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Key Topics in Rare Event Simulation 2

☞ Relevance of Rare Events on network performance

☞ The Basic Problem of Rare Event Simulation

☞ Variance Reduction Techniques

➳ RESTART and Importance Sampling

☞ Importance Sampling: Theory

➳ Basic Principle and Definitions

➳ Efficiency Criteria

➳ The core of IS: the Change of Measure

☞ Importance Sampling: Applications

➳ A case study: M/M/1 queue

➳ Tandem queues

➳ Advanced approaches: The Cross Entropy Method

☞ Concluding Remarks
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First Words on Rare Event Simulation 3

☞ Rare Events

➳ influence many real–world systems,

➳ may cause serious consequences,

➳ (should) occur with extremely small probability (e.g. < 10−9) ,

➳ occur rarely in stochastic simulations, too,

➳ are therefore difficult to simulate.

☞ Reliable statistics require sufficiently large number of observations: for probability 10−9 on average

109 trials for one observation.

⇒ Direct simulation lasts days, weeks, months, years, lifetimes!

☞ In principle, that’s the whole story...

Thank you for your attention!
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Application Areas 4

☞ Nuclear Physics, e.g. atomic accident

☞ Security systems, e.g. false alarms in radar

☞ Technical defects, e.g. aircraft, spacecraft

☞ Mathematical Finance and Insurance Risk, e.g. ruins

☞ Manufacturing Systems, e.g. breakdowns

☞ Computer and Communication Systems

➳ bit errors in digital communications

➳ component and system failures and breakdowns (fault–tolerant systems, reliability, availability)

➳ Queueing Systems

➳ excessive backlogs, waiting times, delays

➳ buffer overflows → packet loss, cell loss
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Rare Events informally 5

☞ Informal Characterization

➳ Rare events occur with small probability.

☞ Immediate Questions

➳ What is a small probability?

➳ Is there a probability threshold such that all less probable events are called rare?

➳ Does only an event’s probability determine its relevance?

➳ Are all events with small probability of practical interest?

➳ Is there a formal mathematical characterization of rare events?

☞ Rough Answers

➳ There is no fixed probability threshold for characterizing rarity.

➳ Rare events of practical interest often depend on system parameters.

➳ Probability becomes asymptotically small with parameter changes.

➳ Rare events are often defined on tails of probability distributions.
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Rare Events formally? 6

☞ Simple Example: stable single-server queueing system

➳ The probability of more than n ∈ N jobs in the system converges to zero for n → ∞.

➳ The probability of waiting time greater than x ∈ R+ converges to zero for x → ∞.

➳ Convergence speed depends on system utilization.

Waiting Time in a M/M/1 queue: P(W > x) =
λ

µ
e−(µ−λ)x

☞ Rare events are characterized by large deviation from normality

☞ The mathematical theory related to rare events is known as Large Deviations Theory

Large Deviation Principle for the Waiting Time Distribution

lim
x→∞

1

x
log P(W > x) = −δ where δ = sup{θ : Λ(θ) < 0} = inf

y

Λ∗(y)

y

or, roughly speaking: P (W > x) ≈ e−δx
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The Problem of Rare Event Simulation 7

☞ Given a random variable X with distribution P , estimate by direct simulation

γ := P{A} = EP [IA] for some event A

☞ Generate samples X1, X2, . . . , XN , iid as X according to distribution P,

γ̂ =
1

N

N
∑

i=1

IA(Xi) (unbiased sample mean),

σ2(γ̂) = Var[γ̂] =
γ(1 − γ)

N
(variance of sample mean).

☞ Confidence interval:

γ̂ ± z1−α/2

√

γ(1 − γ)

N

☞ Relative error (Estimate is good, if absolute error is small compared to absolute value):

δrel(γ̂) =
σ(γ̂)

E[γ̂]
=

√

1 − γ

γN

γ→0−→ ∞
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Graphical Interpretation of the Confidence interval 8

☞ Confidence interval for γ: γ̂ ± z1−α/2

√

γ(1 − γ)

N

➳ z1−α/2 is defined by the equation P
(

N (0, 1) ≥ z1−α/2

)

= α/2

➳ N (0, 1) denotes a normally distributed random variable with zero mean and variance one.

α = 0.05 α = 0.01
95% c.i. 99% c.i.

