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Distribution of Random Variables and Simulation
of Random Variables

• Random variable uniquely determined by the cumu-
lative distribution function (cdf) F (x)

• There exists pseudo-random number generation for
uniformly distributed on [0,1] r.v.

• Inverse method, if it is possible to calculate explicitly
inverse or generalized inverse F−1

• Accept-Reject method
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Bernoulli Factory.

Let X1, X2, . . . be i.i.d. Xi ∼ B(p). A Bernoulli factory
is an algorithm that takes (Xi) and auxiliary variables
with known distributions, and simulates a Bernoulli
r.v.s with success probability f(p). Of course, the
algorithm is not allowed to know the value p.

In [2] Assmussen raised the question of whether it was
possible to construct a Bernoulli factory for f(p) =
Cp, the application being perfect simulation for cer-
tain positive recurrent regenerative processes.

[1] Huber, M. (2016) Nearly Optimal Bernoulli Facto-
ries for Linear Functions. Combin., Prob. and Com-
puting, 25, 577591.

[2] Assmussen, S, Glynn, P.W. and Thorisson, H.
(1992) Stationarity detection in the initial transient
problem. ACM Trans. Model. Comput. Simul. 2
130157.
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(Again) About uniform r.v.

Note that U ∼ U [0,1] can be viewed as an i.i.d. se-
quence of B(1/2) r.v.s simply by reading off the bits
in the number U . These bits can then be uses to
build an i.i.d. sequence of uniform random numbers
in [0,1].

Lemma 1. Let U ∼ U [0,1], and let γi are uniforms
on the set S = {0,1, . . . ,9}. Then

U = 0.γ1γ2 . . . .
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Proof.

{γk = i} iff 0.γ1 . . . γk−1i ≤ U < 0.γ1 . . . γk−1i+ 10−k

for any γ1 . . . γk−1 fixed, then

P(γk = i) =
9∑

γ1,...,γk−1=0

10−k = 0.1

Let 1 ≤ s < k. Similarly we have

P(γs = j, γk = i) =
9∑

γ1,...,γs−1,γs,...,γk−1=0

10−k = 0.01

Thus

P(γk1
= i1, γk2

= i2, . . . , γks = is) = P(γk1
= i1) . . .P(γks = is)

�
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(Again) About uniform r.v.

Lemma 2. Let a be some positive integer number,
and let U ∼ U [0,1], then

η = {aU} ∼ U [0,1].

Proof. If x ∈ (0,1) then

P(η < x) =
a−1∑
k=0

P(k ≤ aU < k + x)

=
a−1∑
k=0

P(ka−1 ≤ U < (k + x)a−1) =
a−1∑
k=0

xa−1 = x

�
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Generation multi-dimensional r.v.s.

Let Q = (X1, . . . , Xn) be a vector with independent
components, then

FQ(x1, . . . , xn) = F1(x1) . . . Fn(xn),

where Fi is cdf of component Xi. Here we generate
vector Q simulating Xi independently.
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Generation multi-dimensional r.v.s.

Example. Simulate (X,Y ) uniform on the disc

{(x, y) : x2 + y2 ≤ 1}.
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Generation multi-dimensional r.v.s.

Example. Simulate (X,Y ) uniform on the disc

{(x, y) : x2 + y2 ≤ 1}.
Use polar coordinates (R,Θ). These are independent
and s.t. Θ ∼ U [0,2π] and R has pdf fR(r) = 2r, r ∈
[0,1]. It gives cdf FR(r) = r2, r ∈ [0,1] and inverse
F−1(r) =

√
r. Thus, if U, V ∼ U [0,1] are uniform,

then

Θ = 2πU, R =
√
V .
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Generation multi-dimensional r.v.s.

pQ(x1, . . . , xn) = p1(x1)p2(x2 | x1)p3(x3 | x1, x2) . . . pn(xn | x1, . . . , xn−1)

p1(x1) =

∫
· · ·
∫

pQdx2 . . . dxn

p2(x2 | x1) = [p1(x1)]−1

∫
· · ·
∫

pQdx3 . . . dxn

p3(x3 | x1, x2) = [p1(x1)p2(x2 | x1)]−1

∫
· · ·
∫

pQdx4 . . . dxn

. . . . . .

pn−1(xn−1 | x1, . . . , xn−2) = [p1(x1) . . . pn−2(xn−2 | x1, . . . , xn−3)]−1

∫
pQdxn

pn(xn | x1, . . . , xn−1) = [p1(x1) . . . pn−1(xn−1 | x1, . . . , xn−2)]−1pQ
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Generation multi-dimensional r.v.s.

