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Overview of this lecture

What we have seen ...
Rejection sampling.
This lecture will cover ...

Importance sampling.

o Basic importance sampling

@ Importance sampling using self-normalised weights
o Finite variance estimates

o Optimal proposals
°

Example
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Recall rejection sampling

Algorithm 2.1: Rejection sampling

Given two densities f, g with f(x) < M - g(z) for all z, we can
generate a sample from f by

1. Draw X ~ g.
2. Accept X as a sample from f with probability
f(X)
M- g(X)’

otherwise go back to step 1.

Drawbacks:
o We need that f(z) < M - g(z)

@ On average we need to repeat the first step M times before
we can accept a value proposed by g.
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2.3 Importance sampling
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The fundamental identities behind importance sampling (1)

Assume that g(x) > 0 for (almost) all z with f(z) > 0. Then for a
measurable set A:

P(XeA) = /f da;—/ ()f(x)d:r—/Ag(x)w(a:)dx

@),

::w(m)

For some integrable function h, assume that g(x) > 0 for (almost)

all z with f(z) - h(z) #0

- / flx)h(z) dz = / g(x) g(g h(zx) dz
~—~—
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The fundamental identities behind importance sampling (2)

o How can we make use of Ef(h(X)) = Ey(w(X) - h(X))?
o Consider X1,..., X, ~ g and Ejlw(X) - h(X)| < +00. Then

S w(Xh(X) " Eyw(X) - h(X)
=1

(law of large numbers), which implies

a.s.

© > wlXh(G) " By (X)),

o Thus we can estimate y := Ef(h(X)) by
Q Sample Xy,..., X, ~g
Q 1=+ Y0 w(X;)h(X;)
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The importance sampling algorithm

Algorithm 2.1a: Importance Sampling

Choose g such that supp(g) D supp(f - h).
1. Fori=1,...,n:

i. Generate X; ~ g.

a0 N f(X)

ii. Set w(X;) = 9%
2. Return

>y w(Xa)h(X5)

n

o=
as an estimate of E¢(h(X)).

o Contrary to rejection sampling, importance sampling does not
yield realisations from f, but a weighted sample (X;, W;).

@ The weighted sample can be used for estimating expectations
E;(h(X)) (and thus probabilities, etc.)
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Basic properties of the importance sampling estimate

@ We have already seen that ji is consistent if
supp(g) D supp(f - h) and E4|w(X) - h(X)| < 400, as

= > w(XD(X) " By (X))

@ The expected value of the weights is Eg(w(X)) = 1.

@ /i is unbiased (see theorem below)
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What if f is known only up to a multiplicative constant?

o Assume f(z) = Cm(z). Then

PR =LICOLCON

1
n n “
o Idea: Estimate 1/C as well. Consider the estimator

P Yo w(Xi)h(X5)
> iy w(Xy)

@ Now we have that

n  7w(X;
Ia _ Z?:l w<Xz)h(Xz) - Zi:l %h(&)
a - i - n (X5 ’
>ic w(X5) S ggxig

~> [1 does not depend on C'
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The importance sampling algorithm (2)

Algorithm 2.1b: Importance Sampling using self-normalised
weights

Choose g such that supp(g) D supp(f - h).
1. Fori=1,...,n:

i. Generate X; ~ g.

g8 Ny f(X)

ii. Set w(X;) = IOk
2. Return

> i1 W(Xi)h(X)
Dlimg w(Xe)
as an estimate of E¢(h(X)).

=
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Basic properties of the self-normalised estimate

® [i is consistent as

- i w(XG)h(X5) n G0
u= : n — Ef(h(X )
E Zi:fw(Xi) f( (X))
=a—Ef(h(X)) —1

(provided supp(g) D supp(f-h) and Eg|w(X)-h(X)| < 400)
@ (i is biased, but asymptotically unbiased (see theorem below)

Theorem 2.2: Bias and Variance (ctd.)

Eq(f2) o BT Covi(w(X L w(X) hX) | 2y
Vary(f) = Y2l W) = 2uCov, (WX, wlX) X))
+w +0(n?%)
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Finite variance estimators

@ Importance sampling estimate consistent for large choice of g.
(only need that ...)
@ More important in practice: finite variance estimators, i.e.
n
- w(X;)h(X;
Var(ji) = Var <le (Xa)h( Z>> < +o00
n
o Sufficient conditions for finite variance of i
o f(x) <M -g(x)and Vary(h(X)) < oo, or
o FE is compact, f is bounded above on F, and g is bounded
below on E.
@ Note: If f has heavier tails then g, then the weights will have

infinite variance!
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Optimal proposals

Theorem 2.3: Optimal proposal

The proposal distribution g that minimises the variance of [ is

|h(2)|f ()

) = TRo\ o) dt

@ Theorem of little practical use: the optimal proposal involves
[ |h(t)|f(t) dt, which is the integral we want to estimate!

@ Practical relevance of theorem 2.3:
Choose g such that it is close to |h(x)| - f(x)
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Super-efficiency of importance sampling

@ For the optimal ¢g* we have that

Var, (h(Xl) + ...+ h(X,)

n

) > Var ().

if h is not almost surely constant.

Superefficiency of importance sampling

The variance of the importance sampling estimate can be /ess than
the variance obtained when sampling directly from the target f.

@ Intuition: Importance sampling allows us to choose g such
that we focus on areas which contribute most to the integral

[ h(z)f(z) du.

@ Even sub-optimal proposals can be super-efficient.
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Example 2.5: Setup

Compute E¢|X| for X ~t3 by ...
(a) sampling directly from ts.
(b) using a t; distribution as instrumental distribution.

(c) using a N(0,1) distribution as instrumental distribution.
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Example 2.5: Densities

Z | — Izl f(x) (Target)
f(z) (direct sampling)
— gt,(x) (IS ty)
e (8N©,1)
= A
=
~ -
S
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S
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Example 2.5: Estimates obtained

Sampling directly from t; IS using t; as instrumental dist’n IS using N(0,1) as instrumental dist’n
2
T T T T T T T T T T
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Tteration
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Example 2.5: Weights

Sampling directly from t3 IS using t; as instrumental dist’n IS using N(0,1) as instrumental dist’n

3.0

2.0

weignts Ww;

T T T T
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Sample X; from the instrumental distribution
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