 1.96 2.576

z

p(z)

p(z) = 1√
2π

e−
1
2
z2

P
(

N (0, 1) ≥ z1−α/2

)

= α/2
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Direct Rare Event Simulation – Sample Size 9

☞ Requirements in evaluating the confidence interval for γ:

➳ confidence level 1 − α

➳ maximum relative half-width β

☞ What sample size is needed?

z1−α/2

√

1 − γ

γN
≤ β ⇒ N ≥

z2
1−α/2

β2
· 1 − γ

γ

γ→0−→ ∞.

☞ Numerical Example

➳ 99% confidence interval ⇒ α = 0.01 and z1−α/2 = 2.576

➳ maximum relative half-width of 10% ⇒ β = 0.1

=⇒ N ≥ 100 · 2.5762 · 1 − γ

γ

➳ for instance, if γ = 10−9 =⇒ N ≥ 6.64 · 1011
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Samples in Network Models 10

☞ In practical situations (realistic models) one sample may include generation of millions or billions, or

trillions, or ... of random numbers!

☞ Consider a single server queue simulation, simulation of n jobs

➳ One single sample requires

➠ generation of n (inter)arrival times and n service times

➠ altogether 2n non-uniform random variates

➳ Steady-state simulations require a very large number of jobs to simulate

➳ Altogether in N runs 2 · n · N non-uniform random variates.

➳ For example 99% confidence interval for a probability of about 10−12 with 1 million jobs in each

run: 1.38 · 1021 random variates!

☞ Imagine what you would need for a network simulation!

➳ k service times per job for k nodes, additionally routing probabilities

⇒ Direct rare event simulation is impracticable!
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Simulation Speed-Up 11

☞ Stochastic simulations are statistical estimations.

☞ By simulation speed-up it is meant that the time to determine statistical estimates of desired accuracy

(confidence interval half-width, relative error) is significantly reduced.

☞ Basically two different types of approach

➳ make more experiments in same time

➳ need less experiments for desired accuracy

Rare Event

Original Problem t

Rare Event

Increase Number of Rare Events
t

Rare Event

Increase Number of Events per Time Unit
t
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Speed-up techniques overview 12

☞ Parallel and Distributed Simulation: exploits a multiprocessor environment

➳ process distribution (synchronization?)

➳ simulation replica

☞ Hybrid techniques: combine analytic results with simulation

➳ decomposition (into independent sub-models – in time or space)

➳ conditional sampling

☞ Variance reduction by use of correlation: exploits a known correlation in input and output samples

➳ Antithetic Variates

➳ Common Random Numbers

➳ Control Variates

➳ Stratified Sampling

☞ Rare Event Provoking Techniques: increase the frequency of the rare event of interest

➳ Importance Splitting (RESTART)

➳ Importance Sampling
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RESTART 13

☞ RESTART (REpetitive Simulation Trials After Reaching Thresholds) exploits the idea of sampling the

rare event from a reduced state space, that includes the event of interest

☞ 1991: RESTART was first introduced by Villén-Altamirano in its one threshold version

☞ 1994: multiple thresholds version of RESTART

Φ(t)
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Importance Sampling in a Nutshell 14

☞ Importance Sampling (IS) is a general variance reduction technique, not limited to rare events

Idea

Simulation Speed–up by Rare Event Provoking

(generate more rare events during simulation, in same time)

☞ Simulation method based on IS:

➳ modify underlying stochastics, e.g. interarrival or service time distributions, component failure rates,

densities, transition probabilities etc. (Change of Measure, Biasing)

➳ perform simulation under modified probability measure

➳ unbias results by correcting factor, the Likelihood Ratio

☞ When applied properly, enormous variance reduction (several orders of magnitude) can be obtained.

If not, variance may even grow infinitely

The Art of Importance Sampling

How to perform the change of measure?
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Elementary Example: MC simulation 15

B

A

☞ Objective: determine the area of region B

➳ The analytical solution would require a mathematical description of the boundary of B as well as a

complex integration procedure

➳ When this knowledge is not obtainable, computer simulation using the Monte Carlo (MC) method is

one alternative:

➠ Generate N statistically independent random samples, uniformly distributed over the entire

space A

➠ Estimate the area of B as B̂ = NB/N , where NB is the number of hits within region B

➠ The variance of this estimate is inversely proportional to N , while the precision of the estimate is

related to the number of hits in the important region
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Elementary Example: IS simulation 16

B

C

B
D

A A

☞ Objective: determine the area of region C

➳ Using MC simulation, much larger number of samples, N , would have to be generated for an

equivalent estimator variance.

