Generating random variables I

Anatoli Iambartsev IME-USP

Distribution of Random Variables.

Cumulative distribution function uniquely defines a random variable X:

$$F(x) = \mathbb{P}(X \le x), \quad F: \mathbb{R} \to [0, 1];$$

- 1. it is non-negative and non-decreasing function with values from [0, 1];
- 2. it is right-continuous and it has limit from the left (càdlàg function);
- 3. $\lim_{x\to +\infty} F(x) = 1$; $\lim_{x\to -\infty} F(x) = 0$;
- 4. $\mathbb{P}(a < X \le b) = F(b) F(a)$.

(Purely) Discrete random variable.

"1 kg" of probability is concentrated on finite or countable set of points $S(X) = \{x_1, x_2, \dots\}$: for any $x_0 \in \mathbb{R}$

$$\mathbb{P}(X = x_0) = F(x_0) - \lim_{x \to x_0 -} F(x)$$

and for any $x_i \in \mathcal{S}(X)$ the probability $\mathbb{P}(X = x_i) > 0$.

F(x) is discontinuous at the points $x_i \in \mathcal{S}(X)$ and constant in between:

$$F(x) = \sum_{x_i \le x} \mathbb{P}(X = x_i) = \sum_{x_i \le x} p(x_i)$$
$$\mathbb{P}(a < X \le b) = \sum_{a < x_i \le b} p(x_i)$$

(Purely) Discrete random variable.

- Bernoulli r.v. $X \sim B(p)$; Binomial r.v. $X \sim B(n,p)$;
- Poisson r.v. $X \sim Poi(\lambda)$;
- Geometric r.v. $X \sim G(p)$:

$$\mathbb{P}(X = k) = (1 - p)^{k-1} p, k = 1, 2, \dots, \mathbb{E}(X) = \frac{1}{p},$$

$$\mathbb{P}(X = k) = (1 - p)^k p, k = 0, 1, 2, \dots, \mathbb{E}(X) = \frac{1 - p}{p},$$

$$\mathbb{V}ar(X) = \frac{1 - p}{p^2}$$

• ect.

Absolute continuous random variable.

If F(x) is absolutely continuous, i.e. there exists a Lebesgue-integrable function f(x) such that

$$F(b) - F(a) = \mathbb{P}(a < X \le b) = \int_a^b f(x)dx,$$

for all real a and b. The function f is equal to the derivative of F almost everywhere, and it is called the probability density function of the distribution of random variable X.

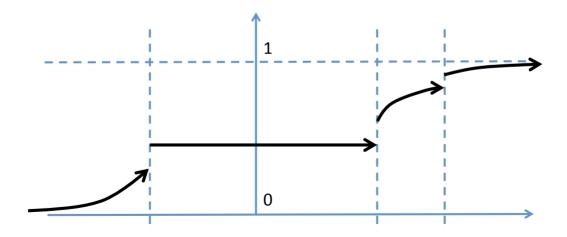
Absolute continuous random variable.

- Unifrom r.v. $X \sim U[a, b]$;
- Normal r.v. $X \sim N(\mu, \sigma^2)$;
- Exponential r.v. $X \sim Exp(\lambda)$;
- ect.

Mixed (absolute continuous and discrete) random variable.

Let X be a discrete r.v. with F_X distribution function, and let Y be absolute continuous r.v. with F_Y distribution function. Let $p \in (0,1)$ then in the course we also consider mixed random variable Z with following distribution function F_Z

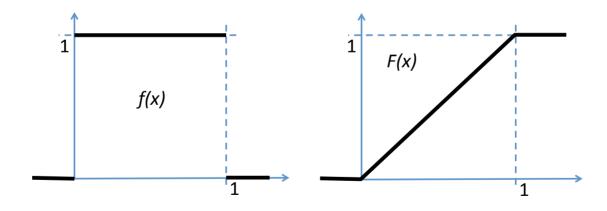
$$F_Z = pF_X + (1-p)F_Y.$$



Uniform random variable.

