Lista 7. Cadeias de Markov I (tempo discreto). Gabarito.

Solução Exercício 3. Pela indução. Seja fórmula para P^n é certa. Provamos que para P^{n+1} é certa também: tem que provar que

$$\begin{pmatrix} \frac{1}{2} + \frac{1}{2}(2p-1)^n & \frac{1}{2} - \frac{1}{2}(2p-1)^n \\ \frac{1}{2} - \frac{1}{2}(2p-1)^n & \frac{1}{2} + \frac{1}{2}(2p-1)^n \end{pmatrix} \begin{pmatrix} p & 1-p \\ 1-p & p \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}(2p-1)^{n+1} & \frac{1}{2} - \frac{1}{2}(2p-1)^{n+1} \\ \frac{1}{2} - \frac{1}{2}(2p-1)^{n+1} & \frac{1}{2} + \frac{1}{2}(2p-1)^{n+1} \end{pmatrix}$$

Realmente

$$p\left(\frac{1}{2} + \frac{1}{2}(2p-1)^n\right) + (1-p)\left(\frac{1}{2} - \frac{1}{2}(2p-1)^n\right) = \frac{1}{2} + \frac{1}{2}(2p-1)^n\left(p - (1-p)\right)$$
$$= \frac{1}{2} + \frac{1}{2}(2p-1)^{n+1}$$

 \mathbf{e}

$$(1-p)\left(\frac{1}{2} + \frac{1}{2}(2p-1)^n\right) + p\left(\frac{1}{2} - \frac{1}{2}(2p-1)^n\right) = \frac{1}{2} + \frac{1}{2}(2p-1)^n\left((1-p) - p\right)$$
$$= \frac{1}{2} - \frac{1}{2}(2p-1)^{n+1}$$

O que termina a prova. \square

Solução Exercício 5. O fato que η_n é uma cadeia de Markov basta mostrar que η_{n+1} é uma função de η_n e uma variável aleatória independente, ou seja, $\eta_{n+1} = F(\eta_n, \xi_{n+1})$ em que ξ_i são i.i.d. e η_i, ξ_{i+1} são independentes para quaisquer i.

(a) A equação $\eta_{n+1} = \eta_n + \xi_{n+1}$ prova que η_n forma uma cadeia de Markov com seguinte matriz de transição $P = (p_{ij})$, em que

$$p_{ij} = \begin{cases} p & \text{se } j = i+1 \\ 1-p & \text{se } j = i-1 \end{cases}$$
 $i \in \mathbb{N} = \{0, 1, \dots\}.$

(b) A equação $\eta_{n+1} = \max(\eta_n, \xi_{n+1})$ prova que η_n forma uma cadeia de Markov com seguinte matriz de transição $P = (p_{ij}), i, j = \pm 1$, em que

$$p_{-1,-1} = 1 - p$$
, $p_{-1,1} = p$, $p_{1,-1} = 0$, $p_{1,1} = p$

(c) A equação $\eta_{n+1} = \eta_n \cdot \xi_{n+1}$) prova que η_n forma uma cadeia de Markov com seguinte matriz de transição $P = (p_{ij}), i, j = \pm 1$, em que

$$p_{-1,-1} = p$$
, $p_{-1,1} = 1 - p$, $p_{1,-1} = 1 - p$, $p_{1,1} = p$

Solução Exercício 6. Seja d fixo. A configuração de bolas em duas caixas é determinada sabendo número de bolas pretas em primeira caixa. Assim, o conjunto de possíveis configurações é equivalente o conjunto $E = \{0, 1, \dots, d\}$ – possíveis números de bolas pretas em primeira caixa. Assim, se $k \neq 0, d$

$$k \to k$$
 $2 \cdot \frac{k}{d} \cdot \frac{d-k}{d}$ $k \to k+1$ $\left(\frac{d-k}{d}\right)^2$ $k \to k-1$ $\left(\frac{k}{d}\right)^2$

 \mathbf{e}

 $0 \to 1$ com probabilidade 1 $d \to d-1$ com probabilidade 1

Solução Exercício 7. Estados dessa cadeia pode ser o conjunto de quartos. Aqui supomos que o quarto de Alfredinho é estado absorvente. Mas conjunto de estados pode ser reduzido: "0" – não é o quarto de Alfredinho, "1" – quarto de Alfredinho. Nestes condições o passeio de Alfredinho é cadeia de Markov com seguinte matriz de transição

$$0 \to 0$$
 com probabilidade $5/6$

$$0 \rightarrow 1$$
 com probabilidade $1/6$

$$1 \rightarrow 0$$
com probabilidade 0

$$1 \rightarrow 1$$
com probabilidade 1

Por isso a probabilidade de "visitar" 10 quartos antes de entrar no seu quarto é

$$\left(\frac{5}{6}\right)^{10}\frac{1}{6}.$$

Solução Exercício 8. Os estados desse "passeio" pode ser representado em um dos jeitos:

- (1) "1" o quarto de amigo é par; "0" quarto par que não é quarto de amigo; "2" quarto impar
- (2) "1" o quarto de amigo é impar; "0" quarto impar que não é quarto de amigo; "2" quarto par

A matriz de transição é a mesma para dois:

$$0 \rightarrow 0$$
 com probabilidade 0

$$0 \rightarrow 1$$
com probabilidade 0

$$0 \rightarrow 2$$
 com probabilidade 1

$$1 \rightarrow 0$$
com probabilidade 0

$$1 \rightarrow 1$$
com probabilidade 1

$$1 \rightarrow 2$$
 com probabilidade 0

$$2 \rightarrow 0$$
 com probabilidade $2/3$

$$2 \rightarrow 1$$
 com probabilidade $1/3$

 $2 \rightarrow 2$ com probabilidade 0