➳ Using Importance Sampling, we would bias the sampling procedure to increase the fraction of

samples that result in hits.

➠ Double the probability that samples are generated in the quadrant D, containing C

➠ The average number of samples in region C is doubled, increasing the estimator precision

➠ Each sample which results in a hit in region D must be weighted by a factor of 1/2 to yield the

correct, statistically unbiased result
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Elementary Example: Practical Difficulty 17

B

C

B

E

D

A A

☞ The art of Importance Sampling

Ensuring that the regions in the space with increased sampling frequency include the important region.

This can be a problem in case of insufficient prior knowledge of system behavior.

☞ Objective: determine the area of region E

If the region of interest is actually E, the biased scheme used here reduces the number of hits and the

corresponding estimator precision by a factor of two (the weight of each hit is 2!).
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IS for Random Variables – Analytical Definitions 18

☞ Given:

➳ a random variable (RV) X with density f

➳ a real-valued function g

➳ another density f∗, such that

g(x)f(x) > 0 ⇒ f∗(x) > 0

☞ Likelihood Ratio of f and f∗

L(x) :=















f(x)

f∗(x)
, if f∗(x) 6= 0,

0, otherwise,

☞ Then

Ef [g(X)] =

∫

g(x)f(x)dx =

∫

g(x)L(x)f∗(x)dx = Ef∗ [g(X)L(X)]
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Importance Sampling Estimator 19

☞ Samples X1, . . . , XN , iid, according to f∗, (e.g. generated by simulation)

☞ The Importance Sampling Estimator

γ̂IS :=
1

N

N
∑

i=1

g(Xi)L(Xi)

is an unbiased estimator for γ := Ef [g(X)]

☞ For estimating probabilities of an event A

➳ g is the indicator function of the event A

➳ IA(x)f(x) > 0 ⇒ f∗(x) > 0 is required

➳ The Importance Sampling Estimator

γ̂IS :=
1

N

N
∑

i=1

IA(Xi)L(Xi)

is an unbiased estimator for γ := P(A) = Ef [IA(X)]
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General Mathematical Basis of Importance Sampling 20

☞ Importance Sampling is not limited to real–valued continuous random variables!

☞ Formally, in measure-theoretic terms, Importance Sampling in general is based on an application of the

Radon-Nikodym theorem, and the likelihood ratio is what is known as the Radon-Nikodym derivative

☞ For some arbitrary RV H and probability measures P and Q defined on a measurable space (Ω,A)

EP[H] =

∫

H(ω)dP =

∫

H(ω)L(ω)dQ = EQ[HL]

where the likelihood ratio is

L(ω) =
dP

dQ

☞ In particular, defining H(ω) := IA(ω) yields for the probability of each A ∈ A

P(A) = EP[IA] =

∫

IA(ω)dP =

∫

IA(ω)L(ω)dQ = EQ[IAL]

☞ In Importance Sampling the probability measure Q is called the Importance Sampling Measure, and

the corresponding density is called the Importance Sampling Density
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Remarks on absolute continuity 21

☞ The existence of the Radon-Nikodym derivative L(ω) requires that the measure P be absolutely

continuous with respect to the measure Q, i.e.

∀A ∈ A : Q(A) = 0 ⇒ P(A) = 0

which is equivalent to:

∀A ∈ A : P(A) > 0 ⇒ Q(A) > 0

☞ The condition of absolute continuity allows that

Q(A) > 0 if P(A) = 0

☞ The probability measure Q may assign positive probability to events that are impossible under

probability measure P

☞ Condition g(x)f(x) > 0 ⇒ f∗(x) > 0 means absolute continuity of probability measures
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Informal Discussion of Special Cases 22

☞ The probabilistic setting to which IS applies is extremely general

➳ real-valued one-dimensional random variables with densities f and f∗

➳ discrete random variables with probability distributions P and P∗:

Set f(x) = P(X = x) and f∗(x) = P∗(X = x)

➳ random vectors:

densities f and f∗ are multidimensional, real-valued or discrete similar to above. Arguments x are

vectors.