Let

Fi(xi | x1, . . . , xi−1) =

∫ xi

−∞
pi(x | x1, . . . , xi−1)dx

Lemma 3. Let U1, . . . , Un be i.i.d. U [0,1]. Then
Q = (X1, . . . , Xn) s.t.

X1 = F−1
1 (U1), X2 = F−1

2 (U2 | X1), . . . ,

Xn = F−1
n (Un | X1, . . . , Xn−1)

has the density pQ(x1, . . . , xn).
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Generation multi-dimensional r.v.s.

Example. Simulate (X,Y ) uniform on the triangle T
with corners in (0,1), (0,0) and (1,0), i.e.

T = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}.
The joint density

f(x, y) =

{
2, if (x, y) ∈ T,
0, if (x, y) /∈ T.

gives us the marginal

fX(x) =

∫ 1−x

0
f(x, y)dy = 2

∫ 1−x

0
dy = 2(1− x).
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Generation multi-dimensional r.v.s.

Example. The marginal density

fX(x) =

∫ 1−x

0
f(x, y)dy = 2

∫ 1−x

0
dy = 2(1− x).

gives us the marginal cdf

FX(x) =

∫ x

0
2(1− z)dz = 2x− x2, x ∈ [0,1]

and inverse

F−1(t) = 1−
√

1− t, t ∈ [0,1]

(note that when you solve the quadratic equation you
choose only one correct solution with “−” within in-
terval [0,1])
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Generation multi-dimensional r.v.s.

Example. Further, the conditional pdf of Y given
X = x is

fY (y | x) =
f(x, y)

fX(x)
=

1

1− x
,

i.e. Y | X = x ∼ U [0,1− x].

The inverse transformation method thus gives that if
U and V are independent uniform [0,1], then

X = 1−
√

1− U
Y = V (1−X)

gives a pair (X,Y ) which is uniform on the triangle
T .
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Change of variables method.

[S, p.58] Sometimes we can simplify formulas of mod-
elling of multi-dimensional random variables by choos-
ing new coordinate system.

The rule of density transformation under changing of
variables: let yi = gi(x1, . . . , xn), i = 1, . . . , n, one-to-
one differentiable transformation of an area B in the
space x1, . . . , xn into an area B′ em the space y1, . . . , yn.
Let pQ(x1, . . . , xn) be the density of a random vector
Q = (ξ1, . . . , ξn) in the area B, then the density of the
vector Q′ = (η1, . . . , η2) in B′, where ηi = gi(ξ1, . . . , ξn),
is

pQ′(y1, . . . , yn) = pQ(x1, . . . , xn)

∣∣∣∣∂(x1, . . . , xn)

∂(y1, . . . , yn)

∣∣∣∣
in the right-hand side xi should be expressed by (yi)i=1,...,n.
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Change of variables method. Box-Muller.

Example. (RC, Example 2.3) Generate standard nor-
mal r.v.s X,Y ∼ N(0,1). Consider a transformation
to polar coordinates: (x, y)→ (d, θ){

d = x2 + y2

θ = tan−1
(
y
x

)
.

To get the joint distribution of d and θ need Jacobian
of the transformation

J =

∣∣∣∣∣ ∂d
∂x

∂d
∂y

∂θ
∂x

∂θ
∂y

∣∣∣∣∣ =

∣∣∣∣∣ 2x 2y
1

1+ y2

x2

(
− y
x2

)
1

1+ y2

x2

(
−1
x

) ∣∣∣∣∣ = 2
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Change of variables method. Box-Muller.