 $X \sim U[0,1]$, with cumulative distribution function F(x) and density function f(x)

$$F(x) = \mathbb{P}(X \le x) = \begin{cases} 0, & \text{if } x \le 0; \\ x, & \text{if } 0 < x \le 1; \\ 1, & \text{if } x > 1; \end{cases} f(x) = \begin{cases} 0, & \text{if } x \notin [0, 1]; \\ 1, & \text{if } x \in [0, 1]. \end{cases}$$



Uniform random variable simulation.

> runif (100, min=3, max=4)

will generate 100 numbers from the interval [3,4] according uniform distribution.

[RC]: Strictly speaking, all the methods we will see (and this includes **runif**) produce *pseudo-random numbers* in that there is no randomness involved – based on an initial value u_0 and a transformation D, the uniform generator produce a sequence $(u_i, i = 0, 1, ...)$, where $u_i = D^i(u_0)$ of values on (0, 1) – but the outcome has the same *statistical properties* as an iid sequence. Further details on the random generator of R are provided in the on-line help on RNG.

Uniform simulation.

```
> set.seed(2)
> runif(5)
[1] 0.1848823 0.7023740 0.5733263 0.1680519 0.9438393
> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(2)
> runif(5)
[1] 0.1848823 0.7023740 0.5733263 0.1680519 0.9438393
```

Non-uniform random variable generation.

- The inverse transform method
- Accept-reject method
- others

[RC] ... it is known also as probability integral transform — it allows us to transform any random variable into a uniform random variable and, more importantly, vice versa. For example, if X has density f and cdf F, then we have the relation

$$F(x) = \int_{-\infty}^{x} f(t)dt,$$

and if we set U = F(X), then $U \sim U[0,1]$, indeed,

$$\mathbb{P}(U \le u) = \mathbb{P}(F(X) \le F(x))$$

= $\mathbb{P}(F^{-1}(F(X)) \le F^{-1}(F(x))) = \mathbb{P}(X \le x),$

here F has an inverse because it is monotone.

Example. [RC] If $X \sim Exp(\lambda)$, then $F(x) = 1 - e^{-\lambda x}$. Solving for x in $u = 1 - e^{-\lambda x}$ gives $x = -\frac{1}{\lambda} \ln(1 - u)$. Therefore, if $U \sim U[0,1]$, then

$$X = -\frac{1}{\lambda} \ln(U) \sim Exp(\lambda).$$

(as U and 1 - U are both uniform)

Example. [RC, Exercise 2.2] Some variables that have explicit forms of the cdf are logistic and Cauchy. Thus, they are well-suited to the inverse transform method.

- Logistic: $f(x) = \frac{1}{\beta} \frac{e^{-(x-\mu)/\beta}}{(1+e^{-(x-\mu)/\beta})^2}$, $F(x) = \frac{1}{1+e^{-(x-\mu)/\beta}}$;
- Cauchy: $f(x) = \frac{1}{\pi\sigma} \frac{1}{1 + \left(\frac{x-\mu}{\sigma}\right)^2}$, $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x-\mu}{\sigma}\right)$;
- Pareto (γ) : $f(x) = \frac{\gamma}{(1+x)^{\gamma+1}}$, $F(x) = 1 \dots$

For an arbitrary random variable X with cdf F, define the generalized inverse of F by

$$F^{-1}(u) = \inf\{x : F(x) \ge u\}.$$

Lemma 1. Let $U \sim U[0, 1]$, then $F^{-1}(U) \sim F$.

Proof. For any $u \in [0,1], x \in F^{-1}([0,1])$ we have

$$F(F^{-1}(u)) \ge u, \ F^{-1}(F(x)) \ge x.$$

Therefore

$$\{(u,x): F^{-1}(u) \le x\} = \{(u,x): F(x) \ge u\},$$

and it means

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(F(x) \ge U) = F(x).$$

Example. Let $X \sim B(p)$.

$$F(x) = \begin{cases} 0, & \text{if } x < 0; \\ p, & \text{if } 0 \le x < 1; \\ 1, & \text{if } 1 \le x < \infty, \end{cases} F^{-1}(x) = \begin{cases} 0, & \text{if } 0 \le u \le p; \\ 1, & \text{if } p < u \le 1, \end{cases}$$

Thus

$$X = F^{-1}(U) = \begin{cases} 0, & \text{if } U \le p; \\ 1, & \text{if } U > p, \end{cases} \sim B(p).$$

A main limitation of inverse method is that quite often F^{-1} is not available in explicit form. Sometimes approximations are used.

