List 2 IBI 5081 - Random variable simulations II.

1. Let $T=\{(x, y):|x|+|y| \leq 2\}$. Vector (X, Y) is uniformly distributed on T, i.e. the joint density $p(x, y)$ is given as

$$
p(x, y)= \begin{cases}c & \text { if }(x, y) \in T \\ 0 & \text { if }(x, y) \notin T\end{cases}
$$

(1) $c=$?
(2) find the marginal densities $p_{X}(x)$ and $p_{Y}(y)$;
(3) are X and Y independent random variables?
(4) find expectation values $\mathbb{E}(X)$ and $\mathbb{E}(Y)$;
(5) find variances $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$;
(6) simulate separately X and Y using inverse method; show calculus;
(7) simulate joint values of (X, Y) by part: first simulate X according $p_{X}(x)$, then given the value $X=x$ simulate Y according conditional distribution;
(8) can you suggest another method (I hope simpler method) of simulation for the vector (X, Y) ?
2. Random vector (X, Y) has the following joint distribution

$Y \backslash X$	0	1	3	4
-1	$1 / 6$	0	$1 / 3$	0
1	0	$1 / 3$	0	$1 / 6$

(1) find marginal distribution of X and Y;
(2) draw the graph of cumulative distribution functions $F_{X}(x)=P(X \leq x)$ and $F_{Y}(y)=P(Y \leq y)$;
(3) find $\mathbb{E}(X), \mathbb{E}(Y)$;
(4) find $\mathbb{E}(X+Y)$;
(5) are X and Y independent random variables?
(6) find variances $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$;
(7) simulate separately X and Y using inverse method; show calculus;
(8) suggest a method to simulate the vector (X, Y).