Example. (RC, Example 2.3) Since f(x, y) = 1
2π
e−

x2+y2

2

then

fd,θ(d, θ) =
1

2π
e−d/2 ·

1

2
=
e−d/2

2
·

1

2π
for 0 < d <∞ and 0 < θ < 2π. It means that d and θ
are independent. Furthermore

d ∼ Exp(1/2), θ ∼ U [0,2π].

Thus, if U, V ∼ U [0,1] are independent, then the vari-
ables defined by

X =
√
−2 ln(U)cos(2πV ), Y =

√
−2 ln(U)sin(2πV ),

are independent and have standard normal distribu-
tion.
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Change of variables method. Box-Muller.

[RC, p 47] “ ... the Box-Muller algorithm is exact,

producing two normal random variables from two uni-

form r.v.s, the only drawback (in speed) being the

necessity of calculating transcendental functions s.t.

ln, cos and sin .”
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Superposition method (Variant of mixture repre-
sentation).

Suppose that the cdf of a r.v. that we are interested
in can be represented as a composition

F (x) =
m∑
k=1

ckFk(x),

where all Fk’s are cdf’s, and ck > 0. Obviously,

c1 + · · ·+ cm = 1.

Let η be a discrete r.v. with probability distribution

P(η = k) = ck.
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Superposition method (Compare with mixture
representation).

Lemma 4. Let U, V ∼ U [0,1]. If using V we generate
a value η = k of r.v. η, and using U , find ξ s.t.
Fk(ξ) = U , then such generated ξ has cdf F (x).

Proof.

P(ξ ≤ x) =
m∑
k=1

P(ξ ≤ x | η = k)P(η = k)

=
m∑
k=1

Fk(x)ck = F (x)

�
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Superposition method.

The generalization to infinite case is obvious.

Example. R.v. ξ is defined on the interval [0,1] and
has cdf

F (x) =
∞∑
k=1

ckx
k, ck > 0.

Here we can consider Fk(x) = xk, x ∈ [0,1], and by
the method of superposition we obtain:

if
k−1∑
i=1

ci ≤ V <

k∑
i=1

ci, then ξ = (U)1/k.
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Superposition method.

Example. Let ξ ∈ [0,2] with density

p(x) =
5

12
(1 + (x− 1)4), x ∈ [0,2].

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

x

p
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Superposition method.

Example. Let ξ ∈ [0,2] with density

p(x) =
5

12
(1 + (x− 1)4), x ∈ [0,2].

The inverse method gives the equation

(ξ − 1)5 + 5ξ = 12u− 1,

and we should resolve the equation of 5th order.......
it is difficult
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Superposition method.

Example. The density p(x) can be represented

p(x) =
5

12
(1 + (x− 1)4) =

5

6
p1(x) +

1

6
p2(x), x ∈ [0,2],

where

p1(x) =
1

2
, x ∈ [0,2], p2(x) =

5

2
(x− 1)4.

Then, with U, V ∼ U [0,1]

ξ =

{
2U, if V < 5/6,
1 + (2U − 1)1/5, if V ≥ 5/6.
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Superposition method.

Lemma 4 utilizes two uniform random variables in order to simu-
late r.v. with distribution F (x) =

∑m

i=1
ckFk(x). The next lemma

shows that we can use only one uniform random variable.

Lemma 5.∗ Using U ∼ U [0,1] generate value η = k of r.v. η,
and after that define ξ from the equation F (ξ) = θ, where

θ =
1

ck

(
U −

k−1∑
i=1

ci

)
,

then the cdf of generated ξ is F (x) =
∑m

i=1
ckFk(x).

Proof. It is enough to prove that θ is uniformly distributed on
the interval [0,1]:

P(θ < y | η = k) = y).

�

∗Mikhailov, G.A. On the question of efficient algorithms for
modeling of random variables. (Russian) USSR Computational
Mathematics and Mathematical Physics, 1966, 6:6, 269273.
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Superposition method.

Example. In the previous example with U, V ∼ U [0,1]
the random variable

ξ =

{
2U, if V < 5/6,
1 + (2U − 1)1/5, if V ≥ 5/6,

can be represented by the last lemma as

ξ =

{
12
5
V, if V < 5/6,

1 + (12V − 11)1/5, if V ≥ 5/6.
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