Example. When $F = \Phi$, the standard normal cdf, the following rational polynomial approximation is standard, simple, and accurate for the normal distribution:

$$\Phi^{-1}(u) = y + \frac{p_0 + p_1 y + p_2 y^2 + p_3 y^3 p_4 y^4}{q_0 + q_1 y + q_2 y^2 + q_3 y^3 q_4 y^4}, 0.5 < u < 1,$$

where $y = \sqrt{-2\ln(1-u)}$ and the p_k, q_k are given by table:

k	$\mid p_k \mid$	q_k
0	-0.322232431088	0.099348462606
1	-1	0.588581570495
2	-0.3422420885447	0.531103462366
3	-0.0204231210245	0.10353775285
4	0.0000453642210148	0.0038560700634

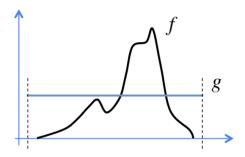
[RC, Ch.2.3] When the inverse method will fail, we must turn to *indirect* methods; that is, methods in which we generate a candidate random variable and only accept it subject to passing a test... These so-called *accept-reject methods* only require us to know the functional form of the density f of interest (called the *target density*) up to a multiplicative constant. We use a simpler (to simulate) density g, called the *instrumental or candidate density*, to generate the random variable for which the simulation is actually done.

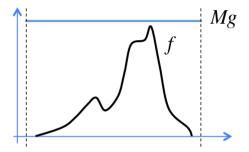
[RC, Ch.2.3] Constraints:

- f and g have compatible supports (i.e. g(x) > 0 when f(x) > 0);
- there is a constant M with $\frac{f(x)}{g(x)} \leq M$ for all x.

 $X \sim f$ is simulated as follows.

- generate $Y \sim g$;
- generate $U \sim U[0,1]$;
- if $U \leq \frac{1}{M} \frac{f(Y)}{g(Y)}$, then we set X = Y, otherwise we discard Y and U and start again.





Proof.

$$\begin{split} &\mathbb{P}(Y \leq x) = \mathbb{P}(Y \leq x \mid Y \text{ accepted}) \\ &= \mathbb{P}(Y \leq x \mid U \leq f(Y)/Mg(Y)) \\ &= \frac{\int_{-\infty}^{\infty} \mathbb{P}(Y \leq x \cap U \leq f(Y)/Mg(Y) \mid Y = y)g(y)dy}{\mathbb{P}(U \leq f(Y)/Mg(Y))} \\ &= \frac{\int_{-\infty}^{x} (f(y)/Mg(y)) g(y)dy}{\mathbb{P}(U \leq f(Y)/Mg(Y))} = \frac{\int_{-\infty}^{x} f(y)dy}{M\mathbb{P}(U \leq f(Y)/Mg(Y))} \end{split}$$

in the same way

$$\mathbb{P}(U \le f(Y)/Mg(Y)) = \int_{-\infty}^{\infty} \mathbb{P}(U \le f(Y)/Mg(Y) \mid Y = y)g(y)dy$$
$$= \int_{-\infty}^{\infty} (f(y)/Mg(y)) g(y)dy = \frac{1}{M} \int_{-\infty}^{\infty} f(y)dy = \frac{1}{M}.$$

The fact that

$$\mathbb{P}\left(U \le \frac{f(Y)}{Mg(Y)}\right) = \frac{1}{M},$$

means that the number of iterations until an acceptance will be geometric random variable with mean M. Thus it is important to choose g so that M is small.

Example. Let $X \sim G(\frac{3}{2}, 1)$, i.e.

$$f(x) = \frac{1}{\Gamma(3/2)} x^{1/2} e^{-x} = \frac{2}{\sqrt{\pi}} x^{1/2} e^{-x}, \ x > 0.$$

And let instrumental variable be $Y \sim Exp(\lambda)$

$$\frac{f(x)}{g(x)} = \frac{Kx^{1/2}e^{-x}}{\lambda e^{-\lambda x}} = \frac{K}{\lambda}x^{1/2}e^{-(x-\lambda x)} \to \max_{x}.$$

The maximum is attained at $x = \frac{1}{2(1-\lambda)}$, and

$$M = \max_{x} \frac{f(x)}{g(x)} = \frac{K}{\lambda} \cdot \frac{e^{-1/2}}{(2(1-\lambda))^{1/2}} \to \min_{\lambda}$$

Thus, $\lambda(1-\lambda)^{1/2} \to \max$, which provide $\lambda = \frac{2}{3}$.