➳ Markov chains:

➠ density f corresponds to probability distribution of Markov chain path probabilities

➠ Importance Sampling density f∗ corresponds to probability distribution of path probabilities, not

necessarily Markovian.

➠ for instance, for a DTMC with initial distribution p0 and transition probabilities P (i, j):

L(X0, X1, . . . , Xm) =
p0(X0)

p∗0(X0)

m
∏

i=1

P (Xi−1, Xi)

P ∗(Xi−1, Xi)
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Optimal Importance Sampling 23

☞ The efficiency of an unbiased estimator is determined by its variance

☞ It is easy to show that

Var[γ̂IS ] = Var

[

1

N

N
∑

i=1

g(Xi)L(Xi)

]

=
1

N

(

Ef∗
[

g(X)2L(X)2
]

− γ2
)

☞ Variances are nonnegative, minimum possible variance is zero

☞ Optimal zero-variance Importance Sampling estimator always exist, since

1

N
Ef∗opt

[

(g(X)L(X) − γ)2
]

= 0 ⇒ f∗
opt(x) =

g(x)f(x)

γ

☞ Unfortunately

➳ f∗
opt depends explicitly on the unknown γ ⇒ generally not available.

➳ if available, requires sampling from conditional density.

➳ f∗
opt often belongs to different class of models/measures
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The Special Case of Estimating Probabilities 24

☞ If γ = P(A), then g = IA and

Var[γ̂IS ] =
1

N

(

Ef∗
[

IA(X)L(X)2
]

− γ2
)

☞ By direct substitution in the general expression,

f∗
opt(x) =

IA(x)f(x)

γ
=











f(x)

γ
if x ∈ A,

0 otherwise.

☞ The optimal change of measure is the ordinary distribution, conditioned that the rare event has

occurred

Aim:

Find a good change of measure, resulting in Importance Sampling

estimators with small variance
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Efficiency Criteria 25

☞ Relative error of an estimator

➳ defined as ratio of standard deviation and expectation

➳ directly proportional to relative half-width of confidence intervals

➳ therefore criterion for efficiency of estimators

☞ Relative error for direct simulation

δrel(γ̂) =
σ(γ̂)

E[γ̂]
=

√

1 − γ

γN

γ→0−→ ∞

☞ Relative error for Importance Sampling

δrel(γ̂IS) =

√

Var[γ̂IS ]

E[γ̂IS ]
=

√

Ef∗ [g(X)2L(X)2] − γ2

γ
√

N

➳ δrel(γ̂IS) depends on Ef∗
[

g(X)2L(X)2
]

, particularly on the likelihood ratio.

➳ the likelihood ratio significantly influences efficiency

➳ something can/may be done against convergence to infinity
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Bounded Relative Error 26

☞ Let γ depend on a rarity parameter m > 0, such that the larger m the smaller γ

lim
m→∞

γ(m) = 0

➳ for instance rarity of buffer overflow grows with buffer capacity m

➳ in principle, f∗ may depend on m, but usually does not

☞ The family of estimators γ̂IS(m) or, short, the estimator γ̂IS has bounded relative error (BRE), if

there exists a constant c > 0, such that

lim
m→∞

δrel(γ̂IS(m)) ≤ c < ∞.

Interpretation of BRE

Relative Error remains bounded even if γ goes to zero
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Asymptotic Optimality 27

☞ As variances are nonnegative,

Ef∗ [g(X)2L(X)2] ≥ γ(m)2 ⇒ ln Ef∗ [g(X)2L(X)2]

ln γ(m)
≤ 2

☞ The family of estimators γ̂IS(m) or, short, the estimator γ̂IS is called asymptotically optimal (AO), if

lim
m→∞

ln Ef∗ [g(X)2L(X)2]

ln γ(m)
= 2.

☞ An Importance Sampling estimator for γ(m) is asymptotically optimal iff γ(m) converges faster to

zero than δrel(γ̂IS(m)) converges to infinity:

lim
m→∞

δrel(γ̂IS(m))
1

γ(m)

= lim
m→∞

δrel(γ̂IS(m))γ(m) = 0.

☞ If γ(m) converges exponentially fast to zero for m → ∞ (as seen in Large Deviation Theory) and the

Importance Sampling estimator has polynomial (i.e., polynomially increasing to infinity) relative error,

then the estimator is asymptotically optimal
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Relationship between AO and BRE 28

☞ Example for Asymptotic Optimality

➳ γ(m) converges exponentially fast to zero, i.e.

