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[Wiki] Salesman problem.

The travelling salesman problem (TSP), or, in recent years,
the travelling salesperson problem, asks the following question:
”Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?” It is an NP-hard
problem in combinatorial optimization, important in operations
research and theoretical computer science.

(NP-hardness (non-deterministic polynomial-time hard), in com-
putational complexity theory, is the defining property of a class
of problems that are, informally, “at least as hard as the hard-
est problems in NP”. ... A common misconception is that the
NP in ”NP-hard” stands for ”non-polynomial” when in fact it
stands for ”Non-deterministic Polynomial acceptable problems”.
Although it is suspected that there are no polynomial-time algo-
rithms for NP-hard problems, this has not been proven. More-
over, the class P in which all problems can be solved in polyno-
mial time, is contained in the NP class.)
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Salesman problem.

We will consider this problem without the condition “returns to
the origin city”.

# salesman problem

n=20  # number of cities 
L=10  # side of square where cities are
x=L*runif(n) # x-coordinates of cities
y=L*runif(n) # y-coordinates of cities
path=seq(1:n) # path of a salesman

plot(x,y,xlim=c(0,L),ylim=c(0,L),type="b")

dist=function(path){
  d=0;
    #for (i in 2:length(path)){
    # x1=x[path[i-1]]
    # y1=y[path[i-1]]
    # x2=x[path[i]]
    # y2=y[path[i]]
    # d=d+sqrt((x1-x2)^2+(y1-y2)^2)
    #}
  k=length(path)
  xx=x[path]; yy=y[path]
  d=d+sum(sqrt((xx[1:(k-1)]-xx[2:k])^2+(xx[1:(k-1)]-xx[2:k])^2))
  d;
 }

tmin=0.01 # admissible minimum of temperature
alpha=0.999  # multiplicative coefficient for fast simulated annealing 
T[i+1]=alpha*T[i]
T=tini=500    # starting temperature
E=dist(path)
cont=0
while(T >= tmin){
  pair=sample.int(n,2);
  nmin=min(pair)
  nmax=max(pair)
  newpath=path
  newpath[nmin:nmax]=rev(path[nmin:nmax])
  Enew=dist(newpath)
  if (T*log(runif(1)) < E-Enew){E=Enew; path=newpath; cont=cont+1}
  T=T*alpha
  }

plot(x[path],y[path],xlim=c(0,L),ylim=c(0,L),type="b")
dist(path)

paste(rev(substring(a,1:nchar(a),1:nchar(a))),collapse="")
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Salesman problem.
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Salesman problem.
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Salesman problem. Walks on the set of paths.

Choose a subpath of a path and revert the order

pair=sample.int(n,2);

nmin=min(pair)

nmax=max(pair)

newpath=path

newpath[nmin:nmax]=rev(path[nmin:nmax])

Observe that

P(path→ newpath) = P(newpath→ path) =
1(
n
2

)
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Salesman problem.
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Salesman problem. Exercises.

1. Rewrite the algorithm for the salesman problem with the
condition “returns to the origin city”.

2. Suggest another walk g on symmetric group Sn (set of all
permutations of sequence 1,2, . . . , n).

3. Instead of the (super-)fast annealing cooling schedule Tt+1/Tt =
α ∈ (0,1), use in simulated annealing different cooling
schedule: Tt = 1/ log(1 + t) (Boltzman’s annealing), Tt =
1/t (Cauchy’s annealing).

4. Matching problem. In a square there are n red and n blue
points. We connect one red and one blue point by an
interval, the weight of this connection (matching) is the
distance between them. The aim is to match any red point
with blue one such that a total weight of matching should
be minimal.
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[RC] Example 5.8.

For the simple function h(x) = [cos(50x) + sin(20x)]2, we can
compare the impact of using different temperature schedules on
the performance of the simulated annealing sequences. Note
that, besides setting a temperature sequence, we also need to
set a scale value (or sequence) for the distribution g of the per-
turbations as well as a stopping rule. Since the domain is [0,1],
we use a uniform U(−ρ, ρ) distribution for g and our stopping
rule is that the algorithm will stop when the observed maximum
of h has not changed in the second half of the sequence {xt}.
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[RC] Example 5.8.

“The constraint involving unique is cancelling the stopping rule
when no perturbation has been accepted in the second half of
the iterations, meaning that the scale may then be inappropriate.
(Note that the updates of temp and scale need to be included
in the loop.)

For a scale defined by
√
Tt and a temperature decrease in 1/ log(1+

t), the sequence almost always ends up at a value close to the
true maximum. Similarly, a scale defined by 5

√
Tt and a temper-

ature decrease in 1/(1 + t)2 leads almost certainly to the global
maximum, as shown on Figure 5.8 (where the last example was
obtained after several runs). Decreasing the scale by a factor of
ten has a clear and negative impact on the performance of the
algorithm.”
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Fig. 5.8. Realizations of four simulated annealing sequences for Tt = 1/(t+1)2 and
ρ = 5

√
Tt over the graph of the function h (grey). Note that the points represented

on the graph of h correspond to successive accepted values in Algorithm 2 and do
not reflect the number of iterations.

G, or T), which corresponds to state-spaces of size 4600,000 if we consider all
possible combinations.

Example 5.9. Using the same normal mixture likelihood as in Example 5.2,
we can implement the simulated annealing algorithm for this example using for
instance the following R function:

SA=function(x){

temp=scale=iter=dif=factor=1

the=matrix(x,ncol=2)

curlike=hval=like(x)
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[Wiki] Cooling schedule.

The physical analogy that is used to justify SA assumes that the
cooling rate is low enough for the probability distribution of the
current state to be near thermodynamic equilibrium at all times.
Unfortunately, the relaxation time – the time one must wait for
the equilibrium to be restored after a change in temperature –
strongly depends on the “topography” of the energy function
and on the current temperature. In the SA algorithm, the relax-
ation time also depends on the candidate generator, in a very
complicated way. Note that all these parameters are usually pro-
vided as black box functions to the SA algorithm. Therefore,
the ideal cooling rate cannot be determined beforehand, and
should be empirically adjusted for each problem. Adaptive sim-
ulated annealing algorithms address this problem by connecting
the cooling schedule to the search progress.
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