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Overview of this lecture

What we have seen . . .

Rejection sampling.

This lecture will cover . . .

Importance sampling.

Basic importance sampling

Importance sampling using self-normalised weights

Finite variance estimates

Optimal proposals

Example
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Recall rejection sampling

Algorithm 2.1: Rejection sampling

Given two densities f, g with f(x) < M · g(x) for all x, we can
generate a sample from f by

1. Draw X ∼ g.

2. Accept X as a sample from f with probability

f(X)
M · g(X)

,

otherwise go back to step 1.

Drawbacks:

We need that f(x) < M · g(x)
On average we need to repeat the first step M times before
we can accept a value proposed by g.
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The fundamental identities behind importance sampling (1)
Assume that g(x) > 0 for (almost) all x with f(x) > 0. Then for a
measurable set A:

P(X ∈ A) =
∫
A
f(x) dx =

∫
A
g(x)

f(x)
g(x)︸ ︷︷ ︸

=:w(x)

dx =
∫
A
g(x)w(x) dx

For some integrable function h, assume that g(x) > 0 for (almost)
all x with f(x) · h(x) 6= 0

Ef (h(X)) =
∫
f(x)h(x) dx =

∫
g(x)

f(x)
g(x)︸ ︷︷ ︸

=:w(x)

h(x) dx

=
∫
g(x)w(x)h(x) dx = Eg(w(X) · h(X)),
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The fundamental identities behind importance sampling (2)

How can we make use of Ef (h(X)) = Eg(w(X) · h(X))?

Consider X1, . . . , Xn ∼ g and Eg|w(X) · h(X)| < +∞. Then

1
n

n∑
i=1

w(Xi)h(Xi)
a.s.
n→∞−→ Eg(w(X) · h(X))

(law of large numbers), which implies

1
n

n∑
i=1

w(Xi)h(Xi)
a.s.
n→∞−→ Ef (h(X)).

Thus we can estimate µ := Ef (h(X)) by
1 Sample X1, . . . , Xn ∼ g
2 µ̃ := 1

n

∑n
i=1 w(Xi)h(Xi)
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The importance sampling algorithm

Algorithm 2.1a: Importance Sampling

Choose g such that supp(g) ⊃ supp(f · h).

1. For i = 1, . . . , n:

i. Generate Xi ∼ g.

ii. Set w(Xi) = f(Xi)
g(Xi)

.

2. Return

µ̃ =
∑n

i=1w(Xi)h(Xi)
n

as an estimate of Ef (h(X)).

Contrary to rejection sampling, importance sampling does not
yield realisations from f , but a weighted sample (Xi,Wi).

The weighted sample can be used for estimating expectations
Ef (h(X)) (and thus probabilities, etc.)
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Basic properties of the importance sampling estimate

We have already seen that µ̃ is consistent if
supp(g) ⊃ supp(f · h) and Eg|w(X) · h(X)| < +∞, as

µ̃ :=
1
n

n∑
i=1

w(Xi)h(Xi)
a.s.
n→∞−→ Ef (h(X))

The expected value of the weights is Eg(w(X)) = 1.

µ̃ is unbiased (see theorem below)

Theorem 2.2: Bias and Variance of Importance Sampling

Eg(µ̃) = µ

Varg(µ̃) =
Varg(w(X) · h(X))

n
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What if f is known only up to a multiplicative constant?

Assume f(x) = Cπ(x). Then

µ̃ =
∑n

i=1w(Xi)h(Xi)
n

=
1
n

n∑
i=1

Cπ(Xi)
g(Xi)

h(Xi)

Idea: Estimate 1/C as well. Consider the estimator

µ̂ =
∑n

i=1w(Xi)h(Xi)∑n
i=1w(Xi)

Now we have that

µ̂ =
∑n

i=1w(Xi)h(Xi)∑n
i=1w(Xi)

=

∑n
i=1

π(Xi)
g(Xi)

h(Xi)∑n
i=1

π(Xi)
g(Xi)

,

 µ̂ does not depend on C
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The importance sampling algorithm (2)

Algorithm 2.1b: Importance Sampling using self-normalised
weights

Choose g such that supp(g) ⊃ supp(f · h).

1. For i = 1, . . . , n:

i. Generate Xi ∼ g.

ii. Set w(Xi) = f(Xi)
g(Xi)

.

2. Return

µ̂ =
∑n

i=1w(Xi)h(Xi)∑n
i=1w(Xi)

as an estimate of Ef (h(X)).
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Basic properties of the self-normalised estimate

µ̂ is consistent as

µ̂ =
∑n

i=1w(Xi)h(Xi)
n︸ ︷︷ ︸

=µ̃−→Ef (h(X))

n∑n
i=1w(Xi)︸ ︷︷ ︸
−→1

a.s.
n→∞−→ Ef (h(X)),

(provided supp(g) ⊃ supp(f ·h) and Eg|w(X) ·h(X)| < +∞)

µ̂ is biased, but asymptotically unbiased (see theorem below)

Theorem 2.2: Bias and Variance (ctd.)

Eg(µ̂) = µ+
µVarg(w(X))− Covg(w(X), w(X) · h(X))

n
+O(n−2)

Varg(µ̂) =
Varg(w(X) · h(X))− 2µCovg(w(X), w(X) · h(X))

n

+
µ2Varg(w(X))

n
+O(n−2)
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Finite variance estimators

Importance sampling estimate consistent for large choice of g.
(only need that ...)

More important in practice: finite variance estimators, i.e.

Var(µ̃) = Var
(∑n

i=1w(Xi)h(Xi)
n

)
< +∞

Sufficient conditions for finite variance of µ̃:

f(x) < M · g(x) and Varf (h(X)) <∞, or
E is compact, f is bounded above on E, and g is bounded
below on E.

Note: If f has heavier tails then g, then the weights will have
infinite variance!
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Optimal proposals

Theorem 2.3: Optimal proposal

The proposal distribution g that minimises the variance of µ̃ is

g∗(x) =
|h(x)|f(x)∫
|h(t)|f(t) dt

.

Theorem of little practical use: the optimal proposal involves∫
|h(t)|f(t) dt, which is the integral we want to estimate!

Practical relevance of theorem 2.3:
Choose g such that it is close to |h(x)| · f(x)
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Super-efficiency of importance sampling

For the optimal g∗ we have that

Varf

(
h(X1) + . . .+ h(Xn)

n

)
> Varg?(µ̃),

if h is not almost surely constant.

Superefficiency of importance sampling

The variance of the importance sampling estimate can be less than
the variance obtained when sampling directly from the target f .

Intuition: Importance sampling allows us to choose g such
that we focus on areas which contribute most to the integral∫
h(x)f(x) dx.

Even sub-optimal proposals can be super-efficient.
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Example 2.5: Setup

Compute Ef |X| for X ∼ t3 by . . .

(a) sampling directly from t3.

(b) using a t1 distribution as instrumental distribution.

(c) using a N(0, 1) distribution as instrumental distribution.
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Example 2.5: Densities
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Example 2.5: Estimates obtained

000 500500500 100010001000 150015001500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

IS
es

ti
m

at
e

ov
er

ti
m

e

Iteration
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Example 2.5: Weights
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