γ(m) = e−dm for some d > 1

➳ Asymptotic optimality means

lim
m→∞

1

m
ln Ef∗ [g(X)2L(X)2] = −2d

☞ Each IS estimator with bounded relative error is asymptotically optimal, i.e.

BRE implies AO

☞ There exist asymptotically optimal IS estimators not having bounded relative error, i.e.

AO does not imply BRE

Asymptotic optimality is a strictly weaker criterion than bounded relative error
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Change of Measure 29

☞ Historically Importance Sampling often used for tail probabilities

☞ Typical application: bit error rates in digital communications

☞ Scaling: more probability mass in the tails

f∗(x) =
1

α
f

(x

α

)

α ∈ Rd

☞ For complex systems of high dimensionality scaling in each dimension can be contraproductive since it

does not generate more error events

☞ Translation: Shift expectation to error region

f∗(x) = f(x − T ), T ∈ Rd

☞ Translation is more system dependent and more difficult to apply than scaling

☞ There is an obvious choice of T , based on the most likely path to error

➳ a central idea in Importance Sampling

➳ for normal distribution equivalent to exponential change of measure
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Exponential Change of Measure 30

☞ Exponential Change of Measure (ECM), aka Exponential Twisting, Exponential Tilting

☞ very common proof technique in LDT (e.g. lower bound in Cramér theorem)

☞ Most popular change of measure technique in Importance Sampling for rare events in queueing

systems over the last two decades

☞ Basic idea:

➳ restrict potential Importance Sampling densities/measures/distributions to a parametric family/class

➳ determine optimal change of measure within this restricted class (Optimal Exponential Change of

Measure, OECM)

☞ Given a RV X with density f and moment generating function

M(ϑ) = Ef

[

eϑX
]

=

∫

eϑxf(x)dx, ϑ ∈ Rd

the exponentially twisted (or tilted) density f∗ with twisting (or tilting) parameter ϑ) is defined by

f∗(x) :=
eϑxf(x)

M(ϑ)
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Likelihood Ratio and Moment Generating Function under ECM 31

☞ Likelihood Ratio

L(x) =
f(x)

f∗(x)
=

f(x)
1

M(ϑ)e
ϑxf(x)

=
M(ϑ)

eϑx
= M(ϑ)e−ϑx

☞ Moment Generating Function M∗ of X according to the twisted density f∗

M∗(η) = Ef∗
[

eηX
]

=
1

M(ϑ)
Ef

[

e(η+ϑ)X
]

=
M(η + ϑ)

M(ϑ)

☞ ECM for some Distributions

➳ Exp(λ)  Exp(λ − θ)

➳ Γ(λ, β)  Γ(λ − ϑ, β)

➳ N (µ, σ2)  N (µ + ϑ, σ2)

➳ Geo(p)  Geo(1 − (1 − p)eϑ)
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ECM for Sums of iid Random Variables 32

☞ Many interesting properties of queueing models can be expressed in terms of sums of iid random

variables

☞ Let X1, . . . , Xn iid real-valued random variables and Sn := X1 + · · · + Xn

☞ Moment generating function MSn
of the sum Sn:

MSn
(ϑ) = E

[

eϑSn

]

= E

[

eϑ(X1+···+Xn)
]

=
(

E
[

eϑX
])n

= (MX(ϑ))
n

.

☞ Moment generating function according to exponentially twisted density of sum

M∗
Sn

(η) = M∗
X(η)n =

(

MX(η + ϑ)

MX(ϑ)

)n

☞ Likelihood ratio of original and exponentially twisted density of sum

L(x1, . . . , xn) = MSn
(ϑ)e−ϑsn = MX(ϑ)ne−ϑsn
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Queueing Models and Random Walks 33

☞ Interpretation: The sequence of sums (Sn) is a random walk with negative drift, i.e. with independent

increments Xi, where µ = E[Xi] < 0 holds.

☞ Relation: The waiting time in a stable G/G/1 queue has the same steady-state distribution as a random

walk with negative drift.