Example. Let $X \sim f(x) = \frac{\sqrt{2}}{\sqrt{\pi}}e^{-x^2/2}, x > 0$. And let instrumental variable be $Y \sim Exp(1)$

$$M = \max_{x} \frac{f(x)}{g(x)} = \frac{f(1)}{g(1)} = \sqrt{\frac{2e}{\pi}} \approx 1.32$$
$$\frac{f(x)}{Mg(x)} = \exp\left(x - \frac{x^2}{2} - \frac{1}{2}\right) = \exp\left(-\frac{(1-x)^2}{2}\right).$$

Thus, the algorithm:

- generate $Y \sim Exp(1), U \sim U[0, 1];$
- accept Y, if $U \leq \exp\left(-\frac{(Y-1)^2}{2}\right)$.

Addition of a choice of sign with 1/2 probability provides a method to generate normal distributed r.v.

References:

[RC] Cristian P. Robert and George Casella. *Introducing Monte Carlo Methods with R.* Series "Use R!". Springer

Some trick methods. Generation of Poisson(λ).

Let
$$\xi_i \sim Exp(\lambda)$$
. Let $S_n = \xi_1 + \dots + \xi_n$.
$$N(1) = \max\{n : S_n \leq 1\},$$
$$N(1) \sim \text{Poi}(\lambda),$$

and

$$N(1) = \max\{n : \sum_{i=1}^{n} -\frac{1}{\lambda} \ln U_i \le 1\}$$

$$= \max\{n : \sum_{i=1}^{n} \ln U_i \ge -\lambda\}$$

$$= \max\{n : \ln(U_1 \dots U_n) \ge -\lambda\}$$

$$= \max\{n : U_1 \dots U_n \ge e^{-\lambda}\}$$

$$N(1) = \max\{n : U_1 \dots U_n < e^{-\lambda}\} + 1.$$

Some trick methods. Generation of Gamma $\Gamma(n,\lambda)$.

$$X \sim \Gamma(n, \lambda)$$
 if $X = \xi_1 + \cdots + \xi_n$, where $\xi_i \sim Exp(\lambda)$.

By inverse transformation method generate exponential, and

$$X = -\frac{1}{\lambda} \ln(U_1 \cdot \dots \cdot U_n).$$

Some methods. Generation of $B(a,b), a,b \in \mathbb{N}$.

$$X \sim B(a,b), a,b \in \mathbb{N} = \{1,2,\dots\}, \text{ if }$$

$$X = \frac{\sum_{i=1}^{a} \xi_i}{\sum_{i=1}^{a+b} \xi_i},$$

where $\xi_i \sim Exp(1)$.

By inverse transformation method generate exponential r.v.s, and

$$X = \frac{\ln(U_1 \dots U_a)}{\ln(U_1 \dots U_a \cdot U_{a+1} \dots U_{a+b})}$$

Some trick methods. Mixture representation.

[RC] It is sometimes the case that a distribution can be naturally represented as *mixture distribution*; that is we can write it in the form

$$f(x) = \int_{\mathcal{Y}} g(x \mid y) p(y) dy \text{ or } f(x) = \sum_{i \in \mathcal{Y}} p_i f_i(x).$$

To generate a r.v. X using such representation, we can first generate a variable Y from mixing distribution and then generate X from selected conditional distribution. That is,

if $Y \sim p(\cdot)$ and $X \sim g(\cdot \mid Y)$, then $X \sim f(\cdot)$ (continuous);

if $Y \sim \mathbb{P}(Y = i) = p_i$ and $X \sim f_Y(\cdot)$, then $X \sim f(\cdot)$ (discrete).

Some trick methods. Mixture representation.

Example. Students density with ν degree of freedom can be represented as mixture, where

$$X \mid y \sim N(0, \nu/y),$$
 and $Y \sim \chi_{\nu}^2$.