1(x > 1),

(which is defined up to a constant) is an acceptable density.
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Example 3.9 [RC].

To characterize this density, you can check that∫ y

1

dx
√
x− 1x3/2

=

∫ y−1

0

dw
√
w(w + 1)3/2

=

∫ √y−1

0

2dω

(ω2 + 1)3/2

=

∫ √2(y−1)

0

√
2dt

(1 + t2/2)3/2

This implies that `(x) corresponds to the density of (1 + T 2/2)
when T ∼ t2, indeed, for y > 1

P

(
1 +

T 2

2
≤ y
)

= P
(
|T | ≤

√
2(y − 1)

)
= 2

∫ √2(y−1)

0

Γ(3/2)
√

2π

dt

(1 + t2/2)3/2
=

∫ y

1

Γ(3/2)
√
π

dx
√
x− 1x3/2

,

namely the following `(x) is density function on x ∈ (1,∞)

`(x) =
Γ(3/2)
√
π

1
√
x− 1x3/2

1(x > 1).
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Example 3.9 [RC].

checking numerically:

integrate(function(x)\{gamma(3/2)/sqrt(pi)/sqrt(x-1)/x^{1.5}\},1,Inf)
> 1 with absolute error < 2.7e-13

The comparison of defensive sampling with the original impor-
tance sampler thus consists in adding a small sample from ` to
the original sample from g = f :
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Example 3.9 [RC].

> h=function(x)\{z=x; z[z<1]=0; y=sqrt(z/(z-1)); y\}
> int=integrate(function(x){sqrt(x/(x-1))*dt(x,df=2)},1,Inf)\$val
> sam1=rt(.95*10^4,df=2)
> sam2=1+.5*rt(.05*10^4,df=2)^2
> sam=sample(c(sam1,sam2),.95*10^4)
> weit=dt(sam,df=2)/(0.95*dt(sam,df=2)+.05*(sam>0)*

dt(sqrt(2*abs(sam-1)),df=2)*sqrt(2)/sqrt(abs(sam-1)))
> plot(cumsum(h(sam1))/(1:length(sam1)),ty="l")
> lines(cumsum(weit*h(sam))/1:length(sam1),col="blue")
> abline(a=int, b=0, col="red")
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Example 3.9 [RC].
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Example 3.9 [RC].
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Example 3.9 [RC].
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Homework:

• Doubts in Example 3.9.

• Example 3.8.

• Exercise 3.6, 3.10, 3.12
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