☞ Goal:

➳ Probability γ(m) of steady-state waiting exceeds some (high) level m > 0

➳ Probability γ(m) of random walk exceeds some (high) level m > 0

➳ γ(m) corresponds to the probability that the First Passage Time

τ(m) = inf
n>0

[Sn > m]

is finite, i.e.

γ(m) = P (τ(m) < ∞)

➳ Obviously for large m, due to µ < 0, exceeding level m is a rare event
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Optimal Exponential Change of Measure 34

An IS estimator for the probability that a simple random walk with negative

drift exceeds some level m, i.e. an IS estimator for the probability γ(m) =

P{τ(m) < ∞}, is asymptotically optimal , iff it is built according to the ECM,

where the twisting parameter ϑ∗ > 0 is chosen such that

MX(ϑ∗) = 1 and thus lnMX(ϑ∗) = 0

Twisting by ϑ∗ is called the optimal exponential change of measure (OECM) .

☞ Problem in determining optimal ECM: condition for asymptotically optimal exponential change of

measure usually has no explicit solution

☞ Empirical study by Asmussen and Rubinstein (1995) on the efficiency of ECM for single server queues

showed that deviations up to 20% away from optimal parameter often yield good results in the sense

of large amount of variance reduction
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ECM for G/G/1 queue 35

☞ A denotes interarrival times, B denotes service times and E[B] < E[A] is the stability condition

☞ From Lindley Recursion

Wn+1 = max(0, Wn + Bn − An+1), W0 = 0

where Wi, Ai, Bi denote waiting time, interarrival time and service time of the i-th customer

Server

Buffer
time

Cn
Cn+1 Cn+2

Bn

An+1

Wn

Wn+1

☞ Steady-steady waiting time has the same distribution as the maximum of random walk with negative

drift (X = B − A)
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OECM for G/G/1 queue 36

☞ From MX(ϑ∗) = 1, we can get the equation for the asymptotically optimal change of measure:

MB(ϑ∗)M−A(ϑ∗) = MB(ϑ∗)MA(−ϑ∗) = 1

☞ Unfortunately, this condition is explicitly solvable only for a few models:

➳ M/M/1

MB(ϑ∗)MA(−ϑ∗) =
µ

µ − ϑ∗
· λ

λ + ϑ∗
= 1 ⇒ ϑ∗ = µ − λ

the asymptotically optimal exponential change of measure corresponds to an interchange of arrival

and service rate

➳ M/Erlang(2)/1 and Erlang(2)/M/1: quadratic expression

➳ M/D/1 and D/M/1: transcendental equation, which has to solved numerically (if possible).

For instance, for the M/D/1 queue with B = 1 and λ < 1:

MB(ϑ∗)MA(−ϑ∗) = eϑ∗ · λ

λ + ϑ∗
= 1
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Applicability to Queueing Networks? 37

☞ For single server queues, ECM in conjunction with large deviations theory often yields quite good

results

☞ Application of LDT-based ECM to queueing networks turns out to be extremely difficult

☞ Well known trial by Parekh and Walrand (1989)

➳ generalization of asymptotically optimal change of measure for M/M/1 queues to Markovian tandem

networks

➳ interchange interarrival rate and smallest service rate (service rate of bottleneck queue)

➳ other rates remain unchanged

☞ Glasserman and Kou (1995) showed that, even in the case of only two queues in tandem, this

generalization yields infinite variance in some parameter regions

☞ Roughly speaking, this generalization for tandem queues is only efficient if there is one single

bottleneck queues, i.e. contents/population of system is significantly dominated by one single queue

☞ Obviously, for more complicated networks it is even more difficult to find an efficient change of

measure
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Concluding Remarks 38

☞ Optimal zero variance Importance Sampling estimator typically unavailable

☞ Bounded relative error or at least asymptotic optimality highly desirable

☞ Change of measure in Importance sampling intimately related to large deviations theory

☞ Scaling and translation not promising for queueing network models

☞ Exponential change of measure

➳ Asymptotically optimal estimators for some single server systems

➳ Relation to large deviations results for random walks

➳ Generalization difficult, not possible even for Markovian tandem queues

➳ Further Problems with ECM

➠ ECM restricts class of possible Importance Sampling measures

➠ Even best possible ECM may not be asymptotically optimal

➳ Today’s state of the art: ECM not well-suited for complex networks

☞ Try specialized methods for Markovian models and/or adaptive methods (e.g. Cross Entropy Method)
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